Powered by Deep Web Technologies
Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biochemical Production of Ethanol from Corn Stover: 2008 State...  

NLE Websites -- All DOE Office Websites (Extended Search)

10-46214 August 2009 Biochemical Production of Ethanol from Corn Stover: 2008 State of Technology Model D. Humbird and A. Aden National Renewable Energy Laboratory 1617 Cole...

2

MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials  

DOE Green Energy (OSTI)

The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

None

2006-02-17T23:59:59.000Z

3

Corn  

NLE Websites -- All DOE Office Websites (Extended Search)

Corn Corn Nature Bulletin No. 118 May 31, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation CORN Corn, or maize, has never been found growing wild. Columbus found it being grown by the Carib Indians and called it " Mahiz". The Aztecs told Cortez it was a gift from their gods, but the Mayas and the Incas already had been growing corn for thousands of years. Teosinte, a coarse native Mexican grass, appears to be its closest relative and its origin was probably in Central or South America. Our first colonists planted seed obtained from the Indians and, "corn" being the English word for all grain, called this strange new plant "Indian corn". Without man' s help, corn soon would disappear. Each year the seed must be carefully selected, carefully planted, and the soil kept cultivated to remove competition from other plants. Modern scientific breeding has produced varieties remarkable for their rapid growth, uniform size and heavy yield.

4

Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model  

SciTech Connect

An update to the FY 2005 assessment of the state of technical research progress toward biochemical process goals. This assessment contains research results from 2006 and 2007.

Aden, A.

2008-05-01T23:59:59.000Z

5

Biochemical Production of Ethanol from Corn Stover: 2008 State of Technology Model  

DOE Green Energy (OSTI)

An update to the FY 2007 assessment of the state of technical research progress toward biochemical process goals, quantified in terms of Minimum Ethanol Selling Price.

Humbird, D.; Aden, A.

2009-08-01T23:59:59.000Z

6

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.  

Science Conference Proceedings (OSTI)

Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Wang, M.; Wu, M.; Huo, H.; Energy Systems

2007-04-01T23:59:59.000Z

7

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion of Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, and A. Aden National Renewable Energy Laboratory Golden, Colorado P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, and D. Dudgeon Harris Group Inc. Seattle, Washington and Atlanta, Georgia Technical Report NREL/TP-5100-47764 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

8

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover  

Science Conference Proceedings (OSTI)

This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

2011-03-01T23:59:59.000Z

9

Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

E-Print Network (OSTI)

pretreatment technologies to corn stover. Bioresourcerelationship to features of corn stover solids produced byexplosion treatment of corn stover. Appl Biochem Biotech

Qing, Qing; Wyman, Charles E

2011-01-01T23:59:59.000Z

10

Corn Milling  

Science Conference Proceedings (OSTI)

... From this analysis, Product Line Leaders target customers and markets and ... has hired experts from the feed, sugar, fermentation, biofuels, and corn ...

11

Owens Corning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Williams, and Mark Lessans of the Department of Energy's (DOE) Building Technologies Office. Owens Corning requested this meeting to cover a broad set of issues, including: 1....

12

Corn Syndrome  

E-Print Network (OSTI)

Reports of "floppy " corn were numerous earlier this month. Many causes have been proposed for this problem. Herein lies one more look at this curious phenomenon. Click on image to open a larger version. he curious phenomenon referred to as "floppy corn syndrome" reared (or lowered, as it were) its ugly head in some fields in Indiana and Ohio back in early June. The term "floppy corn " simply describes a young (V5 to V8) plant that has fallen over because of the absence of an established nodal root system at the crown of the plant. Affected plants may survive if the mesocotyl remains intact long enough for subsequent nodes of roots to establish themselves in moist soil. If the mesocotyl breaks before subsequent establishment of additional nodal roots, the plant dies. The causes of the poor nodal root development have been debated for years and, indeed, likely vary from situation to situation. Click on image to open a larger version. My own experience with investigating floppy corn events over the years has primarily been associated with the detrimental effects of excessively dry surface soil at the time of initial nodal root elongation in young (V2 to V4) corn plants (Nielsen, 2001). Young roots that emerge from the crown area of the plant will die if their root tips dessicate prior to successful root establishment in moist soil. The crown of a young corn plant is typically located only 3/4 inch or so below the soil surface and so is particularly vulnerable to dry upper soil conditions. Other causes have been implicated in the development of floppy corn, including excessive

Over-extended Mesocotyls; R. L. (bob Nielsen

2004-01-01T23:59:59.000Z

13

Owens Corning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OWENS CORNING OWENS CORNING GOVERNMENT AND PUBLIC AFFAIRS 900 19 TH STREET N.W. SUITE 250 WASHINGTON, DC 20006 202.639.6900 FAX: 202.639.0247 OWENS CORNING September 20, 2013 By email: expartecommunications@hq.doe.gov Daniel Cohen Assistant General Counsel for Legislation and Regulatory Law Office of General Counsel Department of Energy 1000 Independence Ave., SW Washington DC 20585-0121 RE: Ex Parte Memo Dear Mr. Cohen: On Thursday, August 29, 2013, Julian Francis, VP & Managing Director Residential Insulation, Frank O'Brien Bernini, VP & Chief Sustainability Officer, Paul Smith, VP Building Materials Group Marketing, John Libonati, VP Government and Public Affairs, and I met with David Lee, Jeremy Williams, and Mark Lessans

14

Type-dependent irreversible stochastic spin models for biochemical reaction networks  

E-Print Network (OSTI)

We describe an approach to model biochemical reaction networks at the level of promotion-inhibition circuitry through a class of stochastic spin models that depart from the usual chemical kinetics setup and includes spatial and temporal density fluctuations in a most natural way. A particular but otherwise generally applicable choice for the microscopic transition rates of the models also makes them of independent interest. To illustrate the formalism, we investigate some stationary state properties of the repressilator, a synthetic three-gene network of transcriptional regulators that possesses a rich dynamical behaviour.

Mendonça, J Ricardo G

2011-01-01T23:59:59.000Z

15

Cargill Corn Milling North America  

Science Conference Proceedings (OSTI)

... Manufacturing. Cargill Corn Milling North America. Cargill employees (Photo courtesy of Cargill Corn Milling North America). ...

2010-11-23T23:59:59.000Z

16

Heartland Corn Products | Open Energy Information  

Open Energy Info (EERE)

Corn Products Corn Products Jump to: navigation, search Name Heartland Corn Products Place Winthrop, Minnesota Zip 55396 Product Heartland Corn Products is farmer-owned cooperative that produces corn-derived ethanol. Coordinates 48.47373°, -120.177559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.47373,"lon":-120.177559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Corn/coal fuel characterization study  

DOE Green Energy (OSTI)

Laboratory analyses and tests were conducted to determine the suitability of shelled corn as a potential supplemental fuel for pulverized coal fired utility boilers. The analyses and tests used were those routinely used for the characterization of coal. The data indicated very high volatility and very low ash. Corn by itself would not be a suitable fuel for conventional boilers, primarily because of the severe fouling and slagging potential of corn ash. Blends of corn and coal minimized the fouling and slagging problems. The blend samples contained 10% corn by BTU or 14% by weight. Approximately 1.05 pounds of this blend would provide the heat equivalent of one pound of coal. The additional fuel input would place an additional load on fuel handling and preparation equipment, but the decrease in ash quantity would reduce the load on ash handling and particulate-type flue gas clean-up equipment. (JSR)

Cioffi, P. L.

1978-08-01T23:59:59.000Z

18

Quad County Corn Processors | Open Energy Information  

Open Energy Info (EERE)

Quad County Corn Processors Quad County Corn Processors Jump to: navigation, search Name Quad County Corn Processors Place Galva, Iowa Zip 51020 Product Farmer owned corn processing facility management company. Coordinates 38.38422°, -97.537539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.38422,"lon":-97.537539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Cooking with Corn Syrup  

E-Print Network (OSTI)

This fact sheet describes the nutritional value and safe storage of corn syrup, a commodity food. It also offers food preparation ideas.

Anding, Jenna

2001-09-10T23:59:59.000Z

20

Estimating Corn Grain Yields  

E-Print Network (OSTI)

This publication explains how to estimate the grain yield of a corn crop before harvest. An interactive grain yield calculator is included. 6 pages, 3 tables, 1 figure.

Blumenthal, Jurg M.; Thompson, Wayne

2009-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Volunteer corn in soybeans  

E-Print Network (OSTI)

Volunteer corn is a highly visible weed in Nebraska soybean fields. Most soybean fields in the state are affected to some degree. The problem generally is worse in fields that receive tillage during the spring. We are concerned that soybean producers are not adequately considering the negative consequences of uncontrolled volunteer corn growth in soybean. Impact of volunteer corn on soybean yield Volunteer corn is an extremely competitive weed in soybean. It grows taller than soybean early in the season, and in addition to shading surrounding soybean plants, it competes for nutrient and water resources. The yield effect of volunteer corn depends on its density. South Dakota State University conducted studies in 2007 and 2008 where they established volunteer corn densities of 0 up to 17,800 plants/A in soybean (Alms et al. 2008). The corn was allowed to compete for the entire growing season and soybean yields were measured. A density of 5,000 volunteers/A reduced soybean yield approximately 20%, or a 12 bu/A yield loss in 60 bu/A soybean. With a density of 5,000 plants/A, there would be a volunteer corn

Mark Bernards; Lowell S; Bob Wright

2010-01-01T23:59:59.000Z

22

Corn Rootworm (Diabrotica spp.) and Bt Corn: Effects on Pest Survival, Emergence and Susceptibility.  

E-Print Network (OSTI)

??Corn rootworms (Diabrotica spp.) are one of the most destructive pests of corn in the United States. Bt corn or corn that has been genetically… (more)

Keweshan, Ryan Scott

2012-01-01T23:59:59.000Z

23

Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Corn-to-Ethanol Corn-to-Ethanol Research Pilot Plant to someone by E-mail Share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Facebook Tweet about Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Twitter Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Google Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Delicious Rank Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Digg Find More places to share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Corn-to-Ethanol Research Pilot Plant The Illinois Ethanol Research Advisory Board manages and operates the

24

Pro Corn LLC | Open Energy Information  

Open Energy Info (EERE)

Pro Corn LLC Pro Corn LLC Jump to: navigation, search Name Pro-Corn LLC Place Preston, Minnesota Zip 55965 Product Minnesotan farmer owned bioethanol production company. Coordinates 47.526531°, -121.936019° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.526531,"lon":-121.936019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Understanding Corn Test Weight  

E-Print Network (OSTI)

Corn test weight (TW) is an often discussed topic of conversation among corn growers. The topic moves to the forefront in years when corn has been stressed at some point during the grain filling period or when the growing season is ended by frost before physiological maturity is reached. In many cases, the concept of test weight is misunderstood. Test weight is volumetric measurement. An official bushel measures 1.244 cubic feet. To measure TW, we usually take the weight of some smaller unit of measure and make a conversion. The official minimum allowable TW for U.S. No. 1 yellow corn is 56 lbs. per bushel, while No. 2 corn is 54 lbs. per bushel. It's unknown how this all started hundreds of years ago, but perhaps it was easier and more fair to sell things based on volume (length x width x height), something a person could see, instead of weight. Today, of course, corn is sold by weight and often in 56-pound blocks that we, for some reason, still call a bushel. Because weight is contingent on moisture content, grain buyers base their price on a "standard " moisture of (usually) 15 or 15.5 percent. Test weight and yield... Sometimes high TW is associated with high grain yield and low TW is associated with low grain yield. In fact, there is a poor relationship between TW and yield. The same TW can exist across a

Mike Rankin

2009-01-01T23:59:59.000Z

26

Corn Plus | Open Energy Information  

Open Energy Info (EERE)

Plus Plus Jump to: navigation, search Name Corn Plus Place Winnebago, Minnesota Product Farmer Coop which owns an Ethanol plant in Winnebago Mn. Coordinates 42.236095°, -96.472339° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.236095,"lon":-96.472339,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Corn-O-Copia  

Science Conference Proceedings (OSTI)

This paper describes an ethanol project initiated by Red Trail Energy at its plant near Richardton, ND, with the goal of producing ethanol from corn using coal for energy. Aside from the fact that it does not substantially reduce carbon emissions, the ...

W. Sweet

2007-01-01T23:59:59.000Z

28

Corn Plus Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plus Wind Farm Plus Wind Farm Jump to: navigation, search Name Corn Plus Wind Farm Facility Corn Plus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser N/a Location MN Coordinates 43.760635°, -94.149617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.760635,"lon":-94.149617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Assessing Corn Stover Composition and Sources of Variability via NIRS  

Science Conference Proceedings (OSTI)

Corn stover, the above-ground, non-grain portion of the crop, is a large, currently available source of biomass that potentially could be collected as a biofuels feedstock. Biomass conversion process economics are directly affected by the overall biochemical conversion yield, which is assumed to be proportional to the carbohydrate content of the feedstock materials used in the process. Variability in the feedstock carbohydrate levels affects the maximum theoretical biofuels yield and may influence the optimum pretreatment or saccharification conditions. The aim of this study is to assess the extent to which commercial hybrid corn stover composition varies and begin to partition the variation among genetic, environmental, or annual influences. A rapid compositional analysis method using near-infrared spectroscopy/partial least squares multivariate modeling (NIR/PLS) was used to evaluate compositional variation among 508 commercial hybrid corn stover samples collected from 47 sites in eight Corn Belt states after the 2001, 2002, and 2003 harvests. The major components of the corn stover, reported as average (standard deviation) % dry weight, whole biomass basis, were glucan 31.9 (2.0), xylan 18.9 (1.3), solubles composite 17.9 (4.1), and lignin (corrected for protein) 13.3 (1.1). We observed wide variability in the major corn stover components. Much of the variation observed in the structural components (on a whole biomass basis) is due to the large variation found in the soluble components. Analysis of variance (ANOVA) showed that the harvest year had the strongest effect on corn stover compositional variation, followed by location and then variety. The NIR/PLS rapid analysis method used here is well suited to testing large numbers of samples, as tested in this study, and will support feedstock improvement and biofuels process research.

Templeton, D. W.; Sluiter, A. D.; Hayward, T. K.; Hames, B. R.; Thomas, S. R.

2009-01-01T23:59:59.000Z

30

Varo & Owens Corning Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineers, Inc Owens Corning - Newark Plant 2751 Tuller Parkway 400 Case Avenue Dublin, Ohio 43017 Newark, Ohio 43055 Business: Consulting Engineer Business: Insulation Materials...

31

Robbins Corn & Bulk Services | Open Energy Information  

Open Energy Info (EERE)

Robbins Corn & Bulk Services Jump to: navigation, search Name Robbins Corn & Bulk Services Place Sackets Harbor, NY Information About Partnership with NREL Partnership with NREL...

32

Fast Corn Grading System Verification and Modification.  

E-Print Network (OSTI)

??A fast corn grading system can replace the traditional method in unofficial corn grading locations. The initial design of the system proved that it can… (more)

Smith, Leanna Marie

2012-01-01T23:59:59.000Z

33

Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes  

Science Conference Proceedings (OSTI)

Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

2007-09-01T23:59:59.000Z

34

Delayed Planting Considerations for Corn  

E-Print Network (OSTI)

Quite a bit of Indiana’s corn crop remains to be planted, especially in southern Indiana, due to the current rainy spell that put the brakes on what had been a very rapid planting pace. As of 11 May, 42 % of Indiana’s intended corn acreage was yet to be planted (USDA-NASS,

John Obermeyer; Entomology Dept; Tony Vyn; Agronomy Dept

2003-01-01T23:59:59.000Z

35

The effects of previous-year corn hybrid and cropping system on current-year corn hybrids in second year corn.  

E-Print Network (OSTI)

??Grain yields decrease when corn (Zea mays L.) follows corn compared to corn grown in rotation with other crops. The factors that decrease grain yield… (more)

Kent, Wade Adam

2010-01-01T23:59:59.000Z

36

Ethanol extraction of phytosterols from corn fiber  

Science Conference Proceedings (OSTI)

The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

2010-11-16T23:59:59.000Z

37

Biochem. J.  

NLE Websites -- All DOE Office Websites (Extended Search)

29, 29, 533-543 (Printed in Great Britain) doi:10.1042/BJ20100238 533 Identification of a novel UDP-sugar pyrophosphorylase with a broad substrate specificity in Trypanosoma cruzi Ting YANG*† and Maor BAR-PELED†‡ 1 *Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, U.S.A., †Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, U.S.A., and ‡Department of Plant Biology, University of Georgia, Athens, GA 30602, U.S.A. The diverse types of glycoconjugates synthesized by trypanoso- matid parasites are unique compared with the host cells. These glycans are required for the parasite survival, invasion or evasion of the host immune system. Synthesis of those glycoconjugates requires a constant supply of nucleotide-sugars (NDP-sugars), yet little is known about how these NDP-sugars are made

38

Corn Yield Prediction Using Climatology  

Science Conference Proceedings (OSTI)

A method is developed to predict corn yield during the growing season using a plant process model (CERES-Maize), current weather data and climatological data. The procedure is to place the current year's daily weather (temperature and ...

Claude E. Duchon

1986-05-01T23:59:59.000Z

39

Effect of corn stover harvest and winter rye cover crop on corn nitrogen fertilization.  

E-Print Network (OSTI)

??Improvement in N management to optimize corn N fertilization requirement and minimize NO33 – N loss from agricultural fields is an ongoing need for continuous corn… (more)

Pantoja, Jose L.

2013-01-01T23:59:59.000Z

40

Effects of corn processing and dietary wet corn gluten feed on newly received and growing cattle.  

E-Print Network (OSTI)

??Effects of corn processing with or without the inclusion of wet corn gluten feed (WCGF) on growth and performance were analyzed in two experiments. Treatments… (more)

Siverson, Anna

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Corn Ethanol and Wildlife: How are Policy and Market Driven Increases in Corn Plantings Affecting Habitat and Wildlife.  

E-Print Network (OSTI)

??Since 2005, government incentives have driven massive growth in the corn ethanol industry, increasing demand for corn for ethanol by 200%. Corn prices have risen… (more)

Griffin, Elizabeth; Glaser, Aviva; Fogel, Gregory; Johnson, Kristen

2009-01-01T23:59:59.000Z

42

Corn Fields Shutting Down  

E-Print Network (OSTI)

Fields of corn around Indiana, especially early-planted ones, are in the process of shutting down for the season. While only 3 % of the state’s crop was estimated to be mature (i.e., kernel black layer) as of the week ending 31 Aug, 41 % of the crop was estimated to be at dent stage or beyond (Indiana Ag Stats Service, 2 Sep 2003). The onset of maturity is naturally accompanied by an eventual senescence of the entire solar harvesting “machinery”, but some fields appear to be shutting down prematurely and deserve to be monitored for potential stalk health issues prior to harvest (Nielsen, 2003). The short-term forecast for cool evening temperatures in the mid-50’s or lower throughout much of the state the remainder of this week will further accelerate premature senescence of these stressed fields. Plant stresses contributing to the premature “shutdown ” of some fields include: Root systems compromised by saturated soil conditions caused by early and midseason “monsoon ” events. Drier than normal conditions throughout much of August, accompanied by stressful low to mid-90 F temperatures in the latter part of the month.

R. L. (bob Nielsen

2003-01-01T23:59:59.000Z

43

Corn Replant Decision-Making  

E-Print Network (OSTI)

Crappy stands of corn (aka less than desirable) occur somewhere in Indiana every year. The recent spate of cool, rainy days does not bode well for some corn fields planted during the days immediately preceding the onset of the rainy weather. Stands of corn in river bottoms may be destroyed outright by flood waters. Poorly drained soils where ponding has occurred for four or more days are vulnerable to seedling death. Eventual drying of saturated soils often leads to severe crusting that can restrict corn emergence and result in lower than desirable plant populations. Cool, wet soils are also conducive for seedling infection by certain soil-borne diseases. Unacceptable stand establishment in some of these fields may eventually require growers to make decisions about replanting. Deciding to replant a crappy stand of corn should be based on a number of criteria, but unfortunately the major influencing factor is often the emotion associated with looking out the kitchen window at the damaged field every morning or driving by the field every afternoon taking the kids to baseball practice. Make a wise decision about the merits of replanting a damaged field of corn requires more than emotions. In fact, I would rather that emotions be taken out of the equation entirely. Toward that end, I developed a replant decision-making worksheet that assists growers and farm managers in making that important replant decision. The worksheet allows you to determine the damaged field’s current yield potential (if left untouched), its replant yield potential, and the dollar returns (if any) from replanting the field. The worksheet is included in a larger overall publication on corn replanting titled

R. L. (bob Nielsen

2006-01-01T23:59:59.000Z

44

Corn Belt Energy Coop - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corn Belt Energy Coop - Commercial Energy Efficiency Rebate Program Corn Belt Energy Coop - Commercial Energy Efficiency Rebate Program (Illinois) Corn Belt Energy Coop - Commercial Energy Efficiency Rebate Program (Illinois) < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Project: $0.06 per kWh reduced or 50% of project cost, up to $50,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Air Cooled Unitary Packaged AC/Split Systems: $60 - $75/ton Air Source Heat Pumps: $60 - $75/ton Geothermal Heat Pumps: $60 - $75/ton Packaged Terminal Heat Pump: $50/ton Room A/C: $20 Air Economizer: $150 - $180 Night Covers: $6 Programmable Thermostat: $20 - $25

45

Al Corn Clean Fuel | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Al-Corn Clean Fuel Place Claremont, North Dakota Product Al-Corn is an ethanol plant located in Claremont, North Dakota, which is owned by local...

46

National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010  

DOE Green Energy (OSTI)

Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

Schell, D.

2011-02-01T23:59:59.000Z

47

Flowability parameters for chopped switchgrass, wheat straw and corn stover  

Science Conference Proceedings (OSTI)

A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest for chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.

Chevanan, Nehru [University of Tennessee; Womac, A.R. [University of Tennessee; Bitra, V.S.P. [University of Tennessee; Yoder, D.C. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2009-02-01T23:59:59.000Z

48

Tall Corn Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tall Corn Ethanol LLC Tall Corn Ethanol LLC Jump to: navigation, search Name Tall Corn Ethanol LLC Place Coon Rapids, Iowa Zip 50058 Product Farmer owned bioethanol production company which owns a 40m gallon (151.4m litre) bioethanol plant in Coon Rapids, Iowa. References Tall Corn Ethanol LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tall Corn Ethanol LLC is a company located in Coon Rapids, Iowa . References ↑ "Tall Corn Ethanol LLC" Retrieved from "http://en.openei.org/w/index.php?title=Tall_Corn_Ethanol_LLC&oldid=352015" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

49

Biochemical transformation of coals  

DOE Patents (OSTI)

A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

Lin, M.S.; Premuzic, E.T.

1999-03-23T23:59:59.000Z

50

Corn LP formerly Central Iowa Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

LP formerly Central Iowa Renewable Energy LP formerly Central Iowa Renewable Energy Jump to: navigation, search Name Corn LP (formerly Central Iowa Renewable Energy) Place Goldfield, Iowa Zip 50542 Product Bioethanol producer using corn as raw material Coordinates 37.707559°, -117.233459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.707559,"lon":-117.233459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

tritrophic interactions among larval western corn rootworm, Bt corn and entomopathogens.  

E-Print Network (OSTI)

??The western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a major soil-borne pest of corn Zea mays L. in both the United States… (more)

Rudeen, Melissa Lynn

2010-01-01T23:59:59.000Z

52

2009 Final Corn and Soybean Yield Forecasts  

E-Print Network (OSTI)

The purpose of this brief is to update our previous evaluation of yield potential for corn and soybeans in Illinois, Indiana, and

Scott Irwin; Darrel Good; Mike Tannura

2009-01-01T23:59:59.000Z

53

Nitrogen management of corn with sensor technology.  

E-Print Network (OSTI)

??Corn (Zea mays) is an important cereal crop in Kansas primarily used as livestock feed for cattle in the feedlots, and there has been increased… (more)

Tucker, Andrew Neil

2010-01-01T23:59:59.000Z

54

Oil recovery from condensed corn distillers solubles.  

E-Print Network (OSTI)

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of… (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

55

Wet Corn Milling Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Wet Corn Milling Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

56

Evolution and biochemical similarities  

NLE Websites -- All DOE Office Websites (Extended Search)

eat is because all living things are biochemically similar, we share the same nutrient stock. That alone is a striking support. Opposing evidence? I can't think of anything worth...

57

Gourmet and Health-Promoting Specialty OilsChapter 15 Corn Kernel Oil and Corn Fiber Oil  

Science Conference Proceedings (OSTI)

Gourmet and Health-Promoting Specialty Oils Chapter 15 Corn Kernel Oil and Corn Fiber Oil Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 15 Corn Kerne

58

Varo & Owens Corning - Newark Teaming Profile | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

implements phased-in lighting system upgrade at Owens Corning plant in Newark, Ohio, saving 270,000 annually in electricity and maintenance. Varo & Owens Corning - Newark...

59

Animal Performance and Diet Quality While Grazing Corn Residue.  

E-Print Network (OSTI)

??Grazing cattle on corn residue as a winter feed source has become an integral part of many Nebraska producers’ management plans. Utilizing corn residues extends… (more)

Gigax, Jennifer A

2011-01-01T23:59:59.000Z

60

Optical Imaging and Computer Vision Technology for Corn Quality Measurement.  

E-Print Network (OSTI)

??The official U.S. standards for corn have been available for almost one hundred years. Corn grading system has been gradually updated over the years. In… (more)

Fang, Jian

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Essays on ethanol-driven corn demand and crop choice.  

E-Print Network (OSTI)

??Two essays are focused on crop choice and the growth of corn production in the Corn Belt and surrounding areas. The first essay develops a… (more)

[No author

2011-01-01T23:59:59.000Z

62

Data Mining Soil Characteristics Affecting Corn Yield  

E-Print Network (OSTI)

Ten soil characteristic variables and corn yield were measured in a field located in southeastern Boone County, Iowa. Measurements were made on a grid of 215 locations throughout the field. We use graphical and simple numerical methods to obtain an understanding of the relationship between the soil characteristics and corn yield.

William F. Christensen; Di Cook

1998-01-01T23:59:59.000Z

63

MEXICAN CORN: Genetic Variability and Trade Liberalisation  

E-Print Network (OSTI)

It is now a well established fact that corn (Zea mays) originated in Mexico and that a great part of the evolution that may be observed in terms of this plant’s genetic variability took place in this country. 2 As the plant’s history unfolded, early forms of these races were taken by people into a wide variety of environments and ecological niches from which many distinct varieties developed in the relative isolation of these separated regions. Thus, Mexico also became a center of genetic diversity for corn, and its stock of germplasm has contributed in a decisive manner to global production of corn. Even the dented varieties of the U.S. Corn Belt are close descendants of the first Mexican landraces. The germplasm resources that are deposited in Mexico’s corn varieties, as well as in the wild relatives of this crop, are of prime importance for the world’s food production system of the next century. 3 Corn germplasm of Mexican origin has played a critical role in improvements for corn cultivated in tropical regions in relation to yield increments, plague resistance, short growth cycle, drought resistance and increases of protein content of grain. It has also been instrumental in increasing yields in the case of corn produced in temperate regions at high latitudes. Mexican 1

Alejandro Nadal; El Colegio De México; Alejandro Nadal; El Colegio De México

2000-01-01T23:59:59.000Z

64

Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy.  

E-Print Network (OSTI)

??FIELD EVALUATION OF THE AVAILABILITY FOR CORN AND SOYBEAN OF PHOSPHORUS RECOVERED AS STRUVITE FROM CORN FIBER PROCESSING FOR BIOENERGY A paper to be submitted… (more)

Thompson, Louis Bernard

2013-01-01T23:59:59.000Z

65

Effects of a Corn Root Defense Substance on Western Corn Rootworm Diabrotica virgifera virgifera LeConte Larvae.  

E-Print Network (OSTI)

??The objectives of this research were to evaluate the effects of hydroxamic acids, a group of corn root defense substances on western corn rootworm (Diabrotica… (more)

Zhao, Zixiao

2013-01-01T23:59:59.000Z

66

Characterization of chemical composition, milling properties and carbon dioxide diffusivity resulting from early harvest corn and corn stover.  

E-Print Network (OSTI)

??The increasing demand of corn as food and fuel sources has increased the competition for feedstock between livestock and ethanol industries. Developing an effective corn… (more)

Huang, Haibo

2013-01-01T23:59:59.000Z

67

Rockwell Automation - Owens Corning Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Rockwell Automation Owens Corning Rockwell Automation Owens Corning 1201 S. Second Street 247 York Road Milwaukee, WI 53204 Guelph, Ontario N1E 3G4 Business: Industrial Automation Business: Textile / Fiber Nigel Hitchings Frank Peel Marketing Manager Electrical Support Specialist Phone: 508-357-8404 Phone: 519-823-7208 Email: nehitchings@ra.rockwell.com Email: frank.peel@owenscorning.com Owens Corning partners with Rockwell Automation to retrofit fans with VFDs, saving $67,000 annually Project Scope Owens Corning and Rockwell Automation installed Variable Frequency Drives (VFDs) on one 125HP cooling fan and three 40HP recirculation fans at the Owens Corning Guelph Glass Plant. The VFDs were integrated with the existing Rockwell Automation programmable automation controller to collect

68

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network (OSTI)

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

69

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

70

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

71

Wet Corn Milling Energy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

307 307 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry An ENERGY STAR Guide for Energy and Plant Managers Christina Galitsky, Ernst Worrell and Michael Ruth Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency July 2003 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

72

Sources of Corn for Ethanol Production in the United States: A Review and Decomposition Analysis of the Empirical Data  

Science Conference Proceedings (OSTI)

The use of corn for ethanol production in the United States quintupled between 2001 and 2009, generating concerns that this could lead to the conversion of forests and grasslands around the globe, known as indirect land-use change (iLUC). Estimates of iLUC and related food versus fuel concerns rest on the assumption that the corn used for ethanol production in the United States would come primarily from displacing corn exports and land previously used for other crops. A number of modeling efforts based on these assumptions have projected significant iLUC from the increases in the use of corn for ethanol production. The current study tests the veracity of these assumptions through a systematic decomposition analysis of the empirical data from 2001 to 2009. The logarithmic mean divisia index decomposition method (Type I) was used to estimate contributions of different factors to meeting the corn demand for ethanol production. Results show that about 79% of the change in corn used for ethanol production can be attributed to changes in the distribution of domestic corn consumption among different uses. Increases in the domestic consumption share of corn supply contributed only about 5%. The remaining contributions were 19% from added corn production, and 2% from stock changes. Yield change accounted for about two-thirds of the contributions from production changes. Thus, the results of this study provide little support for large land-use changes or diversion of corn exports because of ethanol production in the United States during the past decade.

Oladosu, Gbadebo A [ORNL; Kline, Keith L [ORNL; Uria Martinez, Rocio [ORNL; Eaton, Laurence M [ORNL

2011-01-01T23:59:59.000Z

73

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

in soils cropped to corn with varying N fertilization. Can.as affected by tillage, corn-soybean-alfalfa rotations, andsoil nitrogen mineralization for corn production in eastern

2009-01-01T23:59:59.000Z

74

Economic Restructuring and Rural Subsistence in Mexico: Corn and the Crisis of the 1980s  

E-Print Network (OSTI)

Centro Tepoztláh Seminar on Corn and the Economic Crisis in1990a). Mobilization ot Corn Pjot! uCorn in Southern Veracruz,* 1970-

Hewitt de Alcántara, editor, Cynthia

1994-01-01T23:59:59.000Z

75

YIELD BENEFIT OF CORN EVENT MON 863  

E-Print Network (OSTI)

copies of this document for non-commercial purposes by any means, provide that this Data from field experiments are used to estimate the yield benefit of corn hybrids containing event MON 863 relative to nontransgenic corn hybrids without corn rootworm control and with a soil insecticide for corn rootworm control. Over typical ranges for corn rootworm population pressure, event MON 863 provides a yield benefit of 9-28% relative to no control and of 1.5-4.5 % relative to control with a soil insecticide. For a reasonable range of prices and yields, the value of the event MON 863 yield benefit is $25-$75/ac relative to no control and $4-$12/ac relative to control with a soil insecticide, depending on corn rootworm pressure. Because of the low correlation between yield loss and the root rating difference, a common empirical finding when estimating yield loss with root ratings, the 95% confidence intervals around these averages are quite wide. Though on average, event MON 863 has substantial value, the wide confidence intervals imply that farmers will see a wide variety of actual performance levels in their fields. This uncertainty in the

Paul D. Mitchell; Paul D. Mitchell

2002-01-01T23:59:59.000Z

76

HYGROSCOPIC MOISTURE SORPTION KINETICS MODELING OF CORN STOVER AND ITS FRACTIONS  

SciTech Connect

Corn stover, a major crop-based lignocellulosic biomass feedstock, is required to be at an optimum moisture content for efficient bioconversion processes. Environmental conditions surrounding corn stover, as in storage facilities, affect its moisture due to hygroscopic sorption or desorption. The measurement and modeling of sorption characteristics of corn stover and its leaf, husk, and stalk fractions are useful from utilization and storage standpoints, hence investigated in this article. A benchtop low-temperature humidity chamber provided the test environments of 20 C, 30 C, and 40 C at a constant 95% relative humidity. Measured sorption characteristics with three replications for each fraction were obtained from instantaneous sample masses and initial moisture contents. Observed sorption characteristics were fitted using exponential, Page, and Peleg models. Corn stover fractions displayed a rapid initial moisture uptake followed by a slower sorption rates and eventually becoming almost asymptotic after 25 h. Sorption characteristics of all corn stover fractions were significantly different (P < 0.0001) but not the effect of temperature (P > 0.05) on these fractions. The initial 30 min of sorption was found to be critical due to peak rates of sorption from storage, handling, and processing standpoints. The Page and Peleg models had comparable performance fitting the sorption curves (R2 = 0.995), however the exponential model (R2 = 0.91) was not found suitable because of patterned residuals. The Arrhenius type relationship (P < 0.05; R2 = 0.80) explained the temperature variation of the fitted sorption model parameters. The Peleg model fitted constants, among the sorption models studied, had the best fit (R2 = 0.93) with the Arrhenius relationship. A developed method of mass proportion, involving individual corn stover fraction dry matter ratios, predicted the whole corn stover sorption characteristics from that of its individual fractions. Sorption characteristics models of individual corn stover fractions and predicted whole corn stover including a nomogram can be used for direct and quick estimation. Developed sorption characteristics find application in several fields of corn stover biomass processing, handling, and transport

Igathinathane, C. [Mississippi State University (MSU); Pordesimo, L. O. [Mississippi State University (MSU); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2009-01-01T23:59:59.000Z

77

Direct application of West Coast geothermal resources in a wet-corn-milling plant. Final report  

DOE Green Energy (OSTI)

The engineering and economic feasibility of using the geothermal resources in East Mesa, California, in a new corn processing plant is evaluated. Institutional barriers were also identified and evaluated. Several alternative plant designs which used geothermal energy were developed. A capital cost estimate and rate of return type of economic analysis were performed to evaluate each alternative. (MHR)

Not Available

1981-03-01T23:59:59.000Z

78

Climate Forecasts for Corn Producer Decision-Making  

Science Conference Proceedings (OSTI)

Corn is the most widely grown crop in the Americas, with annual production in the US of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision-tools for corn producers based on these improved ...

Eugene S. Takle; Christopher J. Anderson; Jeffrey Andresen; James Angel; Roger W. Elmore; Benjamin M. Gramig; Patrick Guinan; Steven Hilberg; Doug Kluck; Raymond Massey; Dev Niyogi; Jeanne M. Schneider; Martha D. Shulski; Dennis Todey; Melissa Widhalm

79

Effectiveness Analysis of Corn Combine Based on DEA Method  

Science Conference Proceedings (OSTI)

This paper used DEA method to analyze the production efficiency of corn combine??pointed out how to find the waste of resources??then put forward the way to optimize resource utilization. Keywords: DEA, Corn combine, Efficiency, Evaluation

Xinjie Liu; Baoling Yang

2012-05-01T23:59:59.000Z

80

Corn Belt Power Coop | Open Energy Information  

Open Energy Info (EERE)

Corn Belt Power Coop Corn Belt Power Coop Place Iowa Utility Id 4363 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Corn_Belt_Power_Coop&oldid=41053

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting  

DOE Green Energy (OSTI)

Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

Atchison, J. E.; Hettenhaus, J. R.

2003-03-01T23:59:59.000Z

82

8. Corn Hybrid Options for Replanting 1. Determining Vegetative Growth Stages of Corn  

E-Print Network (OSTI)

Knowing the growth stage of corn is critical to understanding the management practices and potential yield impact from wet weather and/or hail damage. There are a couple methods for determining vegetative growth stages in corn. These different staging methods are used by different disciplines and often occur on different herbicide labels. Knowing the differences between these staging methods will help to reduce confusion when determining corn growth and development. These stages are determined either by the number of visible leaf collars or the number of leaves. Collars and V-Stages The collar is the part of the leaf that wraps

Hail Damage To Corn; Corn Flood Survival; Chad Lee Agronomy

2004-01-01T23:59:59.000Z

83

Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover  

SciTech Connect

Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

Allison E Ray; Amber Hoover; Gary Gresham

2012-07-01T23:59:59.000Z

84

Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio  

Science Conference Proceedings (OSTI)

Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.

Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

2006-01-06T23:59:59.000Z

85

EAR ROT IN THE 2006 CORN CROP  

E-Print Network (OSTI)

Several incidences of ear rot have been noticed across Illinois and Iowa this year. In most cases, these fields were grown to corn the previous year. It is not surprising that ear rots are developing this year, given the late summer rains and high amount of stalk rots. Growers should be alerted to

unknown authors

2006-01-01T23:59:59.000Z

86

Corn stalk orientation effect on mechanical cutting  

SciTech Connect

Research efforts that increase the efficiency of size reduction of biomass can lead to a significant energy saving. This paper deals with the determination of the effect of sample orientation with respect to cutting element and quantify the possible cutting energy reduction, utilising dry corn stalks as the test material (15%e20% wet basis). To evaluate the mechanical cutting characteristics of corn stalks, a Warnere Bratzler device was modified by replacing its blunt edged cutting element with one having a 30_ single bevel sharp knife edge. Cutting force-deformation characteristics obtained with a universal testing machine were analysed to evaluate the orientation effects at perpendicular (90o), inclined (45o), and parallel (0o) orientations on internodes and nodes for cutting force, energy, ultimate stress, and specific energy of corn stalks. The corn stalks cutting force-displacement characteristics were found to differ with orientation, and internode and node material difference. Overall, the peak failure force, and the total cutting energy of internodes and nodes varied significantly (P < 0.05) with stalk cross-sectional area. The specific energy values (total energy per unit cut area) of dry corn stalk internodes ranged from 11.3 to 23.5 kN m_1, and nodes from 8.6 to 14.0 kN m_1. The parallel orientation (along grain) compared to perpendicular (across grain) produced a significant reduction of the cutting stress and the specific energy to one tenth or better for internodes, and to about one-fifth for nodes.

Igathinathane, C. [Mississippi State University (MSU); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2010-07-01T23:59:59.000Z

87

Corn Belt Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Corn Belt Energy Corporation Corn Belt Energy Corporation Place Illinois Utility Id 4362 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png INDUSTRIAL SUBSTATION RATE ("ISR") Industrial RATE 1 RESIDENTIAL & FARM SERVICE Residential RATE 10 ELECTRIC HEAT FOR RESIDENTIAL & FARM SERVICE Residential RATE 11 RESIDENTIAL & FARM SERVICE - INTERRUPTIBLE Residential RATE 12 RESIDENTIAL ELECTRICALLY HEATED APARTMENTS Residential

88

Take Notes from Corn Hybrid Plots  

E-Print Network (OSTI)

Corn harvest is slow to get going this year, with only 5 % of the state’s crop reported harvested as of 24 Sep (USDA-NASS, 25 Sep 2006). The causes of the slow start to harvest are slower than normal maturation of the grain (Fig 1), cool temperatures (slower grain drying), and muddy field conditions due to the continuing pattern of frequent rains. The slow pace of corn harvest coupled with the poor stalk quality in some fields (Nielsen, 2006) reminds us how spoiled we were with generally good harvest conditions of the past two seasons. But, that is not the point of this article. Fig. 1. Percent of Indiana’s corn crop that is rated “mature and safe from frost”, as of 24 Sep 2006. Data source: USDA-NASS. If rainy weather and soggy field conditions are keeping you from your own harvest, spend some of your down time to walk or re-walk neighborhood on-farm hybrid plots before they are harvested. Many of these trials are still “signed ” so that you can identify © 2006, Purdue UnivRL (Bob) Nielsen Page 2 9/27/2006 the seed company and their hybrid numbers. Record notes on hybrid characteristics such as ear height, ear size, completeness of kernel set, husk coverage, standability, and

R. L. (bob Nielsen

2006-01-01T23:59:59.000Z

89

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

90

National Bioenergy Center Biochemical Platform Integration Project  

DOE Green Energy (OSTI)

April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

Not Available

2008-07-01T23:59:59.000Z

91

STATEMENT OF CONSIDERATION REQUEST BY DOW CORNING CORPORATION (DOW CORNING) FOR AN ADVANCED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSIDERATION CONSIDERATION REQUEST BY DOW CORNING CORPORATION (DOW CORNING) FOR AN ADVANCED WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC22-96PC96050-W(A)-96-026, CH-0915 The Petitioner, Dow Corning, was awarded this cooperative agreement in response to an unsolicited proposal for the engineering scale development of a process for the conversion of natural gas to methyl chloride. The Petitioner was selected based on its past experience in identifying an oxyhydrochlorination catalyst and separation process for this conversion. The initial phase of this work was performed under DOE Contract No. DE-AC22- 91PC91030. The Contracting Officer has found that the provisions of the 1992 Energy Policy Act P.L. 102-486 apply to this cooperative agreement and that the cost sharing requirement of

92

Maximizing the enzymic saccharification of corn stover  

E-Print Network (OSTI)

Lignocellulosic biomass (e.g. agricultural residues, wood, municipal solid waste, tree and yard t gs, sewage sludge, and waste paper) comprises three major components: cellulose, hemicellulose and lignin. It can contain as much as 75% polysaccharide; thus, biomass has considerable potential as a fermentation feedstock. Corn stover represents an especially important resource because it is the single largest source of agricultural residue in the United States. The best method to obtain fermentable sugars from biomass is by enzymic saccharification. Before biomass can be effectively saccharified, some pretreatment is required. Calcium hydroxide (Eme) is an effective pretreatment agent for corn stover and is less expensive and easier to recover than other alternatives. The reconunended process conditions for treating corn stover are 4 h at 120 'C using 0. 075 g Ca(OH)2/g dry biomass and 5 g H20/g dry biomass. The maximum sugar yield bv enzymic hydrolysis (25 FPU ceflulase/g dry biomass, 50 'C, 7 days) of pretreated corn stover is 88.0% of the glucose and 88.1% of the total sugars. The recommended enzyme loading is IO FPU ceUulase/g dry biomass. Tween 20 and Tween 80 are effective at improving the enzymic saccharification of corn stover. The recommended loading of Tween is 0. 15 g Tween/g dry biomass; the loading, rather than the concentration, is the critical parameter. Adding Tween to the hydrolytic medium increases the maximum sugar yield to I 00% and 94.8% of the glucose and 97.4% and 93.3 % of the total sugars for Tween 20 and Tween 80, respectively. Tween also reduces the recommended enzyme loading to 3 FPU ceflulase/g dry biomass. The action of Tween is three-fold: (1) Time profiles show that enzymes remain active at higher temperatures in the presence of Tween. (2) Kinetic analyses show that, although the theoretical maximum hydrolysis rate is unchanged by Tween, the adsorption and coverage parameters, a and c, in the HCH-1 model are reduced which results in higher effective hydrolysis rates. (3) The maximum enzymic digestion, which is independent of enzyme effects, is higher with Tween. Thus, the action of Tween is a combination of surfactant, enzyme effector, and fignoceflulose matrix disrupter.

Kaar, William Edward

1996-01-01T23:59:59.000Z

93

Prenova & Owens Corning Teaming Presentation- Using Service and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation- Using Service and Product Providers to Leverage Your Energy Efforts: PrenovaOwens Corning Energy Process Optimization Secondary menu About us Press room Contact Us...

94

Modernizing the handling of ear corn. Final technical report  

DOE Green Energy (OSTI)

The goal of the project was to modernize the handling of ear corn. The corn was picked with a three row JD 300 picker pulled by a tractor. Pulled behind the picker was a side dump wagon with a capacity of 150 bushels of ear corn. When the dump wagon was full, a grain truck was driven along side of the wagon and the dump wagon, controlled by the tractor driver, was emptied into the truck. After two dumps of the wagon, the truck was driven to the storage area. The storage area consisted of ten (ten) 2000 bushel corn cribs set in a semi circle so that the elevator that filled the cribs could be moved from one crib to the next without changing the fill point. At the storage area, the truck full of corn was dumped into the platform feeder. By using a platform feeder to feed the elevator, all ten (10) cribs could be filled without moving it. After the harvest was complete, the corn remains in the cribs until needed for feed or until the corn is sold. During the time that the corn remains in the cribs, the turbine ventilator draws air through the corn and dries it.

Kleptz, C.F.

1980-01-01T23:59:59.000Z

95

Prediction of corn tortilla textural quality using stress relaxation methods.  

E-Print Network (OSTI)

??Feasibility of the stress relaxation technique which has a strong potential for texture characterization of dough and food products, was evaluated with both corn masa… (more)

Guo, Zhihong

2012-01-01T23:59:59.000Z

96

Corn fiber hulls as a food additive or animal feed  

DOE Patents (OSTI)

The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IN); Cecava, Michael J. (Decatur, IN); Doane, Perry H. (Decatur, IN)

2010-12-21T23:59:59.000Z

97

Properties of Carbonized Corn Straw as Thermal Insulating ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Properties of Carbonized Corn Straw as Thermal Insulating Agent of Liquid Metal by Nan Wang, Min Chen, Yang Wang, Weiwei Leng, Yulong ...

98

Corn and Palmer amaranth interactions in dryland and irrigated environments.  

E-Print Network (OSTI)

??Palmer amaranth is a competitive weed and has caused variable corn yield losses in diverse environments of Kansas. The objectives of this study were to… (more)

Rule, Dwain Michael

2007-01-01T23:59:59.000Z

99

Alternative 2010 Corn Production Scenarios and Policy Implications  

E-Print Network (OSTI)

The quantity of U.S. corn used for domestic ethanol production has grown rapidly in recent years, driven by mandated production levels of renewable biofuels, tax

Scott Irwin; Darrel Good

2010-01-01T23:59:59.000Z

100

Corn Belt Energy Corporation- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Corn Belt Energy Corporation (CBEC), in association with the Wabash Valley Power Association, provides its customers with the "Power Moves" energy efficiency rebate program. Through this program,...

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Microsoft PowerPoint - Prenova_OwensCorning_Teaming_Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

solution to Owens Corning's North American facilities for: *Energy Supply Management *Energy Price Risk Management *Energy Process Optimization *Bill Payment and Data...

102

DOE - Office of Legacy Management -- Sylvania Corning Nuclear...  

Office of Legacy Management (LM)

Nuclear Corp Inc Sylvania Laboratories - NY 07 FUSRAP Considered Sites Site: SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES (NY.07) Eliminated from consideration under...

103

STATEMENT OF CONSIDERATIONS REQUEST BY CORNING INCORPORATED FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is to develop effective, economical technology to enable the removal of mercury from syngas created when coal is gasified. Under the subcontract, Corning will conduct research...

104

Yield, quality components and nitrogen levels of silage corn fertilized with urea and zeolite  

E-Print Network (OSTI)

and N fertilization affect corn silage yield and quality. Jand the nitrogen status of corn. J Prod Agric. 1991;4:525-and nitrogen effects on corn silage. Agron. J. ___, Kalonge

Bernardi, Alberto C. de Campos; Souza, Gilberto Batista de; Polidoro, José Carlos; Paiva, Paulo Renato Perdigão; Monte, Marisa Bezerra de Melo

2009-01-01T23:59:59.000Z

105

The Market Effect of a Food Scare: The Case of Genetically Modified StarLink Corn  

E-Print Network (OSTI)

outweigh the direct effect on corn prices. In retrospect,76. Gadsby, M.C. “StarLink Corn Containment Program” AventisStarLink: Impacts on the U.S. Corn Market and World Trade. ”

Carter, Colin A.; Smith, Aaron

2004-01-01T23:59:59.000Z

106

Yield and nitrogen levels of silage corn fertilized with urea and zeolite  

E-Print Network (OSTI)

an increase in DM production of corn. Urea has been the mosturea-N is used to fertilized corn, especially on acid soils.levels of nitrogen of silage corn fertilized with urea and

Bernardi, Alberto C. de Campos; Souza, Gilberto Batista de; Polidoro, José Carlos; Paiva, Paulo Renato Perdigão; Monte, Marisa Bezerra de Melo

2009-01-01T23:59:59.000Z

107

Small Wind Electric Systems: A Guide Produced for the American Corn Growers Foundation  

DOE Green Energy (OSTI)

The purpose of the Small Wind Electric Systems Consumer's Guide produced for the AGCF is to provide members of the foundation with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains the results of the 2003 National Corn Producer Survey Wind Energy Issues.

Not Available

2003-06-01T23:59:59.000Z

108

Corn production with perennial ground covers: evaluation of cover species and their effects on corn growth and development.  

E-Print Network (OSTI)

??The use of perennial ground covers (PGC) in corn production may offer a long term and ecological solution to soil conservation issues while allowing the… (more)

Flynn, Ernest Scott

2011-01-01T23:59:59.000Z

109

BEST: Biochemical Engineering Simulation Technology  

DOE Green Energy (OSTI)

The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

Not Available

1996-01-01T23:59:59.000Z

110

Formulating N recommendations for corn in the corn belt using recent data  

E-Print Network (OSTI)

Making N rate recommendations for corn has been one of the most economically important goals of publicly funded crop production and soil fertility personnel and programs over the past five decades. Changes in cropping systems, hybrids, tillage, and other management practices, along with opportunities in site-specific inputs and awareness of the need to minimize the amount of N

Emerson D. Nafziger; John E. Sawyer; Robert G. Hoeft

2004-01-01T23:59:59.000Z

111

Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover  

Science Conference Proceedings (OSTI)

We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

Wolfrum, E. J.; Sluiter, A. D.

2009-01-01T23:59:59.000Z

112

Alternative Controls for Helicoverpazea on Sweet Corn: Phytotoxicity and Pollination Inhibition from Direct Silk Applications.  

E-Print Network (OSTI)

??Helicoverpa zea, Boddie (corn earworm) is an important pest of sweet corn in New England. Conventional management of this pest is achieved through repeated applications… (more)

Jackson, Tori Lee

2004-01-01T23:59:59.000Z

113

Characterization of the Impact of Process Variables on the Densification of Corn Stover.  

E-Print Network (OSTI)

??The bulk density of corn stover poses a major obstruction to its large scale viability as a biomass feedstock. Corn stover has a low bulk… (more)

Thoreson, Curtis Peder

2011-01-01T23:59:59.000Z

114

Synthesizing stochasticity in biochemical systems  

Science Conference Proceedings (OSTI)

Randomness is inherent to biochemistry: at each instant, the sequence of reactions that fires is a matter of chance. Some biological systems exploit such randomness, choosing between different outcomes stochastically - in effect, hedging their bets with ... Keywords: biochemical reactions, computational biology, markov processes, random processes, stochasticity, synthesis, synthetic biology

Brian Fett; Jehoshua Bruck; Marc D. Riedel

2007-06-01T23:59:59.000Z

115

THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)  

E-Print Network (OSTI)

used on farms, such as gasoline, diesel, LP gas (LPG), natural gas, and electricity, for the production of corn ethanol utilizing the latest survey of U.S. corn producers and the 2001 U.S. survey of ethanol in manufacturing and marketing nitrogen fertilizer, (3) improving the quality of estimates for energy used

Patzek, Tadeusz W.

116

Corn Stover for Bioethanol -- Your New Cash Crop?  

SciTech Connect

Biomass ethanol technology is still developing and important questions need to be answered about corn stover removal, but prospects are excellent for you to someday be able to harvest and sell a substantial portion of your stover for fuel production--without hurting your soil or main corn grain operation.

Brown, H.

2001-05-16T23:59:59.000Z

117

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

118

Factors affecting viscosity changes in corn  

E-Print Network (OSTI)

Corn meals with known differences were tested using the Rapid Visco Analyzer. Various tests included the effect of solid concentration, effect of heating rate, effect of particle size, effect of Sodium Carboxymethylcellulose (CMC) and effect of heating rate, holding temperature and CMC. Differences were found to exist between meals from different crop years which were not attributable to particle size. When tested at 13, 15 and 17% solids, new meal consistently developed viscosity earliest. Aged meal consistently developed the least amount of viscosity. At 17% solids, a distinct peak was formed by new meal. When heated at various heating rate (2, 7 and 14'C/min), the slowest heating rate developed a distinct peak. New meal consistently developed viscosity earliest. Aged meal developed the least amount of viscosity. As particle size decreased, viscosity increased. The addition of various amounts of CMC showed significant differences in viscosity at 95'C. CMC changed the order of highest viscosity and masked differences in peak time. When testing heating rate, holding time and addition of CMC, 95'C was found to develop viscosity to a greater degree than 70'C. Holding temperature did not have a significant effect and CMC masked differences between samples and produced unusual curves. Whole and decorticated corns were stored for various lengths of time at 60, 50, 22 and 6'C. Density decreased over time when stored at elevated temperatures. Hardness values increased, indicating a softer grain. However, this is more likely an indicator of brittleness. Decorticated grains developed higher viscosity. Pericarp acts as a diluent. Peak temperature increased with storage at elevated temperature. Density, hardness, peak viscosity and peak temperature were found to be the most significant indicators measured.

McGill, Kendra Louise

1995-01-01T23:59:59.000Z

119

A model system for edible vaccination using recombinant avidin produced in corn seed  

E-Print Network (OSTI)

Recent studies have shown that transgenic plants can be utilized to produce subunit vaccines that are capable of eliciting protective immune responses. Expressing these subunits in edible plant tissues gives the potential for edible vaccines. Edible vaccines have many benefits over current vaccine technologies including increased safety, stability, economy, and efficacy. In these experiments, we have investigated the possibility of using corn seed as a production system for novel edible vaccines. We established that a model protein (avidin) produced in corn seed could elicit both serum and mucosal immune responses when fed to mice. In addition, we determined that differences in the feeding regime could be exploited to enhance the type of response obtained. Since unprocessed corn seed is not typically used as a human food source, we investigated the effects of processing on the ability of the recombinant avidin to stimulate the immune responses. Finally, we explored the possibility of using the heat-labile enterotoxin subunit B protein from Escherichia coli to potentiate the immune responses.

Bailey, Michele Renee

2000-01-01T23:59:59.000Z

120

PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK At the request of the Department of Energy (DOE), a preliminary survey was performed at the former Sylvania-Corning Nuclear Corporation in Bayside, New York (see Fig. l), on November 29, 1977, to assess the radiological status of those facilities uti 7 Commission (AEC) contract during the 1950s. _ _ ._. __

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Corn Based Ethanol in Perspective: An Overview of the Possibilities,  

NLE Websites -- All DOE Office Websites (Extended Search)

Corn Based Ethanol in Perspective: An Overview of the Possibilities, Corn Based Ethanol in Perspective: An Overview of the Possibilities, Limitations and Consequences Speaker(s): Michael Carnall Date: August 30, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The use of corn based ethanol as a supplement or replacement of motor fuel gasoline has many champions as well as detractors. In this presentation I attempt to separate hype from facts and wishful thinking from realistic forecasts. The production of corn based ethanol has physical limits based on land required to grow its primary input. It also has economic limits based on the cost of inputs relative to the cost of the fuel it replaces and the value of the environmental and other benefits its use may provide. By exploring these limits and the likely consequences of

122

Similarity Moisture Dew Profiles within a Corn Canopy  

Science Conference Proceedings (OSTI)

The amount of dewfall and dewrise to a corn canopy has been estimated over 7 nights by using the Bowen ratio energy balance technique and the soil diffusivity technique, respectively.

A. F. G. Jacobs; W. A. J. van Pul; A. van Dijken

1990-12-01T23:59:59.000Z

123

Alternative 2011 Corn Production, Consumption, and Price Scenarios  

E-Print Network (OSTI)

corn crop was nearly a billion bushels smaller than early season forecasts. The shortfall reflected a below-trend average yield of 152.8 bushels, 11.9 bushels below the record average yield of 2009. In addition to a smaller than expected crop, corn consumption during the first half of the 2010-11 marketing year was larger than forecast at the start of the year, reflecting a large increase in the amount of corn used for ethanol production. The USDA projects corn use for ethanol production during the 2010-11 marketing year that started on September 1, 2010 at 4.95 billion bushels, 382 million bushels more than used last

Darrel Good; Scott Irwin

2011-01-01T23:59:59.000Z

124

Climatology of Tropical System Rainfall on the Eastern Corn Belt  

Science Conference Proceedings (OSTI)

This study examines the frequency of greater than 2.54 cm (1 in) daily rainfall totals averaged within a climate division (CD) associated with tropical systems that moved through the Eastern Corn Belt region during the growing season. These ...

Alex Haberlie; Kari Gale; David Changnon; Mike Tannura

125

Corn Belt Energy Coop- Commercial Energy Efficiency Rebate Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

Corn Belt Energy, through the Wabash Valley Power Association, offers business, school, and farm customers a variety of energy efficient rebates and incentives through its "Power Moves" program....

126

Drought increases price of corn, reduces profits to ethanol ...  

U.S. Energy Information Administration (EIA)

Drought conditions in Midwestern states have reduced expectations for the amount of corn that may be harvested in 2012, and contributed to a 35% rise in the price of ...

127

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Farmer owned investment and management team which developed and manages the Pine Lake ethanol plant. References Pine Lake Corn Processors LLC1 LinkedIn Connections CrunchBase...

128

Corn Based Ethanol in Perspective: An Overview of the Possibilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Corn Based Ethanol in Perspective: An Overview of the Possibilities, Limitations and Consequences Speaker(s): Michael Carnall Date: August 30, 2007 - 12:00pm Location: 90-3122...

129

Drought has significant effect on corn crop condition, projected ...  

U.S. Energy Information Administration (EIA)

The corn crop in the affected region is a main feedstock for ethanol, ... out of a total supply of 14.2 billion ... Farmers took advantage of the relatively warm ...

130

Greenhouse gases in the corn-to-fuel ethanol pathway.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

Wang, M. Q.

1998-06-18T23:59:59.000Z

131

Corn Stover Availability for Biomass Conversion: Situation Analysis  

SciTech Connect

As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, this study of a large, square-bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional-bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting and collection and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes.

J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; Robert Perlack; Anthony Turhollow

2009-08-01T23:59:59.000Z

132

Corn stover availability for biomass conversion: situation analysis  

SciTech Connect

As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, analysis of a conventional large square bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting, collection, and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes.

Hess, J. Richard [Idaho National Laboratory (INL); Kenney, Kevin L. [Idaho National Laboratory (INL); Wright, Christopher [Idaho National Laboratory (INL); Perlack, Robert D [ORNL; Turhollow, Jr., Anthony [ORNL

2009-08-01T23:59:59.000Z

133

Selection of herbaceous energy crops for the western corn belt  

DOE Green Energy (OSTI)

The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

Anderson, I.C.; Buxton, D.R.; Hallam, J.A. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1994-05-01T23:59:59.000Z

134

Soil Hydraulic Properties Influenced by Corn Stover Removal from No-Till Corn in Ohio.  

SciTech Connect

Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (?b), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ?b in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (?b), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ?b in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.

Blanco-Canqui, H.; Lal, Rattan; Post, W. M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

2007-01-01T23:59:59.000Z

135

Bt vs. non-Bt corn (Zea mays L.) hybrids: effect on degradation of corn stover in soil  

E-Print Network (OSTI)

A billion tons per year of genetically modified corn residues are soil incorporated having both direct and indirect effects on the belowground environment, soil carbon (C) sequestration, and nutrient cycling. If Bt genetic modification has non-target effects on corn stover structural/non-structural carbohydrate and nitrogen (N) concentrations, then the degradation rate of Bt-corn stover may be different than that of non-Bt isolines, possibly influencing soil C storage and N mineralization. Thus, this research focused primarily on the comparison of C and N mineralization of corn stover in soil as affected by Bt-trait, plant portion, water-availability and HFC-trait; and secondarily on the existence of Bt-related variations in the chemical structure of corn residues that might affect the degradation rate of stover in soil and consequently the soil C and N dynamics. A laboratory experiment was conducted under non-limiting N conditions with stover of Bt/non-Bt isogenic pairs of two varieties, a ?high fermentable corn? (HFC) line harvested at Snook, Texas and a non-HFC corn line harvested at the irrigated field of Snook and the non-irrigated field of College Station, Texas. The stover was partitioned into three plant portions, incorporated into a Weswood soil and incubated during 223 days. Results showed that the differences observed in the degradation in soil of Bt vs. non-Bt corn stover were dependent on environmental conditions (irrigated vs. non-irrigated settings) and hybrid variety (HFC vs. non-HFC hybrid lines). The structural composition of corn plants was affected by the Bt-trait, HFC-trait, irrigation and their interactions. Variations in the biomass fractions of the initial stover of Bt and non-Bt hybrids had minimum to non-impact on soil C and N concentrations measured at the end of the 223-day incubation period. Lignin concentration was affected by a Bt-trait*variety interaction. There were no significant differences in lignin concentration between non-Bt/Bt-corn derived stovers of the non-HFC variety irrespective of irrigation regime but Bt-hybrids of the HFC variety contained more than twice as much lignin as the non-Bt isogenic plants. The effects of higher lignin concentration on C mineralization rate appeared to be offset by an increased lignin degradability inherent in HFC-trait. Overall, results indicated that the cultivation of Bt-modified maize lines is not likely to have significant effects on soil C or N dynamics compared with the cropping of non-Bt hybrids.

Salvatore, Herminia T.

2009-05-01T23:59:59.000Z

136

Comparison of corn and lupin in respect to As mobilisation, uptake and release in an arsenic contaminated floodplain soil.  

E-Print Network (OSTI)

particular Fe(hydr)oxides. For corn, mobilisation of P V wasorganic anions compared to corn (Dinkelaker et al. , 1989;susceptible to As V toxicity. Corn growth is not reduced in

Vetterlein, Doris; Jahn, Reinhold; Mattusch, Jürgen

2009-01-01T23:59:59.000Z

137

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

the Net Energy Balance of Corn Ethanol. An Economic Researchoutputs of corn wet milling are corn sweeteners and ethanol.Both corn sweeteners and ethanol are made from the starch in

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

138

Modeling biochemical pathways using an artificial chemistry  

Science Conference Proceedings (OSTI)

Artificial chemistries are candidates for methodologies that model and design biochemical systems. If artificial chemistries can deal with such systems in beneficial ways, they may facilitate activities in the new area of biomolecular engineering. In ... Keywords: Artificial chemistry, biochemical pathways, biomolecular engineering, modularity, reasoning, scalability

Kazuto Tominaga; Yoshikazu Suzuki; Keiji Kobayashi; Tooru Watanabe; Kazumasa Koizumi; Koji Kishi

2009-01-01T23:59:59.000Z

139

Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

E-Print Network (OSTI)

or first- generation corn ethanol [1]. However, the inherentof fossil fuels or corn ethanol [3]. Advances in current

Qing, Qing; Wyman, Charles E

2011-01-01T23:59:59.000Z

140

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor .  

E-Print Network (OSTI)

??Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected… (more)

Wilkinson, Andrea

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Effects of corn stover as carbon supplement on an integrated anaerobic digestion and ethanol fermentation process  

Science Conference Proceedings (OSTI)

An integrated anaerobic digestion (AD) and ethanol fermentation process on a mixed feedstock of dairy manure and corn stover was performed to investigate the influence of corn stover on biogas production

2013-01-01T23:59:59.000Z

142

Cellulase Accessibility of Dilute-Acid Pretreated Corn Stover  

SciTech Connect

The conclusions of this presentation are: (1) The dilute-acid pretreatment reduces xylan content in corn stover. This reduction in xylan content appears to render the substrate less recalcitrant. Below {approx}8%, xylan content is no longer the dominant factor in biomass recalcitrance. (2) Decreasing xylan content of corn stover also created more binding sites for Cel7A, but no strong correlation with actual xylan content. (3) We found no correlation between bound Cel7A concentration and lignin content. Maybe lignin is blocking the way for Cel7A? The contribution of lignin to biomass recalcitrance requires further investigation.

Jeoh, T.; Johnson, D. K.; Adney, W. S.; Himmel, M. E.

2005-01-01T23:59:59.000Z

143

Measurement of Porosity in Dilute Acid Pretreated Corn Stover  

Science Conference Proceedings (OSTI)

The conclusions of this report are: (1) pretreated corn stover appeared to have more accessible pore volume than raw corn stover; (2) solute exclusion method--differences in the pore volume were not detectable due to the high variability of the measurements; (3) thermoporosimetry--differences in pore volume between pretreated samples were not observed despite the low variability of the measurement and a good correction was found between unfrozen water at 240K and xylan content; and (4) porosity measurements showed no correlation between ethanol yields and the volume accessible to an enzyme size probe, for this sample set.

Ishizawa, C.; Davis, M. F.; Johnson, D. K.

2005-01-01T23:59:59.000Z

144

The Study on Corn Production Prediction in Heilongjiang Province Based on Support Vector Machine  

Science Conference Proceedings (OSTI)

This paper uses the support vector machine (SVM) algorithm to study the prediction of corn production in Heilongjiang province, forms the sample set with the 1991-2008 data in Heilongjiang province, and set up the SVM model between factors and corn production. ... Keywords: corn production, support vector machine, prediction

Zhu Jing; Fan Yadong

2012-01-01T23:59:59.000Z

145

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

146

Fearmonger Alert: Freeze Injury Potential for Early-Planted Corn  

E-Print Network (OSTI)

Corn planting has been proceeding at a record pace in Indiana thus far in the 2004 growing season. Reasonably warm soil temperatures throughout April have also encouraged faster emergence than usually occurs with such early-planted corn. Such early planting and emergence of corn is always at higher calendar risk of injury by frost events or lethal cold temperatures. Of these two risk factors, lethal cold temperature is the more worrisome one since a corn plant’s growing point region is relatively protected from the effects of simple frost while it remains below the soil surface. Lethal cold temperatures (28F or less) can penetrate the upper inch or two of soil, especially dry surface soils, and kill plant tissue directly, including coleoptiles and growing points. Non-lethal injury by cold temperatures may cause deformed elongation of the mesocotyl or physical damage to the coleoptile in nonemerged seedlings, resulting in the proverbial “cork-screw ” symptom and subsequent leafing out underground. Air temperatures in northern areas of Indiana dipped to the low 30’s early in the morning of 3 May, with lower-lying areas likely less than 30F. Given the risk of frost or chilling

R. L. (bob Nielsen

2004-01-01T23:59:59.000Z

147

Greenhouse gas emissions related to ethanol produced from corn  

DOE Green Energy (OSTI)

This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

Marland, G.

1994-04-01T23:59:59.000Z

148

Considerations for Planting Corn into Damaged Fields of Wheat  

E-Print Network (OSTI)

Many folks are still assessing the condition of wheat fields damaged by the low temperatures of the past week. In some situations, additional damage to wheat has occurred from standing water in fields due to frequent rains this winter and spring. Some growers may decide replanting damaged wheat fields to corn is a viable economic option. Some of the key considerations for doing so are described in this article. Killing the Remaining Stand of Wheat For damaged wheat fields that will be planted to corn, complete and timely control of the existing wheat is more important than if planting to soybean. Corn is more sensitive to early-season weed competition than soybean. Living wheat plants are essentially weeds and can absorb nitrogen and make it unavailable for the corn plants during the same growing season. Use of a glyphosate-based burndown program should include the use of glyphosate at 1.5 lb ae/A + 2.4-D at 1-2 pts/A. The herbicide 2,4-D is needed to control glyphosateresistant marestail which is very prevalent in southern Indiana and help with control of emerged common lambsquarter and ragweed. Apply in a spray volume of 10 to 15 GPA

Bill Johnson; Tony Vyn; Jim Camberato; Christian Krupke; Rl (bob Nielsen; Depts Of Botany; Plant Pathology

2007-01-01T23:59:59.000Z

149

Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?  

Science Conference Proceedings (OSTI)

It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

2009-01-01T23:59:59.000Z

150

Biofuel derived from Microalgae Corn-based Ethanol  

E-Print Network (OSTI)

Biofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each source of biofuel · Potential for environmental impacts · Comparative results · Conclusions #12;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol

Blouin-Demers, Gabriel

151

Crop-Hail Damage in the Midwest Corn Belt  

Science Conference Proceedings (OSTI)

Crop-hail damage in the ten Midwest corn belt states is examined during the period 1957–81. Estimates of crop losses due to hail are made from hail insurance data for each state and each significant crop in the region. The crop-hail losses are ...

Harry J. Hillaker Jr.; Paul J. Waite

1985-01-01T23:59:59.000Z

152

Thermal analysis of biochemical systems  

E-Print Network (OSTI)

Scientists, both academic and industrial, develop two main types of drugs: 1) small molecule drugs, which are usually chemically synthesized and are taken orally and 2) large molecule, biotherapeutic, or protein-based ...

McEuen, Scott Jacob

2013-01-01T23:59:59.000Z

153

The effect of flaxseed hulls on expanded corn meal products  

E-Print Network (OSTI)

Brown flaxseed hulls were added to de-germed corn meal and processed into extrudates with acceptable texture and increased nutritional benefits. The addition of brown flaxseed hulls to a corn based expanded snack increases the dietary fiber, alpha omega 3 fatty acids, and antioxidants levels. The addition of flaxseed hulls to a corn based snack can increase its susceptibility to oxidative rancidity which can limit shelf life. Whole ground tannin sorghum with added brown flaxseed hulls was processed into extrudates and texture, antioxidant activity, and stability were evaluated. Brown flaxseed hulls were mixed with de-germed yellow corn meal in ratios of 0:100, 15:85, 20:80, and 25:75 (w/w) and extruded with 12 and 15% feed moistures using a twin screw extruder to produce direct expanded extrudates. Expansion of extrudates containing brown hulls decreased as the amount of hulls increased. Dried extrudates had acceptable flavor immediately after processing. Total phenols and antioxidant activity of extrudates containing 20 and 25% brown flaxseed hulls, extruded at 15% feed moisture were higher than de-germed corn meal extruded at 16% feed moisture. Brown flaxseed hulls were added at 20% to whole ground white and sumac (tannin) sorghums and processed into extrudates. Expansion increased for sorghum extrudates containing brown flaxseed hulls. The addition of brown flaxseed hulls increased antioxidant activity and total phenols of both white and sumac (tannin) extrudates. The sumac (tannin) extrudates had the longest delay in producing off odor (paintlike odor) and had the lowest p-Anisidine values compared to white (ATX631x RTX 436) sorghum and corn meal with added flaxseed hulls. Corn meal extrudates with 20% brown flaxseed hulls produce off odors more rapidly than other extrudates. This suggests that the tannins in sorghum maybe extending shelf life because of their antioxidant activity. The addition of brown flaxseed hulls can be used to increase nutritional value and antioxidant levels in a direct expanded product. Also the use of tannins sorghums in products containing flaxseed may help delay oxidation, thus preventing the occurrence of off odors. Further work needs to be done to verify results.

Barron, Marc Edward

2007-05-01T23:59:59.000Z

154

Effects of Feeding Insect-Protected Corn and Corn Residue to Cattle, and Evaluation of Distillers Grains Storage when Mixed with Crop Residue on Cattle Performance.  

E-Print Network (OSTI)

??Research has been conducted on genetically modified corn fed to livestock since the introduction of insect resistant hybrids. While the overwhelming conclusion of these trials… (more)

Weber, Barry

2012-01-01T23:59:59.000Z

155

Particle size distributions of ground corn and DDGS from dry grind processing  

E-Print Network (OSTI)

ABSTRACT. Ethanol production has increased in the past decade as a result of growth in the dry grind industry. In the dry grind process, the first step is grinding of corn. The particle size of the resulting ground corn can affect the fermentation process and the particle size of dried distillers ’ grains with solubles (DDGS), a coproduct of dry grind processing. Few data are available that characterize particle size distributions of ground corn or DDGS. The objective was to determine particle size distributions of ground corn and DDGS. Samples of ground corn and DDGS were obtained from nine dry grind plants; particle size distribution, geometric mean diameter (dgw) and geometric standard deviation (Sgw) were determined. The dgw of ground corn and of DDGS were not different among processing plants. The overall mean dgw of ground corn was not different from that of DDGS. Most of the ground corn (80 g/100 g) and DDGS (70 g/100 g) were recovered in the three largest particle size categories. The particle size distributions of ground corn were not correlated (r Corn, DDGS, Distillers dried grains with solubles, Ethanol. Corn is processed into ethanol by one of two major processes: dry grinding or wet milling. Wet milling is more complex than dry grinding because fiber and germ components are separated; this requires considerable equipment and capital. In the dry grind process,

K. D. Rausch; R. L. Belyea; M. R. Ellersieck; V. Singh; D. B. Johnston; M. E. Tumbleson

2005-01-01T23:59:59.000Z

156

Effects of residues from municipal solid waste landfill on corn yield and heavy metal content  

Science Conference Proceedings (OSTI)

The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

Prabpai, S. [Suphan Buri Campus Establishment Project, Kasetsart University, 50 U Floor, Administrative Building, Paholyothin Road, Jatujak, Bangkok 10900 (Thailand)], E-mail: s.prabpai@hotmail.com; Charerntanyarak, L. [Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: lertchai@kku.ac.th; Siri, B. [Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: boonmee@kku.ac.th; Moore, M.R. [The University of Queensland, The National Research Center for Environmental Toxicology, 39 Kessels Road, Coopers Plans, Brisbane, Queensland 4108 (Australia)], E-mail: m.moore@uq.edu.au; Noller, Barry N. [The University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, Queensland 4072 (Australia)], E-mail: b.noller@uq.edu.au

2009-08-15T23:59:59.000Z

157

STA'n:MENT OF CONSIDERAT IONS REQUEST BY CORNING J 'CORP ORA TED (CORNING) FOR AN ADV t\NCE WAIV  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STA'n:MENT OF CONSIDERAT STA'n:MENT OF CONSIDERAT IONS REQUEST BY CORNING J 'CORP ORA TED (CORNING) FOR AN ADV t\NCE WAIV ER OF DOMESTIC AN D FOREIGN P ATENT RIGHTS UNDER DOE A WARD 0 . DE-E£000575 7 W(A) 20 12-034 CORNING has req uested a waive r of domestic and fo reign patent rights for all subj ect in vent ions arising from its partjci pation und er the above-referenced awa rd entitled " Innovative Manufactw-ing of Protected Lithium Electrodes for UltraHi gh Energy Density Batteries." The award was made under the Innovative Manufacturing Initiati ve (DE-FOA-0000560). CORNING is a sub-recipient to PolyPfus Battery Company (Poly Plus), the prime recipi ent of the award. Johnson Controls Inc . is anothar sub-recipi ent under the award. This waiver only applies to CORNING. Johnson Control

158

City of Corning, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Corning Corning Place Iowa Utility Id 4375 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial All-Electric Commercial Residential Residential Residential All-Electric Residential Rural Commercial Commercial Rural Commercial All-Electric Commercial Rural Residential Residential Rural Residential All-Electric Residential Average Rates Residential: $0.0977/kWh Commercial: $0.0974/kWh

159

DOE - Office of Legacy Management -- Sylvania Corning Plant - NY 19  

Office of Legacy Management (LM)

Plant - NY 19 Plant - NY 19 FUSRAP Considered Sites Sylvania-Corning, NY Alternate Name(s): Sylvania Electric Products, Inc. Sylvania Corp. NY.19-1 NY.19-4 Location: Cantiaque Road, Hicksville, Long Island, New York NY.19-5 Historical Operations: Pilot-scale production of powdered metal uranium slugs for AEC's Hanford reactor. NY.19-4 Eligibility Determination: Eligible Radiological Survey(s): Assessment Survey NY.19-3 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Sylvania-Corning, NY Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

160

The New Era of Corn, Soybean, and Wheat Prices  

E-Print Network (OSTI)

“Prices have changed so much for what we sell and buy that it is almost impossible to feel confident in the decisions you make.”-- Agriculture Online, July 5, 2008 Prices of corn, soybeans, and wheat started moving higher in the fall of 2006 and have remained generally high and well above average prices in the previous 30 years. These higher prices, and the volatility associated with the higher prices, have resulted in the kind of uncertainty reflected in the quote above. Are higher prices here to stay? If so, what is the expected level and variability of prices during the new era? From a producer’s standpoint, the question really is, “What is a good price for corn, soybeans and wheat? ” These questions

Darrel Good; Scott Irwin

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Current and potential U.S. Corn Stover Supplies  

SciTech Connect

Agricultural residues such as corn (Zea mays L.) stover are a potential feedstock for bioenergy and bio-based products that could reduceU.S. dependence on foreign oil. Collection of such residues must take into account concerns that residue removal could increase erosion, reduce crop productivity, and deplete soil carbon and nutrients. This article estimates where and how much corn stover can be collected sustainably in the USA using existing commercial equipment and estimates costs of that collection. Erosion constraints to collection were considered explicitly, and crop productivity and soil nutrient constraints were considered implicitly, by recognizing the value of residues for maintaining soil moisture and including the cost of fertilizer to replace nutrients removed. Possible soil carbon loss was not considered in the analysis. With an annual production of 196 million Mg of corn grain (about9.2 billion bushels), the USA produces 196 million Mg of stover. Under current rotation and tillage practices, about 30% of this stover could be collected for less than $33 per Mg, taking into consideration erosion and soil moisture concerns and nutrient replacement costs. Wind erosion is a major constraint to stover collection. Analysis suggests three regions of the country (central Illinois, northern Iowa/southern Minnesota, and along the Platte River in Nebraska) produce sufficient stover to support large biorefineries with one million Mg per year feedstock demands and that if farmers converted to universal no-till production of corn, then over 100 million Mg of stover could be collected annually without causing erosion to exceed the tolerable soil loss.

Graham, Robin Lambert [ORNL; Nelson, R [Kansas State University; Perlack, Robert D [ORNL; Sheehan, J. [National Renewable Energy Laboratory (NREL); Wright, Lynn L [subcontractor

2007-01-01T23:59:59.000Z

162

Barley tortillas and barley flours in corn tortillas  

E-Print Network (OSTI)

Barley tortillas (100%) were easily processed using corn tortilla technology. Flavor and color of barley tortillas were different from those of corn or wheat tortillas. Barley tortillas were generally darker, maybe due to ash and phenolic compounds present in the dietary fiber of the flours. All barley tortillas had a unique mild bittersweet-astringent taste. Flavor and color were rated acceptable by an informal sensory panel. The effects of amylose and ?-glucan contents of barley flours on the quality attributes of doughs and tortillas were studied using objective and subjective tests. Barley was milled to obtain increased ?-glucan at the same amylose level. Changes in tortilla attributes were evaluated at 2 h and after storage for up to 28 d at 4°C. Stored tortillas were evaluated after equilibration to 22°C and reheating. As amylose decreased in the flour, fresh tortillas were softer and more extensible. However, upon storage all tortillas became brittle and hard. Increased ?-glucan content increased water absorption of the flours and moisture content of tortillas. Increased moisture gave softer and more extensible barley tortillas. Reheated and fresh tortillas had similar extensibilities. Reheated tortillas had less moisture and required more force to rupture. Barley flours were also substituted at 10 to 25% in corn tortillas. As barley flours increased in the formulation, tortilla extensibility improved. Color was not affected, dietary fiber was increased and a slight off-flavor was observed. Barley tortillas and corn tortillas containing barley flour may be an acceptable way to increase dietary fiber consumption at a competitive cost.

Mitre-Dieste, Carlos Marcelo

2001-01-01T23:59:59.000Z

163

Compositional Analysis of Water-Soluble Materials in Corn Stover  

SciTech Connect

Corn stover is one of the leading feedstock candidates for commodity-scale biomass-to-ethanol processing. The composition of water-soluble materials in corn stover has been determined with greater than 90% mass closure in four of five representative samples. The mass percentage of water-soluble materials in tested stover samples varied from 14 to 27% on a dry weight basis. Over 30 previously unknown constituents of aqueous extracts were identified and quantified using a variety of chromatographic techniques. Monomeric sugars (primarily glucose and fructose) were found to be the predominant water-soluble components of corn stover, accounting for 30-46% of the dry weight of extractives (4-12% of the dry weight of feedstocks). Additional constituents contributing to the mass balance for extractives included various alditols (3-7%), aliphatic acids (7-21%), inorganic ions (10-18%), oligomeric sugars (4-12%), and a distribution of oligomers tentatively identified as being derived from phenolic glycosides (10-18%).

Chen, S. F.; Mowery, R. A.; Scarlata, C. J.; Chambliss, C. K.

2007-01-01T23:59:59.000Z

164

High Xylose Yields from Dilute Acid Pretreatment of Corn Stover Under Process-Relevant Conditions  

SciTech Connect

Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave{reg_sign} reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.

Weiss, N. D.; Nagle, N. J.; Tucker, M. P.; Elander, R. T.

2009-01-01T23:59:59.000Z

165

STATEMENT OF CONSIDERATIONS REQUEST BY OWENS CORNING SCIENCE AND TECHNOLOGY LLC (OWENS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OWENS CORNING SCIENCE AND TECHNOLOGY LLC (OWENS OWENS CORNING SCIENCE AND TECHNOLOGY LLC (OWENS CORNING) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO. DE-EE0005436; W(A) 2011-065 OWENS CORNING has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Development and Productization of High-Efficiency, Low-Cost Building-Integrated Photovoltaic Shingles Using Monocrystalline Silicon Thin Film Solar Cells." OWENS CORNING is a sub-awardee under the cooperative agreement. Solexel Inc. is the prime awardee. This waiver only applies to subject inventions of OWENS CORNING. As described in the petition, the objective of the project funded by the cooperative

166

Saccharification of corn fiber using enzymes from Aureobasidium sp. strain NRRL Y-2311-1  

SciTech Connect

Crude enzyme preparations from Aureobasidium sp. strain NRRL Y-2311-1 were characterized and tested for the capacity to saccharify corn fiber. Cultures grown on xylan, corn fiber, and alkaline hydrogen peroxide (AHP)-pretreated corn fiber produced specific levels of endoxylanase, amylase, protease, cellulose, and other activities. Using equal units of endoxylanase activity, crude enzymes from AHP-pretreated corn fiber cultures were most effective in saccharification. Multiple enzyme activities were implicated in this process. Pretreatment of corn fiber with AHP nearly doubled the susceptibility of hemicellulose to enzymatic digestion. Up to 138 mg xylose, 125 mg arabinose, and 490 mg glucose were obtained per g pretreated corn fiber under conditions tested. 31 refs., 2 figs., 4 tabs.

Leathers, T.D.; Gupta, S.C. [Dept. of Agriculture, Peoria, IL (United States)

1996-06-01T23:59:59.000Z

167

Functionality of alkaline cooked corn bran on tortilla texture  

E-Print Network (OSTI)

The effect of pericarp and nixtamalized corn bran (NCB) level on corn tortilla attributes was evaluated. The effect of varying pH (4, 9 and 11) on fresh and dry mesa flour (pH 5, 7 and 10) tortillas was also evaluated. Nixtamal was washed at three different levels to obtain tortillas containing about 0, 50 and 100% pericarp. Fumaric acid and lime solutions were used to produce acidic and alkaline tortillas respectively. Tortilla texture was evaluated at 0, 1 and 7 days of storage objectively using a texture analyzer and subjectively using a solvability test. As pericarp content and pH increased tortillas were softer, more flexible and extensible with a darker yellow color. Acidic tortillas were harder with a white color. Pericarp improved texture of tortillas during storage. Commercial corn bran was alkaline treated to obtain NCB with functionality similar to nixtamalized corn pericarp. Dry masa flour (DMF) (1 kg) was mixed with 0, 50 and 100 g dry basis of NCB and processed into tortillas. Tortillas containing NCB had a pH of 9, were more flexible and rollable than control tortillas. Alkaline pH tortillas puffed during baking; these tortillas were yellow with a soft, moist texture. Tortillas containing nixtamalized rice and wheat brans were soft and flexible. A sensory panel found that tortillas containing nixtamalized cereal brans had a strong alkaline flavor and aroma and a blistered surface, with a soft, moist texture. NCB tortillas had the highest overall acceptability scores. Pericarp from nixtamal and alkaline pH slowed the staling mechanisms of tortillas. Nixtamalized commercial brans significantly improved the texture of corn tortillas during storage and enhanced the color, flavor and aroma of DMF tortillas. Nixtamalized cereal brans can be used as an effective additive to extend shelf stability of tortillas and enhance the flavor of DMF products. Tortillas containing NCB could be used in products such as wraps and fried tacos where the bright color and stronger flavor could be an advantage.

Guajardo Flores, Sara

1998-01-01T23:59:59.000Z

168

Lime pretreatment and enzymatic hydrolysis of corn stover  

E-Print Network (OSTI)

Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock to economically produce environmentally friendly biofuels. Corn stover was pretreated with an excess of calcium hydroxide (0.5 g Ca(OH)2/g raw biomass) in non-oxidative and oxidative conditions at 25, 35, 45, and 55oC. The optimal condition is 55oC for 4 weeks with aeration, determined by yields of glucan and xylan. The overall yields of glucose (g glucan hydrolyzed/100 g original glucan) and xylose (g xylan hydrolyzed/100 g original xylan) were 91.3 and 51.8 at 15 FPU/g cellulose, respectively. Furthermore, when considering the dissolved fragments of glucan and xylan in the pretreatment liquors, the overall yields of glucose and xylose were 93.2 and 79.5 at 15 FPU/g cellulose, respectively. The pretreatment liquor has no inhibitory effect on ethanol fermentation using Saccharomyces cerevisiae D5A. At the recommended condition, only 0.073 g Ca(OH)2 was consumed per g of raw corn stover. Under extensive delignification conditions, 87.5% of the initial lignin was removed. Extensive delignfication required oxidative treatment and additional lime consumption. Deacetylation quickly reached a plateau within 1 week. Delignification highly depended on temperature and the presence of oxygen. Lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (25 ?? 55oC). The delignification kinetic models of corn stover were empirically determined by three simultaneous first-order reactions. The activation energies for the oxidative delignification were estimated as 50.15 and 54.21 kJ/mol in the bulk and residual phases, respectively. Crystallinity slightly increased with delignification because amorphous components (lignin, hemicellulose) were removed. However, the increased crystallinity did not negatively affect the 3-d sugar yield of enzyme hydrolysis. Oxidative lime pretreatment lowered the acetyl and lignin contents to obtain high digestibility, regardless of crystallinity. The enzymatic digestibility of lime-treated biomass was affected by the change of structural features (acetylation, lignification, and crystallization) resulting from the treatment. The non-linear models for 3-d hydrolysis yields of glucan and xylan were empirically established as a function of the residual lignin fraction for the corn stover pretreated with lime and air.

Kim, Se Hoon

2003-05-01T23:59:59.000Z

169

Ecophysiology of dryland corn and grain sorghum as affected by alternative planting geometries and seeding rates.  

E-Print Network (OSTI)

??Previous work in the High Plains with alternative planting geometries of corn and grain sorghum has shown potential benefits in dryland production. Studies conducted in… (more)

Haag, Lucas A.

2013-01-01T23:59:59.000Z

170

Measuring Improvement in the Energy Performance of the U.S. Corn...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Improvement in the Energy Performance of the U.S. Corn Refining Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and...

171

Farm-, Field-, and Plant-scale Effects on European Corn Borer Oviposition.  

E-Print Network (OSTI)

??New technologies and strategies in commodity agriculture result in higher yields and quality harvests. Corn, one of the most economically important crops in the United… (more)

Ellis, Katherine

2009-01-01T23:59:59.000Z

172

Fate of the mycotoxin fumonisin B1 during alkaline cooking of cultured and whole kernel corn.  

E-Print Network (OSTI)

??Fumonisins are Fusarium mycotoxins that are natural contaminants of corn. They are toxic to animals and consumption of contaminated foods, including tortillas, is a suspected… (more)

Burns, Tantiana Donata

2008-01-01T23:59:59.000Z

173

Evaluation of corn and soybean response to phosphorus and potassium fertilization.  

E-Print Network (OSTI)

??Corn (Zea mays) response to fertilization and placement methods has been studied extensively; however studies on soybean [Glycine max (L.) Merr.] response to placement have… (more)

Arns, Ingrid

2013-01-01T23:59:59.000Z

174

Corn and weed interactions with nitrogen in dryland and irrigated environments.  

E-Print Network (OSTI)

??Corn yield potential is limited by water deficit stress and limited soil nitrogen. Field and greenhouse experiments were conducted near Manhattan, KS in 2005 and… (more)

Ruf, Ella Kathrene

2007-01-01T23:59:59.000Z

175

Yield and quality responses of corn silage genotypes under reduced irrigation in the Texas High Plains.  

E-Print Network (OSTI)

??Two main options exist for producers to optimize the production of corn silage in limited-irrigation systems. First, they can utilize best management practices to make… (more)

Spinhirne, Bruce

2012-01-01T23:59:59.000Z

176

Impact of Recycling Stillage on Conversion of Dilute Sulfuric Acid Pretreated Corn Stover to Ethanol (Poster)  

Science Conference Proceedings (OSTI)

A description of methods and results from an experiment designed to assess the impact of process water recycle on corn stover-to-ethanol conversion process performance.

Mohagheghi, A.; Schell, D. J.

2009-11-01T23:59:59.000Z

177

Characterization of Soil Amended with the By-Product of Corn Stover Fermentation  

SciTech Connect

Corn stover is a potential biofuel; however, removing this stover from the land may increase the risk of erosion and reduce soil organic matter.

Johnson,J.M.F; Reicosky, D; Sharratt, M; Lindstrom,M; Voorhees, W; Carpenter-Boggs,L.

2004-01-01T23:59:59.000Z

178

Enhancing dry-grind corn ethanol production with fungal cultivation and ozonation.  

E-Print Network (OSTI)

??Public opinion of the U.S. fuel ethanol industry has suffered in recent years despite record ethanol production. Debates sparked over the environmental impacts of corn… (more)

Rasmussen, Mary

2009-01-01T23:59:59.000Z

179

The impact of ethanol driven corn price on the cow-calf industry.  

E-Print Network (OSTI)

??After remaining stable for several decades, corn price has recently had unprecedented price increases and volatility. United States Department of Agriculture (USDA) predicts an average… (more)

Warner, Marcella M.

2008-01-01T23:59:59.000Z

180

REQUEST FOR SUPPORT FOR REGISTRATION OF S01-285-7*R Crop Kind: Wheat Type: Canada Western Hard Red Winter  

E-Print Network (OSTI)

type of grain. Primarily, the grinding of wheat for whole-wheat flour and corn for cornmeal or grits. Soft winter wheat will be sufficient to make whole wheat flour. In addition, buckwheat in small to purchase yellow corn that has been cleaned through a separator. Cleaned wheat can also be obtained locally

Peak, Derek

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Phosphorus utilization from 32P-triple superphosphate by corn plants, as affected by green manures and nitrogen and phosphate fertilizer rates in cerrado (savannah) soil  

E-Print Network (OSTI)

phosphate rock mixtures on corn growth. Scientia Agricola.the factors responsible for low corn crop yield, allied tothe amount of N applied to corn in Brazil is, in average, 60

Muraoka, Takashi; Silva, Edson Cabral da; Buzetti, Salatier; Alvarez V., Felipe Carlos; Franzini, Vinicius Ide

2009-01-01T23:59:59.000Z

182

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Alkali and Conventional Corn Wet-Milling: 100-g Procedures.for Starch Recovery from Corn. Illinois Marketing Board,the Net Energy Balance of Corn Ethanol. An Economic Research

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

183

Soil Acidity and Manganese Nutrition of Corn and Soybeans as Affected by Lime and Nitrogen Applications in an Oxisol under a No-Till System  

E-Print Network (OSTI)

0–0.10 m depth and leaf Mn content of corn and soybean. **:p Corn Grain Mn , mg kg -1 Soybean ? = 148.86 –m and grain Mn content of corn and soybean. **: p < 0.01.

Caires, Eduardo Fávero; Garbuio, Fernando José; Joris, Hélio Antonio Wood; Pereira, Paulo Roberto da Silva Filho

2009-01-01T23:59:59.000Z

184

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

Science Conference Proceedings (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

185

INTERSPECIFIC AND INTRASPECIFIC COMPETITION OF COMMON SUNFLOWER (HELIANTHUS ANNUUS L.) IN FIELD CORN (ZEA MAYS L.)  

E-Print Network (OSTI)

Common sunflower is a competitive annual native dicot found in disturbed areas, on roadsides, dry prairies, and in row crops. Common sunflower is a competitive weed, but little data exist on interference, economic impacts, and competition in field corn. Field studies were conducted in 2006 and 2007 to 1) define the density-dependent effects of common sunflower competition with corn; 2) define the necessary weed-free periods of common sunflower in corn; 3) evaluate common sunflower control with herbicides; 4) and define the economic impact of common sunflower interference with corn. Corn grain yield was significantly reduced when common sunflower densities reached 1 plant/m of row and potentitially damaging common sunflower densities occurred if allowed to compete for more than 2 to 4 wk after planting for maximum corn yield. No significant corn yield reduction occurred if common sunflowers emerged 8 wk after planting. Growing degree day (GDD) heat units for corn showed that the critical point for control of common sunflower was approximately 300 GDD. Atrazine applied PRE, atrazine followed by (fb) glyphosate or halosulfuron POST, glyphosate POST, halosulfuron POST, and halosulfuron plus nicosulfuron POST controlled >87% of common sunflower. Atrazine applied PRE in a 30-cm band, nicosulfuron POST, and atrazine broadcast plus S-metolachlor PRE showed significantly lower common sunflower control and corn grain yield, when compared to atrazine PRE fb glyphosate POST. Economic impact of one sunflower/6 m of crop row caused a yield loss of 293 kg/ha. Various corn planting densities showed that corn yield can be reduced 1990 kg/ha with common sunflower competition. Corn planting densities of 49400 and 59300 plants/ha provided the greatest net returns with or without the presence of common sunflower competition. The highest net returns occurred with no common sunflower competition in 2006 and 2007, at $3,046/ha and $2,687/ha, respectively, when net corn prices were $0.24/kg ($6.00/bu). Potential control costs of various herbicide treatments revealed net returns of $1,156 to $1,910/ha in 2006 and $1,158 to $1,943/ha in 2007. Determining the economic impact of common sunflower interference in field corn allows producers to estimate the overall net return based upon density and duration of common sunflower interference, while considering varying net corn prices, crop planting density, and herbicide application costs.

Falkenberg, Nyland R.

2009-05-01T23:59:59.000Z

186

Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation  

Science Conference Proceedings (OSTI)

The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

2007-09-28T23:59:59.000Z

187

Studies on the Effects of Inorganic Salts on Biochemical Treatment ...  

Science Conference Proceedings (OSTI)

Effects of two inorganic salts (sodium chloride and sodium sulphate) on biochemical ... Numerical Investigation of Heat Transfer Characteristics in Microwave ...

188

Distribution of two rotation-resistant corn pests in eastern Iowa and effects of soybean varieties on biology of Diabrotica virgifera virgifera.  

E-Print Network (OSTI)

??The western corn rootworm Diabrotica virgifera virgifera LeConte (WCR) and the northern corn rootworm Diabrotica barberi Smith & Lawrence (NCR) are two significant insect pests… (more)

Dunbar, Michael Wilson

2011-01-01T23:59:59.000Z

189

An ABC transporter gene from Fusarium verticillioides, FvABC1, may confer tolerance to corn antimicrobial compounds.  

E-Print Network (OSTI)

??An ABC transporter gene, FvABC1, was cloned and sequenced from the corn pathogen Fusarium verticillioides in order to study non-degradative tolerance to corn antimicrobial compounds.… (more)

Palencia, Edwin Rene

2006-01-01T23:59:59.000Z

190

Prenova & Owens Corning Teaming Presentation- Using Service and Product  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation- Using Service and Presentation- Using Service and Product Providers to Leverage Your Energy Efforts: Prenova/Owens Corning Energy Process Optimization Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing

191

Environmental Impacts of Stover Removal in the Corn Belt  

Science Conference Proceedings (OSTI)

When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into simple profit maximization model to show these tradeoffs.

Alicia English; Wallace E. Tyner; Juan Sesmero; Phillip Owens; David Muth

2012-08-01T23:59:59.000Z

192

Proton efflux from corn roots induced by tripropyltin  

SciTech Connect

Tripropyltin restores medium acidification by washed corn root tissue in which electrogenic H/sup +/ efflux has been blocked by ATPase inhibitors or injury. However, the restore H/sup +/ efflux is not electrogenic and will not drive K/sup +/ influx, and, by itself, tripropyltin is inhibitory to K/sup +/ influx. Tripropyltin elicits a 5-fold increase in endogenous chloride efflux, and Cl/sup -//OH/sup -/ exchange can, thus, account for the observed acidification of the medium. This explanation cannot be applied equally to the acidification produced by the K/sup +//H/sup +/ exchanging ionophore nigericin.

Chastain, C.J.; Hanson, J.B.

1981-10-01T23:59:59.000Z

193

Ethanol and Its Effect on the U.S. Corn Market: How the Price of E-85 Influences Equilibrium Corn Prices and Equilibrium Quantity.  

E-Print Network (OSTI)

??This study analyzes the impact the market price of E-85 has on equilibrium price and quantity exchanged of corn in the U.S. market. After presenting… (more)

PINCIN, JARED

2007-01-01T23:59:59.000Z

194

Predicting Large-Area Corn Yield with a Weighted Palmer Z-Index  

Science Conference Proceedings (OSTI)

Palmer's z-index, calculated to reflect only the planting-emergence and anthesis-grainfill stages of the growing season, is related with detrended corn yields to produce a predictive model for Illinois corn production. The model is evaluated to ...

Scott A. Isard; William E. Easterling

1989-03-01T23:59:59.000Z

195

Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment  

Science Conference Proceedings (OSTI)

Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p corn cobs.

Cui, Z. F.; Wan, C. X.; Shi, J.; Sykes, R. W.; Li, Y. B.

2012-05-30T23:59:59.000Z

196

Comparative Detoxification of Vacuum Evaporation/Steam Stripping Combined with Overliming on Corn Stover Prehydrolyzate  

Science Conference Proceedings (OSTI)

Tow kinds of physical methods, vacuum evaporation and steam stripping, combined with overliming (calcium hydroxide) were applied to remove inhibitors which were produced simultaneously during the pretreatment of lignocellulosic biomass. Corn stover was ... Keywords: vacuum evaporation, steam stripping, overliming, corn stover prehydrolyzate, detoxification

Jun-jun Zhu; Qiang Yong; Yong Xu; Shi-yuan Yu

2009-10-01T23:59:59.000Z

197

Corn Ethanol Industry Process Data: September 27, 2007 - January 27, 2008  

DOE Green Energy (OSTI)

This subcontract report supplies timely data on the historical make-up of the corn ethanol industry and a current estimate of where the industry stands. The subcontractor has also reported on the expected future trends of the corn ethanol dry grind industry.

BBI International

2009-02-01T23:59:59.000Z

198

The effect of CO regulations on the cost of corn ethanol production  

E-Print Network (OSTI)

e MJ-1 by co-firing 20% biomass in its boiler system, incurring only a small change in production (e.g. raw starch hydrolysis and corn oil extraction, plus either CHP or biomass co-firing), and even (e.g. raw starch hydrolysis and corn oil extraction, plus either CHP or biomass co-firing), and even

Kammen, Daniel M.

199

A supply forecasting model for Zimbabwe's corn sector: a time series and structural analysis  

E-Print Network (OSTI)

The Zimbabwean government utilizes the corn supply forecasts to establish producer prices for the following growing season, estimate corn storage and handling costs, project corn import needs and associated costs, and to assess the Grain Marketing Board's financial resource needs. Thus, the corn supply forecasts are important information used by the government for contingency planning, decision-making, policy-formulation and implementation. As such, the need for accurate forecasts is obvious. The objectives of the study are: (a) determine how changes in the government-established producer price affects the quantity of corn supplied to the Grain Marketing Board by the large-scale corn-producing sector and (b) whether including rainfall or rainfall probabilities into econometric models would result in an improvement of corn supply forecasts compared to current forecasts by the government. In order to accomplish the first objective a supply elasticity model was specified and estimated using ordinary least squares. This model is intended to provide 'de insight to the government regarding the influence of the government-established corn price and other related variables on corn supplied to the Grain Marketing Board by the large-scale producers. Thus, the estimated model would be useful to the government when establishing corn prices in March/April for production in the following growing season (October - February). To achieve the second objective, preliminary analysis was carried out to verify whether there is statistical evidence to support the hypothesis that rainfall cause" corn production and supply, and also corn prices and sales. Specifically the preliminary analysis involved using the Granger causality tests, stationarity tests and innovation accounting (impulse responses and forecast error decomposition). Having verified and quantified the causal effects of rainfall on corn production and supply, the next task was to investigate whether including rainfall and/or drought probabilities into forecasting econometric models would help provide improved out-of-sample forecasts compared to the government's forecasts. The forecasting accuracy of the models (short-run) was evaluated using standard statistical measures such as, the mean square error (MSE), mean absolute percentage error (MAPEI), improved mean absolute percentage error (IMAPE) and Theil's U-statistic, and thereupon select the best model. The results indicated that by incorporating rainfall and/or rainfall probabilities into econometric forecasting models, there was substantial improvement in corn supply forecasts. It follows that the the government would likely find it beneficial to incorporate the rainfall variable into their forecasting effort.

Makaudze, Ephias

1993-01-01T23:59:59.000Z

200

Fly ash as a liming material for corn production  

Science Conference Proceedings (OSTI)

Fly ash produced as a by-product of subbituminous coal combustion can potentially serve as an alternative liming material without negatively affecting corn (Zea mays L.) production in areas where use of conventional liming materials can be uneconomical due to transportation costs. A study was conducted to determine if fly ash produced from the Nebraska Public Power District Gerald Gentleman Power Station located in Sutherland, NE could be used as an alternative liming material. Combinations of dry fly ash (DFA), wet fly ash (WFA), beet lime (by-product of sugar beet (Beta vulgaris L.) processing) (BL), and agricultural lime (AGL) were applied at rates ranging from 0.43 to 1.62 times the recommended lime rate to plots on four acidic soils (Anselmo fine sandy loam, Hord fine sandy loam, Holdrege sandy loam, and Valentine fine sand). Soil samples were collected to a depth of 0.2 m from plots and analyzed for pH before lime applications and twice periodically after lime application. The Hord and Valentine soils were analyzed for exchangeable Ca, Mg, K, Na,and Al for determination of percent Al saturation on selected treatments and sampling dates. Corn grain yields were determined annually. It is concluded that the fly ash utilized in this study and applied at rates in this study, increases soil pH comparable to agricultural lime and is an appropriate alternative liming material.

Tarkalson, D.D.; Hergert, G.W.; Stevens, W.B.; McCallister, D.L.; Kackman, S.D. [University of Nebraska, North Platte, NE (US)

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies  

E-Print Network (OSTI)

Due to security issues in energy supply and environmental concerns, renewable energy production from biomass becomes an increasingly important area of study. Thus, thermal conversion of biomass via pyrolysis and subsequent upgrading procedures were explored, in an attempt to convert an abundant agricultural residue, corn stover, into potential bio-fuels. Pyrolysis of corn stover was carried out at 400, 500 and 600oC and at moderate pressure. Maximum bio-char yield of 37.3 wt.% and liquid product yield of 31.4 wt.% were obtained at 400oC while the gas yield was maximum at 600oC (21.2 wt.%). Bio-char characteristics (energy content, proximate and ultimate analyses) indicated its potential as alternative solid fuel. The bio-oil mainly consisted of phenolic compounds, with significant proportions of aromatic and aliphatic compounds. The gas product has energy content ranging from 10.1 to 21.7 MJ m-3, attributed to significant quantities of methane, hydrogen and carbon dioxide. Mass and energy conversion efficiencies indicated that majority of the mass and energy contained in the feedstock was transferred to the bio-char. Fractional distillation of the bio-oil at atmospheric and reduced pressure yielded approximately 40-45 wt.% heavy distillate (180-250oC) with significantly reduced moisture and total acid number (TAN) and greater energy content. Aromatic compounds and oxygenated compounds were distributed in the light and middle fractions while phenolic compounds were concentrated in the heavy fraction. Finally, hydrotreatment of the bio-oil and the heavy distillate using noble metal catalysts such as ruthenium and palladium on carbon support at 100 bar pressure, 4 hours reaction time and 200o or 300oC showed that ruthenium performed better at the higher temperature (300oC) and was more effective than palladium, giving about 25-26% deoxygenation. The hydrotreated product from the heavy distillate with ruthenium as catalyst at 300oC had the lowest oxygen content and exhibited better product properties (lower moisture, TAN, and highest heating value), and can be a potential feedstock for co-processing with crude oils in existing refineries. Major reactions involved were conversion of phenolics to aromatics and hydrogenation of ketones to alcohols. Results showed that pyrolysis of corn stover and product upgrading produced potentially valuable sources of fuel and chemical feedstock.

Capunitan, Jewel Alviar

2013-05-01T23:59:59.000Z

202

Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.  

DOE Green Energy (OSTI)

Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

Arora, S.; Wu, M.; Wang, M.; Energy Systems

2011-02-01T23:59:59.000Z

203

Biomechanics of Wheat/Barley Straw and Corn Stover  

DOE Green Energy (OSTI)

The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

2005-03-01T23:59:59.000Z

204

BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT  

DOE Green Energy (OSTI)

As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

1998-09-20T23:59:59.000Z

205

Biochemical processes for geothermal brine treatment  

DOE Green Energy (OSTI)

As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

1998-08-01T23:59:59.000Z

206

A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA  

Science Conference Proceedings (OSTI)

Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubble height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.

Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

2011-11-01T23:59:59.000Z

207

Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends  

E-Print Network (OSTI)

In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn oils with low-viscosity diesel and jet fuel mixed with butanol and ethanol were studied. Several corn oil-based blends were formulated and characterized to understand the effect of composition on viscosity, fuel stability and energy content. The formulated corn oil blends were combusted in a 30 kW modified combustion chamber to determine the corresponding NOx and CO emission levels, along with CO? levels. Used corn oil was made by simply heating fresh corn oil for a fixed period of time (about 44 hours), and was characterized by quantifying its total polar material (TPM), iodine value, free fatty acid content, and peroxide value. The combustion experiments were conducted at a constant heat output of 68,620 kJ/hr (19 kW), to observe and study the effects of equivalence ratio, swirl number, and fuel composition on emissions. Used corn oil blends exhibited better combustion performance than fresh corn oil blends, due in part to the higher unsaturation levels in fresh corn oil. NOx emissions for used corn oil increased with swirl number. Among all the blends, the one with the higher amount of diesel (lower amount of corn oil) showed higher NOx emissions. The blend with fresh corn oil showed decreasing NOx with increasing equivalence ratio at swirl number 1.4. All blends showed generally decreasing CO trends at both swirl numbers at very lean conditions. The diesel fuel component as well as the alcohols in the blends were also important in the production of pollutants. Compared to the diesel-based blends mixed with used corn oil, butanol, and ethanol, the jet fuel-based blends showed higher NOx levels and lower CO levels at both swirl numbers.

Savant, Gautam Sandesh

2012-05-01T23:59:59.000Z

208

Land-use change and greenhouse gas emissions from corn and cellulosic  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, 2013 Tweet EmailPrint The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and

209

Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant  

DOE Green Energy (OSTI)

Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

Not Available

2008-03-01T23:59:59.000Z

210

Corn Yield Behavior: Effects of Technological Advance and Weather-Conditions  

Science Conference Proceedings (OSTI)

This study explores the relationships between U.S. corn yields (level and stability), advances in technology, and weather. Evaluations at the farm, sub-state, and national levels reveal no evidence of yield plateaus, and absolute, but not ...

Philip Garcia; Susan E. Offutt; Musa Pinar; Stanley A. Changnon

1987-09-01T23:59:59.000Z

211

Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index  

Science Conference Proceedings (OSTI)

Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of ...

Jeffrey A. Andresen; Robert F. Dale; Jerald J. Fletcher; Paul V. Preckel

1989-01-01T23:59:59.000Z

212

STATEMENT OF CONSIDERATIONS REQUEST BY CORNING INCORPORATED FOR AN ADVANCE WAIVER OF DOMESTIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WAIVER OF DOMESTIC WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE CONTRACT NO. DE-FC26- 05NT42461, SUBCONTRACT QZ001; W(A)-05-040, CH-1322 The Petitioner, Corning Incorporated (Corning) was awarded a subcontract under a cooperative agreement for the performance of work entitled, "Advanced Gasification Mercury/Trace Metal Control with Monolith Traps". The prime contract is with the University of North Dakota Energy and Environmental Research Center (EERC). The purpose of the project is to develop effective, economical technology to enable the removal of mercury from syngas created when coal is gasified. Under the subcontract, Corning will conduct research into whether Corning's impregnated monolith technology, in conjunction with the University of North Dakota's

213

Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)  

SciTech Connect

This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

Not Available

2009-03-01T23:59:59.000Z

214

Frequency of Precipitation across the Northern U.S. Corn Belt  

Science Conference Proceedings (OSTI)

Knowledge of the frequency of precipitation events can aid in managing water resources, but little is known concerning the regional variability in the frequency of daily precipitation events in the northern U.S. Corn Belt. The frequency ...

B. S. Sharratt; J. Zandlo; G. Spoden

2001-02-01T23:59:59.000Z

215

Advanced biochemical processes for geothermal brines current developments  

DOE Green Energy (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the R&D effort allowed to identify a combination of biochemical and chemical processes which became a basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource and therefore differs, the emerging technology has to be also flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.

1997-03-10T23:59:59.000Z

216

Advanced biochemical processes for geothermal brines: Current developments  

DOE Green Energy (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M. [Brookhaven National Lab., Upton, NY (United States). Energy Science and Technology Div.; Bajsarowicz, V. [CET Environmental Services, Inc., Richmond, CA (United States); McCloud, M. [C.E. Holt/California Energy, Pasadena, CA (United States)

1997-07-07T23:59:59.000Z

217

Effect of coarse or fine grinding on utilization of dry or ensiled corn by lactating dairy cows  

E-Print Network (OSTI)

This study evaluated the effect of coarse or fine grinding of three forms of corn on the performance of lactating cows. Six diets, fed as total mixed rations, were identical except for the corn portion of the diet. Corn treatments were dry shelled corn, high moisture ensiled ear corn, and high moisture ensiled shelled corn, either coarsely or finely ground. The experimental design was a6 × 6 Latin square with 36 cows. Eighteen cows were assigned to the six different treatments and were fed once daily. Within this group of 18 cows, six had a ruminal cannula and were used to evaluate nutrient digestibilities and ruminal fermentation. The remaining 18 cows, six of which were ruminally cannulated, were similarly assigned, except they were fed twice daily. In the group fed once daily, milk production and composition were not affected by treatment. Starch digestibility was greater with the high moisture and with the finely ground corn treatments. In addition, the high moisture ensiled corn treatments had reduced ruminal ammonia concentrations. In the group that was fed twice daily, milk production and protein yield were greatest for the finely ground high moisture ensiled shelled corn treatment. Starch utilization was improved by fine grinding. Lower ruminal ammonia concentrations were obtained with the high moisture ensiled corn treatments, and there was a tendency for reduced ammonia concentration with fine grinding. Results indicate that high moisture ensiled corn as well as fine grinding improved nitrogen and starch utilization. (Key words: corn, milk, particle size, starch) Abbreviation key: CG = coarsely ground, DSC = dry shelled corn, FG = finely ground, HMEC = high mois-

F. San Emeterio; R. B. Reis; W. E. Campos; L. D. Satter

2000-01-01T23:59:59.000Z

218

EASURING IMPROVEMENT IN THE ENERGY PERFORMANCE OF THE U.S. CORN REFINING INDUSTRY  

NLE Websites -- All DOE Office Websites (Extended Search)

| P | P a g e MEASURING IMPROVEMENT IN THE ENERGY PERFORMANCE OF THE U.S. CORN REFINING INDUSTRY SPONSORED BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY AS PART OF THE ENERGY STAR® PROGRAM GALE A. BOYD AND CHRISTIAN DELGADO DUKE UNIVERSITY DEPARTMENT OF ECONOMICS BOX 90097, DURHAM, NC 27708 JULY 10, 2012 2 | P a g e MEASURING IMPROVEMENT IN THE ENERGY PERFORMANCE OF THE U.S. CORN REFINING INDUSTRY CONTENTS Figures .................................................................................................................................................................................................................. 3 Tables ................................................................................................................................................................................................................... 3

219

Influence of Mechanical Processing on Utilization of Corn Silage by Lactating Dairy Cows 1  

E-Print Network (OSTI)

We conducted three experiments to determine the influence of mechanical processing on corn silage utilization by lactating dairy cows. Total mixed rations contained either unprocessed or processed corn silage harvested between 1/4 and 3/4 milk line. In trial 1, 12 multiparous Holstein cows were used in a replicated double switchback design with 21-d periods. Intake of dry matter (DM) was increased 1.2 kg/d by processing, but milk yield was unaffected. Processing did not affect apparent total-tract DM digestibility, but processing tended to lower starch and corn excretion in feces and reduced concentration of sieved corn kernel particles in feces. In trial 2, 42 Holstein cows were used in an 18-wk randomized complete-block design. Intake of DM and milk yield were unaffected by processing, but milk fat percent was increased 0.35 percentage units by processing. Processing tended to increase total-tract digestibility of starch, but reduced organic matter, crude protein, and neutral detergent fiber digestibilities. In trial 3, 30 Holstein cows were used in a 15-wk randomized complete block design. There was no influence of mechanical processing on intake or lactation performance in this trial. Despite indications of increased starch digestion in two trials and increased DM intake in one trial, effects of processing corn silage on lactation performance were minimal with corn silage at the maturity and moisture contents used in these trials.

T. R. Dhiman; M. A. Bal; Z. Wu; V. R. Moreira; R. D. Shaver; L. D. Satter; K. J. Shinners; R. P. Walgenbach

2000-01-01T23:59:59.000Z

220

CellDesigner: a modeling tool for biochemical networks  

Science Conference Proceedings (OSTI)

Understanding of logic and dynamics of gene-regulatory and biochemical networks is a major challenge of systems biology. To facilitate this research topic, we have developed CellDesigner, a modeling tool of gene-regulatory and biochemical networks. CellDesigner ...

Akira Funahashi; Yukiko Matsuoka; Akiya Jouraku; Hiroaki Kitano; Norihiro Kikuchi

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Effects Of Steam-Flaked Corn Density And Roughage Concentration On In Vitro Fermentation, Performance, Carcass Quality, And Acid-Base Balance Of Finishing Beef Cattle, And Particle Distribution Of Corn Steam Flaked To Varying Densities.  

E-Print Network (OSTI)

??In Exp. 1, 128 beef steers were used in a 2 x 2 factorial to evaluate bulk densities of steam-flaked corn (SFC; 335 or 386… (more)

Hales, Kristin E.

2009-01-01T23:59:59.000Z

222

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics  

Science Conference Proceedings (OSTI)

Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales, dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.

Sokhansanj, Shahabaddine [ORNL; Mani, Sudhagar [University of Georgia; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-01-01T23:59:59.000Z

223

Characterization of Rhizoctonia solani and Rhizoctonia-like Fungi infecting Vegetables in New York and their Pathogenicity to Corn .  

E-Print Network (OSTI)

??Vegetable growers in New York have recently observed that the corn rotation is no longer effective in suppressing diseases caused by Rhizoctonia solani and Rhizoctonia-like… (more)

Ohkura, Mana

2008-01-01T23:59:59.000Z

224

EFFECT OF FEEDING A BLEND OF NATURALLY-CONTAMINATED CORN ON NUTRIENT DIGESTIBILITY AND FEED PREFERENCE IN WEANLING PIGS.  

E-Print Network (OSTI)

??Two experiments were conducted to determine the effect of feeding diets with a 2009 and 2010 naturally-contaminated corn to weaning pigs. For both experiments three… (more)

Escobar, Carlos Santiago

2012-01-01T23:59:59.000Z

225

Starch properties, endogenous amylase activity, and ethanol production of corn kernels with different planting dates and drying conditions.  

E-Print Network (OSTI)

??This study was conducted with aim to understand how planting dates and drying conditions affected starch properties and dry-grind ethanol production of corn kernels. Three… (more)

Medic, Jelena

2011-01-01T23:59:59.000Z

226

Experimental co-digestion of corn stalk and vermicompost to improve biogas production  

SciTech Connect

Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

Chen Guangyin [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Zheng Zheng, E-mail: zzhenghj@fudan.edu.c [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Yang Shiguan [National Engineering Laboratory of Biomass Power Generation Equipment, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Fang Caixia; Zou Xingxing; Luo Yan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

2010-10-15T23:59:59.000Z

227

Multiple capillary biochemical analyzer with barrier member  

DOE Patents (OSTI)

A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.

Dovichi, Norman J. (Edmonton, CA); Zhang, Jian Z. (Edmonton, CA)

1996-01-01T23:59:59.000Z

228

Multiple capillary biochemical analyzer with barrier member  

DOE Patents (OSTI)

A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.

Dovichi, N.J.; Zhang, J.Z.

1996-10-22T23:59:59.000Z

229

Hydrogen Generation Rate Scoping Study of DOW Corning Antifoam Agent  

DOE Green Energy (OSTI)

The antifoam agent DOW Corning Q2-3183A will be added to waste streams in the Hanford River Protection Program-Waste Treatment and Immobilization Plant (RPP-WTP) to prevent foaming. It consists mostly of polydimethylsiloxane (PDMS) and polypropylene glycol (PPG). These and other minor constituents of the antifoam have organic constituents that may participate in radiolytic and chemical reactions that produce hydrogen in Hanford waste. It has been recommended by The WTP R&T Department recommended personnel to treat the organic compounds of the antifoam like the in a similar manner as other organic compounds that are native to the Hanford waste with respect to hydrogen production. This testing has investigated the radiolytic and thermal production of hydrogen from antifoam added to simulant waste solutions to determine if the organic components of the antifoam produce hydrogen in the same manner as the native organic species in Hanford waste. Antifoam additions for this testing were in the range of 4 to 10 wt% to ensure adequate hydrogen detection. Test conditions were selected to bound exposures to the antifoam agent in the WTP. These levels are higher than previously recommended values of 350 mg/L for actual applications in WTP tanks containing air spargers and pulse jet mixers. Limited degradation analyses for the organic components of the antifoam were investigated in this study. A more detailed study involving analyses of antifoam degradation and product formation is in progress at SRNL and results from that study will be reported at a later time. The total organic carbon (TOC) content of the Q2-3183A antifoam was measured to be 39.7 {+-} 4.9 wt% TOC. This measurement was performed in triplicate with on three different dilutions of the pure antifoam liquid using a TOC combustion analyzer instrument with catalytic oxidation, followed by CO{sub 2} quantification using an infrared detector. Test results from this study indicate that the WTP HGR correlation conservatively bounds hydrogen generation rates (HGRs) from antifoam-containing simulants if the antifoam organic components are treated the same as other native organics. Tests that used the combination of radiolysis and thermolysis conducted on simulants containing antifoam produced measured hydrogen that was bounded by the WTP correlation. These tests used the bounding WTP temperature of 90 C and a dose rate of 1.8 x 10{sup 5} rad/hr. This dose rate is about ten times higher than the dose rate equivalent calculated for a bounding Hanford sludge slurry composition of 10 Ci/L, or 2 x 10{sup 4} rad/hr. Hydrogen was measured using a quadrupole mass spectroscopy instrument. Based on the analyses from the 4wt% and 10wt% antifoam samples, it is expected that the HGR results are directly proportional to the antifoam concentration added. A native organic-containing simulant that did not contain any added antifoam also produced a measurable radiolytic/thermal hydrogen rates that was in bounded by the WTP correlation. A base simulant with no added organic produced a measurable radiolytic/thermal HGR that was {approx}2X higher than the predicted HGR. Analysis of antifoam-containing simulants after prolonged irradiation of 52 Mrad and heating (23 days at 90 C) indicates that essentially all of the PDMS and greater than 60% of the PPG components are degraded, likely to lower molecular weight species. The antifoam components were analyzed by extraction from the salt simulants, followed by gel permeation chromatography (GPC) by personnel at Dow Corning. A more detailed study of the antifoam degradation and product formation from radiolysis and thermolysis is currently in progress at SRNL. That study uses a dose rate of about 2 x 10{sup 4} rad/hr and bounding temperatures of 90 C. Results from that study will be reported in a future report.

Crawford, Charles

2005-09-27T23:59:59.000Z

230

Costs of Harvesting, Storing in a Large Pile, and Transporting Corn Stover in a Wet Form  

Science Conference Proceedings (OSTI)

Corn stover is potentially an attractive biomass resource, but must be stored if used to supply a biorefinery year-round. Based on experience with successfully storing water-saturated large piles of bagasse for the pulping industry, Atchison and Hettenhaus (2003) proposed that such a system can also be applied to corn stover. Regardless of the technical feasibility of this system, in this article we estimate the cost of harvesting corn stover in a single pass with corn grain, delivering the chopped biomass to a storage pile, storing the stover in a wet form in a large pile at 75% moisture in a 211,700-dry Mg facility within a radius of 24 km from the field, and transporting the stover 64 km to a biorefinery. Field-ground corn stover can be delivered to a biorefinery by rail for $55 to $61/dry Mg. Truck transport is more expensive, $71 to $77/dry Mg. To achieve a minimum cost in the system proposed by Atchison and Hettenhaus, it is necessary to field densify stover to 74 dry kg/m3, without losing combine field efficiency, have a large storage pile to spread fixed costs of storage over enough biomass, and use rail transportation. Compared to storage in an on-farm bunker silo at $60/dry Mg, there are limited circumstances in which large pile storage has a cost advantage.

Turhollow Jr, Anthony F [ORNL; Sokhansanj, Shahabaddine [ORNL

2007-01-01T23:59:59.000Z

231

Size reduction of high- and low-moisture corn stalks by linear knife grid system  

Science Conference Proceedings (OSTI)

High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

2009-04-01T23:59:59.000Z

232

Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector  

Science Conference Proceedings (OSTI)

This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

2010-09-10T23:59:59.000Z

233

Simulation of biochemical networks using COPASI: a complex pathway simulator  

Science Conference Proceedings (OSTI)

Simulation and modeling is becoming one of the standard approaches to understand complex biochemical processes. Therefore, there is a big need for software tools that allow access to diverse simulation and modeling methods as well as support for the ...

Sven Sahle; Ralph Gauges; Jürgen Pahle; Natalia Simus; Ursula Kummer; Stefan Hoops; Christine Lee; Mudita Singhal; Liang Xu; Pedro Mendes

2006-12-01T23:59:59.000Z

234

STATEMENT OF CONSIDERATIONS REQUEST BY DOW CORNING CORPORATION FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOW CORNING CORPORATION FOR AN ADVANCE DOW CORNING CORPORATION FOR AN ADVANCE WAIVER OF THE GOVERNMENT'S DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT DE-EE0003915; DOE WAIVER NO. W{A)2011-006; CH1590 The Petitioner, Dow Corning Corporation (DOW), has requested an Advance Waiver of the Government's domestic and foreign rights to inventions in the above cited research and development cooperative agreement issued by DOE's National Energy Technology Laboratory (NETL). See attached Dow's Petition, Answer 1. The waiver is to apply to DOW's and its subcontractors' employee subject inventions, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517 as amended. Subject of the R&D Cooperative Agreement Title: Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

235

Small Wind Electric Systems: A Guide for the American Corn Growers Association  

Wind Powering America (EERE)

Guide Produced for the Guide Produced for the American Corn Growers Foundation Small Wind Electric Systems Small Wind Electric Systems U.S. Department of Energy Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program Small Wind Electric Systems Cover photo: This AOC 15/50 wind turbine on a farm in Clarion, Iowa, saves the Clarion-Goldfield Community School about $9,000 per year on electrical purchase and provides a part of the school's science curriculum. Photo credit - Robert Olson/PIX11649 A national survey of corn producers conducted by the American Corn Growers Foundation (ACGF) found a strong majority level of support among farmers on a range of important wind energy issues. The survey, conducted by Robinson and Muenster Associates, Inc. of Sioux Falls, South Dakota during

236

Iowa farmer hopes corn cobs will bring in extra cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

farmer hopes corn cobs will bring in extra cash farmer hopes corn cobs will bring in extra cash Iowa farmer hopes corn cobs will bring in extra cash October 22, 2009 - 12:22pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Todd Mathisen's family has been working the rich soil in Northwest Iowa for the last 130 years, ever since his great-great grandfather homesteaded the land in the 1870s. Todd has cultivated the fields himself for the last three decades. His family's roots here go so deep they'd be pretty hard to pull up now, and he doesn't plan on leaving anytime soon. But that doesn't mean Todd is stuck in his ways. In fact, he's at the forefront of American farmers helping to supply the United States with a biofuel that may have a promising future: cellulosic ethanol.

237

Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower  

E-Print Network (OSTI)

Energy outputs from ethanol produced using corn, switchgrass, and wood biomass were each less than the respective fossil energy inputs. The same was true for producing biodiesel using soybeans and sunflower, however, the energy cost for producing soybean biodiesel was only slightly negative compared with ethanol production. Findings in terms of energy outputs compared with the energy inputs were: • Ethanol production using corn grain required 29% more fossil energy than the ethanol fuel produced. • Ethanol production using switchgrass required 50 % more fossil energy than the ethanol fuel produced. • Ethanol production using wood biomass required 57 % more fossil energy than the ethanol fuel produced. • Biodiesel production using soybean required 27 % more fossil energy than the biodiesel fuel produced (Note, the energy yield from soy oil per hectare is far lower than the ethanol yield from corn). • Biodiesel production using sunflower required 118 % more fossil energy than the biodiesel fuel produced.

David Pimentel; Tad W. Patzek

2005-01-01T23:59:59.000Z

238

Dynamic Aspects of the Impact of the Use of Perfect Climate Forecasts in the Corn Belt Region  

Science Conference Proceedings (OSTI)

A general equilibrium model is linked to a decision model to determine the impact of perfect growing season forecasts for corn produced in the Corn Belt region over a 10-yr period. Five different timing scenarios are examined to determine the ...

James W. Mjelde; John B. Penson Jr.; Clair J. Nixon

2000-01-01T23:59:59.000Z

239

Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover  

SciTech Connect

Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.

Chevanan, Nehru [University of Tennessee; Womac, A.R. [University of Tennessee; Bitra, V.S.P. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Yang, Y.T. [University of Tennessee; Miu, P.I [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2009-08-01T23:59:59.000Z

240

A First-Law Thermodynamic Analysis of the Corn-Ethanol Cycle  

Science Conference Proceedings (OSTI)

This paper analyzes energy efficiency of the industrial corn-ethanol cycle. In particular, it critically evaluates earlier publications by DOE, USDA, and UC Berkeley Energy Resources Group. It is demonstrated that most of the current First Law net-energy models of the industrial corn-ethanol cycle are based on nonphysical assumptions and should be viewed with caution. In particular, these models do not (i) define the system boundaries, (ii) conserve mass, and (iii) conserve energy. The energy cost of producing and refining carbon fuels in real time, for example, corn and ethanol, is high relative to that of fossil fuels deposited and concentrated over geological time. Proper mass and energy balances of corn fields and ethanol refineries that account for the photosynthetic energy, part of the environment restoration work, and the coproduct energy have been formulated. These balances show that energetically production of ethanol from corn is 2-4 times less favorable than production of gasoline from petroleum. From thermodynamics it also follows that ecological damage wrought by industrial biofuel production must be severe. With the DDGS coproduct energy credit, 3.9 gallons of ethanol displace on average the energy in 1 gallon of gasoline. Without the DDGS energy credit, this average number is 6.2 gallons of ethanol. Equivalent CO{sub 2} emissions from corn ethanol are some 50% higher than those from gasoline, and become 100% higher if methane emissions from cows fed with DDGS are accounted for. From the mass balance of soil it follows that ethanol coproducts should be returned to the fields.

Patzek, Tad W. [University of California, Department of Civil and Environmental Engineering (United States)], E-mail: patzek@patzek.berkeley.edu

2006-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Introduction to Energy Savings in Process Heating for the Corn Refining  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings in Process Heating for the Corn Savings in Process Heating for the Corn Refining Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

242

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008  

SciTech Connect

July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D. J.

2008-12-01T23:59:59.000Z

243

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009  

Science Conference Proceedings (OSTI)

January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Not Available

2009-04-01T23:59:59.000Z

244

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009  

DOE Green Energy (OSTI)

April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-08-01T23:59:59.000Z

245

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #17, October-December 2007  

DOE Green Energy (OSTI)

October to December, 2007 edition of the newsletter of the Biochemical Platform Process Integration project.

Schell, D.

2008-01-01T23:59:59.000Z

246

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

DOE Green Energy (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

247

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009  

DOE Green Energy (OSTI)

October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2010-01-01T23:59:59.000Z

248

MHK Projects/Modeling the Physical and Biochemical Influence of Ocean  

Open Energy Info (EERE)

Modeling the Physical and Biochemical Influence of Ocean Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.9,"lon":158.75,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

249

Shortest Paths in Fuzzy Weighted Graphs Chris Cornelis,* Peter De Kesel,  

E-Print Network (OSTI)

and fuzzy logic--Theory and applications. Upper Saddle River, NJ: Prentice Hall; 1995. 15. Campos L, Muñoz A;12:213­227. 5. Dubois D, Prade H. Fuzzy sets and systems: Theory and applications. New York: Aca- demic PressShortest Paths in Fuzzy Weighted Graphs Chris Cornelis,* Peter De Kesel, Etienne E. Kerre

Gent, Universiteit

250

Trends and Variability in U.S. Corn Yields Over the Twentieth Century  

Science Conference Proceedings (OSTI)

The United States is currently responsible for 40%–45% of the world’s corn supply and 70% of total global exports [the U.S. Department of Agriculture–National Agricultural Statistics Service (USDA–NASS)]. Therefore, analyses of the spatial and ...

Christopher J. Kucharik; Navin Ramankutty

2005-03-01T23:59:59.000Z

251

Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data  

Science Conference Proceedings (OSTI)

In the light of recent advances in spectral imaging technology, highly flexible modeling methods must be developed to estimate various soil and crop parameters for precision farming from airborne hyperspectral imagery. The potential of artificial neural ... Keywords: Artificial neural networks, CASI, Corn, Crop yield, Hyperspectral remote sensing, Precision agriculture

Y. Uno; S. O. Prasher; R. Lacroix; P. K. Goel; Y. Karimi; A. Viau; R. M. Patel

2005-05-01T23:59:59.000Z

252

A method for mapping corn using the US Geological Survey 1992 National Land Cover Dataset  

Science Conference Proceedings (OSTI)

Long-term exposure to elevated nitrate levels in community drinking water supplies has been associated with an elevated risk of several cancers including non-Hodgkin's lymphoma, colon cancer, and bladder cancer. To estimate human exposure to nitrate, ... Keywords: Corn, Crop mapping, Landsat, National Land Cover Dataset (NLCD), Nebraska, Platte River Valley

S. K. Maxwell; J. R. Nuckols; M. H. Ward

2006-04-01T23:59:59.000Z

253

BIOETHANOL PRODUCTION FROM WET OXIDSED CORN STOVER USING PRE-TREATED MANURE AS A NUTRIENT SOURCE  

E-Print Network (OSTI)

BIOETHANOL PRODUCTION FROM WET OXIDSED CORN STOVER USING PRE-TREATED MANURE AS A NUTRIENT SOURCE E (sugar-, and starch-containing) raw materials represent the major part of the total production cost- linked, rigid lignocellulose complex. This structure severely limits the biological conversion; therefore

254

The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals  

DOE Green Energy (OSTI)

This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

Susanne Kleff

2007-03-24T23:59:59.000Z

255

Low Dose Radiation Research Program: Computational Modeling of Biochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Modeling of Biochemical Pathways Linking Ionizing Computational Modeling of Biochemical Pathways Linking Ionizing Radiation to Cell Cycle Arrest, Apoptosis, and Tumor Incidence Authors: Yuchao Maggie Zhao and Rory Conolly Institutions: Center for Computational Systems Biology CIIT Centers for Health Research Long-Range Goal: To develop an integrated, computational framework for the prediction of low-dose-response to ionizing radiation (IR) in people. Methodology: To provide a flexible framework to evaluate mechanisms of cellular adaptive responses after exposure to IR, three progressively more complicated descriptions of biochemical pathways linking DNA damage with cell-cycle checkpoint control and apoptosis were developed. These descriptions focus on p53-dependent checkpoint arrest and apoptosis, p73-dependent apoptosis, and Chk2-dependent checkpoint arrest,

256

Application And Evaluation Of Biomagnetic And Biochemical Monitoring Of The  

Open Energy Info (EERE)

Evaluation Of Biomagnetic And Biochemical Monitoring Of The Evaluation Of Biomagnetic And Biochemical Monitoring Of The Dispersion And Deposition Of Volcanically-Derived Particles At Mt Etna, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application And Evaluation Of Biomagnetic And Biochemical Monitoring Of The Dispersion And Deposition Of Volcanically-Derived Particles At Mt Etna, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Biomagnetic monitoring, using tree leaves as passive surfaces for particle collection, has been shown to be a promising technique for assessing the dispersion and deposition of particles in the context of anthropogenic pollution. By comparing leaves' magnetic properties with trace metal levels measured in the leaves, we here assess the utility of

257

Development of a performance-based industrial energy efficiency indicator for corn refining plants.  

Science Conference Proceedings (OSTI)

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G. A.; Decision and Information Sciences; USEPA

2006-07-31T23:59:59.000Z

258

Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks  

DOE Green Energy (OSTI)

The mature corn-to-ethanol industry has many similarities to the emerging lignocellulose-to-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the USDA-ARS and DOE/NREL looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood. Ass umptions about yield and design improvements possible from continued research were made for the emerging lignocellulose process. In order to compare the lignocellulose-to-ethanol process costs with the commercial corn-to-ethanol costs, it was assumed that the lignocellulose plant was an Nth generation plant, built after the industry had been sufficiently established to eliminate first-of-a-kind costs. This places the lignocellulose plant costs on a similar level with the current, established corn ethanol industry, whose costs are well known. The resulting costs of producing 25 million annual gallons of fuel ethanol from each process were determined. The figure below shows the production cost breakdown for each process. The largest cost contributor in the corn starch process is the feedstock; for the lignocellulosic process it is the capital cost, which is represented by depreciation cost on an annual basis.

McAloon, A.; Taylor, F.; Yee, W.; Ibsen, K.; Wooley, R.

2000-10-25T23:59:59.000Z

259

may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. The Effect of Ethanol Production on the U.S. National Corn Price  

E-Print Network (OSTI)

A system of equations representing corn supply, feed demand, export demand, food, alcohol and industrial (FAI) demand, and corn price is estimated by three-stage least squares. A price dependent reduced form equation is then formed to investigate the effect of ethanol production on the national average corn price. The elasticity of corn price with respect to ethanol production is then obtained. Results suggest that ethanol production has a positive impact on the national corn price and that the demand from FAI has a greater impact on the corn price than other demand categories. Thus, significant growth in ethanol production is important in explaining corn price determination.

All Fortenbery; Hwanil Park; T. Randall Fortenbery

2008-01-01T23:59:59.000Z

260

Dilute Acid Hydrolysis of Oligomers in Hydrothermal Pretreatment Hydrolyzate into Monomers with High Yields  

E-Print Network (OSTI)

sugar cane or corn starch, making ethanol from cellulosicdesigned to convert corn stover to ethanol by a series of77 NREL biochemical ethanol conversion process of corn

Tsai, Yueh-Du

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Corning, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

21°, -77.0546903° 21°, -77.0546903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1428521,"lon":-77.0546903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

South Corning, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

41°, -77.0371895° 41°, -77.0371895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.121741,"lon":-77.0371895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Extracting biochemical reaction kinetics from time series data  

E-Print Network (OSTI)

Abstract. We consider the problem of inferring kinetic mechanisms for biochemical reactions from time series data. Using a priori knowledge about the structure of chemical reaction kinetics we develop global nonlinear models which use elementary reactions as a basis set, and discuss model construction using top-down and bottom-up approaches. 1

Edmund J. Crampin; Patrick E. Mcsharry; Santiago Schnell

2004-01-01T23:59:59.000Z

264

PIV Measurements in the Atmospheric Boundary Layer within and above a Mature Corn Canopy. Part I: Statistics and Energy Flux  

Science Conference Proceedings (OSTI)

Particle image velocimetry (PIV) measurements just within and above a mature corn canopy have been performed to clarify the small-scale spatial structure of the turbulence. The smallest resolved scales are about 15 times the Kolmogorov length ...

R. van Hout; W. Zhu; L. Luznik; J. Katz; J. Kleissl; M. B. Parlange

2007-08-01T23:59:59.000Z

265

Synchrotron X-ray Scattering Analysis of the Interaction Between Corn Starch and an Exogenous Lipid During Hydrothermal Treatment  

Science Conference Proceedings (OSTI)

Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreased within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.

E Hernandez-Hernandez; C Avila-Orta; B Hsiao; j Castro-Rosas; J Gallegos-Infante; J Morales-Castro; L Ochoa-Martinez; C Gomez-Aldapa

2011-12-31T23:59:59.000Z

266

Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison  

E-Print Network (OSTI)

Abstract Background Ustilago maydis is the basidiomycete fungus responsible for common smut of corn and is a model organism for the study of fungal phytopathogenesis. To aid in the annotation of the genome sequence of this organism, several...

Ho, Eric C H; Cahill, Matt J; Saville, Barry J

2007-09-24T23:59:59.000Z

267

Retrieval of Soil Moisture and Vegetation Water Content Using SSM/I Data over a Corn and Soybean Region  

Science Conference Proceedings (OSTI)

The potential for soil moisture and vegetation water content retrieval using Special Sensor Microwave Imager (SSM/I) brightness temperature over a corn and soybean field region was analyzed and assessed using datasets from the Soil Moisture ...

Jun Wen; Thomas J. Jackson; Rajat Bindlish; Ann Y. Hsu; Z. Bob Su

2005-12-01T23:59:59.000Z

268

An Econometric Analysis of the Relationship among the U.S. Ethanol, Corn and Soybean Sectors, and World Oil Prices.  

E-Print Network (OSTI)

??This thesis aimed to investigate the relationships among the following variables: U.S. corn prices, U.S. ethanol production, U.S. soybean prices and world oil prices. After… (more)

Savernini, Maira Q. M.

2009-01-01T23:59:59.000Z

269

Economic impact of ethanol production on U.S. livestock sector: a spatial analysis of corn and distillers grain shipment.  

E-Print Network (OSTI)

??The production of corn-based ethanol in the U.S. has increased from 1,630 million gallons in 2000 to 4,855 million gallons in 2006, representing a 198%… (more)

N'Guessan, Yapo Genevier

2007-01-01T23:59:59.000Z

270

Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production  

SciTech Connect

Fertilizer use can cause environmental problems, particular eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production. This modeling study found that eutrophication potential for the base case already exceeds proposed water quality standards, that switching to no-till cultivation and collecting stover increased that eutrophication potential by 21%, and that switching to continuous-corn production on top of that would triple eutrophication potential.

Powers, S. E.

2005-05-01T23:59:59.000Z

271

Fuel ethanol produced from U.S. Midwest corn : help or hindrance to the vision of Kyoto?  

SciTech Connect

In this study, we examined the role of corn-feedstock ethanol in reducing greenhouse gas (GHG) emissions, given present and near-future technology and practice for corn farming and ethanol production. We analyzed the full-fuel-cycle GHG effects of corn-based ethanol using updated information on corn operations in the upper Midwest and existing ethanol production technologies. Information was obtained from representatives of the U.S. Department of Agriculture, faculty of midwestern universities with expertise in corn production and animal feed, and acknowledged authorities in the field of ethanol plant engineering, design, and operations. Cases examined included use of E85 (85% ethanol and 15% gasoline by volume) and E10 (10% ethanol and 90% gasoline). Among key findings is that Midwest-produced ethanol outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG emissions (on a mass emission per travel mile basis). The superiority of the energy and GHG results is well outside the range of model noise. An important facet of this work has been conducting sensitivity analyses. These analyses let us rank the factors in the corn-to-ethanol cycle that are most important for limiting GHG generation. These rankings could help ensure that efforts to reduce that generation are targeted more effectively.

Wang, M.; Saricks, C.; Wu, M.; Energy Systems

1999-07-01T23:59:59.000Z

272

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

Science Conference Proceedings (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

273

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network (OSTI)

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. After describing the industry's trends, structure and production and the process's energy use, we examine energy-efficiency opportunities for corn wet millers. Where available, we provide energy savings and typical payback periods for each measure based on case studies of plants that have implemented it. Given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the industry while maintaining the quality of the products produced. Further research on the economics of the measures and their applicability to different wet milling practices is needed to assess implementation of selected technologies at individual plants.

Galitsky, C.; Worrell, E.

2003-05-01T23:59:59.000Z

274

Characterization and application of vortex flow adsorption for simplification of biochemical product downstream processing  

E-Print Network (OSTI)

One strategy to reduce costs in manufacturing a biochemical product is simplification of downstream processing. Biochemical product recovery often starts from fermentation broth or cell culture. In conventional downstream ...

Ma, Junfen, 1972-

2003-01-01T23:59:59.000Z

275

Economics of producing fuel-grade alcohol from corn in western Ohio  

Science Conference Proceedings (OSTI)

The production of significant quantities of alcohol fuel will have important effects on the use of agricultural resources, including increased food prices. The two major objectives of this research were to determine (1) the potential effects of alcohol-fuel production on agriculture, and (2) the increase in energy prices needed for alcohol-fuel production to become economic. Western Ohio (the Corn Belt part of the state) was chosen for study. A quadratic-programming model with crop, livestock, and alcohol-fuel-production activities was used for analysis. Four alcohol-fuel-production levels were analyzed: 100, 200, 300 and 400 million gallons. The 400-million-gallon level represents western Ohio's share of alcohol-fuel production for a national gasohol program. The production of alcohol results in a high protein by-product feed that can substitute for soybean meal. Efficient use of this by-product is a crucial factor affecting resource use and food prices. At low alcohol-fuel production levels, 80% of the additional cropland required for increased corn production comes from the cropland released through by-product feeding. However, as alcohol-fuel production increases, livestock's ability to use efficiently this by-product feed decreases. This in turn, reduces greatly the cropland that can be released for increased corn production. Consequently, food prices increase substantially. The quantity of land released through by-product feeding, at high alcohol-fuel-production levels, can be increased if the corn is first wet milled. Wet milling produces high-protein feeds that can be used more efficiently by livestock. For alcohol-fuel production to become economic, crude oil prices must increase by ten cents per gallon for the wet-milling process and 22 cents per gallon for the conventional distillery process (1981 $).

Ott, S.L.

1981-01-01T23:59:59.000Z

276

Corn Stover Conversion to Biofuels: DOE's Preparation for Readiness in 2012 (Guest Editorial)  

Science Conference Proceedings (OSTI)

Today, the United States Energy Independence and Security Act (EISA) of 2007 focuses on biofuels support research and development (R and D) needed to enable achieving respective volumetric and cost targets. Indeed, the worldwide objective is to bring us closer to independence from transportation fuels derived from fossil resources. This Special Issue highlights key areas of science and technology that impact the rollout of viable corn stover biofuels processes by 2012.

Himmel, M. E.

2009-01-01T23:59:59.000Z

277

Life-cycle assessment of corn-based butanol as a potential transportation fuel.  

Science Conference Proceedings (OSTI)

Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

2007-12-31T23:59:59.000Z

278

STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES  

Science Conference Proceedings (OSTI)

Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

2005-04-01T23:59:59.000Z

279

Succinic Acid as a Byproduct in a Corn-based Ethanol Biorefinery  

Science Conference Proceedings (OSTI)

MBI endeavored to develop a process for succinic acid production suitable for integration into a corn-based ethanol biorefinery. The project investigated the fermentative production of succinic acid using byproducts of corn mill operations. The fermentation process was attuned to include raw starch, endosperm, as the sugar source. A clean-not-sterile process was established to treat the endosperm and release the monomeric sugars. We developed the fermentation process to utilize a byproduct of corn ethanol fermentations, thin stillage, as the source of complex nitrogen and vitamin components needed to support succinic acid production in A. succinogenes. Further supplementations were eliminated without lowering titers and yields and a productivity above 0.6 g l-1 hr-1was achieved. Strain development was accomplished through generation of a recombinant strain that increased yields of succinic acid production. Isolation of additional strains with improved features was also pursued and frozen stocks were prepared from enriched, characterized cultures. Two recovery processes were evaluated at pilot scale and data obtained was incorporated into our economic analyses.

MBI International

2007-12-31T23:59:59.000Z

280

1 DISTILLERS BY-PRODUCTS AND CORN STOVER AS FUELS FOR ETHANOL PLANTS  

E-Print Network (OSTI)

Abstract. Dry-grind ethanol plants have the potential to reduce their operating costs and improve their net energy balances by using biomass as the source of process heat and electricity. We utilized ASPEN PLUS software to model various technology bundles of equipment, fuels and operating activities that are capable of supplying energy and satisfying emissions requirements for dry-grind ethanol plants of 50 and 100 million gallons per year capacity using corn stover, distillers dried grains and solubles (DDGS), or a mixture of corn stover and “syrup ” (the solubles portion of DDGS). In addition to their own requirements, plants producing 50 and 100 million gallons of ethanol are capable of supplying 5-7 or 10-14 MegaWatts of electricity to the grid, respectively. Economic analysis showed favorable rates of return for biomass alternatives compared to conventional plants using natural gas and purchased electricity over a range of conditions. The mixture of corn stover and syrup provided the highest rates of return in general. Factors favoring biomass included a higher premium for low carbon footprint ethanol, higher natural gas prices, lower DDGS prices, lower ethanol

Douglas G. Tiffany; R. Vance Morey; Matt De Kam; Douglas G. Tiffany; R. Vance Morey; Matt De Kam

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006  

DOE Green Energy (OSTI)

Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D. J.

2007-01-01T23:59:59.000Z

282

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008  

SciTech Connect

October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-01-01T23:59:59.000Z

283

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

DOE Green Energy (OSTI)

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

284

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #14, January - March 2007  

DOE Green Energy (OSTI)

Volume 14 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D.

2007-04-01T23:59:59.000Z

285

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

286

The computation of stability boundaries in state space for a class of biochemical engineering systems  

Science Conference Proceedings (OSTI)

The stability of a class of biochemical processes defined by a set of m biochemical reactions involving n components is analysed. The processes operate in a continuous mode and possess at least two stable equilibrium states: the normal operating point ... Keywords: 92-08, 92C45, 93D20, Biochemical processes, Convergence, Nonlinearity, Stability boundaries, Visualization

Mihaela Sbarciog; Mia Loccufier; Erik Noldus

2008-06-01T23:59:59.000Z

287

Metabolic regulation of cattle adiposity in different breed types using two disparate diets  

E-Print Network (OSTI)

Fifteen steers were used to evaluate the difference of diets (corn-based for 8 mo or hay-based for 12 mo) and breeds (Angus; n = 7 or Wagyu; n = 8) in a completely randomized design with 2 x 2 factorial arrangement of treatments to test the hypothesis that there are differences in fatty acid metabolism and cellularity in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissue between these breeds types. Fat thickness, carcass weight, overall maturity, and yield grade of Angus steers were higher than those of Wagyu steers fed either corn (34%, 22%, 3%, and 8% higher, respectively) or hay diets (20%, 8%, 10%, and 8% higher, respectively) (P 0.05). Adipocyte cellularity data demonstrated that both breeds have more cells per gram adipose tissue and smaller cell volumes in i.m. adipose tissue than in s.c. adipose tissue. In s.c. adipose tissue, saturated fatty acids tended to be lower in corn-fed Angus and Wagyu steers than in hay-fed steers (P < 0.06). Similarly, monounsaturated fatty acids were higher in corn-fed Wagyu and Angus steers than in hay-fed Wagyu and Angus steers (P < 0.01). Slip point was positively correlated with percentage stearic acid in corn-fed and hay-fed steers, and there was a negative correlation between slip point and the SCD index. These data demonstrated that corn-based diets provide not only increased contents of monounsaturated fatty acid in Angus and Wagyu adipose tissue but also increased lipogenic activity.

Chung, Ki Yong

2004-08-01T23:59:59.000Z

288

Mathematical model parameters for describing the particle size spectra of knife-milled corn stover  

Science Conference Proceedings (OSTI)

Particle size distributions of Corn stover (Zea mays L.) created by a knife mill were determined using integral classifying screens with sizes from 12.7 to 50.8 mm, operating at speeds from 250 to 500 rpm, and mass input rates ranging from 1 to 9 kg min_1. Particle distributions were classified using American Society of Agricultural and Biological Engineers (ASABE) standardised sieves for forage analysis that incorporated a horizontal sieving motion. The sieves were made from machined-aluminium with their thickness proportional to the sieve opening dimensions. A wide range of analytical descriptors that could be used to mathematically represent the range of particle sizes in the distributions were examined. The correlation coefficients between geometric mean length and screen size, feed rate, and speed were 0.980, 0.612, and _0.027, respectively. Screen size and feed rate directly influenced particle size, whereas operating speed had a weak indirect relation with particle size. The Rosin Rammler equation fitted the chopped corn stover size distribution data with coefficient of determination (R2) > 0.978. This indicated that particle size distribution of corn stover was well-fit by the Rosin Rammler function. This can be attributed to the fact that Rosin Rammler expression was well suited to the skewed distribution of particle sizes. Skewed distributions occurred when significant quantities of particles, either finer or coarser, existed or were removed from region of the predominant size. The mass relative span was slightly greater than 1, which indicated that it was a borderline narrow to wide distribution of particle sizes. The uniformity coefficient was corn stover produced fine-skewed mesokurtic particles with 12.7 50.8 mm screens. Size-related parameters, namely, geometric mean length, Rosin Rammler size parameter, median length, effective length, and size guide number, were well predicted at R2 values of 0.981, 0.982, 0.979, 0.950 and 0.978, respectively as a function of knife mill screen size, feed rate, and speed. Results of this analysis of particle sizes could be applied to the selection of knife mill operating parameters to produce a particular size of corn stover chop, and could serve as a guide for the relationships among various analytic descriptors of biomass particle distributions.

Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Yang, Y.T. [University of Tennessee; Miu, P.I. [University of Tennessee; Igathanathane, C. [Mississippi State University (MSU)

2009-09-01T23:59:59.000Z

289

Control of Noise in Chemical and Biochemical Information Processing  

E-Print Network (OSTI)

We review models and approaches for error-control in order to prevent the buildup of noise when gates for digital chemical and biomolecular computing based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information processing. Solvable rate-equation models illustrate several recently developed methodologies for gate-function optimization. We also survey future challenges and possible new research avenues.

Vladimir Privman

2010-10-09T23:59:59.000Z

290

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

appear in the syrup refinery through process integration –etc. In many corn refineries, some of the dextrose solutionjet conversion of starch in refineries. Flue gas is used for

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

291

EFFECTS OF CONVENTIONAL OR BMR CORN SILAGE FED AT TWO LEVELS ON INTAKE, MILK YIELD AND COMPOSITION, AND RUMEN FERMENTATION OF HOLSTEIN DAIRY COW.  

E-Print Network (OSTI)

??The objectives of this study were to evaluate the effects of Brown Mid Rib (BMR) vs. conventional corn silage fed at two levels on production… (more)

Edwards, Travis

2008-01-01T23:59:59.000Z

292

311221," Wet Corn Milling",0,0,"X",0  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 11.3;" 3 Relative Standard Errors for Table 11.3;" " Unit: Percents." " "," ",,,"Renewable Energy" " "," ",,,"(excluding Wood" "NAICS"," ","Total Onsite",,"and" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,,"Total United States" 311,"Food",2.8,1.1,86.8,37.8 3112," Grain and Oilseed Milling",0.7,0.7,"X",0 311221," Wet Corn Milling",0,0,"X",0 31131," Sugar Manufacturing",0,0,"X",0 3114," Fruit and Vegetable Preserving and Specialty Foods ",1.2,1.2,"X",44.1

293

Flue Gas Desulfurization Gypsum Agricultural Network: Ohio Sites 1 (Mixed Hay) and 2 (Corn)  

Science Conference Proceedings (OSTI)

The objectives of this work conducted during 2008–2010 were to evaluate potential beneficial agricultural uses of flue gas desulphurization gypsum (FGDG) in eastern Ohio and to assess the potential for environmental effects of the use of FGDG. Two field experiments were conducted at the eastern Ohio research site, one involving a mixed-grass hay field and the other a corn (Zea mays L.) field. FGDG and mined gypsum product were applied one time at rates of 0.2, 2.0, and 20 megagrams ...

2012-09-17T23:59:59.000Z

294

Recovery of Recombinant and Native Proteins from Rice and Corn Seed  

E-Print Network (OSTI)

Plants are potential sources of valuable recombinant and native proteins that can be purified for pharmaceutical, nutraceutical, and food applications. Transgenic rice and corn germ were evaluated for the production of novel protein products. This dissertation addresses: 1) the extraction and purification of the recombinant protein, human lysozyme (HuLZ), from transgenic rice and 2) the processing of dry-milled corn germ for the production of high protein germ and corn protein concentrate (CPC). The factors affecting the extraction and purification of HuLZ from rice were evaluated. Ionic strength and pH was used to optimize HuLZ extraction and cation exchange purification. The selected conditions, pH 4.5 with 50 mM NaCl, were a compromise between HuLZ extractability and binding capacity, resulting in 90% purity. Process simulation was used to assess the HuLZ purification efficiency and showed that the processing costs were comparable to native lysozyme purification from egg-white, the current predominant lysozyme source. Higher purity HuLZ (95%) could be achieved using pH 4.5 extraction followed by pH 6 adsorption, but the binding capacity was unexpectedly reduced by 80%. The rice impurity, phytic acid, was identified as the potential cause of the unacceptably low capacity. Enzymatic (phytase) treatment prior to adsorption improved purification, implicating phytic acid as the primary culprit. Two processing methods were proposed to reduce this interference: 1) pH 10 extraction followed by pH 4.5 precipitation and pH 6 adsorption and 2) pH 4.5 extraction and pH 6 adsorption in the presence of TRIS counter-ions. Both methods improved the binding capacity from 8.6 mg/mL to >25 mg/mL and maintained HuLZ purity. Processing of dry-milled corn germ to increase protein and oil content was evaluated using germ wet milling. In this novel method, dry-milled germ is soaked and wet processed to produce higher value protein products. Lab-scale and pilot-scale experiments identified soaking conditions that reduced germ starch content, enhanced protein and oil content, and maintained germ PDI (protein dispersibility index). Soaking at neutral pH and 25 degrees C maintained germ PDI and improved CPC yield from defatted germ flour. CPC with greater than 75% protein purity was produced using protein precipitation or membrane filtration.

Wilken, Lisa Rachelle

2009-08-01T23:59:59.000Z

295

Building Technologies Program: Tax Deduction Qualified Software - Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 On this page you'll find information about the Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 14 August 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Green Building Studio, Inc. 444 Tenth Street, Suite 300 Santa Rosa, California 95401

296

Impact of Corn Stover Composition on Hemicellulose Conversion during Dilute Acid Pretreatment and Enzymatic Cellulose Digestibility of the Pretreated Solids  

Science Conference Proceedings (OSTI)

This study assessed the impact of corn stover compositional variability on xylose conversion yields during dilute acid pretreatment and on enzymatic cellulose digestibility of the resulting pretreated solids. Seven compositionally-different stovers obtained from various locations throughout the United States were pretreated at three different conditions in triplicate in a pilot-scale continuous reactor. At the same pretreatment severity, a 2-fold increase in monomeric xylose yield and a 1.5-fold increase in enzymatic cellulose digestibility from their lowest values were found. Similar results were observed at the other pretreatment conditions. It was found that xylose conversion yields decreased with increasing acid neutralization capacity or soil content of the corn stover. Xylose yields also increased with increasing xylan content. No other significant correlations between corn stover's component concentrations and conversion yields were found.

Weiss, N. D.; Farmer, J. D.; Schell, D. J.

2010-01-01T23:59:59.000Z

297

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-07-01T23:59:59.000Z

298

Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations  

SciTech Connect

We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

299

Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and technologies. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. In the biochemical conversion pilot plant, NREL's engineers and scientists focus on all aspects of the efficiency and cost reduction of biochemical conversion processes. Our capabilities accommodate research from bench-scale to pilot-scale (up to one ton per day). NREL's biochemical conversion pilot plant is located in the Integrated Biorefinery Research Facility (IBRF). Photo by Dennis Schroeder, NREL/PIX 20248

300

Synergistic Enhancement of Cellobiohydrolase Performance on Pretreated Corn Stover by Addition of Xylanase and Esterase Activities  

Science Conference Proceedings (OSTI)

Significant increases in the depolymerization of corn stover cellulose by cellobiohydrolase I (Cel7A) from Trichoderma reesei were observed using small quantities of non-cellulolytic cell wall-degrading enzymes. Purified endoxylanase (XynA), ferulic acid esterase (FaeA), and acetyl xylan esterase (Axe1) all enhanced Cel7A performance on corn stover subjected to hot water pretreatment. In all cases, the addition of these activities improved the effectiveness of the enzymatic hydrolysis in terms of the quantity of cellulose converted per milligram of total protein. Improvement in cellobiose release by the addition of the non-cellulolytic enzymes ranged from a 13-84% increase over Cel7A alone. The most effective combinations included the addition of both XynA and Axe1, which synergistically enhance xylan conversions resulting in additional synergistic improvements in glucan conversion. Additionally, we note a direct relationship between enzymatic xylan removal in the presence of XynA and the enhancement of cellulose hydrolysis by Cel7A.

Selig, M. J.; Knoshaug E. P.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy  

Science Conference Proceedings (OSTI)

In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

2009-06-15T23:59:59.000Z

302

EFFECT OF ANATOMICAL FRACTIONATION ON THE ENZYMATIC HYDROLYSIS OF ACID AND ALKALINE PRETREATED CORN STOVER  

Science Conference Proceedings (OSTI)

Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated by hand and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0, 0.4, or 0.8% NaOH for 2 hours at room temperature, washed, autoclaved and saccharified. In addition, acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

K. B. Duguid; M. D. Montross; C. W. Radtke; C. L. Crofcheck; L. M. Wendt; S. A. Shearer

2009-11-01T23:59:59.000Z

303

Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes  

SciTech Connect

Analysis of variously pretreated corn stover samples showed neutral to mildly acidic pretreatments were more effective at removing xylan from corn stover and more likely to maintain the acetyl to xylopyranosyl ratios present in untreated material than were alkaline treatments. Retention of acetyl groups in the residual solids resulted in greater resistance to hydrolysis by endoxylanase alone, although the synergistic combination of endoxylanase and acetyl xylan esterase enzymes permitted higher xylan conversions to be observed. Acetyl xylan esterase alone did little to improve hydrolysis by cellulolytic enzymes, although a direct relationship was observed between the enzymatic removal of acetyl groups and improvements in the enzymatic conversion of xylan present in substrates. In all cases, effective xylan conversions were found to significantly improve glucan conversions achievable by cellulolytic enzymes. Additionally, acetyl and xylan removal not only enhanced the respective initial rates of xylan and glucan conversion, but also the overall extents of conversion. This work emphasizes the necessity for xylanolytic enzymes during saccharification processes and specifically for the optimization of acetyl esterase and xylanase synergies when biomass processes include milder pretreatments, such as hot water or sulfite steam explosion.

Selig, M. J.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

2009-01-01T23:59:59.000Z

304

Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks  

DOE Green Energy (OSTI)

The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

Derr, Dan

2013-12-30T23:59:59.000Z

305

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #16, July-September 2007  

DOE Green Energy (OSTI)

This quarterly update contains information on the National Bioenergy Center Biochemical Platform Integration Project, R&D progress and related activities.

Schell, D.

2007-10-01T23:59:59.000Z

306

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

SciTech Connect

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

307

Corn Milling  

Science Conference Proceedings (OSTI)

... facilities include processing and storage tanks, screening and sizing equipment, grind mills, high pressure steam boilers, centrifuges, rotary ...

308

Corn Products  

NLE Websites -- All DOE Office Websites (Extended Search)

starch goes into puddings, jellies and candies. Industrial starches, which include laundry starch, are essential ingredients of baking powder, textile sizing, cosmetics and...

309

Award Types  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Awards Team (505) 667-7824 Email Types of Awards The Awards...

310

Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn  

SciTech Connect

On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy crops need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.

Boonserm, P.

1985-01-01T23:59:59.000Z

311

PIV Measurements in the Atmospheric Boundary Layer within and above a Mature Corn Canopy. Part II: Quadrant-Hole Analysis  

Science Conference Proceedings (OSTI)

Quadrant-hole (Q-H) analysis is applied to PIV data acquired just within and above a mature corn canopy. The Reynolds shear stresses, transverse components of vorticity, as well as turbulence production and cascading part of dissipation rates are ...

W. Zhu; R. van Hout; J. Katz

2007-08-01T23:59:59.000Z

312

Green Vegetable Oil ProcessingChapter 3 Aqueous Extraction of Corn Oil after Fermentation in the Dry Grind Ethanol Process  

Science Conference Proceedings (OSTI)

Green Vegetable Oil Processing Chapter 3 Aqueous Extraction of Corn Oil after Fermentation in the Dry Grind Ethanol Process Processing eChapters Processing 3B39554497A54B0ABD4FC50626B2833A AOCS Press Downloadable pdf ...

313

Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies  

E-Print Network (OSTI)

of the development of biobased products Corn Soy- beans Sugar- cane, sugar beets Cellulosic material (perennial grass the greatest eutrophication impact of the bioproducts surveyed. Conversely, switchgrass-based ethanol offers for Producing Biofuels: Bioethanol and Biodiesel. Biomass Bioenergy 2005, 29, 426­439. (4) Landis, A. E.; Miller

California at Riverside, University of

314

Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks (Revised)  

DOE Green Energy (OSTI)

Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation. Although none of the scenarios identified could produce ethanol at lower cost than a straight grain ethanol plant, several were lower cost than a straight cellulosic ethanol plant.

Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W.

2005-01-01T23:59:59.000Z

315

Microfabricated devices for performing chemical and biochemical analysis  

Science Conference Proceedings (OSTI)

There is growing interest in microfabricated devices that perform chemical and biochemical analysis. The general goal is to use microfabrication tools to construct miniature devices that can perform a complete analysis starting with an unprocessed sample. Such devices have been referred to as lab-on-a-chip devices. Initial efforts on microfluidic laboratory-on-a-chip devices focused on chemical separations. There are many potential applications of these fluidic microchip devices. Some applications such as chemical process control or environmental monitoring would require that a chip be used over an extended period of time or for many analyses. Other applications such as forensics, clinical diagnostics, and genetic diagnostics would employ the chip devices as single use disposable devices.

Ramsey, J.M.; Jacobson, S.C.; Foote, R.S.

1997-05-01T23:59:59.000Z

316

Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)  

Science Conference Proceedings (OSTI)

Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of biodegraded'' vs. biotreated'' crude oil in MEOR also discussed.

Premuzic, E.T.; Lin, M.S.; Manowitz, B.

1992-11-01T23:59:59.000Z

317

Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)  

Science Conference Proceedings (OSTI)

Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of ``biodegraded`` vs. ``biotreated`` crude oil in MEOR also discussed.

Premuzic, E.T.; Lin, M.S.; Manowitz, B.

1992-11-01T23:59:59.000Z

318

Tolerance and weed management systems in imidazolinone tolerant corn (Zea mays L.)  

E-Print Network (OSTI)

Research was conducted to evaluate the efficacy of imidazolinone weed management systems and tolerance of imidazolinone tolerant corn to imazapic. Field experiments were conducted in 1997 and 1998 at the Texas Agricultural Experiment Station (TAES) Field Laboratory, near College Station TX, and at TP Farms, near Waller TX. Different imidazolinone herbicide treatments were applied to imidazolinone tolerant corn between the 2- to 3- and 6- to 8- leaf stage at 36 and 72 pa/ha to evaluate weed control, and 72, 105, 140, and 211 g/ha to evaluate the tolerance of imidazolinone tolerant corn. In 1997 at the TAES Field Laboratory control of Palmer amaranth, ivyleaf and entireleaf morningglory, Texas panicle, johnsongrass, common sunflower, and smellmelon were between 73 to 98% with imazapic or imazapyr plus imazethapyr, regardless of rate or application time. In 1998 at the TAES Field Laboratory control of devil's-claw, smellmelon, and johnsongrass ranged between 40 to 95% throughout the season with all imazapic applications. In 1997 at TP Farms near Waller TX effective control of Texas panicum and eclipse was obtained with all imazapic applications at 72 g/ha. Similar trends were observed with yellow nutsedge control. Due to the severe drought experienced in 1998, all weed species except for broadleaf signalgrass disappeared from the plots. Most effective control of yellow nutsedge, Texas panicle, spiny amaranth, and smellmelon occurred with early postemergence (EPOST) applications of imazapic (72 g/ha), while late postemergence (LPOST) applications of imazapic (72 g/ha) provided the highest control of broadleaf signalgrass. Similar herbicide tolerance was observed to both Gist varieties 8326IT and 8396IT. Crop response in these experiments refers to stunting and interveinal chlorosis. Increased crop response levels were observed early in the season, but by the end of the season had significantly decreased. In comparison, higher levels of crop response were observed in 1997 than in 1998, which can be attributed to the environmental conditions observed. Concerning crop height reductions, Gist variety 8326IT was shorter than 8396IT. No differences could be detected in the yields of either variety, when compared to the untreated check and other herbicide treatments.

Thompson, Ann Marie

1999-01-01T23:59:59.000Z

319

Fractionation of phenolic compounds from a purple corn extract and evaluation of antioxidant and antimutagenic activities  

E-Print Network (OSTI)

Qualitative and quantitative analysis of anthocyanins and other phenolic compounds from a purple corn extract was performed. The purple corn extract had cyanidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside and its respective acylated anthocyanin-glucosides. Cyadinin-3glucoside was the main constituent (44.4 ?? 4.7%) followed by the acylated cyanidin-3-glucoside (26.9 ?? 8.0%). Other phenolic compounds present in the purple corn corresponded to protocatechuic acid, vanillic acid, and p-coumaric acid. In addition, quercetin derivatives, a hesperitin derivative and pcoumaric and ferulic acid derivatives were found. Fractionation of phenolic compounds yielded two main fractions, an anthocyanin-rich water fraction (WF) and an ethyl acetate fraction (EAF). Evaluation of antimutagenic activity in both fractions revealed higher antimutagenic activity in the ethyl acetate fraction compared to the anthocyanin-rich fraction. On the other hand, antioxidant activity of the anthocyanin-rich fraction was higher compared to the ethyl acetate fraction. Further fractionation of the anthocyanin-rich fraction in a Toyopearl HW40 gel permeation column yielded five sub-fractions which showed no difference in antimutagenic activity except for the water sub-fraction WF-V. All the sub-fractions were active as antimutagens and antioxidants. Further fractionation of the ethyl acetate fraction yielded four sub-fractions that showed to be active as antimutagens and antioxidants. Ethyl acetate sub-fraction EAF-IV was the most active as an antimutagen. HPLC-DAD characterization of that sub-fraction revealed mainly the presence of a quercetin derivative with UV-visible spectral characteristics similar to rutin but with a little longer retention time. The mechanism of antimutagenic action by the phenolic compounds present either in the anthocyanin-rich fraction or the ethyl acetate fraction and sub-fraction EAFIV seems to be a contribution of a direct action on the enzymes involved in the activation of the mutagen and to the scavenging activity of the mutagen nucleophiles, as demonstrated by our assays.

Pedreschi, Romina Paola

2005-05-01T23:59:59.000Z

320

Changes in long-term no-till corn growth and yield under different rates of stover mulch  

Science Conference Proceedings (OSTI)

Received for publication January 4, 2006. Removal of corn (Zea mays L.) stover for biofuel production may affect crop yields by altering soil properties. A partial stover removal may be feasible, but information on appropriate rates of removal is unavailable. We assessed the short-term impacts of stover management on long-term no-till (NT) continuous corn grown on a Rayne silt loam (fine loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston in Ohio, and predicted corn yield from soil properties using principal component analysis (PCA). The study was conducted in 2005 on the ongoing experiments started in May 2004 under 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200)% of stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal promoted early emergence and rapid seedling growth (P Stover management affected corn yield only at the Coshocton site where average grain and stover yields in the T200, T100, T75, and T50 (10.8 and 10.3 Mg ha-1) were higher than those in the T0 and T25 treatments (8.5 and 6.5 Mg ha-1) (P stover removal at rates as low as 50% (2.5 Mg ha-1) decreased crop yields. Soil properties explained 71% of the variability in grain yield and 33% of the variability in stover yield for the Coshocton site. Seventeen months after the start of the experiment, effects of stover management on corn yield and soil properties were site-specific.

Blanco-Canqui, Dr. Humberto [Ohio State University, The, Columbus; Lal, Dr. Rattan [Ohio State University, The, Columbus; Post, Wilfred M [ORNL; Owens, Lloyd [U.S. Department of Agriculture, Agricultural Research Service

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

STATEMENT OF CONSIDERATIONS REQUEST BY DOW CORNING CORPORATION FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT OF CONSIDERATIONS REQUEST BY DOW CORNING CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42344; W(A)-05-002, CH-1266 The Petitioner, Dow Coming Corporation (Dow), was awarded this cooperative agreement for the performance of work entitled, "Thin Film Packaging Solutions for High Efficiency OLED Lighting Products." The waiver will apply to inventions made by Dow employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. The purpose of the cooperative agreement is to develop novel substrate and packaging technology for solid state lighting devices that use Organic Light Emitting Diodes (OLEDs) as the

322

STATEMENT OF CONSIDERATIONS REQUEST BY CORNING INCORPORATED FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WAIVER WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE CONTRACT NO. B29143; DOE WAIVER NO. W(A)-95-029 The Petitioner, Corning Incorporated, has requested an Advance Waiver of the Government's domestic and foreign rights to inventions made under the above cited research and development contract (R&D Contract). The objective of the R&D Contract issued by the Lawrence Livermore National Laboratory (LLNL) on behalf of DP-11 is to reduce the costs associated with the manufacturing of large size high quality fused silica transmissive optics utilized in advanced Inertial Confinement Fusion (ICF) laser systems. The present cost of laser optics used in the ICF laser system is between $1.7/cm 3 to $2.0/cm 3 . After completion of the R&D Contract, it is believed that a 50% reduction in cost for the

323

Ultrastructure and Sugar Yields from Three Different Pretreatments of Corn Stover  

E-Print Network (OSTI)

and the Joint BioEnergy Institute ( JBEI) are collaborating to understand how biomass pretreatments with much different deconstruction patterns impact the chemical and ultrastructural features of biomass and its biological conversion to sugars. Dilute sulfuric acid (DA), ammonia fiber expansion (AFEX), and ionic liquid (IL) pretreatments are applied to the same source of corn stover by the BESC, GLBRC, and JBEI, respectively. Common sources of cellulase and other accessory enzymes are then employed to release sugars from the solids left after each pretreatment. The GLBRC applies material balances to each overall pretreatment-hydrolysis system to determine the fates of key biomass constituents and also optimizes enzyme formulations for each substrate using their microplate saccharification system. The BESC

Genomic Science Awardee; Usda-doe Plant; Feedstock Genomics; Charles E. Wyman; Xiadi Gao; Leonardo Da; Costa Sousa; Shishir P. S. Chundawat; Bruce E. Dale

2011-01-01T23:59:59.000Z

324

Action of protein synthesis inhibitors in blocking electrogenic H/sup +/ efflux from corn roots  

SciTech Connect

The block in the electrogenic H/sup +/ efflux produced by protein synthesis inhibitors in corn root tissue can be released or by-passed by addition of fusicoccin or nigericin. The inhibition also lowers cell potential, and the release repolarizes. Associated with the inhibition of H/sup +/ efflux is inhibition of K/sup +/ influx and the growth of the root tip; fusicoccin partially relieves these inhibitions, but nigericin does not. The inhibition of H/sup +/ efflux which arises from blocking the proton channel of the ATPase by oligomycin or N,N'-dicyclohexylcarbodiimide can also be partially relieved by fusicoccin, but not by nigericin; the inhibition produced by diethylstilbestrol is not relieved by fusicoccin. The results are discussed in terms of the presumed mode of action of fusicoccin on the plasmalemma ATPase.

Chastain, C.J.; LaFayette, P.R.; Hanson, J.B.

1981-04-01T23:59:59.000Z

325

Assessment of Options for the Collection, Handling, and Transport of Corn Stover  

DOE Green Energy (OSTI)

In this report, we discuss the logistics and estimate the delivered costs for collecting, handling, and hauling corn stover to an ethanol conversion facility. We compare costs for two conventional baling systems (large round bales and large rectangular bales), a silage-harvest system, and an unprocessed-pickup system. Our results generally indicate that stover can be collected, stored, and hauled for about $43.60 to $48.80/dry ton ($48.10-$53.80/dry Mg) using conventional baling equipment for conversion facilities ranging in size from 500 to 2000 dry tons/day (450-1810 dry Mg/day). These estimates are inclusive of all costs including farmer payments for the stover. Our results also suggest that costs might be significantly reduced with an unprocessed stover pickup system provided more efficient equipment is developed.

Perlack, R.D.

2002-11-18T23:59:59.000Z

326

Molecular and Biochemical Characterization of Hydrocarbon Production in the Green Microalga Botryococcus braunii  

E-Print Network (OSTI)

Botryococcus braunii (Chlorophyta, Botryococcaceae) is a colony-forming green microalga that produces large amounts of liquid hydrocarbons, which can be converted into transportation fuels. While B. braunii has been well studied for the chemistry of the hydrocarbon production, very little is known about the molecular biology of B. braunii. As such, this study developed both apparatus and techniques to culture B. braunii for use in the genetic and biochemical characterization. During genetic studies, the genome size was determined of a representative strain of each of the three races of B. braunii, A, B, and L, that are distinguished based on the type of hydrocarbon each produces. Flow cytometry analysis indicates that the A race, Yamanaka strain, of B. braunii has a genome size of 166.0 +/- 0.4 Mb, which is similar to the B race, Berkeley strain, with a genome size of 166 +/- 2.2 Mb, while the L race, Songkla Nakarin strain, has a substantially larger genome size at 211.3 +/- 1.7 Mb. Phylogenetic analysis with the nuclear small subunit (18S) rRNA and actin genes were used to classify multiple strains of A, B, and L races. These analyses suggest that the evolutionary relationship between B. braunii races is correlated with the type of liquid hydrocarbon they produce. Biochemical studies of B. braunii primarily focused on the B race, because it uniquely produces large amounts of botryococcenes that can be used as a fuel for internal combustion engines. C30 botryococcene is metabolized by methylation to generate intermediates of C31, C32, C33, and C34. Raman spectroscopy was used to characterize the structure of botryococcenes. The spectral region from 1600?1700 cm^-1 showed v(C=C) stretching bands specific for botryococcenes. Distinct botryococcene Raman bands at 1640 and 1647 cm^-1 were assigned to the stretching of the C=C bond in the botryococcene branch and the exomethylene C=C bonds produced by the methylations, respectively. A Raman band at 1670 cm^-1 was assigned to the backbone C=C bond stretching. Finally, confocal Raman microspectroscopy was used to map the presence and location of methylated botryococcenes within a living colony of B. braunii cells.

Weiss, Taylor Leigh

2012-08-01T23:59:59.000Z

327

Land Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Use and Water Efficiency in Current and Potential Future U.S. Corn and Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems Ethan Warner 1 , Yimin Zhang 1 , Helena Chum 2 , Robin Newmark 1 Biofuels represent an opportunity for improved sustainability of transportation fuels, promotion of rural development, and reduction of GHG emissions. But the potential for unintended consequences, such as competition for land and water, necessitates biofuel expansion that considers the complexities of resource requirements within specific contexts (e.g., technology, feedstock, supply chain, local resource availability). Through technological learning, sugarcane and corn ethanol industries have achieved steady improvements in

328

Correlating Detergent Fiber Analysis and Dietary Fiber Analysis Data for Corn Stover  

Science Conference Proceedings (OSTI)

There exist large amounts of detergent fiber analysis data [neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL)] for many different potential cellulosic ethanol feedstocks, since these techniques are widely used for the analysis of forages. Researchers working in the area of cellulosic ethanol are interested in the structural carbohydrates in a feedstock (principally glucan and xylan), which are typically determined by acid hydrolysis of the structural fraction after multiple extractions of the biomass. These so-called dietary fiber analysis methods are significantly more involved than detergent fiber analysis methods. The purpose of this study was to determine whether it is feasible to correlate detergent fiber analysis values to glucan and xylan content determined by dietary fiber analysis methods for corn stover. In the detergent fiber analysis literature cellulose is often estimated as the difference between ADF and ADL, while hemicellulose is often estimated as the difference between NDF and ADF. Examination of a corn stover dataset containing both detergent fiber analysis data and dietary fiber analysis data predicted using near infrared spectroscopy shows that correlations between structural glucan measured using dietary fiber techniques and cellulose estimated using detergent techniques, and between structural xylan measured using dietary fiber techniques and hemicellulose estimated using detergent techniques are high, but are driven largely by the underlying correlation between total extractives measured by fiber analysis and NDF/ADF. That is, detergent analysis data is correlated to dietary fiber analysis data for structural carbohydrates, but only indirectly; the main correlation is between detergent analysis data and solvent extraction data produced during the dietary fiber analysis procedure.

Wolfrum, E. J.; Lorenz, A. J.; deLeon, N.

2009-01-01T23:59:59.000Z

329

Melanin Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Melanin Types Melanin Types Name: Irfan Location: N/A Country: N/A Date: N/A Question: What are different types of melanins? And what are the functions of these types? Replies: Hi Irfan! Melanin is a dark compound or better a photoprotective pigment. Its major role in the skin is to absorb the ultraviolet (UV) light that comes from the sun so the skin is not damaged. Sun exposure usually produces a tan at the skin that represents an increase of melanin pigment in the skin. Melanin is important also in other areas of the body, as the eye and the brain., but it is not completely understood what the melanin pigment does in these areas. Melanin forms a special cell called melanocyte. This cell is found in the skin, in the hair follicle, and in the iris and retina of the eye.

330

Type systems  

Science Conference Proceedings (OSTI)

The study of type systems has emerged as one of the most active areas of research in programming languages, with applications in software engineering, language design, high-performance compiler implementation, and security. This chapter discusses the ...

Benjamin C. Pierce

2003-01-01T23:59:59.000Z

331

Synoptic Circulation and Land Surface Influences on Convection in the Midwest U.S. “Corn Belt” during the Summers of 1999 and 2000. Part I: Composite Synoptic Environments  

Science Conference Proceedings (OSTI)

In the Midwest U.S. Corn Belt, the 1999 and 2000 summer seasons (15 June–15 September) expressed contrasting spatial patterns and magnitudes of precipitation (1999: dry; 2000: normal to moist). Distinct from the numerical modeling approach often ...

Andrew M. Carleton; David L. Arnold; David J. Travis; Steve Curran; Jimmy O. Adegoke

2008-07-01T23:59:59.000Z

332

Forming Expectations About 2008 U.S. Corn and Soybean Yields—Application of Crop Weather Models that Incorporate Planting Progress  

E-Print Network (OSTI)

In the current environment of strong domestic and export demand, relatively low world stocks, and historically high prices, the expected size of the 2008 U.S. corn and

Scott Irwin; Darrel Good; Mike Tannura

2008-01-01T23:59:59.000Z

333

Fatty Acids in Health Promotion and Disease CausationChapter 5 Fatty Acids in Corn Oil: Role in Heart Disease Prevention  

Science Conference Proceedings (OSTI)

Fatty Acids in Health Promotion and Disease Causation Chapter 5 Fatty Acids in Corn Oil: Role in Heart Disease Prevention Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf ...

334

Pilot-scale submersed cultivation of R. microsporus var. oligosporus in thin stillage, a dry-grind corn-to-ethanol co-product.  

E-Print Network (OSTI)

??An innovative process to add value to a corn-to-ethanol co-product, Thin stillage, was studied for pilot-scale viability. A 1500L bioreactor was designed, operated, and optimized… (more)

Erickson, Daniel Thomas

2012-01-01T23:59:59.000Z

335

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover  

DOE Green Energy (OSTI)

This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and costing for the lignin combustor and boiler turbogenerator was reviewed by Reaction Engineering Inc. (REI) and Merrick & Company reviewed the wastewater treatment. Since then, NREL has engaged Harris Group (Harris) to perform vendor testing, process design, and costing of critical equipment identified during earlier work. This included solid/liquid separation and pretreatment reactor design and costing. Corn stover handling was also investigated to support DOE's decision to focus on corn stover as a feedstock for lignocellulosic ethanol. Working with Harris, process design and costing for these areas were improved through vendor designs, costing, and vendor testing in some cases. In addition to this work, enzyme costs were adjusted to reflect collaborative work between NREL and enzyme manufacturers (Genencor International and Novozymes Biotech) to provide a delivered enzyme for lignocellulosic feedstocks. This report is the culmination of our work and represents an updated process design and cost basis for the process using a corn stover feedstock. The process design and economic model are useful for predicting the cost benefits of proposed research. Proposed research results can be translated into modifications of the process design, and the economic impact can be assessed. This allows DOE, NREL, and other researchers to set priorities on future research with an understanding of potential reductions to the ethanol production cost. To be economically viable, ethanol production costs must be below market values for ethanol. DOE has chosen a target ethanol selling price of $1.07 per gallon as a goal for 2010. The conceptual design and costs presented here are based on a 2010 plant start-up date. The key research targets required to achieve this design and the $1.07 value are discussed in the report.

Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J.

2002-06-01T23:59:59.000Z

336

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Corn Ethanol.” Paper presented at the 8 th Bio-Energy Conference  

E-Print Network (OSTI)

This study has been undertaken at the request of the Illinois Department of Commerce and Community Affairs (DCCA) on the twin premises that (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region-- the upper Midwest. Argonne National Laboratory (ANL) contracted with DCCA to apply the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model with updated information appropriate to corn operations in America’s heartland in an effort to examine the role of corn-feedstock ethanol with respect to GHG emissions given present and near future production technology and practice. Information about these technologies and practices has been obtained from a panel of outside experts consisting of representatives of the U.S. Department of Agriculture, midwestern universities with expertise in corn production and soil emissions, and acknowledged authorities in the field of ethanol plant

Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

337

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)  

DOE Green Energy (OSTI)

Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

Not Available

2012-04-01T23:59:59.000Z

338

Influence of Physico-Chemical Changes on Enzymatic Digestibility of Ionic Liquid and AFEX pretreated Corn Stover  

SciTech Connect

Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.

Li, Chenlin [Joint Bioenergy Institute; Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; Ong, Markus [Sandia National Laboratories (SNL); Balan, Venkatesh [Michigan State University, East Lansing; Dale, Bruce E. [Michigan State University, East Lansing; Melnichenko, Yuri B [ORNL; Simmons, Blake [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

339

Modelling the costs of energy crops: A case study of U.S. corn and Brazilian sugar cane  

E-Print Network (OSTI)

EPRG WORKING PAPER High crude oil prices, uncertainties about the consequences of climate change and the eventual decline of conventional oil production raise the prospects of alternative fuels, such as biofuels. This paper describes a simple probabilistic model of the costs of energy crops, drawing on the user's degree of belief about a series of parameters as an input. This forward-looking analysis quantifies the effects of production constraints and experience on the costs of corn and sugar cane, which can then be converted to bioethanol. Land is a limited and heterogeneous resource: the crop cost model builds on the marginal land suitability, which is assumed to decrease as more land is taken into production, driving down the marginal crop yield. Also, the maximum achievable yield is increased over time by technological change, while the yield gap between the actual yield and the maximum yield decreases through improved management practices. The results show large uncertainties in the future costs of producing corn and sugar cane, with a 90% confidence interval of 2.9 to 7.2 $/GJ in 2030 for marginal corn costs, and 1.5 to 2.5 $/GJ in 2030 for marginal sugar cane costs. The influence of each parameter on these costs is examined.

Aurélie Méjean; Chris Hope; Aurélie Méjean; Chris Hope

2009-01-01T23:59:59.000Z

340

Roadmaps for All Atoms in Biochemical Reactions | U.S. DOE Office of  

Office of Science (SC) Website

Roadmaps for All Atoms in Biochemical Reactions Roadmaps for All Atoms in Biochemical Reactions Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) News & Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E: sc.ber@science.doe.gov More Information » September 2012 Roadmaps for All Atoms in Biochemical Reactions How atoms move in biochemical reactions - a fast and accurate method to model all the atoms. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Antioxidant Vitamins C & EChapter 3 Biochemical and Physiological Interactions of Vitamin C and Iron  

Science Conference Proceedings (OSTI)

The Antioxidant Vitamins C & E The Antioxidant Vitamins C & E Chapter 3 Biochemical and Physiological Interactions of Vitamin C and Iron eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter

342

Journal Review: Biomolecular Engineering, Bioengineering, Biochemicals, and Food Directed Evolution: Past, Present, and Future  

E-Print Network (OSTI)

Journal Review: Biomolecular Engineering, Bioengineering, Biochemicals, and Food Directed Evolution online January 18, 2013 in Wiley Online Library (wileyonlinelibrary.com) Directed evolution evolution, modern directed evolution came of age 20 years ago with the demonstration of repeated rounds

Zhao, Huimin

343

Project summary Improving the Productivity of Algal Bioreactors for Biofuel and Biochemical Production  

E-Print Network (OSTI)

Project summary Improving the Productivity of Algal Bioreactors for Biofuel and Biochemical-derived fuels, or biofuels, are seen as a substantial portion of a sustainable energy portfolio. Aquatic algal biofuel production currently exist. Many private companies are currently attempting

Walter, M.Todd

344

National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010  

DOE Green Energy (OSTI)

Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

Schell, D.

2010-12-01T23:59:59.000Z

345

Type: Renewal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

346

STABILITY OF DOW CORNING Q2-3183A ANTIFOAM IN IRRADIATED HYDROXIDE SOLUTION  

SciTech Connect

Researchers at the Savannah River National Laboratory (SRNL) examined the stability of Dow Corning Q2-3183A antifoam to radiation and aqueous hydroxide solutions. Initial foam control studies with Hanford tank waste showed the antifoam reduced foaming. The antifoam was further tested using simulated Hanford tank waste spiked with antifoam that was heated and irradiated (2.1 x 10{sup 4} rad/h) at conditions (90 C, 3 M NaOH, 8 h) expected in the processing of radioactive waste through the Waste Treatment and Immobilization Plant (WTP) at Hanford. After irradiation, the concentration of the major polymer components polydimethylsiloxane (PDMS) and polypropylene glycol (PPG) in the antifoam was determined by gel permeation chromatography (GPC). No loss of the major polymer components was observed after 24 h and only 15 wt% loss of PDMS was reported after 48 h. The presence of degradation products were not observed by gas chromatography (GC), gas chromatography mass spectrometry (GCMS) or high performance liquid chromatography mass spectrometry (HPLC-MS). G values were calculated from the GPC analysis and tabulated. The findings indicate the antifoam is stable for 24 h after exposure to gamma radiation, heat, and alkaline simulated waste.

White, T; Crawford, C; Burket, P; Calloway, B

2009-10-19T23:59:59.000Z

347

Response Surface Analysis of Elemental Composition and Energy Properties of Corn Stover During Torrefaction  

SciTech Connect

This research studied the effects of torrefaction temperature (250-250 C) and time (30-120 minutes) on elemental composition and energy properties changes in corn stover. Torrefied material was analyzed for moisture content, moisture-free carbon (%), hydrogen (%), nitrogen (%), sulfur (%), and higher heating value (MJ/kg). Results at 350 C and 120 minutes indicated a steep decrease in moisture content to a final value of about 1.48% - a reduction of about 69%. With respect to carbon content, the increase was about 23%, while hydrogen and sulfur content decreased by about 46.82% and 66.6%, respectively. The hydrogen-to-carbon ratio decreased as torrefaction temperature and time increased, with the lowest value of 0.6 observed at 350 C and 120 minutes. Higher heating value measured at 350 C and 60 minutes increased by about 22% and the maximum degree of carbonization observed was about 1.21. Further, the regression models developed for chemical composition in terms of torrefaction temperature and time adequately described the process with coefficient of determination values (R2) in the range of 0.92-0.99 for the elemental composition and energy properties studied. Response surface plots indicated that increasing both torrefaction temperature and time resulted in decreased moisture content, hydrogen content, and the hydrogen to-carbon ratio, and increased carbon content and higher heating value. This effect was more significant at torrefaction temperatures and times >280 C and >30 minutes.

Jaya Shankar Tumuluru; Richard D. Boardman; Christopher T. Wright

2012-02-01T23:59:59.000Z

348

Ethanol production from dry-mill corn starch in a fluidized-bed bioreactor  

DOE Green Energy (OSTI)

The development of a high-rate process for the production of fuel ethanol from dry-mill corn starch using fluidized-bed bioreactor (FBR) technology is discussed. Experiments were conducted in a laboratory scale FBR using immobilized biocatalysts. Two ethanol production process designs were considered in this study. In the first design, simultaneous saccharification and fermentation was performed at 35 C using {kappa}-carageenan beads (1.5 mm to 1.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. For dextrin feed concentration of 100 g/L, the single-pass conversion ranged from 54% to 89%. Ethanol concentrations of 23 to 36 g/L were obtained at volumetric productivities of 9 to 15 g/L-h. No accumulation of glucose was observed, indicating that saccharification was the rate-limiting step. In the second design, saccharification and fermentation were carried out sequentially. In the first stage, solutions of 150 to 160 g/L dextrins were pumped through an immobilized glucoamylase packed column maintained at 55 C. Greater than 95% conversion was obtained at a residence time of 1 h, giving a product of 165 to 170 g glucose/L. In the second stage, these glucose solutions were fed to the FBR containing Z. mobilis immobilized in {kappa}-carageenan beads. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L was achieved, giving an overall productivity of 23 g/L-h.

Krishnan, M.S.; Nghiem, N.P.; Davison, B.H.

1998-08-01T23:59:59.000Z

349

Bacteria Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Bacteria Types Bacteria Types Name: Evelyn Location: N/A Country: N/A Date: N/A Question: What is the significance of S. marcescens,M.luteus, S.epidermidis, and E. Coli? Which of these are gram-positive and gram-negative, and where can these be found? Also, what problems can they cause? When we culture these bacteria, we used four methods: plates, broth, slants, and pour plates. The media was made of TSB, TSA, NAP, and NAD. What is significant about these culturing methods? Replies: I could give you the answer to that question but it is more informative, and fun, to find out yourself. Start with the NCBI library online (http://www.ncbi.nlm.nih.gov/) and do a query with the species name, and 'virulence' if you want to know what they're doing to us. Have a look at the taxonomy devision to see how they are related. To find out if they're gram-pos or neg you should do a gram stain if you can. Otherwise you'll find that information in any bacteriology determination guide. Your question about the media is not specific enough so I can't answer it.

350

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

351

U.S. Department of Energy Selects First Round of Small-Scale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diverse and relevant feedstocks including agricultural residues, such as corn fiber, corn stover, switchgrass and sorghum. ICM, Inc. will integrate biochemical and...

352

Broin Companies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from the Broin Companies that demonstrates the benefits of integrating an innovative corn waste to ethanol biochemical process into an existing dry corn mill infrastructure....

353

Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95  

Science Conference Proceedings (OSTI)

During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.

Premuzic, E.T.

1996-08-01T23:59:59.000Z

354

Regional Differences in Corn Ethanol Production: Profitability and Potential Water Demands  

E-Print Network (OSTI)

Through the use of a stochastic simulation model this project analyzes both the impacts of the expanding biofuels sector on water demand in selected regions of the United States and variations in the profitability of ethanol production due to location differences. Changes in consumptive water use in the Texas High Plains, Southern Minnesota, and the Central Valley of California, as impacted by current and proposed grain-based ethanol plants were addressed. In addition, this research assesses the potential impacts of technologies to reduce consumptive water use in the production of ethanol in terms of water usage and the economic viability of each ethanol facility. This research quantifies the role of corn ethanol production on water resource availability and identifies the alternative water pricing schemes at which ethanol production is no longer profitable. The results of this research show that the expansion of regional ethanol production and the resulting changes in the regional agricultural landscapes do relatively little to change consumptive water usage in each location. The California Central Valley has the highest potential for increased water usage with annual water usage in 2017 at levels 15% higher than historical estimates, whereas Southern Minnesota and the Texas High Plains are predicted to have increases of less than 5% during the same time period. Although water use by ethanol plants is extremely minor relative to consumptive regional agricultural water usage, technological adaptations by ethanol facilities have the potential to slightly reduce water usage and prove to be economically beneficial adaptations to make. The sensitivity of net present value (NPV) with respect to changes in water price is shown to be extremely inelastic, indicating that ethanol producers have the ability to pay significantly more for their fresh water with little impact on their 10 year economic performance.

Higgins, Lindsey M.

2009-05-01T23:59:59.000Z

355

KNIFE MILL COMMINUTION ENERGY ANALYSIS OF SWITCHGRASS, WHEAT STRAW, AND CORN STOVER AND CHARACTERIZATION OF PARTICLE SIZE DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

Biomass preprocessing and pretreatment technologies such as size reduction and chemical preconditioning are aimed at reducing the cost of ethanol production from lignocellulosic biomass. Size reduction is an energy-intensive biomass preprocessing unit operation. In this study, switchgrass, wheat straw, and corn stover were chopped in an instrumented knife mill to evaluate size reduction energy and corresponding particle size distribution as determined with a standard forage sieve analyzer. Direct mechanical power inputs were determined using a dedicated data acquisition system for knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. A speed of 250 rpm gave optimum performance of the mill. Optimum feed rates for 25.4 mm screen and 250 rpm were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively. Total specific energy (MJ/Mg) was defined as the size reduction energy required to operate the knife mill plus that imparted to the biomass. Effective specific energy was defined as the energy imparted to the biomass. For these conditions, total specific energies were 27.3, 37.9, and 31.9 MJ/Mg and effective specific energies were 10.1, 15.5, and 3.2 MJ/Mg for switchgrass, wheat straw, and corn stover, respectively. These results demonstrated that biomass selection affects the size reduction energy, even for biomass with similar features. Second-order polynomial equations for the total specific energy requirement fitted well (R2 > 0.95) as a function of knife mill screen size, mass feed rate, and speed for biomass materials tested. The Rosin-Rammler equation fitted the cumulative undersize mass of switchgrass, wheat straw, and corn stover chop passed through ASABE sieves with high R2 (>0.983). Knife mill chopping of switchgrass, wheat straw, and corn stover resulted in particle size distributions classified as 'well-graded strongly fine-skewed mesokurtic', 'well-graded fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for small knife mill screen sizes (12.7 to 25.4 mm) and distributions classified as 'well-graded fine-skewed mesokurtic', 'well-graded strongly fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for the large screen size (50.8 mm). Total and effective specific energy values per unit size reduction of wheat straw were greater compared to those for switchgrass. Corn stover resulted in reduced total and effective specific energy per unit size reduction compared to wheat straw for the same operating conditions, but higher total specific energy per unit size reduction and lesser effective specific energy per unit size reduction compared to switchgrass. Data on minimized total specific energy with corresponding particle spectra will be useful for preparing feed material with a knife mill for subsequent grinding with finer size reduction devices.

Bitra, V.S.P. [University of Tennessee, Knoxville (UTK); Womac, A.R. [University of Tennessee, Knoxville (UTK); Sokhansanj, Shahabaddine [ORNL; Igathinathane, C. [North Dakota State University

2010-01-01T23:59:59.000Z

356

Number: 1894 Type: factoid ...  

Science Conference Proceedings (OSTI)

... type> Type: factoid Description: How high is the pitcher's mound? ... 2047 Type: factoid Description: How close is Mercury to ...

2003-08-04T23:59:59.000Z

357

Biological conversion of biomass to methane corn stover studies. Project report, December 1, 1977-August 1, 1978  

DOE Green Energy (OSTI)

A series of experiments was conducted to determine the performance characteristics of the methane fermentation process using corn stover obtained from the University of Illinois farms and processed through four parallel fermenters each having a capacity of 775 liters. A continuous feed system was employed to determine the conversion efficiency. The dewatering characteristics of the effluents and the quality of the liquid and solid residues were determined. The biodegradability of corn stover is low. Data obtained at a fermentation temperature of 59 +-1/sup 0/C show that only 36 percent of the volatile solids are biodegradable. The first order rate constant for this conversion was found to be 0.25 day/sup -1/. Pretreatment with caustic (NaOH) concentration of 0.30 molar (5 g/100 g dry stover) and a temperature of 115/sup 0/C for one hour increased the biodegradable fraction to 71 percent of the volatile solids. The reactor slurries were easily dewatered by both vacuum filtration and centrifugation. Corn stover does not appear to be attractive economically at the present energy prices. At a chemical cost of $154/tonne ($140/ton), the NaOH pretreatment adds approximately $5.2/tonne to the cost of processing the stover. At a methane yield of 0.25 m/sup 3//kg of solids fed, this adds a total cost of $2/100 m/sup 3/ ($0.57/MCF) for this process alone. Addition of stover acquisition costs ($20/dry tonne of stover), total processing costs without gas cleanup ($21/tonne) and residue disposal ($3/tonne of wet cake), the cost of fuel gas would be in the neighborhood of $9.76/GJ ($10.30/10/sup 6/ Btu).This cost excludes all profit, taxes, etc. associated with private financing. Depending upon financing methods, tax incentives, etc., it may be necessary to add up to an additional $2.00/GJ to the cost of this fuel gas.

Pfeffer, J T; Quindry, G E

1979-06-01T23:59:59.000Z

358

Mosaic neurofibromatosis type 1  

E-Print Network (OSTI)

with neurofibromatosis type 1 (NF1) with microdeletionsM, Huson S. Mosaic (segmental) neurofibromatosis type 1and type 2: no longer neurofibromatosis type 5. Am J Med

Liang, Christine; Schaffer, Julie V

2008-01-01T23:59:59.000Z

359

Comparative performance of two types of evacuated tube solar collectors in a residential heating and cooling system. The progress report  

DOE Green Energy (OSTI)

Two types of evacuated tube solar collectors have been operated in space heating, cooling and domestic hot water heating systems in Colorado State University Solar House I. An experimental collector from Corning Glass Works supplied heat to the system from January 1977 through February 1978, and an experimental collector from Philips Research Laboratory, Aachen, which is currently in use, has been operating since August 1978. A flat absorber plate inside a single-walled glass tube is used in the Corning design, whereas heat is conducted through a single glass wall to an external heat exchanger plate in the Philips collector. In comparison with conventional flat-plate collectors, both types show reduced heat losses and improved efficiency. For space heating and hot water supply in winter, the solar delivery efficiency of the Corning collector ranged from 49% to 60% of the incident solar energy. The portion of the space heating and domestic hot water load carried by solar energy through fall and winter ranged from 50% to 74%, with a four-month contribution of 61% of the total requirements. Data on the Philips collector are currently being analyzed.

Conway, T.M.; Duff, W.S.; Lof, G.O.G.; Pratt, R.G.

1979-01-01T23:59:59.000Z

360

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Summary of Findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): Corn Stover Pretreatment  

SciTech Connect

The Biomass Refining Consortium for Applied Fundamentals and Innovation, with members from Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, has developed comparative data on the conversion of corn stover to sugars by several leading pretreatment technologies. These technologies include ammonia fiber expansion pretreatment, ammonia recycle percolation pretreatment, dilute sulfuric acid pretreatment, flowthrough pretreatment (hot water or dilute acid), lime pretreatment, controlled pH hot water pretreatment, and sulfur dioxide steam explosion pretreatment. Over the course of two separate USDA- and DOE-funded projects, these pretreatment technologies were applied to two different corn stover batches, followed by enzymatic hydrolysis of the remaining solids from each pretreatment technology using identical enzyme preparations, enzyme loadings, and enzymatic hydrolysis assays. Identical analytical methods and a consistent material balance methodology were employed to develop comparative sugar yield data for each pretreatment and subsequent enzymatic hydrolysis. Although there were differences in the profiles of sugar release, with the more acidic pretreatments releasing more xylose directly in the pretreatment step than the alkaline pretreatments, the overall glucose and xylose yields (monomers + oligomers) from combined pretreatment and enzymatic hydrolysis process steps were very similar for all of these leading pretreatment technologies. Some of the water-only and alkaline pretreatment technologies resulted in significant amounts of residual xylose oligomers still remaining after enzymatic hydrolysis that may require specialized enzyme preparations to fully convert xylose oligomers to monomers.

Elander, R. T.; Dale, B. E.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y.; Mitchinson, C.; Saddler, J. N.; Wyman, C. E.

2009-01-01T23:59:59.000Z

362

Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis* By  

E-Print Network (OSTI)

are deeply indebted to Dr. Michael Wang for his many contributions to this research. Throughout the process, he has consistently posed excellent questions that have stimulated more thinking and modifications on our part. Also, for this final paper, he provided an excellent set of insightful suggestions and comments that have improved the paper significantly. Of course, the authors are solely responsible for the content of and any errors in the report. **The original April report was revised because in the review process errors were found in the magnitudes of the EU and Brazil ethanol shocks in moving from the 2001 data base to the updated 2006 data base. The impacts of the errors were small. However, we revised the report to reflect the corrected shocks. The model versions posted on the web include the corrected values and are consistent with this report. Executive Summary The basic objective of this research was to estimate land use changes associated with US corn ethanol production up to the 15 billion gallon Renewable Fuel Standard level implied by the Energy Independence and Security Act of 2007. We also used the estimated land use changes to calculate Greenhouse Gas Emissions associated with the corn ethanol production. The main model that was used for the analysis is a special version of the Global Trade

Wallace E. Tyner; Farzad Taheripour; Qianlai Zhuang; Dileep Birur; Uris Baldos

2010-01-01T23:59:59.000Z

363

Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature  

E-Print Network (OSTI)

Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We

364

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)  

Science Conference Proceedings (OSTI)

Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

Not Available

2011-09-01T23:59:59.000Z

365

Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic  

E-Print Network (OSTI)

Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter- disciplinary

Neff, Jason

366

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011  

DOE Green Energy (OSTI)

Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

Schell, D. J.

2011-04-01T23:59:59.000Z

367

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010  

Science Conference Proceedings (OSTI)

April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

Schell, D.

2010-07-01T23:59:59.000Z

368

Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum  

DOE Green Energy (OSTI)

The anaerobic organism Clostridium acetobutylicum has been used for commercial production of important organic solvents due to its ability to convert a wide variety of crude substrates to acids and alcohols. Current knowledge concerning the molecular genetics, cell regulation and metabolic engineering of this organism is still rather limited. The objectives are to improve the knowledge of the molecular genetics and enzymology of Clostridia in order to make genetic alterations which will more effectively channel cell metabolism toward production of desired products. Two factors that limit butanol production in continuous cultures are: (1) The degeneration of the culture, with an increase in the proportion of cells which are incapable of solvent production. Currently isolated degenerate strains are being evaluated to analyze the molecular mechanism of degeneration to determine if it is due to a genetic loss of solvent related genes, loss of a regulatory element, or an increase in general mutagenesis. Recent studies show two general types of degenerates, one which seems to have lost essential solvent pathway genes and another which has not completely lost all solvent production capability and retains the DNA bearing solvent pathway genes. (2) The production of hydrogen which uses up reducing equivalents in the cell. If the reducing power were more fully directed to the reduction reactions involved in butanol production, the process would be more efficient. The authors have studied oxidation reduction systems related to this process. These studies focus on ferredoxin and rubredoxin and their oxidoreductases.

Bennett, G.N.; Rudolph, F.B.

1998-05-01T23:59:59.000Z

369

Evaluation of a Process-Based Agro-Ecosystem Model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the Interannual Variability in Maize Yield  

Science Conference Proceedings (OSTI)

A process-based terrestrial ecosystem model, Agro-IBIS, was used to simulate maize yield in a 13-state region of the U.S. Corn Belt from 1958 to 1994 across a 0.5° terrestrial grid. For validation, county-level census [U.S. Department of ...

Christopher J. Kucharik

2003-12-01T23:59:59.000Z

370

Type checking and normalisation.  

E-Print Network (OSTI)

??This thesis is about Martin-Löf's intuitionistic theory of types (type theory). Type theory is at the same time a formal system for mathematical proof and… (more)

Chapman, James Maitland

2009-01-01T23:59:59.000Z

371

Hybrid type checking  

E-Print Network (OSTI)

Phase distinctions in type theory. Manuscript, 1988. [10]Typechecking dependent types and subtypes. In Lecture notesF. Pfenning. Intersection types and computational effects.

Flanagan, C

2006-01-01T23:59:59.000Z

372

Type 2 segmental glomangiomas  

E-Print Network (OSTI)

skin disorders: different types of severitiy reflectevidence for dichotomous types of severitiy. Arch Dermatol9. Happle R, König A. Type 2 segmental manifestation of

Hoekzema, Rick; Zonneveld, Ingrid M; Wal, Allard C van der

2010-01-01T23:59:59.000Z

373

Rapid Changes in Soil Carbon and Structural Properties Due to Stover Removal from No-Till Corn Plots  

SciTech Connect

Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg haj1 of stover, respectively, were studied for their total SOC concentration, bulk density (>b), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced 94.75-mm macroaggregates and increased microaggregates (P G 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with >b and positively with MWD and LogTS. Stover removal at rates as low as 1.25 Mg haj1 reduced SOC and degraded soil structure even within 1 year, but further monitoring is needed to establish threshold levels of stover removal in relation to changes in soil quality.

Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

2006-06-01T23:59:59.000Z

374

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

feedstock and technology diversity feedstock and technology diversity Legend Company Name Process Technology Feedstock Type (Site Location) * Acquired by NewPage Corporation Six Commercial-Scale Biorefinery Projects; DOE will invest up to $385 million P j t Four Small-Scale Biorefinery Projects; DOE will invest up to $114 million (first round) Three Bio-Energy Centers; DOE will invest up to $405 million Alico Thermochemical/Bio Citrus Waste (LaBelle, FL) Range Fuels Thermochemical Wood Chips (Soperton, GA) DOE BioEnergy Science Center (Oak Ridge, TN) Abengoa Biochemical/Thermo Ag Waste, switchgrass (Hugoton, KS) Blue Fire Biochemical Municipal Solid Waste (Corona, CA) Iogen Biochemical Wheat Straw (Shelley, ID) Poet Biochemical Corn Stover (Emmetsburg, IA) ICM Biochemical Switchgrass, Corn Stover (St. Joseph, MO) Lignol

375

Transcriptome and Biochemical Analyses of Fungal Degradation of Wood  

SciTech Connect

Lignocellulosic accounts for a large percentage of material that can be utilized for biofuels. The most costly part of lignocellulosic material processing is the initial hydrolysis of the wood which is needed to circumvent the lignin barrier and the crystallinity of cellulose. Enzymes will play an increased role in this conversion in that they potentially provide an alternative to costly and caustic high temperature and acid treatment. The increasing use of enzymes in biotechnology is facilitated by both continued improvements in enzyme technology but also in the discovery of new and novel enzymes. The present proposal is aimed at identifying the enzymes which are known to depolymerize woody biomass. Fundamental understanding of how nature gains access to cellulose and hemicellulose will impact all applications. Because fungi are the only known microbes capable of circumventing the lignin barrier, knowledge of the enzyme they use is of great potential for biofuel processing. Nature has evolved different fungal mechanisms for enzymatic hydrolysis of wood. Most notable are the white-rot fungi (wrf) and the brown-rot fungi (brf). This proposed research aims at determining the complete transcriptome of three wrf and two brf to determine the enzymes involved in lignocellulose degradation. The transcriptome work will be supported by enzyme characterization (and zymograms) and finally analysis of the lignin component to determine the mode of lignin modification. In this proposed research, we hypothesize that: 1) Determination of the complete transcriptome of closely related white and brown rot fungi will lead to knowledge of the relevant enzymes involved in wood degradation. 2) Knowledge of the extracellular transcriptome and the mechanism of wood decay can only be obtained if the products of the decay are known. As such, characterization of the lignin oxidation products will correlate the enzymes involved (obtained from the transcriptome) to the lignin oxidation products. The Department of Energy has sequenced the P. chrysosporium genome and has approved the sequencing of the genome of the closely-related brown rot fungus P. placenta. This comparative genomics approach will yield important information on differences between these two fungi. Analysis of gene unique to each fungus (which have been lost or gained) can potentially lead to determining the enzymes which are responsible for each type of decay. This comparison, however, would not be complete without comparing the transcriptome and the proteome/enzymes. Comparative genomics may tell us which genes may be important, but it will not tell us when these genes are expressed, at what levels and will not necessarily tell us what these genes do.

Tien, Ming

2009-03-14T23:59:59.000Z

376

Writing with Complex Type  

E-Print Network (OSTI)

29] Middendorp, J. 2004. Dutch type. 010 Publishers. [30]A. Hyland. 1992. Twentieth-century type. Laurence King. [7]Robertson. 2005. From Movable Type to Moving Type-Evolution

Lewis, Jason; Nadeau, Bruno

2009-01-01T23:59:59.000Z

377

abstract data type  

Science Conference Proceedings (OSTI)

Definition of abstract data type, possibly with links to more information and implementations. NIST. abstract data type. (definition). ...

2013-11-08T23:59:59.000Z

378

AN EAR FOR YOUR QUOTES PATENT CITATIONS AND THE SIZE OF PATENTED INVENTIONS, EVIDENCE FROM HYBRID CORN  

E-Print Network (OSTI)

This paper links applications for utility patents between 1985 and 2005 with field trial data on improvements in yields to examine whether citations are a good measure for the size of the “inventive step, ” measured as improvements in yield. These data indicate that a large and robust correlation between citations and the size of improvements. In the most conservative estimates, a 10 percent increase in yields is associated with 1.7 additional citations, implying a 24 percent increase. A small number of highly cited patents appear to be cited mostly to establish the patentability of corn hybrids. Estimates that exclude these patents indicate that a 10 percent in yields is associated with 1.2 additional citations, implying a 34 percent increase. Analyses of claims and renewal data as alternative measures of patent value suggest that citations are in fact the most informative measure for the size of patented inventions.

unknown authors

2012-01-01T23:59:59.000Z

379

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408) costs apply to those items that are consumed in production process and are roughly proportional to level in cash flow analysis and in the decision to use the equipment for reclamation? Types of Costs #12

Boisvert, Jeff

380

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining the equipment for reclamation? Types of Costs #12;· Marginal Cost: ­ Change in total cost ­ Any production process involves fixed and variable costs. As production increases/expands, fixed costs are unchanged, so

Boisvert, Jeff

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 June 2010 Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol F. Kabir Kazi, J. Fortman, and R. Anex Iowa State University G. Kothandaraman ConocoPhillips Company D. Hsu, A. Aden, and A. Dutta National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46588 June 2010 Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol F. Kabir Kazi, J. Fortman, and R. Anex

382

Recent developments in parameter estimation and structure identification of biochemical and genomic systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Recent developments in parameter estimation and structure identification of biochemical and genomic systems I-Chun Chou * , Eberhard O. Voit Integrative BioSystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA a r t i c l e i n f o Article history: Received 2 October 2008 Received in revised form 6 March 2009 Accepted 15 March 2009 Available online 25 March 2009 Keywords: Parameter estimation Network identification Inverse modeling Biochemical Systems Theory a b s t r a c t The organization, regulation and dynamical responses of biological systems are in many cases too com- plex to allow intuitive predictions and require the support of mathematical modeling for quantitative assessments and a reliable understanding of system functioning. All steps of constructing

383

Proteomic and Biochemical Studies of Human Mesenchymal Stem Cells in Response to Low Dose Ionizing Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Proteomic and Biochemical Studies of Human Mesenchymal Stem Cells Proteomic and Biochemical Studies of Human Mesenchymal Stem Cells in Response to Low Dose Ionizing Radiation Deok-Jin Jang 1 , Mingquan Guo 1 , Julia S.F.Chu 2 , Kyle T. Kurpinski 2 , Bjorn Rydberg 1 , Song Li 2 , and Daojing Wang 1 1. Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720 2. Department of Bioengineering, University of California, Berkeley, CA 94720 We will present data obtained during the first year of our DOE/NASA Low Dose Radiation Research program. We utilized a comprehensive approach including transcriptomics, proteomics, phosphoproteomics, and biochemistry to characterize human mesenchymal stem cells (MSCs) in response to low dose ionizing radiation. We first determined the cell survival, proliferation, and osteogenic differentiation of

384

Advanced biochemical processes for geothermal brines: Annual operating plan, FY 1995  

DOE Green Energy (OSTI)

An R and D program to identify methods for the utilization and/or low cost of environmentally acceptable disposal of toxic geothermal residues has been established at the Brookhaven National Laboratory (BNL). Laboratory work has shown that a biochemical process developed at BNL, would meet regulatory costs and environmental requirements. In this work, microorganisms which can convert insoluble species of toxic metals, including radionuclides, into soluble species, have been identified. These organisms serve as models in the development of a biochemical process in which toxic metals present in geothermal residual sludges are converted into water soluble species. The produced solution can be reinjected or processed further to concentrate and recover commercially valuable metals. After the biochemical detoxification of geothermal residual sludges, the end-products are non-toxic and meet regulatory requirements. The overall process is a technically and environmentally acceptable cost-efficient process. It is anticipated that the new biotechnology will reduce the cost of surface disposal of sludges derived from geothermal brines by 25% or better.

Premuzic, E.T.

1995-02-01T23:59:59.000Z

385

Biochemical technology for the detoxification of geothermal brines and the recovery of trace metals  

DOE Green Energy (OSTI)

Studies conducted at BNL, have shown that a cost-efficient and environmentally acceptable biochemical technology for detoxification of geothermal sludges is most satisfactory, as well as technically achievable. This technology is based on biochemical reactions by which certain extremophilic microorganisms interact with inorganic matrices of geothermal origin. The biochemical treatment of wastes generated by power plants using geothermal energy is a versatile technology adaptable to several applications beyond that of rendering hazardous and/or mixed wastes to non-hazardous by products, which meet regulatory requirements. This technology may be used for solubilization or recovery of a few metals to the isolation of many metals including radionuclides. In the metal recovery mode, an aqueous phase is generated which meets regulatory standards. The resulting concentrate contains valuable trace metals and salts which can be further converted into income generating products which can off-set the initial investment costs associated with the new biotechnology. In this paper, recent developments in this emerging technology will be discussed.

Premuzic, E.T.; Lin, M.S.; Lian, Hsienjen

1995-05-01T23:59:59.000Z

386

Type systems for dummies  

Science Conference Proceedings (OSTI)

We extend Pure Type Systems with a function turning each term M of type A into a dummy |M| of the same type (|.| is not an identity, in that M ? |M|). Intuitively, a dummy represents an unknown, canonical object of the given type: dummies are opaque ... Keywords: canonical element, proof irrelevance, pure type system

Andrea Asperti; Ferruccio Guidi

2012-01-01T23:59:59.000Z

387

ARM - Measurement - Cloud type  

NLE Websites -- All DOE Office Websites (Extended Search)

type ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud type Cloud type such as...

388

Direct application of west coast geothermal resources in a wet corn milling plant supplementary analyses and information dissemination. Final report, addendum  

DOE Green Energy (OSTI)

In an extension to the scope of the previous studies, supplementary analyses were to be performed for both plants which would assess the economics of geothermal energy if coal had been the primary fuel rather than oil and gas. The studies include: supplementary analysis for a coal fired wet corn milling plant, supplementary analysis for an East Coast frozen food plant with coal fired boilers, and information dissemination activities.

Not Available

1982-03-19T23:59:59.000Z

389

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Proto col for US Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben, JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture. In Journal of Mitigation and Adaptation Strategies for Global Change,Volume 15, Number 2, 2010, pp. 185-204. Link to Journal Publication: See Journal of Mitigation and Adaptation Strategies for Global Change.

2010-09-03T23:59:59.000Z

390

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Redu ction Protocol for U.S. Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben; JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for U.S. Midwest Agriculture. In Mitigation and Adaptation Strategies for Global Change, Volume 15, Number 2, 2010, pp. 185-204. A peer-reviewed journal article that identifies, describes and analyzes socio-economic factors that may encourage or inhibit farmers from participat...

2009-12-17T23:59:59.000Z

391

Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility  

SciTech Connect

Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

2009-07-01T23:59:59.000Z

392

Type-checking injective pure type systems  

Science Conference Proceedings (OSTI)

Injective pure type systems form a large class of pure type systems for which one can compute by purely syntactic means two sorts elmt(?∣M) and sort(?∣M), where ? is a pseudo-context and M is a pseudo-term, ...

Gilles Barthe

1999-11-01T23:59:59.000Z

393

The feasibility and profitability of short season corn and sorghum cropping systems on the Texas High Plains  

E-Print Network (OSTI)

Studies of experimental cropping systems were conducted at the TAES-USDA Conservation and Production Research Field at Bushland, TX and at the North Plains Research Field near Etter, TX. The study at Bushland was fully irrigated using flood irrigation in level plots with raised borders. The study at Etter was conducted as limited irrigation using sprinkler irrigation equipped with a low energy precision application (LEPA) system. The four experimental cropping systems utilized a 98-day short season corn cultivar (SSC), a 100-day short season sorghum cultivar (SSS), and winter wheat grazed-grain (Wht Grz-Grn) and grain only. The cropping systems were evaluated in terms of attainable yields, irrigation water use, profitability, and feasibility. Conventional cropping systems of continuous full season corn (FSC), continuous full season sorghum (FSS), and continuous wheat grazed-grain and grain only were also included in the study. Compared to conventional cropping systems, the experimental cropping systems did not reduce irrigation, but profitability was increased. The rotation of SSC/Wht/SSS with wheat grazed or non-grazed, was consistently the most profitable rotation under full and limited irrigation. Profitability was obtained by increasing total revenue through improved yields of SSC in rotation with wheat and sorghum when compared to yields of SSC in continuous rotation, by obtaining higher market prices for early harvested SSC, and by realizing the opportunity to graze and obtain grain from wheat planted after SSC. Input costs were reduced by decreased fertilizer, insecticide, and irrigation applications and by reduced to no-tillage operations. Peak irrigation demands were spread more evenly throughout the year, and irrigation scheduling became less critical for optimum yields. Experimental rotations increased management and labor requirements. A greater diversity of machinery was also necessary. Timing of harvesting one crop and planting the next became critical in determining whether a rotation was profitable. The experimental rotation SSC/Wht Grz was not profitable and used the greatest amount of irrigation water. Conventional cropping systems of continuous FSS and continuous Wht Grz-Grn reduced irrigation compared to continuous FSC and all experimental rotations while maintaining profitability.

Vagts, Todd Anthony

1995-01-01T23:59:59.000Z

394

Effects of Ruminally Degradable Nitrogen in Diets Containing Wet Distiller’s Grains with Solubles and Steam-flaked Corn on Feedlot Cattle Performance and Carcass Characteristics  

E-Print Network (OSTI)

Wet distiller’s grains with solubles are the most common feedstuff generated by the ethanol industry, and this feedstuff has been utilized by the feedlot industry. Exploration of the effect of dietary distiller’s inclusion on the form and quantity of protein or nitrogen (N) has received little attention. Assessment of degradable N needs in diets containing wet distiller’s grains with solubles (WDGS) is needed to aid the cattle feeding industry in managing feed costs and potential environmental issues. In Exp. 1, 525 yearling steers (initial weight = 373 ±13 kg) received treatments in a 2 × 3 1 factorial. Factors included corn WDGS (15 or 30 percent of DM) and non-protein N (NPN; 0, 1.5, or 3.0 percent of DM) from urea. The control diet without corn WDGS contained 3.0 percent NPN (1.06 percent urea) and cottonseed meal. Overall gain efficiency among steers fed 15 percent corn WDGS was greatest for 1.5 percent NPN and least for 0 percent NPN (P = 0.07, quadratic), whereas gain efficiency decreased linearly (P 0.15). Dietary NPN concentration did not influence growth performance (P > 0.21). Results suggest that optimum performance for cattle fed 15 percent WDGS occurred when the diet contained between 1.5 percent and 2.25 percent NPN. However, removing all supplemental NPN was necessary to support optimum performance in diets containing 30 percent WCDG.

Ponce, Christian

2010-08-01T23:59:59.000Z

395

Typing constraint logic programs  

Science Conference Proceedings (OSTI)

We present a prescriptive type system with parametric polymorphism and subtyping for constraint logic programs. The aim of this type system is to detect programming errors statically. It introduces a type discipline for constraint logic programs and ... Keywords: Constraint logic programming, Metaprogramming, Prolog, subtyping, type systems

François Fages; Emmanuel Coquery

2001-11-01T23:59:59.000Z

396

Assessment of Cerebellar and Hippocampal Morphology and Biochemical Parameters in the Compound Heterozygous, Tottering/leaner Mouse  

E-Print Network (OSTI)

Due to two different mutations in the gene that encodes the a1A subunit of voltage-activated CaV 2.1 calcium ion channels, the compound heterozygous tottering/leaner (tg/tgla) mouse exhibits numerous neurological deficits. Human disorders that arise from mutations in this voltage dependent calcium channel are familial hemiplegic migraine, episodic ataxia-2, and spinocerebellar ataxia 6. The tg/tgla mouse exhibits ataxia, movement disorders and memory impairment, suggesting that both the cerebellum and hippocampus are affected. To gain greater understanding of the many neurological abnormalities that are exhibited by the 90-120 day old tg/tgla mouse the following aspects were investigated: 1) the morphology of the cerebellum and hippocampus, 2) proliferation and death in cells of the hippocampal dentate gyrus and 3) changes in basic biochemical parameters in granule cells of the cerebellum and hippocampus. This study revealed no volume abnormalities within the hippocampus of the mutant mice, but a decrease in cell density with the pyramidal layer of CA3 and the hilus of the dentate gyrus. Cell size in the CA3 region was unaffected, but cell size in the hilus of the dentate gyrus did not exhibit the gender difference seen in the wild type mouse. The cerebellum showed a decrease in volume without any decrease in cerebellar cellular density. Cell proliferation and differentiation in the subgranular zone of the hippocampal dentate gyrus remained normal. This region also revealed a decrease in cell death in the tg/tgla mice. Basal intracellular calcium levels in granule cells show no difference within the hippocampus, but an increase in the tg/tgla male cerebellum compared to the wild type male cerebellum. There was no significant difference in granule cell mitochondrial membrane potential within the wild type and mutant animals in either the hippocampus or cerebellum. The rate of reactive oxygen species (ROS) production in granule cells revealed no variation within the hippocampus or cerebellum. The amount of ROS was decreased in cerebellar granule cells, but not granule cells of the hippocampus. Inducing ROS showed no alteration in production or amount of ROS produced in the hippocampus, but did show a ceiling in the amount of ROS produced, but not rate of production, in the cerebellum.

Murawski, Emily M.

2009-12-01T23:59:59.000Z

397

Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature  

SciTech Connect

We conducted observations and modeling at a forest site to assess importance of biomass heat and biochemical energy storages for land-atmosphere interactions. We used the terrestrial ecosystem Fluxes And Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the calculated biomass energy storages. Effects of energy storages on flux exchanges and variations of radiative temperature were investigated by contrasting FAPIS simulations with and without the storages. We found that with the storages, FAPIS predictions agreed with measurements well; without them, FAPIS performance deteriorated for all surface energy fluxes. The biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 Wm-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Without-storage simulations produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with with-storage simulations. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the biomass energy storages act to dampen diurnal temperature range. Therefore, biomass heat and biochemical energy storages are an integral and substantial part of the surface energy budget and play a role in modulating land surface temperatures and must be considered in studies of land - atmosphere interactions and climate modeling.

Gu, Lianhong [ORNL; Meyers, T. P. [NOAA ATDD; Pallardy, Stephen G. [University of Missouri; Hanson, Paul J [ORNL; Yang, Bai [ORNL; Heuer, Mark [ATDD, NOAA; Hosman, K. P. [University of Missouri; Liu, Qing [ORNL; Riggs, Jeffery S [ORNL; Sluss, Daniel Wayne [ORNL; Wullschleger, Stan D [ORNL

2007-01-01T23:59:59.000Z

398

Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes  

Science Conference Proceedings (OSTI)

Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

Selig, M. J.; Vinzant, T. B.; Himmel, M. E.; Decker, S. R.

2009-01-01T23:59:59.000Z

399

Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model  

E-Print Network (OSTI)

The expanded growth model is developed to describe accumulation of plant biomass (Mg ha 21) and mineral elements (kg ha 21) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

Allen R. Overman; Richard V. Scholtz Iii

2011-01-01T23:59:59.000Z

400

Advanced biochemical processes for geothermal brines FY 1998 annual operating plan  

DOE Green Energy (OSTI)

As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

NONE

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes  

DOE Patents (OSTI)

The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

2002-05-28T23:59:59.000Z

402

Regular Object Types  

E-Print Network (OSTI)

Regular expression types have been proposed as a foundation for statically typed processing of XML and similar forms of tree-structured data. To date, however, regular expression types have been explored in special-purpose languages (e.g., XDuce, CDuce, and XQuery) with type systems designed around regular expression types "from the ground up." The goal of the Xtatic language is to bring regular expression types to a broad audience by offering them as a lightweight extension of a popular object-oriented language, C#. We develop...

Vladimir Gapeyev; Benjamin C. Pierce

2003-01-01T23:59:59.000Z

403

The effects of Biozyme on the germination and emergence of bean (Phaseolus vulgaris L.) and sweet corn (Zea mays L.) seeds under suboptimal temperatures, pesticide overdose, and salinity stress  

E-Print Network (OSTI)

The effect of Biozyme-, a commercial germination stimulant, on the germination and emergence of bean and sweet corn seeds, treated with four levels of Carbofuran and Chlorothalonil, and grown under suboptimal temperatures, was evaluated. Field experiments consisted of two plantings that provided suboptimal temperatures during emergence. Pesticide overdoses caused significant detrimental effects to all emerging seedlings. These effects were magnified under the low temperatures of the first planting. BiozymeTm improved the performance of sweet corn in both plantings. In beans, however, BiozymeTm had negative effects in the first planting, while proving beneficial in the second planting. Growth chamber experiments included, additionally, four levels of salinity. Increasing salinity levels caused decreases in most of the parameters evaluated. Low temperature decreased most growth parameters and in combination with salinity acted synergistically to cause a greater detrimental effect. Pesticide treatment decreased most growth parameters, with the exception of root growth. Sweet corn had a greater tolerance to low temperatures and salinity than beans; however, it proved to be more sensitive to pesticide overdoses. These factors in combination had greater detrimental effects on sweet corn percent germination than each factor alone. Suboptimal temperatures reduced percent germination and germination rate, and increased the time to 50% germination. Mgh salinity levels combined with low temperatures acted synergystically on rate and percent germination. Biozyme increased percent germination, but did not hasten germination rate or days to 50% germination. Biozyme treatment of bean seeds helped them overcome pesticide overdose stress. Aerobic respiration was measured 48 h after imbibition. Respiration rate of bean and sweet corn seeds was reduced by pesticide overdose and decreasing temperatures. Respiratory quotient decreased as temperature decreased and increased as pesticide levels increased. Biozyme-decreased bean respiratory quotient and increased sweet corn respiratory quotient. The increase in the respiratory quotient of bean and sweet corn seeds with increasing levels of pesticide suggests an increase in C02 evolution through a pathway that does not increase O2 uptake.

Campos Cruz, Armando

1994-01-01T23:59:59.000Z

404

Use of the electrically-driven emulsion phase contactor in chemical and biochemical processing  

DOE Green Energy (OSTI)

An electrically driven liquid-liquid contactor has been developed to enhance the efficiency of chemical and biochemical processes. A uniform electric field is utilized to induce a drop dispersion- coalescence cycle, producing high surface area for interfacial mass transfer under continuous-countercurrent-flow conditions. The mass- transport capability of this system has been analyzed by observing the extraction of acetic acid from water (dispersed phase) into methyl isobutyl ketone. Results showed that, due to increased efficiency of mass transfer, the electrically-driven device could be an order of magnitude smaller than a conventional contactor accomplishing the same level of separation. In the case of biochemical processes within non-aqueous environments, a biocatalyst (enzymes or bacteria) is introduced in the aqueous (dispersed) phase. The biocatalyst uses nutrients and other reactants to selectively transform species transferred from the continuous (organic) phase to the interior of the drops. An example of such system that has been investigated is the oxidation of p-cresol dissolved in toluene by aqueous-phase horseradish peroxidase.

Tsouris, C; DePaoli, D.W.; Scott, T.C.

1995-12-31T23:59:59.000Z

405

Types of Radiation Exposure  

NLE Websites -- All DOE Office Websites (Extended Search)

External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation...

406

Type B Drum packages  

Science Conference Proceedings (OSTI)

The Type B Drum package is a container in which a single drum containing Type B quantities of radioactive material will be packaged for shipment. The Type B Drum containers are being developed to fill a void in the packaging and transportation capabilities of the US Department of Energy (DOE), as no double containment packaging for single drums of Type B radioactive material is currently available. Several multiple-drum containers and shielded casks presently exist. However, the size and weight of these containers present multiple operational challenges for single-drum shipments. The Type B Drum containers will offer one unshielded version and, if needed, two shielded versions, and will provide for the option of either single or double containment. The primary users of the Type B Drum container will be any organization with a need to ship single drums of Type B radioactive material. Those users include laboratories, waste retrieval facilities, emergency response teams, and small facilities.

Edwards, W.S.

1995-11-01T23:59:59.000Z

407

Coarse-graining stochastic biochemical networks: quasi-stationary approximation and fast simulations using a stochastic path integral technique  

E-Print Network (OSTI)

We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscopic, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenheimer approximation in quantum mechanics, follows from the stochastic path integral representation of the full counting statistics of reaction events (also known as the cumulant generating function). In applications with a small number of chemical reactions, this approach produces analytical expressions for moments of chemical fluxes between slow variables. This allows for a low-dimensional, interpretable representation of the biochemical system, that can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we consider a chain of biochemical reactions, derive its coarse-grained description, and show that the Gillespie simulat...

Sinitsyn, N A; Nemenman, Ilya

2009-01-01T23:59:59.000Z

408

Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions  

Science Conference Proceedings (OSTI)

Biomass particle size impacts handling, storage, conversion, and dust control systems. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented hammer mill. Direct energy inputs were determined for hammer mill operating speeds from 2000 to 3600 rpm for 3.2 mm integral classifying screen and mass input rate of 2.5 kg/min with 90 - and 30 -hammers. Overall accuracy of specific energy measurement was calculated as 0.072 MJ/Mg. Particle size distributions created by hammer mill were determined for mill operating factors using ISO sieve sizes from 4.75 to 0.02 mm in conjunction with Ro-Tap sieve analyzer. A wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Total specific energy (MJ/Mg) was defined as size reduction energy to operate the hammer mill plus that imparted to biomass. Effective specific energy was defined as energy imparted to biomass. Total specific energy for switchgrass, wheat straw, and corn stover grinding increased by 37, 30, and 45% from 114.4, 125.1, and 103.7 MJ/Mg, respectively, with an increase in hammer mill speed from 2000 to 3600 rpm for 90 -hammers. Corresponding total specific energy per unit size reduction was 14.9, 19.7, and 13.5 MJ/Mg mm, respectively. Effective specific energy of 90 -hammers decreased marginally for switchgrass and considerably for wheat straw and it increased for corn stover with an increase in speed from 2000 to 3600 rpm. However, effective specific energy increased with speed to a certain extent and then decreased for 30 -hammers. Rosin Rammler equation fitted the size distribution data with R2 > 0.995. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Hammer milling of switchgrass, wheat straw, and corn stover with 3.2 mm screen resulted in well-graded fine-skewed mesokurtic particles. Uniformity coefficient was corn stover, which indicated a moderate assortment of particles. Size-related parameters, namely, geometric mean diameter, Rosin Rammler size parameter, median diameter, and effective size had strong correlation among themselves and good negative correlation with speed. Distribution-related parameters, namely, Rosin Rammler distribution parameter, mass relative span, inclusive graphic skewness, graphic kurtosis, uniformity index, uniformity coefficient, coefficient of gradation and distribution geometric standard deviation had strong correlation among themselves and a weak correlation with mill speed. Results of this extensive analysis of specific energy and particle sizes can be applied to selection of hammer mill operating factors to produce a particular size of switchgrass, wheat straw, and corn stover grind, and will serve as a guide for relations among the energy and various analytic descriptors of biomass particle distributions.

Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Chevanan, Nehru [University of Tennessee; Miu, P.I. [University of Tennessee; Smith, D.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL

2009-07-01T23:59:59.000Z

409

Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373  

DOE Green Energy (OSTI)

NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

Barnes, T.

2013-08-01T23:59:59.000Z

410

Modeling Tomorrow's Biorefinery - the NREL Biochemical Pilot Plant; Biomass Program (Brochure)  

NLE Websites -- All DOE Office Websites (Extended Search)

great ideas into viable solutions great ideas into viable solutions requires the ability to test theories under real world conditions. Few companies have the resources to build pilot-scale processing plants to test their ideas. The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) helps by sharing its world-class equipment and expertise with industry and other research organizations through a variety of contractual arrangements. At the NREL campus in Golden, Colo., researchers use state-of-the-art laboratories to develop and improve the technologies that convert biomass to fuels, chemicals, and materials. One of the most important tools available to biomass researchers is the Biochemical Pilot Plant housed in the Alternative Fuels User Facility (AFUF). In this facility,

411

Recent advances in biochemical technology for the processing of geothermal byproducts  

SciTech Connect

Laboratory studies has shown the biochemical technology for treating brines/sludges generated in geothermal electric powerproduction to be promising, cost-efficient, and environmentally acceptable. For scaled-up field use, the new technology depends on the chemistry of the geothermal resources which influences choice of plant design and operating strategy. Latter has to be adaptable to high/low salinity, temperatures, quantity to be processed, and chemistry of brines and byproducts. These variables are of critical and economic importance in areas such as the Geysers and Salton Sea. The brines/sludges can also be converted into useful products. In a joint effort between industrial collaborators and BNL, several engineered processes for treating secondary and other byproducts from geothermal power production are being tested. In terms of field applications, there are several options. Some of these options are presented and discussed.

Premuzic, E.T.; Lin, M.S.; Lian, L.

1996-04-01T23:59:59.000Z

412

Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns Nan Zhao a , Ju Guan a , Farhad Forouhar b , Timothy J. Tschaplinski c , Zong-Ming Cheng a , Liang Tong b , Feng Chen a, * a Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Science Bldg., 2431 Joe Johnson Drive, Knoxville, TN 37996, USA b Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 3 June 2008 Received in revised form 27 October 2008 Available online 10 January 2009 Keywords: Black cottonwood Populus trichocarpa Methyl esterase SABP2 Methyl salicylate Salicylic acid Gene family Molecular modeling a b s t r a c t Two genes encoding proteins

413

Relationships between Beef Postharvest Biochemical Factors and Warner-Bratzler Shear Force  

E-Print Network (OSTI)

Biochemical changes in muscle postmortem have been associated with initial beef tenderness early postmortem, and with improvements in tenderness during postmortem storage, defined as meat aging. Differences in the initial contractile state of the sarcomere, the ionic environment of the sarcoplasm including pH, the activity of neutral proteolytic enzymes, and collagen content and solubility have been associated with beef tenderness. In Phase I, steaks from four genetic lines of steers and heifers were used to understand the biochemical differences between tough and tender steaks. The most tender ( 0.05) between tough and tender steaks. Sodium concentration at 10 d was higher (P = 0.03) in tough steaks, but only account for 0.05% of the variation in WBS at 3d. Tender steaks had less (P = 0.04) intact desmin at 24h, but intact desmin was not correlated (P > 0.05) with WBS. In Phase II, tough steaks after 3, 10, and 17d postmortem had higher (P 0.05) between tough and tender steaks. Tender steaks had less (P < 0.0001) intact desmin at 17d postmortem than tough steaks. Intact desmin at 17d was responsible for 4%, 47%, and 30% of WBS variation after 3, 10, and 17d postmortem, respectively. The slight difference in marbling and quality grade did not account for a significant amount of variation in WBS. However, meat color and pH accounted for variation in shear WBS. Calcium flux may have influenced meat tenderness by activation of calpains and may have altered protein to protein interactions. Results suggested that marbling, µ calpain activity, and desmin degradation, and to a lesser extent pH and meat color contributed to meat tenderness.

Orozco Hernandez, Pilar

2013-05-01T23:59:59.000Z

414

TYPE OF UPERATICIN  

Office of Legacy Management (LM)

Process i Theoretical Studies Sample & Analysis 0 Production 0 DisposalStorage a Facility Type 0 Manufacturing q University, a Research Organizatiori 0 Government Sponsored...

415

TYPES OF FIELD TESTING  

NLE Websites -- All DOE Office Websites (Extended Search)

TYPES OF FIELD TESTING Convincing proof of energy savings and performance in a specific building and occupant context If direct proof of savings is desired, the only feasible...

416

Discriminative sum types locate the source of type errors  

Science Conference Proceedings (OSTI)

We propose a type system for locating the source of type errors in an applied lambda calculus with ML-style polymorphism. The system is based on discriminative sum types---known from work on soft typing---with annotation subtyping and recursive types. ... Keywords: polymorphism, type errors, type inference

Matthias Neubauer; Peter Thiemann

2003-08-01T23:59:59.000Z

417

Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345  

DOE Green Energy (OSTI)

The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

Ghirardi, M.; Svedruzic, D.

2013-07-01T23:59:59.000Z

418

An Improved Type Reduction Algorithm for Type-2 Fuzzy Sets.  

E-Print Network (OSTI)

??Type reduction does the work of computing the centroid of a type-2 fuzzy set. The result is a type-1 fuzzy set from which a corresponding… (more)

Su, Yao-Lung

2011-01-01T23:59:59.000Z

419

Screw Type Ac Air Compressor Manufacturers, Screw Type Ac Air ...  

U.S. Energy Information Administration (EIA)

Screw Type Ac Air Compressor, Screw Type Ac Air Compressor Manufacturers & Suppliers Directory - Find here Screw Type Ac Air Compressor Traders, ...

420

Biochemical Control With Radiotherapy Improves Overall Survival in Intermediate and High-Risk Prostate Cancer Patients Who Have an Estimated 10-Year Overall Survival of >90%  

SciTech Connect

Purpose: To identify subgroups of patients with carcinoma of the prostate treated with radical radiotherapy that have improved overall survival when disease is biochemically controlled. Methods and Materials: A cohort of 1,060 prostate cancer patients treated with radical radiotherapy was divided into nine subgroups based on National Comprehensive Cancer Network risk category and estimated 10-year overall survival (eOS 10y) derived from the age adjusted Charlson Comorbidity Index. Patients with and without biochemical control were compared with respect to overall survival. Actuarial estimates of overall survival were calculated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used for analysis of overall survival. Results: Median follow-up was 125 months (range, 51-176 months). Only the subgroups with high or intermediate risk disease and an eOS 10y of >90% had a statistically significantly improved overall survival when prostate cancer was biochemically controlled. In all other groups, biochemical control made no significant difference to overall survival. In the subgroup with high-risk disease and eOS 10y >90%, actuarial overall survival was 86.3% (95% confidence interval [CI] 78.5%-94.1%) and 62.1% (95% CI 52.9%-71.3%) for patients with biochemical control and biochemical relapse respectively (p = 0.002). In the intermediate risk group with eOS >90%, actuarial overall survival was 95.3% (95% CI 89.0%-100%) and 79.8% (95% CI 68.0%-91.6%) for biochemically controlled and biochemically relapsed patients (p = 0.033). On multivariate analysis, National Comprehensive Cancer Network risk group (p = 0.005), biochemical control (p = 0.033) and eOS 10y (p < 0.001) were statistically significant. Conclusion: Biochemical control translates into improved overall survival in patients with high or intermediate risk disease and an estimated 10-year overall survival of >90%.

Herbert, Christopher, E-mail: cherbert@bccancer.bc.ca [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver Centre, Vancouver, BC (Canada); Liu, Mitchell; Tyldesley, Scott; Morris, W. James [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver Centre, Vancouver, BC (Canada); Joffres, Michel [Department of Health Sciences, Simon Fraser University, Surrey, BC (Canada); Khaira, Mandip; Kwan, Winkle [Department of Radiation Oncology, British Columbia Cancer Agency, Fraser Valley Centre, Surrey, BC (Canada); Moiseenko, Vitali [Department of Medical Physics, British Columbia Cancer Agency, Vancouver Centre, Vancouver, BC (Canada); Pickles, Thomas [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver Centre, Vancouver, BC (Canada)

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pityriasis rubra pilaris, type IV  

E-Print Network (OSTI)

Pityriasis rubra pilaris, type IV Jennifer Bragg MD,rubra pilaris (PRP), type IV (circumscribed juvenile).Type IV PRP develops in prepubertal children, is typically

Bragg, Jennifer; Witkiewicz, Agnieszka; Orlow, Seth J; Schaffer, Julie V

2005-01-01T23:59:59.000Z

422

Pityriasis rubra pilaris, type 1  

E-Print Network (OSTI)

Pityriasis rubra pilaris, type 1 Alexandria V Booth MD andhemorrhages [ 1 ]. Five types of pityriasis rubra pilarisand prognosis. The five types include the classic adult and

Booth, Alexandria V; Ma, Linglei

2005-01-01T23:59:59.000Z

423

Types of Thermocouples  

Science Conference Proceedings (OSTI)

Table 1   Properties of standard thermocouples...Table 1 Properties of standard thermocouples Type Thermoelements Base composition Melting point, °C Resisivity nΩ · m Recommended

424

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

425

Type I Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

426

Method for detection of long-lived radioisotopes in small biochemical samples  

DOE Patents (OSTI)

Disclosed is a method for detection of long-lived radioisotopes in small bio-chemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biologist host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

Turteltaub, Kenneth W. (Livermore, CA); Vogel, John S. (Union City, CA); Felton, James S. (Danville, CA); Gledhill, Barton L. (Alamo, CA); Davis, Jay C. (Livermore, CA)

1994-01-01T23:59:59.000Z

427

Application of Biochemical and Physiological Indicators for Assessing Recovery of Fish Populations in a Disturbed Stream  

Science Conference Proceedings (OSTI)

Recovery dynamics in a previously disturbed streamwere investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.

Adams, Marshall [ORNL; Ham, Kenneth [ORNL

2011-01-01T23:59:59.000Z

428

Application of Biochemical and Physiological Indicators for Assessing Recovery of Fish Populations in a Disturbed Stream  

Science Conference Proceedings (OSTI)

Recovery dynamics in a previously disturbed streamwere investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.

Adams, S. M.; Ham, Kenneth D.

2011-06-01T23:59:59.000Z

429

Biochemical and biophysical characterization of the transmissible gastroenteritis coronavirus fusion core  

Science Conference Proceedings (OSTI)

Transmissible gastroenteritis coronavirus (TGEV) is one of the most destructive agents, responsible for the enteric infections that are lethal for suckling piglets, causing enormous economic loss to the porcine fostering industry every year. Although it has been known that TGEV spiker protein is essential for the viral entry for many years, the detail knowledge of the TGEV fusion protein core is still very limited. Here, we report that TGEV fusion core (HR1-SGGRGG-HR2), in vitro expressed in GST prokaryotic expression system, shares the typical properties of the trimer of coiled-coil heterodimer (six {alpha}-helix bundle), which has been confirmed by a combined series of biochemical and biophysical evidences including size exclusion chromatography (gel-filtration), chemical crossing, and circular diagram. The 3D homologous structure model presents its most likely structure, extremely similar to those of the coronaviruses documented. Taken together, TGEV spiker protein belongs to the class I fusion protein, characterized by the existence of two heptad-repeat (HR) regions, HR1 and HR2, and the present knowledge about the truncated TGEV fusion protein core may facilitate in the design of the small molecule or polypeptide drugs targeting the membrane fusion between TGEV and its host.

Ma Guangpeng [Department of Preventive Veterinary, College of Veterinary Medicine, Northeast Agriculture University, 150030 Harbin (China); Feng Youjun [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of the Chinese Academy of Sciences (China); Gao Feng [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); China Agricultural University, Beijing 100094 (China); Wang Jinzi [China Agricultural University, Beijing 100094 (China); Liu Cheng [China Agricultural University, Beijing 100094 (China); Li Yijing [Department of Preventive Veterinary, College of Veterinary Medicine, Northeast Agriculture University, 150030 Harbin (China)]. E-mail: yijingli@163.com

2005-12-02T23:59:59.000Z

430

Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands  

DOE Patents (OSTI)

A piezoelectric sensor and assembly for measuring chemical, biochemical and physical measurands is disclosed. The piezoelectric sensor comprises a piezoelectric material, preferably a crystal, a common metal layer attached to the top surface of the piezoelectric crystal, and a pair of independent resonators placed in close proximity on the piezoelectric crystal such that an efficacious portion of acoustic energy couples between the resonators. The first independent resonator serves as an input port through which an input signal is converted into mechanical energy within the sensor and the second independent resonator serves an output port through which a filtered replica of the input signal is detected as an electrical signal. Both a time delay and an attenuation at a given frequency between the input signal and the filtered replica may be measured as a sensor output. The sensor may be integrated into an assembly with a series feedback oscillator and a radio frequency amplifier to process the desired sensor output. In the preferred embodiment of the invention, a selective film is disposed upon the grounded metal layer of the sensor and the resonators are encapsulated to isolate them from the measuring environment. In an alternative embodiment of the invention, more than two resonators are used in order to increase the resolution of the sensor.

Andle, Jeffrey C. (Bangor, ME); Lec, Ryszard M. (Orono, ME)

2000-01-01T23:59:59.000Z

431

Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana  

DOE Green Energy (OSTI)

We have isolated genomic and cDNA clones encoding a novel receptor-like protein kinase from the higher plant Arabidopsis thaliana. This kinase is being studied by combining biochemical, molecular, and genetic approaches. Domain-specific antibodies immunodecorate a polypeptide with a molecular mass of 120,000 daltons in extracts of Arabidopsis, where it has been found in all portions of the plant examined including root, stem, leaf, flower, and silique. Cytochemical analysis and initial studies using the kinase promoter with the GUS reporter gene system also indicate that the kinase is present throughout the plant. The kinase is glycosylated, like animal receptor kinases, and has been partially purified from Arabidopsis by using lectin columns. The kinase has been expressed in E coli, purified, and found to autophosphorylate on serine and threonine residues, but not on tyrosine residues. As such, it belongs to the small family of receptor-like kinases with serine/threonine specificity. Transgenic plants are now being produced that either overexpress or carry altered forms of the protein kinase gene. These experiments will help determine the natural role the kinase plays in a pathway of signal transduction.

Bleecker, A.B.

1993-01-01T23:59:59.000Z

432

Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse  

DOE Green Energy (OSTI)

Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

Bogner, J.E.; Rose, C.; Piorkowski, R.

1989-01-01T23:59:59.000Z

433

Method for detection of long-lived radioisotopes in small biochemical samples  

DOE Patents (OSTI)

Disclosed is a method for detection of long-lived radioisotopes in small biochemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biologist host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figs.

Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.

1994-11-22T23:59:59.000Z

434

Mutational and Biochemical Analysis of the DNA-entry Nuclease EndA from Streptococcus pneumoniae  

Science Conference Proceedings (OSTI)

EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.

M Midon; P Schafer; A Pingoud; M Ghosh; A Moon; M Cuneo; R London; G Meiss

2011-12-31T23:59:59.000Z

435

Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana. Progress report, January 1993  

DOE Green Energy (OSTI)

We have isolated genomic and cDNA clones encoding a novel receptor-like protein kinase from the higher plant Arabidopsis thaliana. This kinase is being studied by combining biochemical, molecular, and genetic approaches. Domain-specific antibodies immunodecorate a polypeptide with a molecular mass of 120,000 daltons in extracts of Arabidopsis, where it has been found in all portions of the plant examined including root, stem, leaf, flower, and silique. Cytochemical analysis and initial studies using the kinase promoter with the GUS reporter gene system also indicate that the kinase is present throughout the plant. The kinase is glycosylated, like animal receptor kinases, and has been partially purified from Arabidopsis by using lectin columns. The kinase has been expressed in E coli, purified, and found to autophosphorylate on serine and threonine residues, but not on tyrosine residues. As such, it belongs to the small family of receptor-like kinases with serine/threonine specificity. Transgenic plants are now being produced that either overexpress or carry altered forms of the protein kinase gene. These experiments will help determine the natural role the kinase plays in a pathway of signal transduction.

Bleecker, A.B.

1993-06-01T23:59:59.000Z

436

TYPE OF OPERATION  

Office of Legacy Management (LM)

3!NEEi_S1 3!NEEi_S1 past: -~~~-~~~~~-~~~---------- current: ------------_------------- Owner contacted q yes g no; if ye=, date contacted TYPE OF OPERATION --~~__--~-~~~---- 5 Research & Development 5 Facility Type 0 Production scale testing c1 Pilot Scale 0 Bench Scale Process z Theareti cal Studi es Sample Sr Analysis 0 Production D Disposal/Storage TYPE OF CONTRACT ---------------- 0 Manufacturing 0 University 0 Research Clrganization B Government Cpanaored Faci 1 i ty 0 Other ~~---~~---_--~~-----_ a Prime 13 Subcontract& D PurcSase Order 0 Other information (i.e., cost + fixed fee, unit price, time & material, +z) ----_----------------------- Cantract/Purchaae Order #-d-z=&-/) -2_7~-------------Is_------------ PERIOD: CONTRACTING I%~(?) - 1465

437

The Napier Type System  

E-Print Network (OSTI)

Persistent programming is concerned with the construction of large and long lived systems of data. In designing and building persistent object systems, we are attempting to regularise the activities that are performed on data by programming languages, operating systems, database management systems and file systems. We have identified the following areas of research which we are investigating in the context of persistent systems. They are: controlling complexity, protection of data, orthogonal persistence, controlled system evolution and concurrent computation. In this paper, we describe the data modelling facilities of the Napier type system. We also demonstrate the flexible and incremental nature of the type checking mechanism that is required for persistent programming. The type system is central to the nature of the Napier language and we will demonstrate how it has been designed to solve problems in the five areas identified above.

R. Morrison; A.L. Brown; R. Carrick; R.C.H. Connor; A. Dearle; M.P. Atkinson

1989-01-01T23:59:59.000Z

438

Types of quantum information  

E-Print Network (OSTI)

Quantum, in contrast to classical, information theory, allows for different incompatible types (or species) of information which cannot be combined with each other. Distinguishing these incompatible types is useful in understanding the role of the two classical bits in teleportation (or one bit in one-bit teleportation), for discussing decoherence in information-theoretic terms, and for giving a proper definition, in quantum terms, of ``classical information.'' Various examples (some updating earlier work) are given of theorems which relate different incompatible kinds of information, and thus have no counterparts in classical information theory.

Robert B. Griffiths

2007-07-25T23:59:59.000Z

439

Conditional belief types  

E-Print Network (OSTI)

We study type spaces where a player’s type at a state is a conditional probability on the space. We axiomatize these type spaces using conditional belief operators, and examine three additional axioms of increasing strength. First, introspection, which requires the agent to be unconditionally certain of her beliefs. Second, echo, according to which the unconditional beliefs implied by the condition must be held given the condition. Third, determination, which says that the conditional beliefs are the unconditional beliefs that are conditionally certain. The echo axiom implies that conditioning on an event is the same as conditioning on the event being certain, which formalizes the standard informal interpretation of conditioning in probability theory. The echo axiom also implies that the conditional probability given an event is a prior of the unconditional probability. The game-theoretic application of our model, which we treat in the context of an example, sheds light on a number of basic issues in the analysis of extensive form games. Type spaces are closely related to the sphere models of counterfactual conditionals and to models of hypothetical knowledge, and we discuss these relationships in detail.

Alfredo Di; Tillio Joseph; Y. Halpern; Dov Samet

2013-01-01T23:59:59.000Z

440

Spray type wet scrubber  

SciTech Connect

A spray type wet scrubber includes a plurality of spray nozzles installed in parallel banks across the path of gas stream within the scrubber body, and partition walls held upright in grating fashion to divide the path of gas stream into a plurality of passages, each of which accommodates one of the spray nozzles.

Atsukawa, M.; Tatani, A.

1978-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Types of Multinet System  

Science Conference Proceedings (OSTI)

A limiting factor in research on combining classifiers is a lack of awareness of the full range of available modular structures. One reason for this is that there is as yet little agreement on a means of describing and classifying types of multiple classifier ...

Amanda J. C. Sharkey

2002-06-01T23:59:59.000Z

442

Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

for for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass Xiongjun Shao a , Mingjie Jin b,c , Anna Guseva a , Chaogang Liu d , Venkatesh Balan b,c , David Hogsett d , Bruce E. Dale b,c , Lee Lynd a,d,⇑ a Thayer School of Engineering at Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA b Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3900 Collins Road, Lansing, MI 48910, USA c Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA d Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA a r t i c l e i n f o Article history: Received 8 March 2011 Received in revised form 6 May 2011 Accepted

443

COATINGS FOR PROTECTION OF EQUIPMENT FOR BIOCHEMICAL PROCESSING OF GEOTHERMAL RESIDUES: PROGRESS REPORT FY 97  

DOE Green Energy (OSTI)

Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. The findings are also relevant to other moderate temperature brine environments where corrosion is a problem. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobadus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Long-term tests on the durability of ceramic-epoxy coatings in brine and bacteria are ongoing. Initial indications are that this coating has suitable characteristics. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

ALLAN,M.L.

1997-11-01T23:59:59.000Z

444

Coatings for protection of equipment for biochemical processing of geothermal residues: Progress report FY`97  

DOE Green Energy (OSTI)

Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobacillus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

Allan, M.L.

1997-11-01T23:59:59.000Z

445

Scripting the type inference process  

Science Conference Proceedings (OSTI)

To improve the quality of type error messages in functional programming languages,we propose four techniques which influence the behaviour of constraint-based type inference processes. These techniques take the form of externally supplied type inference ... Keywords: constraints, directives, domain-specific programming, type errors, type inference

Bastiaan Heeren; Jurriaan Hage; S. Doaitse Swierstra

2003-08-01T23:59:59.000Z

446

TYPE OF OPERATION  

Office of Legacy Management (LM)

~~__--------_____ ~~__--------_____ q Research & Development q Production scale testing Cl Pilat Scale 0 Bench Scale Process 0 Theoretical Studies a Sample & Analysis c] Production 0 Disposal/Storage TYPE OF CONTRACT ~~__-------_--__ 0 Prime 0 Subcontractor 0 Purchase Order a d//F- a Faci 1 i ty Type a tlanuf acturi ng 0 University q Research Organization 0 Government Sponsored Facility a other --------------__----- Other information (i.e., cost + fixed fee, unit price, time & material, qtr) ------- -1------------------_L______ Contract/Purchase Order # CONTRACTING PE?IOD- 42 --------------L---- --------- ----------------_---______ OWNERSHIP: AEC/MED AEC/tlED OWNED ----- LE_A_sEE GOUT GO' JT CONTRACTOR E!!!!E!z LEASED - ----_ ---_OW_E!L LANDS BUILDINGS

447

TYPE OF OPERATION  

Office of Legacy Management (LM)

Owner c:ontacted Owner c:ontacted TYPE OF OPERATION ----------------_ jJ Research & Development 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process i Theoretical Studies Sample & Analysis B Production 0 Disposal/Storage $r Prime 0 Subcontract& 0 Purchase Order 0 Facility Type 0 Manufacturing 0 University 0 Research Organization a Other information (i.e., cost + fixed fern, unit price,' time & mate ~r~~-r~~tf~-_~_-_~-~f-~~J~ d ial, etc)_kl/Jlfits ---- -7---- -- Contract/Purchase Order # w?@7-e?-b $ 6, i;,_~~~~~----------------- - ----- C_O!!IF!KXYE-PEELEg: -lTlL-/L?~J --------------------------- OWNERSHXP: AEWHEC AEC/HED' GOVT GB' JT SiXiRACTOR CONiRkCiGR WEE LEAs_EE a!!!%? IEEE!? --------_ ..---LEASED ._ OWNED LANDS BUILDINGS EQUIPMENT

448

TYPE OF OPERATION  

Office of Legacy Management (LM)

OWNEF? (S) OWNEF? (S) Current: ____ LcrcJksLG! _________ Owner contacted n yes WI-IO; if yes, date contacted-- TYPE OF OPERATION ----_-------_---- m Research & Development Cl Pilot Scale Cl Disposal/Storaqe TYPE OF CDNTRACT ---__------__--- q Prime 0 Subcnntractor Cl Purchase Order 0 Other infcrmation (i.e., cnst + fixed fee, unit price, time 84 materi+, e.tc) v-7Y07-&G-W ---------------------------- Contract/Pur&aae Order # 0 -?+7- FJc-(CL --___--------~----_______________ CONTRACTING PEXIOD: fl& ,&I;'"'-?;': (&e-?)_-- ' ------------------ OWNERSHIP: AEC/MED GEC/MED SOVT GOVT CONTRACTOR CCNTRACTOR OWNE3 LEASE3 OWNE3 LEASED OWNE3 ----- ------ ----- ------ -__------- LE.352 LANDS u u q BUILDINGS EQUIPMENT 0 FINAL PRODUCT WASTE G RESIDUE a

449

Solar-type Variables  

E-Print Network (OSTI)

The rich acoustic oscillation spectrum in solar-type variables make these stars particularly interesting for studying fluid-dynamical aspects of the stellar interior. I present a summary of the properties of solar-like oscillations, how they are excited and damped and discuss some of the recent progress in using asteroseismic diagnostic techniques for analysing low-degree acoustic modes. Also the effects of stellar-cycle variations in low-mass main-sequence stars are addressed.

Houdek, Gunter

2009-01-01T23:59:59.000Z

450

Practical pluggable types for Java  

E-Print Network (OSTI)

This paper introduces the Checker Framework, which supports adding pluggable type systems to the Java language in a backward-compatible way. A type system designer defines type qualifiers and their semantics, and a compiler ...

Papi, Matthew M

2008-01-01T23:59:59.000Z

451

Practical pluggable types for Java.  

E-Print Network (OSTI)

??This paper introduces the Checker Framework, which supports adding pluggable type systems to the Java language in a backward-compatible way. A type system designer defines… (more)

Papi, Matthew M

2008-01-01T23:59:59.000Z

452

Type inference for datalog with complex type hierarchies  

Science Conference Proceedings (OSTI)

Type inference for Datalog can be understood as the problem of mapping programs to a sublanguage for which containment is decidable. To wit, given a program in Datalog, a schema describing the types of extensional relations, and a user-supplied set of ... Keywords: datalog, type inference, type system

Max Schäfer; Oege de Moor

2010-01-01T23:59:59.000Z

453

How Can Men Destined for Biochemical Failure After Androgen Deprivation and Radiotherapy Be Identified Earlier?  

SciTech Connect

Purpose: The significance of prostate-specific antigen (PSA) increases during the recovery of androgen after androgen deprivation therapy (ADT) and radiotherapy for prostate cancer is not well understood. This study sought to determine whether the initial PSA increase from undetectable after completion of all treatment predicts for eventual biochemical failure (BF). Methods and Materials: Between July 1992 and March 2004, 163 men with a Gleason score of 8-10 or initial PSA level >20 ng/mL, or Stage T3 prostate cancer were treated with radiotherapy (median dose, 76 Gy) and ADT and achieved an undetectable PSA level. The first detectable PSA level after the cessation of ADT was defined as the PSA sentinel rise (SR). A PSA-SR of >0.25, >0.5, >0.75, and >1.0 ng/mL was studied as predictors of BF (nadir plus 2 ng/mL). Cox proportional hazards models were used for univariate and multivariate analyses for BF adjusting for pretreatment differences in Gleason score, stage, PSA level (continuous), dose (continuous), and ADT duration (<12 vs. {>=}12 months). Results: Of the 163 men, 41 had BF after therapy. The median time to BF was 25 months (range, 4-96). The 5-year BF rate stratified by a PSA-SR of {<=}0.25 vs. >0.25 ng/mL was 28% vs. 43% (p = 0.02), {<=}0.5 vs. >0.5 ng/mL was 30% vs. 56% (p = 0.0003), {<=}0.75 vs. >0.75 ng/mL was 29% vs. 66% (p < 0.0001), and {<=}1.0 vs. >1.0 ng/mL was 29% vs. 75% (p < 0.0001). All four PSA-SRs were independently predictive of BF on multivariate analysis. Conclusion: The PSA-SR predicts for BF. A PSA-SR of >0.5 ng/mL can be used for early identification of men at greater risk of BF.

D'Ambrosio, David J. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Ruth, Karen [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA (United States); Horwitz, Eric M.; Uzzo, Robert G. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Pollack, Alan [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)], E-mail: mark.buyyounouski@fccc.edu

2008-04-01T23:59:59.000Z

454

TYPE OF OPERATION  

Office of Legacy Management (LM)

_---------_-- _---------_-- Research & Development 0 Production scale testing Cl Pilat Scale 0 Bench Scale Process 0 Theoretical Studies Cl Sample SC Analysis !J Production 0 Dis.posal/Storage 0 Prime ." 0 Subcontract& 0 Purchase Order 0 Facility Type 0 Manufacturing 0 University 0 Research Org&ization 0 Government Sponsored Facility Cl Other ---------_---__-____- Other information (i.e., cost + fixed fee, unit price, time & material, gtr) Coni+act/Purchase Order # ---------------------_--_________ C!2kEE~_CIL_N_G-EE~LE~: /5J--L-,r4 53 -------------------------------------- OWNERSHIP: AEC/MED AEC/MED GOVT GOVT CONTRACTOR CONTRACTOR !w!!E? ___--- " EWNED LEASED L_EesEE OWNED LEASED ---------_ --_------ LANDS BUILDINGS ' EQUIPMENT

455

Forecast Technical Document Forecast Types  

E-Print Network (OSTI)

Forecast Technical Document Forecast Types A document describing how different forecast types are implemented in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Forecast Types Background Different `types' of forecast are possible for a specified area

456

Type inference for generic Haskell  

E-Print Network (OSTI)

Abstract. The more expressive a type system, the more type information has to be provided in a program. Having to provide a type is sometimes a pain, but lacking expressivity is often even worse. There is a continuous struggle between expressivity and (type-)verbosity. However, even very expressive type systems allow type inference for parts of a program. Generic Haskell is an extension of Haskell that supports defining generic functions. Generic Haskell assumes that the type of a generic function is explicitly specified. This is often no problem, but sometimes it is rather painful to have to specify a type – in particular for generic functions with many dependencies – and sometimes the specified type can be generalized. In this paper, we identify three type inference problems specific to generic functions, and present (partial) solutions to each of them. 1

Alexey Rodriguez; Johan Jeuring; Andres Löh

2005-01-01T23:59:59.000Z

457

TYPE OF OPERATION  

Office of Legacy Management (LM)

______ ______ 0 Research & Development 9 Faciiity Type 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Theoretical Studies Cl Sample 84 Analysis Production Di aposal /Storage g ;E:"V',;=:;;';"" IJ Research Organization 0 Government Sponeored Facility q Other --------------------- 0 Prime q ,@ Subcontract& Other information (i.e., cost 0 Purchase Order + fixed fee, unit price, time ?8 material, etc) -------mm----+------------- Contract/Purchase Order # CONTRACTING PERIODr c&L&.& rqs-z i i -----~_--~~~_----_ -------------------------------------- OWNERSHIP8 CIEC/tlED CIEC/MED GOUT WNED LE&xU _o!!EED LANDS BUILDINGS EQUIPMENT iii E : ORE OR RAW MATL IJ : E FINCIL PRODUCT [7 WCISTE b RESIDUE q GOUT

458

TYPE OF OPERATION  

Office of Legacy Management (LM)

----------------- ----------------- 0 Research & Development .a Production scale testing 0 Pilat Scale 0 Bench Scale Process 0 Thearetical Studies Cl Sample 84 Analysis 0 Production *i DiaposalKitorage Cl Facility Tybe q Government Sponsored Facility Other R.L- 6:e 14 1 1 ---------- --------- I I I TYPE OF CONTRACT ~-__-----------_ fl Prime *I 0 Subcantractbr Other infuriation (i.e., L.t + fixed fee, kit price, 0 Purchase Order time k mat*iik, gtc) /I -~---------'-t-----------~- ----------II---------------- Contract/Purchase Order # I EP!EBEII!G-PEEI9E: ---------------------------------~---- , OWNERSHiP: : I I j ,' / 1 AEC/tlED AEC/MED GOUT GOUT E!!NE_D LEASEI! !z%!NE_D CONTTACTOR CONTf?qCTOR LEASE?? ---w!En- ---LEL3SEI! i I I I LANDS BUILDINGS EIXIIPMENT

459

A type system for CHR  

E-Print Network (OSTI)

We propose a generic type system for the Constraint Handling Rules (CHR), a rewriting rule language for implementing constraint solvers. CHR being a high-level extension of a host language, such as Prolog or Java, this type system is parameterized by the type system of the host language. We show the consistency of the type system for CHR w.r.t. its operational semantics. We also study the case when the host language is a constraint logic programming language, typed with the prescriptive type system we developed in our previous work. In particular, we show the consistency of the resulting type system w.r.t. the extended execution model CLP+CHR. This system is implemented through an extension of our type checker TCLP for constraint logic languages. We report on experimental results about the type-checking of 12 CHR solvers and programs, including TCLP itself.

Emmanuel Coquery; François Fages

2005-01-01T23:59:59.000Z

460

Pluggable type-checking for custom type qualifiers in Java  

E-Print Network (OSTI)

We have created a framework for adding custom type qualifiers to the Javalanguage in a backward-compatible way. The type system designer definesthe qualifiers and creates a compiler plug-in that enforces theirsemantics. ...

Papi, Matthew M.

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "type biochemical corn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.