National Library of Energy BETA

Sample records for type application prototype

  1. Rapid prototyping for radio-frequency geolocation applications...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rapid prototyping for radio-frequency geolocation applications Citation Details In-Document Search Title: Rapid prototyping for radio-frequency geolocation applications...

  2. Rapid prototyping for radio-frequency geolocation applications (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Conference: Rapid prototyping for radio-frequency geolocation applications Citation Details In-Document Search Title: Rapid prototyping for radio-frequency geolocation applications Previous space-to-ground, single-platform geolocation experiments exploiting time-difference-of arrival (TDOA) via interferometry were successful at separating and quantitatively characterizing interfering radio frequency (RF) signals from expected RF transmissions. Much of the success of these

  3. Visapult: A Prototype Remote and Distributed Visualization Application and

    Office of Scientific and Technical Information (OSTI)

    Framework (Conference) | SciTech Connect Conference: Visapult: A Prototype Remote and Distributed Visualization Application and Framework Citation Details In-Document Search Title: Visapult: A Prototype Remote and Distributed Visualization Application and Framework We describe an approach used for implementing a highly efficient and scalable method for direct volume rendering. Our approach uses a pipelined-parallel decomposition composed of parallel computers and commodity desktop hardware.

  4. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect (OSTI)

    Carlstrom, Charles, M., Jr.

    2009-07-07

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

  5. Fastcast: Integration and application of rapid prototyping and computational simulation to investment casting

    SciTech Connect (OSTI)

    Maguire, M.C.; Baldwin, M.D.; Atwood, C.L.

    1996-09-01

    The emergence of several rapid prototyping and manufacturing (RP and M) technologies is having a dramatic impact on investment casting. While the most successful of the rapid prototyping technologies are almost a decade old, relatively recent process advances in their application have produced some remarkable success in utilizing their products as patterns for investment castings. Sandia National Laboratories has been developed highly coupled experimental and computational capabilities to examine the investment casting process with the intention of reducing the amount of time required to manufacture castings, and to increase the quality of the finished product. This presentation will begin with process aspects of RP and M pattern production and handling, shell fabrication, burnout, and casting. The emphasis will be on how the use of Stereolithography (SL) or Selective Laser Sintered (SLS) patterns differs from more traditional wax pattern processes. Aspects of computational simulation to couple design, thermal analysis, and mold filling will be discussed. Integration of these topics is probably the greatest challenge to the use of concurrent engineering principles with investment casting. Sandia has conducted several experiments aimed at calibrating computer codes and providing data for input into these simulations. Studies involving materials as diverse as stainless steel and gold have been conducted to determine liquid metal behavior in molds via real time radiography. The application of these experiments to predictive simulations will be described.

  6. Application of organosilicon pre-sic polymer technology to optimize rapid prototyping of ceramic components

    SciTech Connect (OSTI)

    Saha, C.K.; Zank, G. [Dow Corning Corporation, Midland, MI (United States); Ghosh, A. [Philips Display Components Co., Ann Arbor, MI (United States)

    1995-12-01

    Developments of applications of advanced ceramics e.g., SiC, Si{sub 3}N{sub 4}, CMCs need to be on a faster track than what the current processing technologies can afford. Rapid reduction in time to market of new and complex products can be achieved by using Rapid Prototyping and Manufacturing Technologies (RP&M) e.g., 3D-printing, selective laser sintering, stereolithography etc. These technologies will help advanced ceramics meet the performance challenges at an affordable price with reliable manufacturing technologies. The key variables of the RP&M technologies for ceramics are the nature of the polymer carrier and/or the binder, and the powder. Selection and/or the production of a proper class of polymer carrier/binder, understanding their impact on the processing of ceramics such as polymer-powder interaction, speed of hardening the green body in a controlled manner, ability to retain shape during forming and consolidation, delivering desirable properties at the end, are crucial to develop the low cost, high quality ceramic products. Organosilicon pre-SiC polymer technology route to advanced ceramics is currently being commercialized by Dow Corning. Methods to use this class of polymer as a processing aid in developing potentially better RP&M technologies to make better ceramics have been proposed in this work.

  7. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    SciTech Connect (OSTI)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  8. Application of Printed Circuit Board Technology to FT-ICR MS Analyzer Cell Construction and Prototyping

    SciTech Connect (OSTI)

    Leach, Franklin E.; Norheim, Randolph V.; Anderson, Gordon A.; Pasa-Tolic, Ljiljana

    2014-12-01

    Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) remains themass spectrometry platform that provides the highest levels of performance for mass accuracy and resolving power, there is room for improvement in analyzer cell design as the ideal quadrupolar trapping potential has yet to be generated for a broadband MS experiment. To this end, analyzer cell designs have improved since the field’s inception, yet few research groups participate in this area because of the high cost of instrumentation efforts. As a step towards reducing this barrier to participation and allowing for more designs to be physically tested, we introduce a method of FT-ICR analyzer cell prototyping utilizing printed circuit boards at modest vacuum conditions. This method allows for inexpensive devices to be readily fabricated and tested over short intervals and should open the field to laboratories lacking or unable to access high performance machine shop facilities because of the required financial investment.

  9. Greenbrier Prototype

    SciTech Connect (OSTI)

    None

    2010-06-18

    This case study describes a prototype home that is the model home for the Homes at Greenbrier in Oakdale, Connecticut, and demonstrates the builder's concept of “attainable sustainable” of offering high performance homes at mid-market prices.

  10. Property:NEPA Application Type | Open Energy Information

    Open Energy Info (EERE)

    Type Jump to: navigation, search Property Name NEPA Application Type Property Type String Allows Values NOI;GPD;POO;POU;POD;ROW;Sundry Notice Pages using the property "NEPA...

  11. LDRD final report on Si nanocrystal as device prototype for spintronics applications.

    SciTech Connect (OSTI)

    Carroll, Malcolm S.; Verley, Jason C.; Pan, Wei; Banks, James Clifford; Brewer, Luke N.; Sheng, Josephine Juin-Jye; Barton, Daniel Lee; Dunn, Roberto G.

    2006-11-01

    The silicon microelectronics industry is the technological driver of modern society. The whole industry is built upon one major invention--the solid-state transistor. It has become clear that the conventional transistor technology is approaching its limitations. Recent years have seen the advent of magnetoelectronics and spintronics with combined magnetism and solid state electronics via spin-dependent transport process. In these novel devices, both charge and spin degree freedoms can be manipulated by external means. This leads to novel electronic functionalities that will greatly enhance the speed of information processing and memory storage density. The challenge lying ahead is to understand the new device physics, and control magnetic phenomena at nanometer length scales and in reduced dimensions. To meet this goal, we proposed the silicon nanocrystal system, because: (1) It is compatible with existing silicon fabrication technologies; (2) It has shown strong quantum confinement effects, which can modify the electric and optical properties through directly modifying the band structure; and (3) the spin-orbital coupling in silicon is very small, and for isotopic pure {sup 28}Si, the nuclear spin is zero. These will help to reduce the spin-decoherence channels. In the past fiscal year, we have studied the growth mechanism of silicon-nanocrystals embedded in silicon dioxide, their photoluminescence properties, and the Si-nanocrystal's magnetic properties in the presence of Mn-ion doping. Our results may demonstrate the first evidence of possible ferromagnetic orders in Mn-ion implanted silicon nanocrystals, which can lead to ultra-fast information process and ultra-dense magnetic memory applications.

  12. Power API Prototype

    Energy Science and Technology Software Center (OSTI)

    2014-12-04

    The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype.more » The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurement capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.« less

  13. Prototype Programmatic Agreement Guidance | Department of Energy

    Energy Savers [EERE]

    Prototype Programmatic Agreement Guidance Prototype Programmatic Agreement Guidance Prototype programmatic agreements are a type of program alternative that the Advisory Council on Historic Preservation (ACHP) can designate to assist federal agencies in their efforts to comply with the requirements of Section 106 of the National Historic Preservation Act (16 U.S.C. 470f) and its implementing regulations (36 CFR Part 800). Prototype agreements may be used for the same type of program or

  14. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    SciTech Connect (OSTI)

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    The objective of the proposed research is to utilize modern computational tools, integrated with focused experiments, to design innovative ferritic NiAl-strengthened superalloys for fossil-energy applications at temperatures up to 1,033 K. Specifically, the computational alloy design aims toward (1) a steady-state creep rate of approximately 3 x 10{sup -11} s{sup -1} at a temperature of 1,033 K and a stress level of 35 MPa, (2) a ductility of 10% at room temperature, and (3) good oxidation and corrosion resistance at 1,033 K. The research yielded many outstanding research results, including (1) impurity-diffusion coefficients in {alpha} Fe have been calculated by first principles for a variety of solute species; (2) the precipitates were characterized by the transmission-electron microscopy (TEM) and analytical-electron microscopy (AEM), and the elemental partitioning has been determined; (3) a bending ductility of more than 5% has been achieved in the unrolled materials; and (4) optimal compositions with minimal secondary creep rates at 973 K have been determined. Impurity diffusivities in {alpha} Fe have been calculated within the formalisms of a harmonic transition-state theory and Le Claire nine-frequency model for vacancy-mediated diffusion. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion. Calculated activation energies for Ta and Hf impurities suggest that these solutes should display impurity-diffusion coefficients larger than that for self-diffusion in the body-centered cubic Fe. Preliminary mechanical-property studies identified the alloy Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B (FBB-8) in weight percent (wt.%) for detailed investigations. This alloy shows precipitation of NiAl particles with an average diameter of 130 nm. In conjunction with the computational alloy design, selected experiments are performed to investigate the effect of the Al content on the ductility and creep of prototype Fe-Ni-Cr-Al-Mo alloys. Three-point-bending experiments show that alloys containing more than 5 wt.% Al exhibit poor ductility (< 2%) at room temperature, and their fracture mode is predominantly of a cleavage type. Two major factors governing the poor ductility are (1) the volume fraction of NiAl-type precipitates, and (2) the Al content in the {alpha}-Fe matrix. A bend ductility of more than 5% can be achieved by lowering the Al concentration to 3 wt.% in the alloy. The alloy containing about 6.5 wt.% Al is found to have an optimal combination of hardness, ductility, and minimal creep rate at 973 K. A high volume fraction of precipitates is responsible for the good creep resistance by effectively resisting the dislocation motion through Orowan-bowing and dislocation-climb mechanisms. The effects of stress on the creep rate have been studied. With the threshold-stress compensation, the stress exponent is determined to be 4, indicating power-law dislocation creep. The threshold stress is in the range of 40-53 MPa. The addition of W can significantly reduce the secondary creep rates. Compared to other candidates for steam-turbine applications, FBB-8 does not show superior creep resistance at high stresses (> 100 MPa), but exhibit superior creep resistance at low stresses (< 60 MPa).

  15. Rapid prototype and test

    SciTech Connect (OSTI)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  16. OriginalPrototypes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June, 1998) Ionization Chamber with one cell instrumented Ring 2-3 Silicon Detector Prototype CsI with dimensions approximately of Ring 2-3 Prototype CsI with PMT on Ring 2-3...

  17. MHK Projects/WavePlane Prototype 1 | Open Energy Information

    Open Energy Info (EERE)

    WavePlane Prototype 1 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  18. Cell Prototyping Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Prototyping Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  20. A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization

    SciTech Connect (OSTI)

    Currie, J.W.; Wilfert, G.L.; March, F.

    1990-01-01

    The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

  1. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  2. Rapid prototyping: A paradigm shift in investment casting

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Baldwin, M.D.; Pardo, B.T.

    1996-09-01

    The quest for fabricating complex metal parts rapidly and with minimal cost has brought rapid prototyping (RP) processes to the forefront of the investment casting industry. Relatively recent advances in DTM Corporation`s selective laser sintering (SLS) and 3D Systems stereolithography (SL) processes have had a significant impact on the overall quality of patterns produced using these rapid prototyping processes. Sandia National Laboratories uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype and small lot production parts in support of a program called FASTCAST. The SLS process is used to fabricate patterns from materials such as investment casting wax, polycarbonate, and a new material called TrueForm PM{trademark}. With the timely introduction of each of these materials, the quality of patterns fabricated has improved. The development and implementation of SL QuickCast{trademark} software has enabled this process to produce highly accurate patterns for use in investment casting. This paper focuses on the successes with these new pattern materials and the infrastructure required to cast rapid prototyping patterns successfully. In addition, a brief overview of other applications of rapid prototyping at Sandia will be discussed.

  3. Test report -- Prototype core sampler

    SciTech Connect (OSTI)

    Linschooten, C.G.

    1995-01-17

    The purpose of this test is to determine the adequacy of the prototype sampler, provided to Westinghouse Hanford Company (WHC) by DOE-RL. The sampler was fabricated for DOE-RL by the Concord Company by request of DOE-RL. This prototype sampler was introduced as a technology that can be easily deployed (similar to the current auger system) and will reliably collect representative samples. The sampler is similar to the Universal Sampler i.e., smooth core barrel and piston with an O-ring seal, but lacks a rotary valve near the throat of the sampler. This makes the sampler inappropriate for liquid sampling, but reduces the outside diameter of the sampler considerably, which should improve sample recovery. Recovery testing was performed with the supplied sampler in three different consistencies of Kaolin sludge simulants.

  4. Majorana Thermosyphon Prototype Experimental Results

    SciTech Connect (OSTI)

    Fast, James E.; Reid, Douglas J.; Aguayo Navarrete, Estanislao

    2010-12-17

    Objective The Majorana demonstrator will operate at liquid Nitrogen temperatures to ensure optimal spectrometric performance of its High Purity Germanium (HPGe) detector modules. In order to transfer the heat load of the detector module, the Majorana demonstrator requires a cooling system that will maintain a stable liquid nitrogen temperature. This cooling system is required to transport the heat from the detector chamber outside the shield. One approach is to use the two phase liquid-gas equilibrium to ensure constant temperature. This cooling technique is used in a thermosyphon. The thermosyphon can be designed so the vaporization/condensing process transfers heat through the shield while maintaining a stable operating temperature. A prototype of such system has been built at PNNL. This document presents the experimental results of the prototype and evaluates the heat transfer performance of the system. The cool down time, temperature gradient in the thermosyphon, and heat transfer analysis are studied in this document with different heat load applied to the prototype.

  5. UDC Develops Prototype High-Efficiency OLED Undercabinet Luminaire

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has demonstrated the real-world application of a novel lighting technology by developing two pre-prototype OLED undercabinet lighting systems that exceed 420 total lumens at an efficacy of more than 55 lm/W, with an estimated lifetime (LT70) in excess of 10,000 hours, and a color rendering index (CRI) greater than 85.

  6. Lancaster Live/Work Townhome Prototype

    SciTech Connect (OSTI)

    2010-04-01

    This case study describes development of a prototype live-work townhome that is highly efficient at 45% energy savings (95% counting photovoltaic system).

  7. Y-12: Seawolf to National Prototype Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Propulsor, which ultimately led to Y-12 being designated as the National Prototype Center. ... This "propulsor development center" at Y-12 led to other opportunities for unique designs ...

  8. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Searchable Application Supplemental Information

  9. OPERATING THE WAND AND HERCULES PROTOTYPE SYSTEMS

    SciTech Connect (OSTI)

    K. GRUETZMACHER; ET AL

    2001-01-01

    Two prototype systems for low-density Green is Clean (GIC) waste at Los Alamos National Laboratory (LANL) have been in operation for three years at the Solid Waste Operation's (SWOs) non-destructive assay (NDA) building. The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) are used to verify the waste generator's acceptable knowledge (AK) that low-density waste is nonradioactive. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAs) that has been actively segregated as ''clean'' (i.e., nonradioactive) through the use of waste generator AK. GIC waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from RCAs at LANL might be free of contamination. To date, with pilot programs at five facilities at LANL, 3000 cubic feet of GIC waste has been verified clean by these two prototype systems. Both the WAND and HERCULES systems are highly sensitive measurement systems optimized to detect very small quantities of common LANL radionuclides. Both of the systems use a set of phoswich scintillation detectors in close proximity to the waste, which have the capability of detecting plutonium-239 concentrations below 3 pCi per gram of low density waste. Both systems detect low-energy x-rays and a broad range of gamma rays (10-2000 keV), while the WAND system also detects high energy beta particles (>100 keV). The WAND system consists of a bank of six shielded detectors which screen low density shredded waste or stacked sheets of paper moving under the detectors in a twelve inch swath on a conveyor belt. The WAND system was developed and tested at the Los Alamos Plutonium Facility in conjunction with instrument system designers from the Los Alamos Safeguards Science and Technology group. The HERCULES system consists of a bank of three shielded detectors which screen low-density waste in two cubic foot cardboard boxes or in bags sitting on a turntable. Waste that does not pass the verification process can be examined within the facility to determine the type and quantity of the contamination and its origin within a waste container. The paper discusses lessons learned that have helped generators improve their AK segregation.

  10. A new small Stirling engine prototype for auxiliary employments aboard

    SciTech Connect (OSTI)

    Bartolini, C.M.; Caresana, F.

    1995-12-31

    The development of a small size Stirling engine as low power system for auxiliary employments aboard sailing boats or caravan still appears interesting. In previous papers the author presented the design, the prototype construction and the experimental tests of a monocylinder P-type configuration with the regenerator and part of the heat exchangers set on the displacer; the heat was irradiated by the head and it was removed by the water circulating through the rod of the displacer and around the cylinder. Considerable reductions in dead volume and global dimensions were obtained. At the same time, however, the weight of the heat exchanger regenerator displacer, mainly due to the cooler, kept the speed of revolution from increasing, with consequent limitation of specific power value; furthermore thermal insulation between hot and cold ends and displacer rod seals proved to be critical features as far as reliability is concerned. A new prototype has been developed adopting {gamma}-type configuration with stationary heat exchangers and with the displacer connecting rod linked to the crankshaft by means of an epicyclic train able to make its movement linear thus eliminating rod seal side loadings. The paper deals with the criteria followed with the design and the prototype construction; the adopted technical solutions are shown and discussed.

  11. Characterization of Prototype LSST CCDs

    SciTech Connect (OSTI)

    OCONNOR,P.; FRANK, J.; GEARY, J.C.; GILMORE, D.K.; KOTOV, I.; RADEKA, V.; TAKACS, P.; TYSON, J.A.

    2008-06-23

    The ambitious science goals of the Large Synoptic Survey Telescope (LSST) will be achieved in part by a wide-field imager that will achieve a new level of performance in terms of area, speed, and sensitivity. The instrument performance is dominated by the focal plane sensors, which are now in development. These new-generation sensors will make use of advanced semiconductor technology and will be complemented by a highly integrated electronics package located inside the cryostat. A test laboratory has been set up at Brookhaven National Laboratory (BNL) to characterize prototype sensors and to develop test and assembly techniques for eventual integration of production sensors and electronics into modules that will form the final focal plane. As described in [1], the key requirements for LSST sensors are wideband quantum efficiency (QE) extending beyond lpm in the red, control of point spread function (PSF), and fast readout using multiple amplifiers per chip operated in parallel. In addition, LSST's fast optical system (f71.25) places severe constraints on focal plane flatness. At the chip level this involves packaging techniques to minimize warpage of the silicon die, and at the mosaic level careful assembly and metrology to achieve a high coplanarity of the sensor tiles. In view of the long lead time to develop the needed sensor technology, LSST undertook a study program with several vendors to fabricate and test devices which address the most critical performance features [2]. The remainder of this paper presents key results of this study program. Section 2 summarizes the sensor requirements and the results of design optimization studies, and Section 3 presents the sensor development plan. In Section 4 we describe the test bench at BNL. Section 5 reports measurement results obtained to date oh devices fabricated by several vendors. Section 6 presents a summary of the paper and an outlook for the future work. We present characterization methods and results on a number of new devices produced specifically to address LSST's performance goals, including flatness, QE, PSF, dark current, read noise, CTE, cosmetics, and crosstalk. The results indicate that commercially produced, thick n-channel over-depleted CCDs with excellent red response can achieve tight PSF at moderate applied substrate bias with no evidence of persistent image artifacts. We will also report ongoing studies of mosaic assembly techniques to achieve chip-to-chip co-planarity, high fill factor, and thermal stability.

  12. Subsea processing and control system in the GASP project; Testing of the prototype system

    SciTech Connect (OSTI)

    Nordvik, H.S. )

    1992-03-01

    The subsea production and processing system developed under the Goodfellow Assocs. Subsea Production (GASP) project involved two stages of separation that led to the production of exportable-quality crude oil by pipeline. The produced gas is transported along a separate line. This paper described key elements of the subsea process system. A prototype system was developed during the second phase of the project. The system was tested under dry and submerged conditions in a dry dock. Key features of the prototype system and the tests carried out are described. Prototype testing proved the viability of the GASP system and helped identify areas requiring particular attention and improvement for future applications.

  13. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  14. Wave power prototype nears construction phase

    SciTech Connect (OSTI)

    Baggott, M.; Morris, R.

    1985-02-01

    A Scottish-led consortium of major United Kingdom (UK) and European companies will soon decide on the next stage in the development of a prototype 5-MW wave energy system. The oscillating water column, wave energy Breakwater system was developed in Scotland by the National Engineering Laboratory (NEL) over the past 10 years. Plans for the prototype follow a year-long economic and feasibility study that indicated a worldwide market potential of $1 billion over the next decade for the system.

  15. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    SciTech Connect (OSTI)

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  16. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  17. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping...

  18. Prototype Programmatic Agreement Between DOE, State Energy Offices...

    Energy Savers [EERE]

    Prototype Programmatic Agreement Between DOE, State Energy Offices, and State Historic Preservation Offices Prototype Programmatic Agreement Between DOE, State Energy Offices, and...

  19. Field Testing of Pre-Production Prototype Residential Heat Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Provides and overview of ...

  20. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping ...

  1. Corrosion testing of Type 304L stainless steel for waste tank applications

    SciTech Connect (OSTI)

    Wiersma, B.J.; Mickalonis, J.I.

    1991-01-01

    AISI Type 304L stainless steel will be the material of construction for hazardous waste storage tanks. The corrosion behavior of 304L was characterized in simulated waste solutions using potentiodynamic polarization, electrochemical impedance spectroscopy and long term immersion tests. The results were correlated to assess the use of corrosion characteristics determined by electrochemical techniques for predicting long term corrosion behavior. The corrosion behaviors of Type A537 carbon steel and Incoloy 825 were also evaluated. A good correlation was found between the results from the electrochemical techniques and the immersion tests.

  2. Corrosion testing of Type 304L stainless steel for waste tank applications

    SciTech Connect (OSTI)

    Wiersma, B.J.; Mickalonis, J.I.

    1991-12-31

    AISI Type 304L stainless steel will be the material of construction for hazardous waste storage tanks. The corrosion behavior of 304L was characterized in simulated waste solutions using potentiodynamic polarization, electrochemical impedance spectroscopy and long term immersion tests. The results were correlated to assess the use of corrosion characteristics determined by electrochemical techniques for predicting long term corrosion behavior. The corrosion behaviors of Type A537 carbon steel and Incoloy 825 were also evaluated. A good correlation was found between the results from the electrochemical techniques and the immersion tests.

  3. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    SciTech Connect (OSTI)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  4. A COMPUTERIZED OPERATOR SUPPORT SYSTEM PROTOTYPE

    SciTech Connect (OSTI)

    Thomas A. Ulrich; Roger Lew; Ronald L. Boring; Ken Thomas

    2015-03-01

    A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. A prototype COSS was developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. The initial version of the prototype is now operational at the Idaho National Laboratory using the Human System Simulation Laboratory.

  5. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    SciTech Connect (OSTI)

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.

  6. PyTrilinos Rapid Prototyping Package

    Energy Science and Technology Software Center (OSTI)

    2005-03-01

    PyTrilinos provides access to selected Trilinos packages from the python scripting language. This allows interactive and dynamic creation of Trilinos objects, rapid prototyping that does not require compilation, and "gluing" Trilinos scripts to other python modules, such as plotting, etc. The currently supported packages are Epetra, EpetraExt, and NOX.

  7. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect (OSTI)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  8. Multi-Material Lightweight Prototype Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prototype Vehicles Demonstration Tim Skszek Jeff Conklin Vehma International May 15, 2013 Project ID # LM072 Acknowledgement This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number No. DE-EE0005574. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or

  9. Transient Simulation of a 2007 Prototype Heavy-Duty Engine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation of a 2007 Prototype Heavy-Duty Engine Transient Simulation of a 2007 Prototype Heavy-Duty Engine 2004 Diesel Engine Emissions Reduction (DEER) Conference PresentationL...

  10. RAMGEN ROTOR CARTRIDGE FOR THE PRE-PROTOTYPE RAMGEN ENGINE

    SciTech Connect (OSTI)

    Aaron Koopman

    2003-09-01

    The research and development of a unique combustion engine is presented. The engine converts the thrust from ramjet modules located on the rim of a disk into shaft torque, which in turn can be used for electrical power generation or mechanical drive applications. A test program was undertaken that included evaluation of the pre-prototype engine and incorporation of improvements to the thrust modules and supporting systems. Fuel mixing studies with vortex generators and bluff body flame holders demonstrated the importance of increasing the shear-layer area and spreading angle to augment flame volume. Evaluation of flame-holding configurations (with variable fuel injection methods) concluded that the heat release zone, and therefore combustion efficiency, could be manipulated by judicious selection of bluff body geometry, and is less influenced by fuel injection distribution. Finally, successful operation of novel fuel and cooling air delivery systems have resolved issues of gas (fuel and air) delivery to the individual rotor segments. The lessons learned from the pre-prototype engine are currently being applied to the development of a 2.8MW engine.

  11. Working With PNNL Mentorees, Engineering Students Deliver Prototype...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With PNNL Mentorees, Engineering Students Deliver Prototype Safeguards Fixtures | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  12. A prototype implementation of a network-level intrusion detection system. Technical report number CS91-11

    SciTech Connect (OSTI)

    Heady, R.; Luger, G.F.; Maccabe, A.B.; Servilla, M.; Sturtevant, J.

    1991-05-15

    This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  13. Hydrogen, CNG, and HCNG Dispenser System – Prototype Report

    SciTech Connect (OSTI)

    James Francfort

    2005-02-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply line and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).

  14. Prototyping of the ILC Baseline Positron Target

    SciTech Connect (OSTI)

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  15. Visapult: A Prototype Remote and Distributed Visualization Application...

    Office of Scientific and Technical Information (OSTI)

    Our approach uses a pipelined-parallel decomposition composed of parallel computers and commodity desktop hardware. With our approach, desktop interactivity is divorced from the ...

  16. A Computuerized Operator Support System Prototype

    SciTech Connect (OSTI)

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-11-01

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment.

  17. A Computuerized Operator Support System Prototype

    SciTech Connect (OSTI)

    Ken Thomas; Ronald Boring; Roger Lew; Tom Ulrich; Richard Villim

    2013-08-01

    A report was published by the Idaho National Laboratory in September of 2012, entitled Design to Achieve Fault Tolerance and Resilience, which described the benefits of automating operator actions for transients. The report identified situations in which providing additional automation in lieu of operator actions would be advantageous. It recognized that managing certain plant upsets is sometimes limited by the operator’s ability to quickly diagnose the fault and to take the needed actions in the time available. Undoubtedly, technology is underutilized in the nuclear power industry for operator assistance during plant faults and operating transients. In contrast, other industry sectors have amply demonstrated that various forms of operator advisory systems can enhance operator performance while maintaining the role and responsibility of the operator as the independent and ultimate decision-maker. A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. The COSS does not supplant the role of the operator, but rather provides rapid assessments, computations, and recommendations to reduce workload and augment operator judgment and decision-making during fast-moving, complex events. This project proposes a general model for a control room COSS that addresses a sequence of general tasks required to manage any plant upset: detection, validation, diagnosis, recommendation, monitoring, and recovery. The model serves as a framework for assembling a set of technologies that can be interrelated to assist with each of these tasks. A prototype COSS has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment.

  18. A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization. Letter report made publicly available December 1992

    SciTech Connect (OSTI)

    Currie, J.W.; Wilfert, G.L.; March, F.

    1990-01-01

    The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation`s public works infrastructure. The product is a relational database that we refer to as a ``prototype catalogue of technologies.`` The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

  19. Test of Two NB Superstructure Prototypes

    SciTech Connect (OSTI)

    Sekutowicz, J.

    2004-04-16

    An alternative layout of the TESLA linear collider [1], based on weakly coupled multi-cell superconducting structures (superstructures), significantly reduces investment cost due to a simplification in the RF system of the main accelerator. In January 1999, preparation of the beam test of the superstructure began in order to prove the feasibility of this layout. Progress in the preparation was reported frequently in Proceedings of TESLA Collaboration Meetings. Last year, two superstructures were installed in the TESLA Test Facility (TTF) linac at DESY to experimentally verify: methods to balance the accelerating gradient in a weakly coupled system, the stability of the energy gain for the entire train of bunches in macro-pulses and the damping of Higher Order Modes (HOMs). We present results of the first cold and beam test of these two Nb prototypes.

  20. Prototype Programmatic Agreement Between DOE, State Energy Offices, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Historic Preservation Offices | Department of Energy Prototype Programmatic Agreement Between DOE, State Energy Offices, and State Historic Preservation Offices Prototype Programmatic Agreement Between DOE, State Energy Offices, and State Historic Preservation Offices Prototype programmatic agreement between the U.S. Department of Energy, state energy offices and state historic preservation offices regarding the DOE Office of Energy Efficiency and Renewable Energy (EERE) State Energy

  1. Prototype Programmatic Agreement Between DOE, State Energy Offices, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Historic Preservation Offices | Department of Energy Prototype Programmatic Agreement Between DOE, State Energy Offices, and State Historic Preservation Offices Prototype Programmatic Agreement Between DOE, State Energy Offices, and State Historic Preservation Offices Prototype programmatic agreement between the U.S. Department of Energy, state energy offices and state historic preservation offices regarding the DOE Office of Energy Efficiency and Renewable Energy (EERE) State Energy

  2. State of the Art Prototype Vehicle with a Thermoelectric Generator. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Prototype Vehicle with a Thermoelectric Generator. State of the Art Prototype Vehicle with a Thermoelectric Generator. Highlights BMW and partners buildup and testing of state-of-the-art prototype vehicle with the thermoelectric generator that produced over 600W under highway driving conditions PDF icon mazar.pdf More Documents & Publications Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Combustion Exhaust Gas Heat to Power Using Thermoelectric

  3. PROTOTYPE PROGRAMMATIC AGREEMENT BETWEEN THE UNITED STATES DEPARTMENT...

    Energy Savers [EERE]

    PROTOTYPE PROGRAMMATIC AGREEMENT BETWEEN THE UNITED STATES DEPARTMENT OF ENERGY, THE INSERT STATE NAME ENERGY OFFICE AND THE INSERT STATE NAME STATE HISTORIC PRESERVATION...

  4. US NDC Modernization Iteration E1 Prototyping Report: Common...

    Office of Scientific and Technical Information (OSTI)

    E1 Prototyping Report: Common Object Interface. Abstract not provided. Authors: Lewis, Jennifer E. ; Hess, Michael M. Publication Date: 2014-12-01 OSTI Identifier: 1173203...

  5. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  6. Performance and results of the LBNE 35 ton membrane cryostat prototype

    SciTech Connect (OSTI)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.

  7. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect (OSTI)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  8. Development of a reliable, miniaturized hydrogen safety sensor prototype

    SciTech Connect (OSTI)

    Sekhar, Praveen K; Brosha, Eric L; Rangachary, Mukundan; Garzon, Fernando H; Williamson, Todd L

    2010-01-01

    In this article, the development and long-term testing of a hydrogen safety sensor for vehicle and infrastructure applications is presented. The working device is demonstrated through application of commercial and reproducible manufacturing methods and rigorous life testing results guided by materials selection, and sensor design. Fabricated using Indium Tin Oxide (ITO) as the sensing electrode, Yttria-Stabilized Zirconia (YSZ) as an oxygen ion conducting solid electrolyte and Platinum (Pt) as a pseudo-counter electrode, the device was subjected to interference studies, temperature cycling, and long-testing routine. The sensor responded in real time to varying concentrations of H{sub 2} (1000 to 20,000 ppm) monitored under a humidified condition. Among the interference gases tested such as nitric oxide (NO), nitrogen dioxide (NO{sub 2}), ammonia (NH{sub 3}), carbon monoxide (CO), and propylene (C{sub 3}H{sub 6}), the sensor showed cross-sensitivity to C{sub 3}H{sub 6}. Analyzing the overall device performance over 4000 hrs of testing for 5000 ppm of H{sub 2}, (a) the sensitivity varied {+-}21% compared to response recorded at 0 hrs, and (c) the response rise time fluctuated between 3 to 46 s. The salient features of the H{sub 2} sensor prototype designed and co-developed by Los Alamos National Laboratory (LANL) are (a) stable three phase interface (electrode/electrolyte/gas) leading to reliable sensor operation, (b) low power consumption, (b) compactness to fit into critical areas of application, (c) simple operation, (d) fast response, (e) a direct voltage read-out circumventing the need for any additional conditioning circuitry, and (f) conducive to commercialization.

  9. Development of a prototype lignin concentration sensor. Final report. Draft

    SciTech Connect (OSTI)

    Jeffers, L.A.

    1994-11-01

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  10. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  11. Prototype Testing Could Help Prove a Promising Energy Source | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototype Testing Could Help Prove a Promising Energy Source Prototype Testing Could Help Prove a Promising Energy Source June 8, 2015 - 1:36pm Addthis Prototype Testing Could Help Prove a Promising Energy Source Alison LaBonte Marine and Hydrokinetic Technology Manager The first third-party-validated, grid-tied wave energy device in North American waters started feeding renewable electricity to Marine Corps Base Hawaii last week. In coordination with the U.S. Navy, Northwest

  12. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    SciTech Connect (OSTI)

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G.R.; Zutshi, V.; Hostachy, J. -Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J. -C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J. -C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 Ă— 10 Ă— 3 mmÂł plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  13. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; et al

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore » type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less

  14. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect (OSTI)

    Chandler, K.; Proc, K.

    2005-02-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  15. Y-12: Seawolf to National Prototype Center, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12: Seawolf to National Prototype Center, part 2 Continuing to quote from the 1998 press release (http:www.oakridge.doe.govmediareleases1998r- 98-007.htm) announcing the...

  16. Multi-Material Lightweight Prototype Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Material Lightweight Prototype Vehicle Multi-Material Lightweight Prototype Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm072_skszek_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight Vehicles Vehicle Technologies Office Merit Review 2014:

  17. ANL: Prototype Cell Fabrication Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANL: Prototype Cell Fabrication Facility ANL: Prototype Cell Fabrication Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt075_es_jansen_2011_p.pdf More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D CX-001384: Categorical Exclusion Determination

  18. NREL: Energy Systems Integration - Prototype and Component Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototype and Component Development NREL develops and tests prototype technologies in its Energy Systems Integration Facility, which can accommodate large power system components. Unique feature such as petascale computing, interconnected AC and DC power circuits, an integrated SCADA system, megawatt-scale power-in-the-loop, and state-of-the-art data analysis and visualization capabilities enable us to help companies bring new technologies to market with more confidence and less risk. Creating

  19. NREL: Energy Systems Integration Facility - Prototype and Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Prototype and Component Development To support prototype and component development, the Energy Systems Integration Facility can accommodate research, development, and demonstration of power system components such as PV inverters, residential smart meters, and appliances for physical testing or simulation using state-of-the-art hardware-in-the-loop technologies. Equipment can be developed, tested, and evaluated under normal and abnormal conditions at scale. Capability Details The

  20. Development and Demonstration of a Prototype Omnivorous Engine | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototype Omnivorous Engine Development and Demonstration of a Prototype Omnivorous Engine The Omnivorous engine is a research project designed to understand flex fuel combustion and optimize a single engine to run on many different fuels with optimum efficiency. PDF icon deer09_mcconnell.pdf More Documents & Publications Impact of ethanol and butanol as oxygenates on SIDI engine efficiency and emissions using steady-state and transient test procedures Gasoline-Like Fuel

  1. VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation) VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation) Details hydrogen fuel cell buses being evaluated in service at AC Transit. Presented at the APTA Bus and Paratransit Conference in Anaheim, California, April 30 through May 3, 2006. PDF icon 40012.pdf More Documents & Publications Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell

  2. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  3. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Authors: McCulloch, Quinn [1] ; Dattelbaum, Andrew M. [1] ; Nath, Pulak [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-03-04 OSTI Identifier: 1067392 Report Number(s): LA-UR-13-21541 DOE Contract Number: AC52-06NA25396

  4. PROTOTYPE PROGRAMMATIC AGREEMENT BETWEEN THE UNITED STATES DEPARTMENT OF

    Energy Savers [EERE]

    ENERGY, THE [INSERT STATE NAME] ENERGY OFFICE AND THE [INSERT STATE NAME] STATE HISTORIC PRESERVATION OFFICE REGARDING EECBG, SEP AND WAP UNDERTAKINGS February 5, 2010 | Department of Energy PROTOTYPE PROGRAMMATIC AGREEMENT BETWEEN THE UNITED STATES DEPARTMENT OF ENERGY, THE [INSERT STATE NAME] ENERGY OFFICE AND THE [INSERT STATE NAME] STATE HISTORIC PRESERVATION OFFICE REGARDING EECBG, SEP AND WAP UNDERTAKINGS February 5, 2010 PROTOTYPE PROGRAMMATIC AGREEMENT BETWEEN THE UNITED STATES

  5. Evaluation of Computer- Based Procedure System Prototype | Department of

    Office of Environmental Management (EM)

    Energy of Computer- Based Procedure System Prototype Evaluation of Computer- Based Procedure System Prototype This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear

  6. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  7. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect (OSTI)

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  8. Evaluation of GafChromic EBT prototype B for external beam dose verification

    SciTech Connect (OSTI)

    Todorovic, M.; Fischer, M.; Cremers, F.; Thom, E.; Schmidt, R.

    2006-05-15

    The capability of the new GafChromic EBT prototype B for external beam dose verification is investigated in this paper. First the general characteristics of this film (dose response, postirradiation coloration, influence of calibration field size) were derived using a flat-bed scanner. In the dose range from 0.1 to 8 Gy, the sensitivity of the EBT prototype B film is ten times higher than the response of the GafChromic HS, which so far was the GafChromic film with the highest sensitivity. Compared with the Kodak EDR2 film, the response of the EBT is higher by a factor of 3 in the dose range from 0.1 to 8 Gy. The GafChromic EBT almost does not show a temporal growth of the optical density and there is no influence of the chosen calibration field size on the dose response curve obtained from this data. A MatLab program was written to evaluate the two-dimensional dose distributions from treatment planning systems and GafChromic EBT film measurements. Verification of external beam therapy (SRT, IMRT) using the above-mentioned approach resulted in very small differences between the planned and the applied dose. The GafChromic EBT prototype B together with the flat-bed scanner and MatLab is a successful approach for making the advantages of the GafChromic films applicable for verification of external beam therapy.

  9. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  10. Methods and systems for rapid prototyping of high density circuits

    DOE Patents [OSTI]

    Palmer, Jeremy A. (Albuquerque, NM); Davis, Donald W. (Albuquerque, NM); Chavez, Bart D. (Albuquerque, NM); Gallegos, Phillip L. (Albuquerque, NM); Wicker, Ryan B. (El Paso, TX); Medina, Francisco R. (El Paso, TX)

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  11. Prototype integration of the joint munitions assessment and planning model with the OSD threat methodology

    SciTech Connect (OSTI)

    Lynn, R.Y.S.; Bolmarcich, J.J.

    1994-06-01

    The purpose of this Memorandum is to propose a prototype procedure which the Office of Munitions might employ to exercise, in a supportive joint fashion, two of its High Level Conventional Munitions Models, namely, the OSD Threat Methodology and the Joint Munitions Assessment and Planning (JMAP) model. The joint application of JMAP and the OSD Threat Methodology provides a tool to optimize munitions stockpiles. The remainder of this Memorandum comprises five parts. The first is a description of the structure and use of the OSD Threat Methodology. The second is a description of JMAP and its use. The third discusses the concept of the joint application of JMAP and OSD Threat Methodology. The fourth displays sample output of the joint application. The fifth is a summary and epilogue. Finally, three appendices contain details of the formulation, data, and computer code.

  12. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  13. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    SciTech Connect (OSTI)

    Huque, Naeem A.; Daly, Edward F.; Clemens, William A.; McIntyre, Gary T.; Wu, Qiong; Seberg, Scott; Bellavia, Steve

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  14. DESIGN, ANALYSIS AND TEST CONCEPT FOR PROTOTYPE CRYOLINE OF ITER

    SciTech Connect (OSTI)

    Sarkar, B.; Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Chakrapani, Ch.

    2008-03-16

    The ITER cryo-distribution and cryoline is a part of the in-kind supply for India. The design of the systems is in progress. The topology of torus and neutral beam cryoline is defined as six process pipes along with thermal shield at 80 K and outer vacuum jacket. In order to develop confidence in the concept and to establish the high level of engineering and manufacturing technology, a prototype testing has been proposed. The prototype test will be carried out on 1:1 model in terms of dimension. However, the mass flow rate of the supercritical helium at 4.5 K and gaseous helium at 80 K will be on a 1:10 scale. The prototype cryoline has been designed and analyzed for thermal, structural and hydraulic parameters. The objective of this prototype test is to verify mechanical behavior due to thermal stress and pressure force, thermal and hydraulic performances. The concept of test facility has been realized along with the Piping and Instrumentation (P and I) diagram, instrumentation, controls, data acquisition, 80 K helium generation system along with supply and return valve boxes and interfacing hardware. The design concept, methodology for analysis and results, as well as the test facility have been discussed.

  15. Prototype system brings advantages of wireless technology to secure

    National Nuclear Security Administration (NNSA)

    environment | National Nuclear Security Administration Prototype system brings advantages of wireless technology to secure environment | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  16. Working With PNNL Mentors, Engineering Students Deliver Prototype

    National Nuclear Security Administration (NNSA)

    Safeguards Fixtures | National Nuclear Security Administration With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  17. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    SciTech Connect (OSTI)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  18. Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2013-01-14

    The experimental study of the valence band offset ({Delta}E{sub v}) of a mixed As/Sb type-II staggered gap GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterostructure used as source/channel junction of n-channel tunnel field effect transistor (TFET) grown by molecular beam epitaxy was investigated by x-ray photoelectron spectroscopy (XPS). Cross-sectional transmission electron micrograph shows high crystalline quality at the source/channel heterointerface. XPS results demonstrate a {Delta}E{sub v} of 0.39 {+-} 0.05 eV at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. The conduction band offset was calculated to be {approx}0.49 eV using the band gap values of source and channel materials and the measured valence band offset. An effective tunneling barrier height of 0.21 eV was extracted, suggesting a great promise for designing a metamorphic mixed As/Sb type-II staggered gap TFET device structure for low-power logic applications.

  19. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  20. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  1. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jim Turnure, Director Office of Energy Consumption & Efficiency Analysis, EIA EIA Conference: Asian Energy Demand July 14, 2014 | Washington, DC International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China Dawn of new global oil market paradigm? 2 Jim Turnure, EIA Conference July 14, 2014 * Conventional wisdom has centered around $100-120/barrel oil and 110-115 million b/d global liquid fuel demand in the long term (2030-2040) * Demand in non-OECD may push

  2. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  3. New High-Efficiency Window Prototype Result of DOE Partnership | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High-Efficiency Window Prototype Result of DOE Partnership New High-Efficiency Window Prototype Result of DOE Partnership December 4, 2006 - 9:34am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a next-generation residential and commercial window prototype. When widely implemented in the marketplace, the high-performance features of the prototype could save billions of dollars annually in energy costs. The new technologically advanced window concept is

  4. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  5. THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE

    SciTech Connect (OSTI)

    Smith, A; Lawrence Gelder, L; Paul Blanton, P

    2007-02-16

    The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

  6. A prototype functional language implementation for hierarchical- memory architectures

    SciTech Connect (OSTI)

    Wolski, R.; Feo, J.; Cann, D.

    1992-01-14

    Programming languages are the most important tool at a programmers' disposal. All other tools correct, visualize, or evaluate the product crafted by this tool. The advent of multiprocessor computer systems has greatly complicated the programmer's task an increased his need for high-level languages capable of automatically taming these architectures. In this paper, we describe a prototype implementation of Sisal for multiprocessor, hierarchical-memory systems. The implementation includes explicit compiler and runtime control that effectively exploits the different levels of memory and manages interprocess communications (IPC). We give preliminary performance results for this system on the BBN TC2000.

  7. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype Eric Kozubal, Jason Woods, and Ron Judkoff Technical Report NREL/TP-5500-54755 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

  8. Prototype design of an advanced ceramic receiver. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    The purpose of the activities described in this report is to investigate an advanced gas receiver design concept. The advanced gas reactor design concept utilizes a translucent ceramic tube packed with a solar absorbing, porous material. A gas is pumped through the tube and is heated to a high temperature by direct solar energy incident on the tube surface. The basic energy exchange mechanisms are the transfer of the incoming solar flux through the translucent tube, the absorption of the solar energy by the packing material, and the convective transfer of the absorbed solar energy from the packing material to the gas. The approach taken for this activity was to develop a conceptual design of a commercial size receiver, investigate critical design elements of the commercial receiver, develop a preliminary design of a prototype, and identify the appropriate facility for testing the prototype. In order to develop the conceptual design of the commercial size receiver a thermo/hydraulic numerical model of the tube was devised. This model yields predictions of the thermal performance of the tube along with estimates of the tube pressure drops. A detailed description of the model is given in section IIIA of this report. Using the model it was possible to establish an optimum tube diameter and length for a commercial size receiver. With the tube dimensions known it was then possible to perform design studies to determine tube stresses and attachment schemes.

  9. Intial performance from the NOvA surface prototype detector

    SciTech Connect (OSTI)

    Muether, M.; ,

    2011-09-01

    NOvA, the NuMI Off-Axis {nu}{sub e} Appearance experiment, will study {nu}{sub {mu}} {yields} {nu}{sub e} oscillations characterized by the mixing angle {Theta}{sub 13}. Provided {Theta}{sub 13} is large enough, NOvA may ultimately determine the ordering of the neutrino masses and measure CP violation in neutrino oscillations. A complementary pair of detectors will be constructed {approx}14 mrad off beam axis to optimize the energy profile of the neutrinos. This system consists of a surface based 14 kTon liquid scintillator tracking volume located 810 km from the main injector source (NuMI) in Ash River, Minnesota and a smaller underground 222 Ton near detector at the Fermilab. The first neutrino signals at the Ash River Site are expected prior to the 2012 accelerator shutdown. In the meantime, a near detector surface prototype has been completed and neutrinos from two Fermilab sources have been observed using the same highly segmented PVC and liquid scintillator detector system that will be deployed in the full scale experiment. Design and initial performance characteristics of this prototype system are being fed back into the design for the full NOvA program.

  10. Evaluation of Computer-Based Procedure System Prototype

    SciTech Connect (OSTI)

    Johanna Oxstrand; Katya Le Blanc; Seth Hays

    2012-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE), performed in close collaboration with industry R&D programs, to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The introduction of advanced technology in existing nuclear power plants may help to manage the effects of aging systems, structures, and components. In addition, the incorporation of advanced technology in the existing LWR fleet may entice the future workforce, who will be familiar with advanced technology, to work for these utilities rather than more newly built nuclear power plants. Advantages are being sought by developing and deploying technologies that will increase safety and efficiency. One significant opportunity for existing plants to increase efficiency is to phase out the paper-based procedures (PBPs) currently used at most nuclear power plants and replace them, where feasible, with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to PBPs are the management of multiple procedures, place-keeping, finding the correct procedure for the task at hand, and relying on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, & Naser, 2009; Le Blanc & Oxstrand, 2012). The main focus of this report is to describe the research activities conducted to address the remaining two objectives; Develop a prototype CBP system based on requirements identified and Evaluate the CBP prototype. The emphasis will be on the evaluation of an initial CBP prototype in at a Nuclear Power Plant.

  11. SAMPLE (Sandia Agile MEMS Prototyping, Layout tools, and Education)

    SciTech Connect (OSTI)

    Davies, B.R.; Barron, C.C.; Sniegowski, J.J.; Rodgers, M.S.

    1997-08-01

    The SAMPLE (Sandia Agile MEMS Protyping, Layout tools, and Education) service makes Sandia`s state-of-the-art surface-micromachining fabrication process, known as SUMMiT, available to US industry for the first time. The service provides a short cause and customized computer-aided design (CAD) tools to assist customers in designing micromachine prototypes to be fabricated in SUMMiT. Frequent small-scale manufacturing runs then provide SAMPLE designers with hundreds of sophisticated MEMS (MicroElectroMechanical Systems) chips. SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology) offers unique surface-micromachining capabilities, including four levels of polycrystalline silicon (including the ground layer), flanged hubs, substrate contacts, one-micron design rules, and chemical-mechanical polishing (CMP) planarization. This paper describes the SUMMiT process, design tools, and other information relevant to the SAMPLE service and SUMMiT process.

  12. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  13. A prototype silicon double quantum dot with dispersive microwave readout

    SciTech Connect (OSTI)

    Schmidt, A. R. Henry, E.; Namaan, O.; Siddiqi, I.; Lo, C. C.; Wang, Y.-T.; Bokor, J.; Yablonovitch, E.; Li, H.; Greenman, L.; Whaley, K. B.; Schenkel, T.

    2014-07-28

    We present a unique design and fabrication process for a lateral, gate-confined double quantum dot in an accumulation mode metal-oxide-semiconductor (MOS) structure coupled to an integrated microwave resonator. All electrostatic gates for the double quantum dot are contained in a single metal layer, and use of the MOS structure allows for control of the location of the two-dimensional electron gas via the location of the accumulation gates. Numerical simulations of the electrostatic confinement potential are performed along with an estimate of the coupling of the double quantum dot to the microwave resonator. Prototype devices are fabricated and characterized by transport measurements of electron confinement and reflectometry measurements of the microwave resonator.

  14. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  15. Structural Divergence in Vertebrate Phylogeny of a Duplicated Prototype Galectin

    SciTech Connect (OSTI)

    Bhat, R.; Chakraborty, M.; Mian, I. S.; Newman, S. A.

    2014-09-25

    Prototype galectins, endogenously expressed animal lectins with a single carbohydrate recognition domain, are well-known regulators of tissue properties such as growth and adhesion. The earliest discovered and best studied of the prototype galectins is Galectin-1 (Gal-1). In the Gallus gallus (chicken) genome, Gal-1 is represented by two homologs: Gal-1A and Gal-1B, with distinct biochemical properties, tissue expression, and developmental functions. We investigated the origin of the Gal-1A/Gal-1B divergence to gain insight into when their developmental functions originated and how they could have contributed to vertebrate phenotypic evolution. Sequence alignment and phylogenetic tree construction showed that the Gal-1A/Gal-1B divergence can be traced back to the origin of the sauropsid lineage (consisting of extinct and extant reptiles and birds) although lineage-specific duplications also occurred in the amphibian and actinopterygian genomes. Gene synteny analysis showed that sauropsid gal-1b (the gene for Gal-1B) and its frog and actinopterygian gal-1 homologs share a similar chromosomal location, whereas sauropsid gal-1a has translocated to a new position. Surprisingly, we found that chicken Gal-1A, encoded by the translocated gal-1a, was more similar in its tertiary folding pattern than Gal-1B, encoded by the untranslocated gal-1b, to experimentally determined and predicted folds of nonsauropsid Gal-1s. This inference is consistent with our finding of a lower proportion of conserved residues in sauropsid Gal-1Bs, and evidence for positive selection of sauropsid gal-1b, but not gal-1a genes. We propose that the duplication and structural divergence of Gal-1B away from Gal-1A led to specialization in both expression and function in the sauropsid lineage.

  16. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan

    2011-01-15

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  17. Structural Divergence in Vertebrate Phylogeny of a Duplicated Prototype Galectin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhat, R.; Chakraborty, M.; Mian, I. S.; Newman, S. A.

    2014-09-25

    Prototype galectins, endogenously expressed animal lectins with a single carbohydrate recognition domain, are well-known regulators of tissue properties such as growth and adhesion. The earliest discovered and best studied of the prototype galectins is Galectin-1 (Gal-1). In the Gallus gallus (chicken) genome, Gal-1 is represented by two homologs: Gal-1A and Gal-1B, with distinct biochemical properties, tissue expression, and developmental functions. We investigated the origin of the Gal-1A/Gal-1B divergence to gain insight into when their developmental functions originated and how they could have contributed to vertebrate phenotypic evolution. Sequence alignment and phylogenetic tree construction showed that the Gal-1A/Gal-1B divergence can bemore » traced back to the origin of the sauropsid lineage (consisting of extinct and extant reptiles and birds) although lineage-specific duplications also occurred in the amphibian and actinopterygian genomes. Gene synteny analysis showed that sauropsid gal-1b (the gene for Gal-1B) and its frog and actinopterygian gal-1 homologs share a similar chromosomal location, whereas sauropsid gal-1a has translocated to a new position. Surprisingly, we found that chicken Gal-1A, encoded by the translocated gal-1a, was more similar in its tertiary folding pattern than Gal-1B, encoded by the untranslocated gal-1b, to experimentally determined and predicted folds of nonsauropsid Gal-1s. This inference is consistent with our finding of a lower proportion of conserved residues in sauropsid Gal-1Bs, and evidence for positive selection of sauropsid gal-1b, but not gal-1a genes. We propose that the duplication and structural divergence of Gal-1B away from Gal-1A led to specialization in both expression and function in the sauropsid lineage.« less

  18. NREL: News - Prototype Low-Emissions Natural Gas Engine Saves Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototype Low-Emissions Natural Gas Engine Saves Fuel Golden, Colo., April 25, 2002 Using a unique fuel system design, researchers have developed a prototype natural gas engine that significantly improves fuel efficiency without increasing emissions. A recent report from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) highlights the promise of the prototype medium-duty natural gas engine equipped with fuel-injected pre-chamber (FIPC) technology. Go to

  19. Field Testing of Pre-Production Prototype Residential Heat Pump Water

    Energy Savers [EERE]

    Heaters | Department of Energy Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters PDF icon heat_pump_water_heater_testing.pdf More Documents & Publications Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid

  20. Development of a HVDC prototype breaker. Final report

    SciTech Connect (OSTI)

    Damsky, B L; Barkan, P; Imam, I; Permerlani, W; Anderson, J M; Carroll, J J; Hudson, J E; Pohl, R V; Solberg, W D; Sharbaugh, A H

    1980-06-01

    The significant design features of a high-voltage dc (HVDC) circuit breaker based on the commutation concept were developed. Tests of components indicate the breaker is capable of interrupting a fault current of 10 kA on a 400 kV system and absorbing up to 10 MJ of system energy without generating more than 1.6 per unit (P.U.) voltage of the system. Interactions of the breaker with a three-terminal network were studied, using a system simulator. An ultrafast hydraulic actuator system was developed for this program which enables the breaker to initiate the current limiting process within 5 ms after receipt of a trip signal. A new hydraulic valve, operated by a repulsion coil, minimizes the delay before motion begins. Interruption will occur in series-connected vacuum interrupters. A 400 kV circuit breaker is estimated to require eight breaks in series. Only a single break was tested as part of this program because of the scale and cost required for multibreak tests. System energy will be absorbed by zinc-oxide-based surge suppressors included as an integral part of the breaker. The overall design is envisioned as a dead tank type using pressurized SF/sub 6/ gas as a dielectric medium. The actuator and all control functions are located at ground potential, with easy access for inspection or adjustment. Operational specifications have been carried over from NEMA standards for ac power circuit breakers where applicable. The cost of one pole of this circuit breaker, when in regular production, has been estimated as two times the cost of a three-phase 500 kV ac circuit breaker.

  1. Risk D&D Rapid Prototype: Scenario Documentation and Analysis Tool

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Seiple, Timothy E.

    2009-05-28

    Report describes process and methodology associated with a rapid prototype tool for integrating project risk analysis and health & safety risk analysis for decontamination and decommissioning projects.

  2. MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot...

    Open Energy Info (EERE)

    Neptune Renewable Energy 1 10 Scale Prototype Pilot Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappings...

  3. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran

    2015-08-14

    Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 μm, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devicesmore » were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.« less

  4. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

    SciTech Connect (OSTI)

    Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran

    2015-08-14

    Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 ÎĽm, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devices were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.

  5. Prototype system brings advantages of wireless technology to...

    National Nuclear Security Administration (NNSA)

    potential for applications across the NNSA, other federal agencies and critical manufacturing facilities. The Savannah River National Laboratory designed and fabricated a...

  6. Hanford prototype-barrier status report: FY 1995

    SciTech Connect (OSTI)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Ligotke, M.W.; Link, S.O.

    1995-11-01

    Surface barriers (or covers) have been proposed for use at the Hanford Site as a means to isolate certain waste sites that, for reasons of cost or worker safety or both, may not be exhumed. Surface barriers are intende to isolated the wastes from the accessible environment and to provide long-term protection to future populations that might use the Hanford Site. Currently, no ``proven`` long-term barrier system is available. For this reason, the Hanford Site Permanent Isolation Surface-Barrier Development Program (BDP) was organized to develop the technology needed to provide long-term surface barrier capability for the Hanford Site for the US Department of Energy (DOE). Designs have been proposed to meet the most stringent needs for long-term waste disposal. The objective of the current barrier design is to use natural materials to develop a protective barrier system that isolates wastes for at least 1000 years by limiting water, plant, animal, and human intrusion; and minimizing erosion. The design criteria for water drainage has been set at 0.5 mm/yr. While other design criteria are more qualitative, it is clear that waste isolation for an extended time is the prime objective of the design. Constructibility and performance. are issues that can be tested and dealt with by evaluating prototype designs prior to extensive construction and deployment of covers for waste sites at Hanford.

  7. The LEB to MEB transfer kicker system prototype

    SciTech Connect (OSTI)

    Pappas, C.; Wilson, M.; Anderson, D.

    1994-08-01

    The design requirements for the Low Energy Booster (LEB) extraction kicker system at the Superconducting Super Collider Laboratory (SSCL) were to deflect a 12 GeV/c beam through an angle of 1.5 mrad. The circumference of the LEB was 540 M. This resulted in a 0.06 T-m integrated field, of 1.8 {mu}s width with a 1% to 99% rise time of less than 80 ns and allowable pulse ripple of less than {plus_minus}1%. The repetition frequency was 10 Hz and the allowable timing jitter was 2 ns. The field was required to be uniform over a 2{times}4 cm area to {plus_minus}2.5%. The requirements for the Medium Energy Booster (MEB) injection kicker were similar except that a 99% to 1% pulse fall time of less than 2 {mu}s was needed. Prototypes of the pulsed power system and magnet to meet these requirements were built and tested at the SSCL. This paper describes the results of that testing.

  8. A prototype station for ARIANNA: a detector for cosmic neutrinos

    SciTech Connect (OSTI)

    Gerhardt, L.; Klein, S.; Stezelberger, T.; Barwick, S.; Dookayka, K.; Hanson, J.; Nichol, R.

    2010-05-27

    The Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 1017 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations will each contain 4-8 antennas which search for brief pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572 +- 6 m at the deployment site.

  9. EIS-0274: Disposal of S3G and D1G Prototype Reactor Plants

    Broader source: Energy.gov [DOE]

    This EIS analyzes the options and alternatives for the handling of the S3G and D1G Prototype reactor plants. Alternatives include their of prompt dismantlement, a deferred dismantlement alternative, and a no action alternative of keeping the defueled S3G and D1G Prototype reactor plants in protective storage indefinitely.

  10. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    SciTech Connect (OSTI)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  11. Research & Evaluation Prototypes (REP) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research & Evaluation Prototypes (REP) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown

  12. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Team (505) 667-7824 Email Types of Awards The Awards Office, sponsored by the Technology Transfer Division and the Science and Technology Base Program Office, coordinates...

  13. SATBOT I: Prototype of a biomorphic autonomous spacecraft

    SciTech Connect (OSTI)

    Frigo, J.; Tilden, M.W.

    1995-12-01

    Our goal is to produce a prototype of an autonomous satellite robot, SATBOT. This robot differs from conventional robots in that it has three degrees of freedom, uses magnetics to direct the motion, and needs a zero gravity environment. The design integrates the robot`s structure and a biomorphic (biological morphology) control system to produce a survival-oriented vehicle that adapts to an unknown environment. Biomorphic systems, loosely modeled after biological systems, use simple analog circuitry, low power, and are microprocessor independent. These analog networks called Nervous Networks (Nv), are used to solve real-time controls problems. The Nv approach to problem solving in the robotics has produced many surprisingly capable machines which exhibit emergent behavior. The network can be designed to respond to positive or negative inputs from a sensor and produce a desired directed motion. The fluidity and direction of motion is set by the neurons and is inherent to the structure of the device. The robot is designed to orient itself with respect to a local magnetic field; to direct its attitude toward the greatest source of light; and robustly recover from variations in the local magnetic field, power source, or structural stability. This design uses a two neuron network which acts as a push-pull controller for the actuator (air core coil), and two sun sensors (photodiodes) as bias inputs to the neuron. The effect of sensor activation as it relates to an attractive or repulsive torque (directional motion) is studied. A discussion of this system`s power (energy) efficiency and frequency, noise immunity, and some dynamic characteristics is presented.

  14. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard

    SciTech Connect (OSTI)

    Biswas, Kaushik; LuPh.D., Jue; Soroushian, Parviz; Shrestha, Som S

    2014-01-01

    In the United States, forty-eight (48) percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced building envelopes can facilitate maximizing the energy efficiency of buildings. Combined experimental testing and numerical modeling of PCM-enhanced envelope components are two important aspects of the evaluation of their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conductive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. A wall with cellulose cavity insulation and prototype PCM-enhanced interior wallboards was built and tested in a natural exposure test (NET) facility in a hot-humid climate location. The test wall contained PCM wallboards and regular gypsum wallboard, for a side-by-side annual comparison study. Further, numerical modeling of the walls containing the nano-PCM wallboard was performed to determine its actual impact on wall-generated heating and cooling loads. The model was first validated using experimental data, and then used for annual simulations using Typical Meteorological Year (TMY3) weather data. This article presents the measured performance and numerical analysis evaluating the energy-saving potential of the nano-PCM-enhanced wallboard.

  15. Responses of Conventional Ring Closures of Drum Type Packages to Regulatory Drop Tests with Application to the 9974/9975 Package

    SciTech Connect (OSTI)

    Blanton, P.S.

    2002-05-31

    DOT, DOE and NRC Type A and Type B radioactive material (RAM) transport packages routinely use industrial or military specification drums with conventional clamp ring closures as an overpack. Considerable testing has been performed on these type packages over the past 30 years. Observations from test data have resulted in various design changes and recommendations to the standard drum specification and use, enhancing the reliability of the overpack. Recently, performance capability of the 9975 conventional clamp ring closure design was questioned by the Regulatory Authority. This paper highlights the observations of recent 9974 and 9975 package testing that led to redesign of the 9975, replacing the standard clamp ring closure with a bolted ring closure. In the course of this review and redesign effort, 18 package designs and approximately 100 Hypothetical Accident Condition (HAC) drops of various size and weight drum packages were evaluated. A trend was observed with respect to overpack lid failures for packages utilizing conventional ring closure. Based on this trend, a limit on the ratio of the content weight to total package weight was identified, beyond which clamp ring closure failure may be expected.

  16. Prototype Data Models and Data Dictionaries for Hanford Sediment Physical and Hydraulic Properties

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Last, George V.; Middleton, Lisa A.

    2010-09-30

    The Remediation Decision Support (RDS) project, managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC), has been compiling physical and hydraulic property data and parameters to support risk analyses and waste management decisions at Hanford. In FY09 the RDS project developed a strategic plan for a physical and hydraulic property database. This report documents prototype data models and dictionaries for these properties and associated parameters. Physical properties and hydraulic parameters and their distributions are required for any type of quantitative assessment of risk and uncertainty associated with predictions of contaminant transport and fate in the subsurface. The central plateau of the Hanford Site in southeastern Washington State contains most of the contamination at the Site and has up to {approx}100 m of unsaturated and unconsolidated or semi-consolidated sediments overlying the unconfined aquifer. These sediments contain a wide variety of contaminants ranging from organic compounds, such as carbon tetrachloride, to numerous radionuclides including technetium, plutonium, and uranium. Knowledge of the physical and hydraulic properties of the sediments and their distributions is critical for quantitative assessment of the transport of these contaminants in the subsurface, for evaluation of long-term risks and uncertainty associated with model predictions of contaminant transport and fate, and for evaluating, designing, and operating remediation alternatives. One of the goals of PNNL's RDS project is to work with the Hanford Environmental Data Manager (currently with CHPRC) to develop a protocol and schedule for incorporation of physical property and hydraulic parameter datasets currently maintained by PNNL into HEIS. This requires that the data first be reviewed to ensure quality and consistency. New data models must then be developed for HEIS that are approved by the HTAG that oversees HEIS development. After approval, these new data models then need to be implemented in HEIS by the EDM before there is an actual repository for the data. This document summarizes modifications to previously developed data models, and new data models and data dictionaries for physical and hydraulic property data and parameters to be transferred to HEIS. A prototype dataset that conforms to the specifications of these recommended data models has been identified and processed, and is ready for transfer to CHPRC for inclusion in HEIS. Additional datasets are planned for transfer from PNNL to CHPRC in FY11.

  17. LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS

    SciTech Connect (OSTI)

    K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS

    2000-09-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's past practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.

  18. Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing, April 2013

    Broader source: Energy.gov [DOE]

    Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing

  19. Development and Application of an Oversize Reusable DOT 7A Type A Overpack Container at the Y-12 National Security Complex - 13150

    SciTech Connect (OSTI)

    Tharp, Tim; Martin, David; Franco, Paul

    2013-07-01

    Waste Management personnel at the Y-12 National Security Complex (Y-12) are concluding a multi-year effort to dispose of a large backlog of low-level waste. Six containers presented a particularly difficult technical challenge in that they each contained large robust equipment (mostly salt baths) with elevated levels of highly enriched uranium (exceeding U.S. Department of Transportation (DOT) fissile-excepted quantities). The equipment was larger than the standard 1.2 m x 1.2 m x 1.8 m (4 ft x 4 ft x 6 ft) DOT Specification 7A Type A box and would have been very difficult to size-reduce because of several inches of steel plate (along with insulating block and concrete) in the equipment design. A critical breakthrough for the success of the project involved procuring and developing two oversize reusable DOT Specification 7A Type A (fissile tested) containers (referred to as the CTI Model 7AF-690-SC) that could be used as overpacks for the original boxes of equipment. The 7A Type A overpack containers are approximately 3.5 m long x 2.7 m wide x 2.8 m high (11.7 ft x 8.9 ft x 9.2 ft) with a maximum gross weight of 10,660 kg (23,500 lb) and a payload capacity of 6,804 kg (15,000 lbs). The boxes were designed and fabricated using a split cavity design that allowed the gasketed and bolted closure to lie along the horizontal centerline of the box. The central closure location in this design allows for strengthening of box corners that tend to be points of weakness or failure in 49CFR173.465 drop tests. By combining the split cavity design with large diameter tubing and diagonal cross bracing, drop test requirements of 49CFR173.465(1) and (2) were met and demonstrated through finite element analysis modeling. The development and use of this new container dramatically reduced the need for down-sizing the equipment and allowed the project to meet objectives within cost and schedule targets. (authors)

  20. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOE Patents [OSTI]

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  1. Results from a Prototype Chicane-Based Energy Spectrometer for a Linear

    Office of Scientific and Technical Information (OSTI)

    Collider (Journal Article) | SciTech Connect Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider Citation Details In-Document Search Title: Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for

  2. Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by

  3. Synthesis of murdochite-type Ni{sub 6}MnO{sub 8} with variable specific surface areas and the application in methane oxidation

    SciTech Connect (OSTI)

    Taguchi, Hideki; Tahara, Shohei; Okumura, Mikoto; Hirota, Ken

    2014-07-01

    To synthesize a murdochite-type Ni{sub 6}MnO{sub 8} with variable specific surface areas, an oxalate precursor was calcined at 350–500 °C in flowing argon, and the calcined sample was heated to 600 °C in air. The lattice constant of the Ni{sub 6}MnO{sub 8} did not depend on the calcination temperature of the precursor, while the specific surface area decreased from 8.4 m{sup 2}/g to 2.6 m{sup 2}/g when increasing the calcination temperature of the precursor. The methane (CH{sub 4}) oxidation data indicated that the temperature corresponding to the 50% conversion (T{sub 50%}) of Ni{sub 6}MnO{sub 8} calcined at 350 °C or 400 °C was lower than that of all other Ni{sub 6}MnO{sub 8} specimens. However, the intrinsic conversion of Ni{sub 6}MnO{sub 8} calcined at 350 °C, which is defined as conversion per specific surface area, was half of that of all other Ni{sub 6}MnO{sub 8} specimens. The degree of crystallinity and catalytic performance of the Ni{sub 6}MnO{sub 8} calcined at 400 °C were high. - Graphical abstract: The conversion of CH{sub 4} into CO{sub 2} and H{sub 2}O on Ni{sub 6}MnO{sub 8}, which was heated at 600 °C in air after the calcination of the precursor at 350 °C, 400 °C, 450 °C, or 500 °C in flowing argon, was measured. Since the specific surface area was strongly affected by the calcination temperature of the precursor, intrinsic conversion (IC) was defined as conversion per the specific surface area. For comparison, the IC value on Ni{sub 6}MnO{sub 8} synthesized by the direct calcination of the precursor at 600 °C in air is plotted. - Highlights: • The oxalate precursor was calcined at 350–500 °C in flowing argon. • Murdochite-type Ni{sub 6}MnO{sub 8} was obtained by heating the calcined sample in air. • The specific surface area of Ni{sub 6}MnO{sub 8} varied with the calcination temperature. • The degree of crystallinity and catalysis of Ni{sub 6}MnO{sub 8} calcined at 400 °C were high.

  4. Evidence for a defect level above the conduction band edge of InAs/InAsSb type-II superlattices for applications in efficient infrared photodetectors

    SciTech Connect (OSTI)

    Prins, A. D.; Lewis, M. K.; Bushell, Z. L.; Sweeney, S. J.; Liu, S.; Zhang, Y.-H.

    2015-04-27

    We report pressure-dependent photoluminescence (PL) experiments under hydrostatic pressures up to 2.16?GPa on a mid-wave infrared InAs/InAs{sub 0.86}Sb{sub 0.14} type-II superlattice (T2SL) structure at different pump laser excitation powers and sample temperatures. The pressure coefficient of the T2SL transition was found to be 93?±?2?meV·GPa{sup ?1}. The integrated PL intensity increases with pressure up to 1.9?GPa then quenches rapidly indicating a pressure induced level crossing with the conduction band states at ?2?GPa. Analysis of the PL intensity as a function of excitation power at 0, 0.42, 1.87, and 2.16?GPa shows a clear change in the dominant photo-generated carrier recombination mechanism from radiative to defect related. From these data, evidence for a defect level situated at 0.18?±?0.01?eV above the conduction band edge of InAs at ambient pressure is presented. This assumes a pressure-dependent energy shift of ?11?meV·GPa{sup ?1} for the valence band edge and that the defect level is insensitive to pressure, both of which are supported by an Arrhenius activation energy analysis.

  5. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    SciTech Connect (OSTI)

    Sam Alessi; Dennis Keiser

    2012-10-01

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester parameters be held and managed in a single managed data repository, while allows users to customize standard values and perform individual analysis. Server-based calculations can be easily extended, versions and upgrades managed, and any changes are immediately available to all users. This user manual describes how to use and/or modify input database tables, run DANA, view and modify reports.

  6. On the design of a prototype model of the floating wave power device ``Mighty Whale``

    SciTech Connect (OSTI)

    Hotta, H.; Washio, Y.; Yokozawa, H.; Pizer, D.J.

    1996-12-31

    The Mighty Whale is a floating wave power device to convert the wave energy to other convenient energy for the conservation of the sea, and to create the calm sea area such as a floating breakwater. JAMSTEC (Japan Marine Science and Technology Center) has been promoting the R and D on this Mighty Whale since 1986. Already, the authors have finished fundamental development by theoretical, numerical and experimental study on the basic Mighty Whale. By 1996, they will finish designing the prototype model of the Mighty Whale, will start to construct it, and will carry out the open sea test between 1998 and 1999 at the coastal sea of Japan. The dimensions of the Mighty Whale are 50m in length, 30m in breadth and it has 3 air chambers, 3 units of the air turbines and generators of 50 kW rated power. It will be moored by mooring chains and anchors at the site of about 35m water depth. The mechanism to absorb the wave energy is of the OWC (Oscillating Water Column) type with the Wells Turbine. Its efficiency to absorb the wave energy is about 40--50% on average in regular waves, and it can make in the lee zone the height of incident waves about one half under 8 sec of the significant wave period. Because of such behavior, and from the view point of sustainable development at the coastal zone, the authors recognize the Mighty Whale can be a convenient and beneficial structure for the coastal development. In this paper, they introduce this design, and discuss the utilization of the Mighty Whale for the coastal development.

  7. Informal Preliminary Report on Comparisons of Prototype SPN-1 Radiometer to PARSL Measurements

    SciTech Connect (OSTI)

    Long, Charles N.

    2014-06-17

    The prototype SPN-1 has been taking measurements for several months collocated with our PNNL Atmospheric Remote Sensing Laboratory (PARSL) solar tracker mounted instruments at the Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, USA. The PARSL radiometers used in the following comparisons consist of an Eppley Normal Incident Pyrheliometer (NIP) and a shaded Eppley model 8-48 “Black and White” pyrgeometer (B&W) to measure the direct and diffuse shortwave irradiance (SW), respectively. These instruments were calibrated in mid-September by comparison to an absolute cavity radiometer directly traceable to the world standard group in Davos, Switzerland. The NIP calibration was determined by direct comparison, while the B&W was calibrated using the shade/unshade technique. All PARSL data prior to mid-September have been reprocessed using the new calibration factors. The PARSL data are logged as 1-minute averages from 1-second samples. Data used in this report span the time period from June 22 through December 1, 2006. All data have been processed through the QCRad code (Long and Shi, 2006), which itself is a more elaborately developed methodology along the lines of that applied by the Baseline Surface Radiation Network (BSRN) Archive (Long and Dutton, 2004), for quality control. The SPN-1 data are the standard total and diffuse SW values obtained from the analog data port of the instrument. The comparisons use only times when both the PARSL and SPN-1 data passed all QC testing. The data were further processed and analyzed by application of the SW Flux Analysis methodology (Long and Ackerman, 2000; Long and Gaustad, 2004, Long et al., 2006) to detect periods of clear skies, calculate continuous estimates of clear-sky SW irradiance and the effect of clouds on the downwelling SW, and estimate fractional sky cover.

  8. Type: Renewal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National

  9. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  10. Tool For Editing Structured Query Language Text Within ORACLE Forms Applications

    Energy Science and Technology Software Center (OSTI)

    1991-02-01

    SQTTEXT is an ORACLE SQL*Forms application that allows a programmer to view and edit all the Structured Query Language (SQL) text for a given application on one screen. This application is an outgrowth of the prototyping of an on-line system dictionary for the Worldwide Household Goods Information system for Transportation-Modernization decision support system being prototyped by the Oak Ridge National Laboratory, but it can be applied to all SQL*Forms software development, debugging, and maintenance.

  11. Window Types | Department of Energy

    Energy Savers [EERE]

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  12. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  13. Boron-10 ABUNCL Prototype Models And Initial Active Testing

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-04-23

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.

  14. Prototype Instrument for Noninvasive Ultrasonic Inspection and Indentification of Fluids in Sealed Containers

    SciTech Connect (OSTI)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-08-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  15. A decision support system prototype including human factors based on the TOGA meta-theory approach

    SciTech Connect (OSTI)

    Cappelli, M.; Memmi, F.; Gadomski, A. M.; Sepielli, M.

    2012-07-01

    The human contribution to the risk of operation of complex technological systems is often not negligible and sometimes tends to become significant, as shown by many reports on incidents and accidents occurred in the past inside Nuclear Power Plants (NPPs). An error of a human operator of a NPP can derive by both omission and commission. For instance, complex commission errors can also lead to significant catastrophic technological accidents, as for the case of the Three Mile Island accident. Typically, the problem is analyzed by focusing on the single event chain that has provoked the incident or accident. What is needed is a general framework able to include as many parameters as possible, i.e. both technological and human factors. Such a general model could allow to envisage an omission or commission error before it can happen or, alternatively, suggest preferred actions to do in order to take countermeasures to neutralize the effect of the error before it becomes critical. In this paper, a preliminary Decision Support System (DSS) based on the so-called (-) TOGA meta-theory approach is presented. The application of such a theory to the management of nuclear power plants has been presented in the previous ICAPP 2011. Here, a human factor simulator prototype is proposed in order to include the effect of human errors in the decision path. The DSS has been developed using a TRIGA research reactor as reference plant, and implemented using the LabVIEW programming environment and the Finite State Machine (FSM) model The proposed DSS shows how to apply the Universal Reasoning Paradigm (URP) and the Universal Management Paradigm (UMP) to a real plant context. The DSS receives inputs from instrumentation data and gives as output a suggested decision. It is obtained as the result of an internal elaborating process based on a performance function. The latter, describes the degree of satisfaction and efficiency, which are dependent on the level of responsibility related to each professional role. As an application, we present the simulation of the discussed error, e.g. the unchecked extraction of the control rods during a power variation maneuver and we show how the effect of human errors can affect the performance function, giving rise to different countermeasures which could call different operator figures into play, potentially not envisaged in the standard procedure. (authors)

  16. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  17. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: energy efficiency Type Term...

  18. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author...

  19. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: PV Type Term Title Author...

  20. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: utility scale Type Term...

  1. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: green apps Type Term Title...

  2. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: Renewable Energy Type Term...

  3. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: Desert Sunlight Type Term...

  4. Property:NEPA Application | Open Energy Information

    Open Energy Info (EERE)

    Application Jump to: navigation, search Property Name NEPA Application Property Type Page Description NEPA application files. All NOIs. Drilling permits are also appropriate. This...

  5. TGLO - Application to Prospect | Open Energy Information

    Open Energy Info (EERE)

    to Prospect Abstract This is an application to prospect with the Texas General Land Office. Form Type ApplicationNotice Form Topic Application to Prospect Organization Texas...

  6. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    Open Energy Info (EERE)

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  7. Testing and monitoring plan for the permanent isolation surface barrier prototype

    SciTech Connect (OSTI)

    Gee, G.W.; Cadwell, L.L.; Freeman, H.D.; Ligotke, M.W.; Link, S.O.; Romine, R.A.; Walters, W.H. Jr.

    1993-06-01

    This document is a testing and monitoring plan for a prototype barrier to be constructed at the Hanford Site in 1993. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system, designed to permanently isolate waste from the biosphere. These features include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, vegetated with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype over the next several years to evaluate barrier performance under extreme climatic conditions.

  8. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2 (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2 Citation Details In-Document Search Title: Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2 We report on calorimetric measurements under hydrostatic pressure that enabled us to determine the barocaloric effect in Gd5Si2Ge2. The values for the entropy change for moderate pressures compare favourably to those corresponding to the magnetocaloric effect in this compound. Entropy data are

  9. A Prototype Two-Decade Fully-Coupled Fine-Resolution CCSM Simulation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: A Prototype Two-Decade Fully-Coupled Fine-Resolution CCSM Simulation Citation Details In-Document Search Title: A Prototype Two-Decade Fully-Coupled Fine-Resolution CCSM Simulation A fully coupled global simulation using the Community Climate System Model (CCSM) was configured using grid resolutions of 0.1{sup o} for the ocean and sea-ice, and 0.25{sup o} for the atmosphere and land, and was run under present-day greenhouse gas conditions

  10. Hardware design document for the Infrasound Prototype for a CTBT IMS station

    SciTech Connect (OSTI)

    Breding, D.R.; Kromer, R.P.; Whitaker, R.W.; Sandoval, T.

    1997-11-01

    The Hardware Design Document (HDD) describes the various hardware components used in the Comprehensive Test Ban Treaty (CTBT) Infrasound Prototype and their interrelationships. It divides the infrasound prototype into hardware configurations items (HWCIs). The HDD uses techniques such as block diagrams and parts lists to present this information. The level of detail provided in the following sections should be sufficient to allow potential users to procure and install the infrasound system. Infrasonic monitoring is a low cost, robust, and effective technology for detecting atmospheric explosions. Low frequencies from explosion signals propagate to long ranges (few thousand kilometers) where they can be detected with an array of sensors.

  11. EIS-0275: Disposal of the S1C Prototype Reactor Plant, Hanford Site, Richland, WA (Navy Document)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Office of Naval Reactors (Naval Reactors) proposed action to dismantle the defueled S1C Prototype reactor plant.

  12. PJM Controller Testing with Prototypic PJM Nozzle Configuration

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Nigl, Franz; Weier, Dennis R.; Leigh, Richard J.; Johnson, Eric D.; Wilcox, Wayne A.; Pfund, David M.; Baumann, Aaron W.; Wang, Yeefoo

    2009-08-21

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pre-treat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities—pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste piped from the Hanford tank farms and separate it into a high-volume, low-activity liquid stream stripped of most solids and radionuclides and a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJM) that will provide some or all of the mixing in the vessels. Pulse jet mixer technology was selected for use in black cell regions of the WTP, where maintenance cannot be performed once hot testing and operations commence. The PJMs have no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. Pulse jet mixers are susceptible to overblows that can generate large hydrodynamic forces, forces that can damage mixing vessels or their internal parts. The probability of an overblow increases if a PJM does not fill completely. The purpose of the testing performed for this report was to determine how reliable and repeatable the primary and safety (or backup) PJM control systems are at detecting drive overblows (DOB) and charge vessel full (CVF) conditions. Testing was performed on the ABB 800xA and Triconex control systems. The controllers operated an array of four PJMs installed in an approximately 13 ft diameter × 15 ft tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. The PJMs were fitted with 4 inch diameter discharge nozzles representative of the nozzles to be used in the WTP. This work supplemented earlier controller tests done on PJMs with 2 inch nozzles (Bontha et al. 2007). Those earlier tests enabled the selection of appropriate pressure transmitters with associated piping and resulted in an alternate overblow detection algorithm that uses data from pressure transmitters mounted in a water flush line on the PJM airlines. Much of that earlier work was only qualitative, however, due to a data logger equipment failure that occurred during the 2007 testing. The objectives of the current work focused on providing quantitative determinations of the ability of the BNI controllers to detect DOB and CVF conditions. On both control systems, a DOB or CVF is indicated when the values of particular internal functions, called confidence values, cross predetermined thresholds. There are two types of confidence values; one based on a transformation of jet pump pair (JPP) drive and suction pressures, the other based on the pressure in the flush line. In the present testing, we collected confidence levels output from the ABB and Triconex controllers. These data were analyzed in terms of the true and noise confidence peaks generated during multiple cycles of DOB and CVF events. The distributions of peak and noise amplitudes were compared to see if thresholds could be set that would enable the detection of DOB and CVF events at high probabilities, while keeping false detections to low probabilities. Supporting data were also collected on PJM operation, including data on PJM pressures and levels, to provide direct experimental evidence of when PJMs were filling, full, driving, or overblowing.

  13. A prototype fan-beam optical CT scanner for 3D dosimetry

    SciTech Connect (OSTI)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The flask registration technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. Conclusions: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.

  14. Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report

    SciTech Connect (OSTI)

    Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

    1987-04-01

    The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

  15. High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells (Presentation)

    SciTech Connect (OSTI)

    Keevers, M.; Lau, J.; Green, M.; Thomas, I.; Lasich, J.; King, R.; Emery, K.

    2014-11-01

    This presentation summarizes progress on the design, fabrication and testing of a proof-of-concept, prototype spectrum splitting CPV submodule using commercial CPV cells, aimed at demonstrating an independently confirmed efficiency above 40% at STC (1000 W/m2, AM1.5D ASTM G173-03, 25 degrees C).

  16. Glazing materials for solar and architectural applications. Final report

    SciTech Connect (OSTI)

    Lampert, C.M. [ed.

    1994-09-01

    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  17. The design of the AIE: An object-oriented application development system

    SciTech Connect (OSTI)

    Fuja, R.S.; Widing, M.A.

    1992-02-27

    Three years ago, in response to our challenging development context, the Advanced Modeling and Analysis Section designed and implemented an object-oriented environment -- the Application Interface Engine (AIE). Our prototyping requirements forced existing application development systems beyond their capabilities. Programmers at AMAS and its contractors have developed over twenty applications using AIE. Our initial experience has been very positive. AIE extends an object-oriented programming language with syntax and classes to support applications specification. This extended system improves all stages of the application engineering life cycle, from rapid prototyping to long term maintenance.

  18. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    SciTech Connect (OSTI)

    Brombin, M. Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Taliercio, C.; Trevisan, L.; Schiesko, L.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  19. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    SciTech Connect (OSTI)

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  20. Prototype Testing for a Copper Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect (OSTI)

    Smith, Jeffrey Claiborne; Anzalone, Gene; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Rogers, Reggie; /SLAC

    2009-01-20

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw referred to as RC0 has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results. The prototype has also been tested in vacuum bake-out to confirm compliance with the LHC vacuum spec. CMM equipment has been used to verify the flatness of the jaw surface after heat tests and bake-out.

  1. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    SciTech Connect (OSTI)

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  2. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    SciTech Connect (OSTI)

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M.; Hartmann, Thomas

    2013-07-01

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  3. Prototype Detector and Chip Technology | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Prototype Detector and Chip Technology Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Frequently Asked Questions Impact Legislative History Program Contacts Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F:

  4. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    SciTech Connect (OSTI)

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell; Woloshun, Keith Albert; Dale, Gregory E.

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  5. € Prototype Programmatic Agreement Between DOE, State Energy Offices, and State Historic Preservation Offices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROTOTYPE PROGRAMMATIC AGREEMENT BETWEEN THE UNITED STATES DEPARTMENT OF ENERGY, THE [INSERT STATE NAME] ENERGY OFFICE AND THE [INSERT STATE NAME] STATE HISTORIC PRESERVATION OFFICE REGARDING EECBG, SEP AND WAP UNDERTAKINGS February 5, 2010 WHEREAS, the United States Department of Energy (DOE) administers the following financial assistance programs: the Energy Efficiency and Conservation Block Grant Program under the Energy Independence and Securities Act of 2007 (EECBG); the State Energy Plan

  6. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    SciTech Connect (OSTI)

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.; Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Alberty, L.; Artoos, K.; Calaga, R.; Capatina, O.; Capelli, T.; Carra, F.; Leuxe, R.; Kuder, N.; Zanoni, C.; Li, Z.; Ratti, A.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  7. Practical Thermal Evaluation Methods For HAC Fire Analysis In Type B Radiaoactive Material (RAM) Packages

    SciTech Connect (OSTI)

    Abramczyk, Glenn; Hensel, Stephen J; Gupta, Narendra K.

    2013-03-28

    Title 10 of the United States Code of Federal Regulations Part 71 for the Nuclear Regulatory Commission (10 CFR Part 71.73) requires that Type B radioactive material (RAM) packages satisfy certain Hypothetical Accident Conditions (HAC) thermal design requirements to ensure package safety during accidental fire conditions. Compliance with thermal design requirements can be met by prototype tests, analyses only or a combination of tests and analyses. Normally, it is impractical to meet all the HAC using tests only and the analytical methods are too complex due to the multi-physics non-linear nature of the fire event. Therefore, a combination of tests and thermal analyses methods using commercial heat transfer software are used to meet the necessary design requirements. The authors, along with his other colleagues at Savannah River National Laboratory in Aiken, SC, USA, have successfully used this 'tests and analyses' approach in the design and certification of several United States' DOE/NNSA certified packages, e.g. 9975, 9977, 9978, 9979, H1700, and Bulk Tritium Shipping Package (BTSP). This paper will describe these methods and it is hoped that the RAM Type B package designers and analysts can use them for their applications.

  8. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    SciTech Connect (OSTI)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholder’s intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties’ absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  9. Advanced product realization through model-based design and virtual prototyping

    SciTech Connect (OSTI)

    Andreas, R.D.

    1995-03-01

    Several government agencies and industrial sectors have recognized the need for, and payoff of, investing in the methodologies and associated technologies for improving the product realization process. Within the defense community as well as commercial industry, there are three major needs. First, they must reduce the cost of military products, of related manufacturing processes, and of the enterprises that have to be maintained. Second, they must reduce the time required to realize products while still applying the latest technologies. Finally, they must improve the predictability of process attributes, product performance, cost, schedule and quality. They must continue to advance technology, quickly incorporate their innovations in new products and in processes to produce them, and they need to capitalize on the raw computational power and communications bandwidth that continues to become available at decreasing cost. Sandia National Laboratories initiative is pursuing several interrelated, key concepts and technologies in order to enable such product realization process improvements: model-based design; intelligent manufacturing processes; rapid virtual and physical prototyping; and agile people/enterprises. While progress in each of these areas is necessary, this paper only addresses a portion of the overall initiative. First a vision of a desired future capability in model-based design and virtual prototyping is presented. This is followed by a discussion of two specific activities parametric design analysis of Synthetic Aperture Radars (SARs) and virtual prototyping of miniaturized high-density electronics -- that exemplify the vision as well as provide a status report on relevant work in progress.

  10. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    SciTech Connect (OSTI)

    Berry, Derek

    2007-09-01

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  11. Magnetic Field Mapping and Integral Transfer Function Matching of the Prototype Dipoles for the NSLS-II at BNL

    SciTech Connect (OSTI)

    He, P.; Jain, A., Gupta, R., Skaritka, J., Spataro, C., Joshi, P., Ganetis, G., Anerella, M., Wanderer, P.

    2011-03-28

    The National Synchrotron Light Source-II (NSLS-II) storage ring at Brookhaven National Laboratory (BNL) will be equipped with 54 dipole magnets having a gap of 35 mm, and 6 dipoles having a gap of 90 mm. Each dipole has a field of 0.4 T and provides 6 degrees of bending for a 3 GeV electron beam. The large aperture magnets are necessary to allow the extraction of long-wavelength light from the dipole magnet to serve a growing number of users of low energy radiation. The dipoles must not only have good field homogeneity (0.015% over a 40 mm x 20 mm region), but the integral transfer functions and integral end harmonics of the two types of magnets must also be matched. The 35 mm aperture dipole has a novel design where the yoke ends are extended up to the outside dimension of the coil using magnetic steel nose pieces. This design increases the effective length of the dipole without increasing the physical length. These nose pieces can be tailored to adjust the integral transfer function as well as the homogeneity of the integrated field. One prototype of each dipole type has been fabricated to validate the designs and to study matching of the two dipoles. A Hall probe mapping system has been built with three Group 3 Hall probes mounted on a 2-D translation stage. The probes are arranged with one probe in the midplane of the magnet and the others vertically offset by {+-}10 mm. The field is mapped around a nominal 25 m radius beam trajectory. The results of measurements in the as-received magnets, and with modifications made to the nose pieces are presented.

  12. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect (OSTI)

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  13. Vermont Section 401 Water Quality Certification Application ...

    Open Energy Info (EERE)

    Abstract Application required for Section 401 water quality certification under the Clean Water Act. Form Type ApplicationNotice Form Topic Section 401 Water Quality...

  14. Utah Application to Appropriate Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Application to Appropriate Water Abstract Required application for obtaining a right to appropriate water in Utah. Form Type ApplicationNotice Form Topic Filing for Water...

  15. Alaska Special Area Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Form: Alaska Special Area Permit Application Form Type ApplicationNotice Form Topic Fish and Game Special Area Permit Application Organization Alaska Department of Fish and...

  16. Montana Restricted Use Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Use Permit Application Abstract Application for conducting commercial use with Montana Fish, Wildlife & Parks jurisdiction. Form Type ApplicationNotice Form Topic Restricted Use...

  17. Property:NEPA Application Url | Open Energy Information

    Open Energy Info (EERE)

    Application Url Jump to: navigation, search Property Name NEPA Application Url Property Type URL Description URLs to NEPA application files. All NOIs. Drilling permits are also...

  18. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  19. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  20. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  1. Study of quasi-elastic scattering in the NO?A near detector prototype

    SciTech Connect (OSTI)

    Betancourt, M.

    2015-05-15

    NOvA is a 14 kTon long-baseline neutrino oscillation experiment currently being installed in the NuMI off-axis neutrino beam produced at Fermilab. A 222 Ton prototype NO?A detector was built and operated in the neutrino beam for over a year to understand the response of the detector and its construction. Muon neutrino interaction data collected in this test are being analyzed to identify quasi-elastic charged-current interactions and measure the behavior of the quasi-elastic muon neutrino cross section.

  2. A prototype functional language implementation for hierarchical- memory architectures. Revision 1

    SciTech Connect (OSTI)

    Wolski, R.; Feo, J.; Cann, D.

    1992-01-14

    Programming languages are the most important tool at a programmers` disposal. All other tools correct, visualize, or evaluate the product crafted by this tool. The advent of multiprocessor computer systems has greatly complicated the programmer`s task an increased his need for high-level languages capable of automatically taming these architectures. In this paper, we describe a prototype implementation of Sisal for multiprocessor, hierarchical-memory systems. The implementation includes explicit compiler and runtime control that effectively exploits the different levels of memory and manages interprocess communications (IPC). We give preliminary performance results for this system on the BBN TC2000.

  3. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  4. Federal prototype oil shale tract C-A offtract lease, Colorado

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    A draft environmental impact statement (EPA No. 850428D) assesses the impacts of proposed offtract disposal of waste materials associated with an open pit mine on a prototype oil shale lease tract. The offtract lease would include facilities for retorting, upgrading, power generation, and product storage. Offtract disposal and plant siting would make the mining cite more viable and cost effective. The project would require rerouting of two major country roads, and would eliminate an airport and other facilities. The site would become more isolated, which could affect future development in the area. The Federal Land Policy and Management Act of 1976 mandates the impact study.

  5. Effect of Substrate Configuration on the Grain Structure and Morphology of Electrodeposited Ni for Prototyping LIGA

    SciTech Connect (OSTI)

    Nacy Y. C. Yang

    2002-07-01

    Synchrotron X-ray lithographic molding of PMMA-Ti/Cu/Ti substrates has been developed and used in the electrodeposition of Ni microparts for prototype LIGA development at SNL, CA. Alternative molding processes that minimize x-ray beam line use and reduce processing time are of interest for the rapid fabrication of large quantities of microparts. The objective of this investigation is to examine, archive, and compare the grain structure and morphology of deposits produced from four different molding technologies currently under development. We conclude that deposit microstructure and uniformity are greatly influenced by substrate material and design configuration. The findings are summarized.

  6. Development of the prototype pneumatic transfer system for ITER neutron activation system

    SciTech Connect (OSTI)

    Cheon, M. S.; Seon, C. R.; Pak, S.; Lee, H. G.; Bertalot, L.

    2012-10-15

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  7. Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect (OSTI)

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; ,

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results.

  8. Crab Cavity and Cryomodule Prototype Development for the Advanced Photon Source

    SciTech Connect (OSTI)

    Wang, H; Ciovati, G; Clemens, W A; Henry, J; Kneisel, P; Kushnick, P; Macha, K; Mammosser, J D; Rimmer, R A; Slack, G; Turlington, L; Nassiri, R; Waldschmidt, G J

    2011-03-01

    We review the single-cell, superconducting crab cavity designs for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). The 'on-cell' waveguide scheme is expected to have a more margin for the impedance budget of the APS storage ring, as well as offering a more compact design compared with the original design consisting of a low order mode damping waveguide on the beam pipe. We will report recent fabrication progress, cavity test performance on original and alternate prototypes, and concept designs and analysis for various cryomodule components.

  9. Integral Validation of Minor Actinide Nuclear Data by using Samples Irradiated at Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Shinohara, Nobuo [Japan Atomic Energy Research Institute, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2005-05-24

    The reliability of nuclear data for minor actinides was evaluated by using the results of the post-irradiation experiment for actinide samples irradiated at the Dounreay Prototype Fast Reactor. The burnup calculations with JENDL-3.3, ENDF/B-VI.8, and JEFF-3.0 were performed. From the comparison between the experimental data and the calculational results, in general, the reliability of nuclear data for the minor actinides are at an adequate level for the conceptual design study of transmutation systems. It is, however, found that improvement of the accuracy is necessary for some nuclides, such as 238Pu, 242Pu, and 241Am.

  10. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, Michael (Berkeley, CA); Newman, Nathan (Montara, CA); Fu, Tracy (Berkeley, CA); Ross, Jennifer (Pleasanton, CA); Chan, James (Berkeley, CA)

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  11. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  12. 50 kW Power Block for Distributed Energy Applications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search 50 kW Power Block for Distributed Energy Applications National Renewable Energy Laboratory Contact NREL About This Technology Actual prototype Actual prototype Technology Marketing Summary Distributed energy (DE) systems have begun to make a significant impact on energy supply and will

  13. Performance of a new LMRPC prototype for the STAR MTD system

    SciTech Connect (OSTI)

    Ruan, L.J.; Wang, Y.; Chen, H. S.; Ding, W. C.; Qiu, X. Z.; Wang, J. B.; Zhu, X. L.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Ruan, L.; Xu, Z.; Asselta, K.; Christie, W.; D'Agostino, C.; Dunlop, J.; Landgraf, J.; Ljubicic, T.; Scheblein, J.; Soja, R.; Tang, A. H.; Ullrich, T.; Crawford, H. J.; Engelage, J.; Sanchez, M. Calderon de la Barca; Reed, R.; Liu, H. D.; Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; McDonald, D.; Nussbaum, T.; Roberts, J.; Xin, K.; Bridges, L.; Li, J. C.; Qian, S.; Ning, Z.; Chen, H. F.; Huang, B. C.; Li, C.; Shao, M.; Sun, Y. J.; Tang, Z. B.; Wang, X. L.; Xu, Y. C.; Zhang, Z. P.; Zeng, H.; Zhou, Y.; Clarke, R.; Mioduszewski, S.; Davila, A.; Hoffmann, G. W.; Li, L.; Markert, C.; Ray, L.; Schambach, J.; Thein, D.; Wada, M.; Ahammed, Z.; Bhaduri, P. P.; Chattopadhyay, S.; Dubey, A. K.; Dutt-Mazumdar, M. R.; Ghosh, P.; Khan, S. A.; Muhuri, S.; Mohanty, B.; Nayak, T. K.; Pal, S.; Singaraju, R.; Singhal, V.; Tribedy, P.; Viyogi, Y. P.

    2011-03-21

    A new prototype of a Long-Strip Multi-Gap Resistive Plate Chamber (LMRPC) for the STAR Muon Telescope Detector (MTD) at RHIC has been developed. This prototype has an active area of 52 x 90 cm{sup 2} and consists of six 250 {mu}m wide gaps. Each detector has 12 strips, read-out at both ends, which are each 3.8 cm wide and 90 cm long with 0.6 cm intervals. In cosmic-ray tests, the efficiency was larger than 95% and the time resolution was {approx}75 ps for the 94% Freon, 5% iso-butane, and 1% SF{sub 6} gas mixture. There was good uniformity in the performance across the different strips. The module was also tested in a proton beam at IHEP in Beijing. The efficiency was close to 100% and the best timing resolution achieved was 55 ps for the 90% Freon, 5% iso-butane, and 5% SF6 gas mixture. Trigger scans along and across the strip direction were also performed.

  14. A continuous emissions monitor for metals: Field demonstration of a prototype probe

    SciTech Connect (OSTI)

    Flower, W.; Peng, L.; Woods, C.

    1995-05-01

    Sandia National Laboratories conducted field tests of a prototype continuous emissions monitor for metals at Clemson University, August 5-11, 1994, in cooperation with the joule-melter vitrification project at Clemson and Savannah River. The monitor is based on Laser Spark Spectroscopy, an established laboratory diagnostic technique that has been adapted for monitoring metal emissions from thermal waste treatment facilities. In the field tests described in this report, emissions were measured from a joule melter that was processing a surrogate waste-water treatment sludge from Oak Ridge. Data from this test provides the first insight into how emissions change (in real time) as operating parameters such as waste feed rate are changed. We detected all metals that were present above the estimated minimum detectability limits (in the parts-per-billion range for Clean Air Act metals), in addition to glass-making species such as calcium, boron, and silicon. This report summarizes the Clemson field tests, including design of the prototype probe, preparations leading up to the tests, the tests themselves, and analysis of results.

  15. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Whole-House Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Mullens, M.; Rath, P.

    2014-04-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.

  16. Evaluation of Affordable Prototype Houses at Two Levels of Energy Efficiency

    SciTech Connect (OSTI)

    Hendron, R.; Barker, G.; Hancock, E.; Reeves, P.

    2006-10-01

    Two high performance prototype houses were built in Carbondale, Colorado, as part of the U.S. Department of Energy's Building America (BA) Program. Each prototype was a 1256 ft2 (117 m2), 1-story, 3-bedroom house, and met the local requirements for affordable housing. The National Renewable Energy Laboratory (NREL) performed short-term field testing and DOE-2.2 simulations in support of this project at the end of December 2004. We also installed long-term monitoring equipment in one of the houses, and are currently tracking the performance of key building systems under occupied conditions. One of the houses (designated H1) included a package of cost-effective energy efficiency features that placed it well above the Energy Star level, targeting a Home Energy Rating System (HERS) score of 88-89. The other (designated H2) was a BA research house, targeting a HERS score of 94-95, and 45% whole-house energy savings compared to the BA Benchmark. Preliminary results from the field evaluation indicate that the energy savings for both houses will exceed the design targets established for the project, although the performance of certain building systems, including the ventilation and foundation systems, leave some room for improvement.

  17. NOvA detector technology with intial performance from the surface prototype

    SciTech Connect (OSTI)

    Muether, M.; /Fermilab

    2011-09-01

    NOvA, the NuMI Off-Axis {nu}{sub e} Appearance experiment, will study {nu}{sub {mu}} {yields} {nu}{sub e} oscillations characterized by the mixing angle {Theta}{sub 13}. Provided {Theta}{sub 13} is large enough, NOvA may ultimately determine the ordering of the neutrino masses and measure CP violation in neutrino oscillations. A complementary pair of detectors will be constructed {approx}14 mrad off beam axis to optimize the energy profile of the neutrinos. This system consists of a surface based 14 kTon liquid scintillator tracking volume located 810 km from the main injector source (NuMI) in Ash River, Minnesota and a smaller underground 222 Ton near detector at the Fermilab. The first neutrino signals at the Ash River Site are expected prior to the 2012 accelerator shutdown. In the meantime, a near detector surface prototype has been completed and neutrinos from two Fermilab sources have been observed using the same highly segmented PVC and liquid scintillator detector system that will be deployed in the full scale experiment. Design and initial performance characteristics of this prototype system are being fed back into the design for the full NOvA program.

  18. Advanced Envelope Research for Factory Built Housing, Phase 3—Whole-House Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Mullens, M.; Rath, P.

    2014-04-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. This work is part of a multiphase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). This report describes Phase 3, which was completed in two stages and continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.

  19. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device

    SciTech Connect (OSTI)

    Samant, Sanjiv S.; Gopal, Arun

    2006-08-15

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25x25 cm{sup 2} CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240x1024 pixels, 250 {mu}m pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW{sup PLUS}) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at {approx}3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.

  20. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  1. Types of Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification determines the kind of electro-chemical reactions that take place in the cell, the kind of catalysts required, the temperature range in which the cell operates, the fuel required, and other factors. These characteristics, in turn, affect the applications for which these cells are most suitable. There are several types of fuel cells currently under

  2. Application Monitoring Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Monitoring

  3. Property:NEPA ApplicationDate | Open Energy Information

    Open Energy Info (EERE)

    ApplicationDate Jump to: navigation, search Property Name NEPA ApplicationDate Property Type Date This is a property of type Date. Pages using the property "NEPA ApplicationDate"...

  4. DOE specification: Flooded-type lead-acid storage batteries

    SciTech Connect (OSTI)

    1996-08-01

    This document contains a ``fill-in-the-blanks`` guide specification for procurement of flooded-type lead-acid storage batteries, for uninterruptible power supply applications.

  5. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.

  6. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, T.; Peeks, B.

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  7. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Merriman, Jason H.

    2011-03-01

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  8. Business Case Analysis of Prototype Fabrication Division Recapitalization Plan—Summary

    SciTech Connect (OSTI)

    Booth, Steven Richard; Benson, Faith Ann; Dinehart, Timothy Grant

    2015-04-30

    Business case studies were completed to support procurement of new machines and capital equipment in the Prototype Fabrication (PF) Division SM-39 and TA-03-0102 machine shops. Economic analysis was conducted for replacing the Mazak 30Y Mill-Turn Machine in SM-39, the Haas Vertical CNC Mill in Building 102, and the Hardinge Q10/65-SP Lathe in SM-39. Analysis was also conducted for adding a NanoTech Lathe in Building 102 and a new electrical discharge machine (EDM) in SM-39 to augment current capabilities. To determine the value of switching machinery, a baseline scenario was compared with a future scenario where new machinery was purchased and installed. Costs and benefits were defined via interviews with subject matter experts.

  9. Bright microwave pulses from PSR B0531+21 observed with a prototype transient survey receiver

    SciTech Connect (OSTI)

    O'Dea, J. Andrew; Cheng, Tsan-Huei; Buu, Chau M.; Asmar, Sami W.; Armstrong, J. W.; Jenet, F. A.; Beroiz, Martin

    2014-05-01

    Recent discoveries of transient radio events have renewed interest in time-variable astrophysical phenomena. Many radio transient events are rare, requiring long observing times for reliable statistical study. The National Aeronautics and Space Administration/Jet Propulsion Laboratory's Deep Space Network (DSN) tracks spacecraft nearly continuously with 13 large-aperture, low system temperature radio antennas. During normal spacecraft operations, the DSN processes only a small fraction of the pre-detection bandwidth available from these antennas; any information in the remaining bandwidth, e.g., from an astronomical source in the same antenna beam as the spacecraft, is currently ignored. As a firmware modification to the standard DSN tracking receiver, we built a prototype receiver that could be used for astronomical transient surveys. Here, we demonstrate the receiver's utility through observations of bright pulses from the Crab pulsar and describe attributes of potential transient survey observations piggybacking on operational DSN tracks.

  10. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  11. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  12. Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials

    SciTech Connect (OSTI)

    Trahey, N.M.; Smith, M.M.; Voeks, A.M.; Bracey, J.T.

    1986-12-01

    The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program. Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.

  13. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    SciTech Connect (OSTI)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T. [Fusion and Materials for Nuclear System Division, Oak Ridge National Laboratory, Oak Ridge (United States); Rasmussen, David A.; Hechler, Michael P. [U.S. ITER Project Office, Oak Ridge National Laboratory, Oak Ridge (United States); Pearce, Robert J. H.; Dremel, Mattias [ITER Organization, 13115 St. Paul-lez-Durance (France); Boissin, J.-C. [Consultant, Grenoble (France)

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  14. Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-05-17

    This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.

  15. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.

  16. Transactional Network Platform: Applications

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Lutes, Robert G.; Ngo, Hung; Underhill, Ronald M.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop air conditioners and heat pump units (RTUs) and the electric grid using applications or "agents" that reside on the platform, on the equipment, on a local building controller or in the Cloud. The transactional network project is a multi-lab effort with Oakridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) also contributing to the effort. PNNL coordinated the project and also was responsible for the development of the transactional network (TN) platform and three different applications associated with RTUs. This document describes two applications or "agents" in details, and also summarizes the platform. The TN platform details are described in another companion document.

  17. Types of Reuse

    Broader source: Energy.gov [DOE]

    The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

  18. Types of Hydropower Plants

    Broader source: Energy.gov [DOE]

    There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

  19. Postdoc Appointment Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointment Types Postdoc Appointment Types Most postdocs will be offered a postdoctoral research associate appointment. Each year, approximately 30 Postdoctoral Fellow appointments, including the Distinguished Fellows, are awarded. Contact Postdoc Program Office Email Postdoc appointment types offer world of possibilities Meet the current LANL Distinguished Postdocs Research Associates Research Associates pursue research as part of ongoing LANL science and engineering programs. Sponsored

  20. Development and evaluation of a prototype tracking system using the treatment couch

    SciTech Connect (OSTI)

    Lang, Stephanie Riesterer, Oliver; Klöck, Stephan; Zeimetz, Jörg; Ochsner, Gregor; Schmid Daners, Marianne

    2014-02-15

    Purpose: Tumor motion increases safety margins around the clinical target volume and leads to an increased dose to the surrounding healthy tissue. The authors have developed and evaluated a one-dimensional treatment couch tracking system to counter steer respiratory tumor motion. Three different motion detection sensors with different lag times were evaluated. Methods: The couch tracking system consists of a motion detection sensor, which can be the topometrical system Topos (Cyber Technologies, Germany), the respiratory gating system RPM (Varian Medical Systems) or a laser triangulation system (Micro Epsilon), and the Protura treatment couch (Civco Medical Systems). The control of the treatment couch was implemented in the block diagram environment Simulink (MathWorks). To achieve real time performance, the Simulink models were executed on a real time engine, provided by Real-Time Windows Target (MathWorks). A proportional-integral control system was implemented. The lag time of the couch tracking system using the three different motion detection sensors was measured. The geometrical accuracy of the system was evaluated by measuring the mean absolute deviation from the reference (static position) during motion tracking. This deviation was compared to the mean absolute deviation without tracking and a reduction factor was defined. A hexapod system was moving according to seven respiration patterns previously acquired with the RPM system as well as according to a sin{sup 6} function with two different frequencies (0.33 and 0.17 Hz) and the treatment table compensated the motion. Results: A prototype system for treatment couch tracking of respiratory motion was developed. The laser based tracking system with a small lag time of 57 ms reduced the residual motion by a factor of 11.9 ± 5.5 (mean value ± standard deviation). An increase in delay time from 57 to 130 ms (RPM based system) resulted in a reduction by a factor of 4.7 ± 2.6. The Topos based tracking system with the largest lag time of 300 ms achieved a mean reduction by a factor of 3.4 ± 2.3. The increase in the penumbra of a profile (1 × 1 cm{sup 2}) for a motion of 6 mm was 1.4 mm. With tracking applied there was no increase in the penumbra. Conclusions: Couch tracking with the Protura treatment couch is achievable. To reliably track all possible respiration patterns without prediction filters a short lag time below 100 ms is needed. More scientific work is necessary to extend our prototype to tracking of internal motion.

  1. DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

  2. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Oxstrand, Johanna Helene; Ahmad Al Rashdan; Le Blanc, Katya Lee; Bly, Aaron Douglas; Agarwal, Vivek

    2015-07-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  3. 200-BP-1 Prototype Hanford Barrier -- 15 Years of Performance Monitoring

    SciTech Connect (OSTI)

    Ward, Anderson L.; Draper, Kathryn E.; Link, Steven O.; Clayton, Ray E.

    2011-09-30

    Monitoring is an essential component of engineered barrier system design and operation. A composite capacitive cover, including a capillary break and an evapotranspiration (ET) barrier at the Hanford Site, is generating data that can be used to help resolve these issues. The prototype Hanford barrier was constructed over the 216-B-57 Crib in 1994 to evaluate surface-barrier constructability, construction costs, and physical and hydrologic performance at the field scale. The barrier has been routinely monitored between November 1994 and September 1998 as part of a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) treatability test of barrier performance for the 200 BP 1 Operable Unit. Since FY 1998, monitoring has focused on a more limited set of key water balance, stability, and biotic parameters. In FY 2009, data collection was focused on: (1) water-balance monitoring, consisting of precipitation, runoff, soil moisture storage, and drainage measurements with evapotranspiration calculated by difference; (2) stability monitoring, consisting of asphalt-layer-settlement, basalt-side-slope-stability, and surface-elevation measurements; (3) vegetation dynamics; and (4) animal use. September 2009 marked 15 years since the start of monitoring and the collection of performance data. This report describes the results of monitoring activities during the period October 1, 2008, through September 30, 2009, and summarizes the 15 years of performance data collected from September 1994 through September 2009.

  4. Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO2(110)

    SciTech Connect (OSTI)

    Migani, Annapaola; Mowbray, Duncan J.; Iacomino, Amilcare; Zhao, Jin; Petek, Hrvoje

    2013-08-07

    Photocatalytic activity depends on the optimal alignment of electronic levels at the molecule? semiconductor interface. Establishing the level alignment experimentally is complicated by the uncertain chemical identity of the surface species. We address the assignment of the occupied and empty electronic levels for the prototypical photocatalytic system consisting of methanol on a rutile TiO2(110) surface. Using many-body quasiparticle (QP) techniques, we show that the frontier levels measured in UV photoelectron and two-photon photoemission spectroscopy experiments can be assigned to molecularly chemisorbed methanol rather than its dissociated product, the methoxy species. We find that the highest occupied molecular orbital of the methoxy species is much closer to the valence band maximum, suggesting why it is more photocatalytically active than the methanol molecule. We develop a general semiquantitative model for predicting many-body QP energies based on the electronic screening within the bulk, molecular, or vacuum regions of the wave functions at molecule?semiconductor interfaces.

  5. A prototype decision aid for evaluating and selecting R&D proposals

    SciTech Connect (OSTI)

    Al-Ayat, R.A.; Lamont, A.; Sicherman, A.

    1992-05-01

    This report describes a prototype decision aid which has been developed to assist the Institutional Research and Development (IR&D) Committee in selecting proposals for funding. This tool was requested to help address the following concerns about the IR&D proposal selection process: Some good proposals might be overlooked simply because no one on the Committee advocates them forcefully. The process takes a lot of time. The final portfolio of proposals selected may not maximize the long-run benefits to the Laboratory. These concerns stem from the observation that there is no formal framework for making distinctions between proposals, or weighing and comparing those distinctions. It was felt that the process could be improved by a framework that: Provides explicit descriptors that Committee members can use to evaluate and compare different features of proposals. Encourages the Committee to use a uniform, systematic scheme for evaluating the proposals. Helps the Committee focus more quickly on the issues that are truly relevant for distinguishing between proposals.

  6. Multipacting in a grooved choke joint at SRF gun for BNL ERL prototype

    SciTech Connect (OSTI)

    Xu, W.; Ben-Zvi, I.; Belomestnykh, S.; Burrill, A.; Holmes, D.; Kayran, D.; McIntyre, G.; Sheehy, B.

    2011-03-28

    The 703 MHz superconducting gun for BNL ERL prototype was tested at JLab with and without choke-joint and cathode stalk. Without choke-joint and cathode stalk, the gradient reached was 25 MV/m with Q{sup 0} {approx} 6E9. The gun cathode insertion port is equipped with a grooved choke joint for multipacting suppression. We carried out tests with choke-joint and cathode stalk. The test results show that there are at least two barriers at about 3.5 MV/m and 5 MV/m. We considered several possibilities and finally found that fine details of the grooved shape are important for multipacting suppression. A triangular groove with round crest may cause strong multipacting in the choke-joint at 3.5 MV/m, 5 MV/m and 10 MV/m. This paper presents the primary test results of the gun and discusses the multipacting analysis in the choke-joint. It also suggests possible solutions for the gun and multipacting suppressing for a similar structure.

  7. Prototype secondary mirror assembly design for the space infrared telescope facility

    SciTech Connect (OSTI)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1989-02-01

    The authors describe their design of a liquid helium temperature prototype secondary mirror assembly (PSMA) under development for the NASA Space Infrared Telescope Facility (SIRTF) program. The SIRTF secondary mirror assembly must operate below 4 K and provide the functions of highly precise 2-axis dynamic tilting (chopping) in addition to the conventional functions needed by the SIRTF observatory. Their PSMA design employs a fused quartz mirror kinematically attached at its center to an aluminium cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feedback provided by pairs of differential position sensors. The voice coil actuators are mounted on a second flexure-pivoted mass enhancing servo system stability and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose dimensional characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a six degree of freedom focus and centering mechanism using pivoted actuation levers driven by lead screw/harmonic drive/stepper motor assemblies.

  8. Advanced Envelope Research for Factory Built Housing, Phase 3—Design Development and Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research — stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  9. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  10. TYPE OF OPERATION

    Office of Legacy Management (LM)

    3!NEEi_S1 past: -~~~-~~~~~-~~~---------- current: ------------_------------- Owner contacted q yes g no; if ye=, date contacted TYPE OF OPERATION --~~__--~-~~~---- 5 Research & Development 5 Facility Type 0 Production scale testing c1 Pilot Scale 0 Bench Scale Process z Theareti cal Studi es Sample Sr Analysis 0 Production D Disposal/Storage TYPE OF CONTRACT ---------------- 0 Manufacturing 0 University 0 Research Clrganization B Government Cpanaored Faci 1 i ty 0 Other ~~---~~---_--~~-----_

  11. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Years 2005 Through 2007

    SciTech Connect (OSTI)

    Ward, Andy L.; Link, Steven O.; Strickland, Christopher E.; Draper, Kathryn E.; Clayton, Ray E.

    2008-02-01

    A prototype Hanford barrier was deployed over the 216-B-57 Crib at the Hanford Site in 1994 to prevent percolation through the underlying waste and to minimize spreading of buried contaminants. This barrier is being monitored to evaluate physical and hydrologic performance at the field scale. This report summarizes data collected during the period FY 2005 through FY 2007. In FY 2007, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance, including precipitation, runoff, storage, drainage, and deep percolation. Owing to a hiatus in funding in FY 2005 through 2006, data collected were limited to automated measurements of the water-balance components. For the reporting period (October 2004 through September 2007) precipitation amount and distribution were close to normal. The cumulative amount of water received from October 1994 through September 2007 was 3043.45 mm on the northern half of the barrier, which is the formerly irrigated treatment, and 2370.58 mm on the southern, non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of around 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. For the reporting period, the total drainage from the soil-covered plots ranged from near zero amounts under the soil-covered plots to almost 20 mm under the side slopes. Over the 13-yr monitoring period, side slope drainage accounted for about 20 percent of total precipitation while the soil-covered plots account for only 0.12 mm total. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys show the barrier and protective side slopes to be stable. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation in 1994 although species diversity on the soil cover continues to decrease, from 35 in 1997 to 12 in 2007. The formerly irrigated treatments continue to show greater cover of grasses and litter than the non-irrigated treatments. On the formerly irrigated treatments, the mean cover class was 25 to 50 percent for both grasses and shrubs. On the non-irrigated treatments, the mean cover class was 5 to 25 percent from grasses and 25 to 50 percent for shrubs. The western and northern side slopes of the barrier show less plant cover than the soil surface, but show higher species diversity. This may be due to the influence of windblown soil and seeds from adjacent land, or the lack of shrubs competing for resources. Insects and small mammals continue to use the barrier surface and several holes and mounds were observed during the last year. This suggests that the restored barrier surface is beginning to function like a recovering ecosystem. Small-mammal burrowing on the top and sides of the barrier is most prevalent on the finer-grained and disturbed soils while active ant mounds were observed on the northern and western slopes.

  12. Property:FERC License Application Date | Open Energy Information

    Open Energy Info (EERE)

    FERC License Application Date Jump to: navigation, search Property Name FERC License Application Date Property Type String Retrieved from "http:en.openei.orgw...

  13. Nevada Application For Renewable Energy System Generators | Open...

    Open Energy Info (EERE)

    renewable energy system. Form Type ApplicationNotice Form Topic Application Pursuant to NAC 704.8901 - 704.8937 for Renewable Energy System Generators Published Publisher Not...

  14. Property:NEPA ApplicationAttachments | Open Energy Information

    Open Energy Info (EERE)

    ApplicationAttachments Jump to: navigation, search Property Name NEPA ApplicationAttachments Property Type Page Description FONSI files for NEPA Docs. For example: Cover letters,...

  15. Technical applications of aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.

    1997-08-18

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels.

  16. Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders

    SciTech Connect (OSTI)

    Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

    2011-08-07

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and provide an overview of the Integrated Cylinder Verification Station (ICVS) approach.

  17. Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time

    SciTech Connect (OSTI)

    Zhang, Z. F.

    2015-08-14

    Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within this layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.

  18. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation exposure Regardless of where or how an accident involving radiation happens, three types of radiation-induced injury can occur: external irradiation, contamination with radioactive materials, and incorporation of radioactive material into body cells, tissues, or organs. External Irradiation External irradiation occurs when

  19. Development of a Prototype Lattice Boltzmann Code for CFD of Fusion Systems.

    SciTech Connect (OSTI)

    Pattison, Martin J; Premnath, Kannan N; Banerjee, Sanjoy; Dwivedi, Vinay

    2007-02-26

    Designs of proposed fusion reactors, such as the ITER project, typically involve the use of liquid metals as coolants in components such as heat exchangers, which are generally subjected to strong magnetic fields. These fields induce electric currents in the fluids, resulting in magnetohydrodynamic (MHD) forces which have important effects on the flow. The objective of this SBIR project was to develop computational techniques based on recently developed lattice Boltzmann techniques for the simulation of these MHD flows and implement them in a computational fluid dynamics (CFD) code for the study of fluid flow systems encountered in fusion engineering. The code developed during this project, solves the lattice Boltzmann equation, which is a kinetic equation whose behaviour represents fluid motion. This is in contrast to most CFD codes which are based on finite difference/finite volume based solvers. The lattice Boltzmann method (LBM) is a relatively new approach which has a number of advantages compared with more conventional methods such as the SIMPLE or projection method algorithms that involve direct solution of the Navier-Stokes equations. These are that the LBM is very well suited to parallel processing, with almost linear scaling even for very large numbers of processors. Unlike other methods, the LBM does not require solution of a Poisson pressure equation leading to a relatively fast execution time. A particularly attractive property of the LBM is that it can handle flows in complex geometries very easily. It can use simple rectangular grids throughout the computational domain -- generation of a body-fitted grid is not required. A recent advance in the LBM is the introduction of the multiple relaxation time (MRT) model; the implementation of this model greatly enhanced the numerical stability when used in lieu of the single relaxation time model, with only a small increase in computer time. Parallel processing was implemented using MPI and demonstrated the ability of the LBM to scale almost linearly. The equation for magnetic induction was also solved using a lattice Boltzmann method. This approach has the advantage that it fits in well to the framework used for the hydrodynamic equations, but more importantly that it preserves the ability of the code to run efficiently on parallel architectures. Since the LBM is a relatively recent model, a number of new developments were needed to solve the magnetic induction equation for practical problems. Existing methods were only suitable for cases where the fluid viscosity and the magnetic resistivity are of the same order, and a preconditioning method was used to allow the simulation of liquid metals, where these properties differ by several orders of magnitude. An extension of this method to the hydrodynamic equations allowed faster convergence to steady state. A new method of imposing boundary conditions using an extrapolation technique was derived, enabling the magnetic field at a boundary to be specified. Also, a technique by which the grid can be stretched was formulated to resolve thin layers at high imposed magnetic fields, allowing flows with Hartmann numbers of several thousand to be quickly and efficiently simulated. In addition, a module has been developed to calculate the temperature field and heat transfer. This uses a total variation diminishing scheme to solve the equations and is again very amenable to parallelisation. Although, the module was developed with thermal modelling in mind, it can also be applied to passive scalar transport. The code is fully three dimensional and has been applied to a wide variety of cases, including both laminar and turbulent flows. Validations against a series of canonical problems involving both MHD effects and turbulence have clearly demonstrated the ability of the LBM to properly model these types of flow. As well as applications to fusion engineering, the resulting code is flexible enough to be applied to a wide range of other flows, in particular those requiring parallel computations with many processors. For example, at

  20. Peculiarities of Environment Pollution as a Special Type of Radioactive Waste: Field Means for Comprehensive Characterization of Soil and Bottom Sediments and their Application in the Survey at the Flood plain of Techa River - 13172

    SciTech Connect (OSTI)

    Ivanov, Oleg; Danilovich, Alexey; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly

    2013-07-01

    Contamination of natural objects - zone alarm fallout, zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of contaminated matter, moderate specific activity (as low - medium-level wastes) make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There is no cost-effective ways to remove these waste, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The complex of instruments was developed to field mapping of contamination. It consists of a portable spectrometric collimated detector, collimated spectrometric borehole detector, underwater spectrometer detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA 'Colibry (Hummingbird)'. The complex was used in settlements of Bryansk region, rivers Techa and Yenisei. The effectiveness of the developed complex considered by the example of characterization of the reservoir 10 (artificial lake) in Techinsky cascade containing a huge amount of radioactive waste. The developed field means for comprehensive characterization of soil and bottom sediments contamination are very effective for mapping and monitoring of environment contamination after accidents. Especially in case of high non-uniformity of fallout and may be very actual in Fukushima area. (authors)

  1. Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing New Process Produces Ethylene More Efficiently and Reduces Coke Formation Ethylene, an important olefn, is a key building block in the production of numerous chemicals and polymers and the largest volume organic chemical produced in the United States and the world today. Ethylene also has one of the highest overall energy consumption totals compared to the production of other chemicals

  2. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect (OSTI)

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; ,

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  3. Property:NEPA RevisedApplicationDate | Open Energy Information

    Open Energy Info (EERE)

    RevisedApplicationDate Jump to: navigation, search Property Name NEPA RevisedApplicationDate Property Type Date This is a property of type Date. Pages using the property "NEPA...

  4. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect (OSTI)

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212?Hz and 1.2?G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7?mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  5. TYPE OF OPERATION

    Office of Legacy Management (LM)

    ~~__--------_____ q Research & Development q Production scale testing Cl Pilat Scale 0 Bench Scale Process 0 Theoretical Studies a Sample & Analysis c] Production 0 Disposal/Storage TYPE OF CONTRACT ~~__-------_--__ 0 Prime 0 Subcontractor 0 Purchase Order a d//F- a Faci 1 i ty Type a tlanuf acturi ng 0 University q Research Organization 0 Government Sponsored Facility a other --------------__----- Other information (i.e., cost + fixed fee, unit price, time & material, qtr) -------

  6. TYPE OF OPERATION

    Office of Legacy Management (LM)

    OWNEF? (S) Current: ____ LcrcJksLG! _________ Owner contacted n yes WI-IO; if yes, date contacted-- TYPE OF OPERATION ----_-------_---- m Research & Development Cl Pilot Scale Cl Disposal/Storaqe TYPE OF CDNTRACT ---__------__--- q Prime 0 Subcnntractor Cl Purchase Order 0 Other infcrmation (i.e., cnst + fixed fee, unit price, time 84 materi+, e.tc) v-7Y07-&G-W ---------------------------- Contract/Pur&aae Order # 0 -?+7- FJc-(CL --___--------~----_______________ CONTRACTING PEXIOD:

  7. TYPE OF UPERATICIN

    Office of Legacy Management (LM)

    1 ------------ - ------------ li contacted __ TYPE OF UPERATICIN -- ------------_- f Research & Development 0 Production scale testing Cl? Pilot Scale 40, Bench Scale Process i Theoretical Studies Sample & Analysis 0 Production 0 Disposal/Storage a Facility Type 0 Manufacturing q University, a Research Organizatiori 0 Government Sponsored F'acility 0 Other ,!k _ -----e--------1- --- q Prime a II 17 Subcontract& Other information (i.e., cast + fixed fee, unit price, 0 Purchase Order

  8. Applicant Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicant Information General Information for Applicants Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational...

  9. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author...

  10. TYPE OF OPERATION

    Office of Legacy Management (LM)

    Owner c:ontacted TYPE OF OPERATION ----------------_ jJ Research & Development 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process i Theoretical Studies Sample & Analysis B Production 0 Disposal/Storage $r Prime 0 Subcontract& 0 Purchase Order 0 Facility Type 0 Manufacturing 0 University 0 Research Organization a Other information (i.e., cost + fixed fern, unit price,' time & mate ~r~~-r~~tf~-_~_-_~-~f-~~J~ d ial, etc)_kl/Jlfits ---- -7---- -- Contract/Purchase Order

  11. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  12. Materials for defense/aerospace applications (NON-SV)

    SciTech Connect (OSTI)

    Ellis, A. R.

    2012-03-01

    Through this effort, Sandia and Lockheed Martin Aeronautics Company (LM Aero) sought to assess the feasibility of (1) applying special materials to a defense application; (2) developing a piezoelectric-based micro thermophotovoltaic (TPV) cell; and (3) building and delivering a prototype laboratory emission measurement system. This project supported the Stockpile Research & Development Program by contributing to the development of radio frequency (RF) MEMS- and optical MEMS-based components - such as switches, phase shifters, oscillators, and filters - with improved performance and reduced weight and size. Investigation of failure mechanisms and solutions helped to ensure that MEMS-based technology will meet performance requirements and long term reliability goals in the specified environments dictated by Lockheed Martin's commercial and defense applications. The objectives of this project were to (1) fabricate and test materials for military applications; (2) perform a feasibility study of a piezoelectric-based micro TPV cell; and (3) build and deliver a prototype laboratory emission measurement system. Sandia fabricated and tested properties of materials, studied options for manufacturing scale-up, and delivered a prototype IR Emissometer. LM Aero provided material requirements and designs. Both participated in the investigation of attachment methods and environmental effects on material performance, a feasibility study of piezoelectric TPV cells, an investigation and development of new approaches to implement the required material functionality, and analysis and validation of material performance physics, numerical models, and experimental metrology.

  13. Alaska Fish Habitat Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Alaska Fish Habitat Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Alaska Fish Habitat Permit Application Form Type ApplicationNotice...

  14. Prototype Power and Communications System for EeV Cosmic Rays Studies

    SciTech Connect (OSTI)

    Russ, James S.

    2010-08-31

    An analysis of improving the power output of small wind turbines by adding a venturi housing was done. Including the effects of back pressure developed at the input to the housing lowers the efficiency gain from a factor of 5 to a factor of 2 for a turbine blade radius of 24 inches. The gain is small enough that only large systems could profit from the application.

  15. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  16. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  17. Use of Continuous Integration Tools for Application Performance Monitoring

    SciTech Connect (OSTI)

    Vergara Larrea, Veronica G [ORNL; Joubert, Wayne [ORNL; Fuson, Christopher B [ORNL

    2015-01-01

    High performance computing systems are becom- ing increasingly complex, both in node architecture and in the multiple layers of software stack required to compile and run applications. As a consequence, the likelihood is increasing for application performance regressions to occur as a result of routine upgrades of system software components which interact in complex ways. The purpose of this study is to evaluate the effectiveness of continuous integration tools for application performance monitoring on HPC systems. In addition, this paper also describes a prototype system for application perfor- mance monitoring based on Jenkins, a Java-based continuous integration tool. The monitoring system described leverages several features in Jenkins to track application performance results over time. Preliminary results and lessons learned from monitoring applications on Cray systems at the Oak Ridge Leadership Computing Facility are presented.

  18. Agreement Type Union

    National Nuclear Security Administration (NNSA)

    Type Union Local #/Name Number of Employees Project Labor Agreement International Association of Heat and Frost Insulators and Allied Workers 135 2 International Brothehood of Boilermakers, Iron Ship Builders, Blacksmith Forgers and Helpers 92 0 International Union of Bricklayers & Allied Craftsmen 13 0 Regional Council of Carpenters 1780 & 1977 13 Operative Plasterers and Cement Mason International Association Operative Plasterers and Cement Mason International Association 1

  19. TYPE OF OPERATION

    Office of Legacy Management (LM)

    ----------------- 0 Research & Development .a Production scale testing 0 Pilat Scale 0 Bench Scale Process 0 Thearetical Studies Cl Sample 84 Analysis 0 Production *i DiaposalKitorage Cl Facility Tybe q Government Sponsored Facility Other R.L- 6:e 14 1 1 ---------- --------- I I I TYPE OF CONTRACT ~-__-----------_ fl Prime *I 0 Subcantractbr Other infuriation (i.e., L.t + fixed fee, kit price, 0 Purchase Order time k mat*iik, gtc) /I -~---------'-t-----------~- ----------II----------------

  20. TYPE OF OPERATION

    Office of Legacy Management (LM)

    ______ 0 Research & Development 9 Faciiity Type 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Theoretical Studies Cl Sample 84 Analysis Production Di aposal /Storage g ;E:"V',;=:;;';"" IJ Research Organization 0 Government Sponeored Facility q Other --------------------- 0 Prime q ,@ Subcontract& Other information (i.e., cost 0 Purchase Order + fixed fee, unit price, time ?8 material, etc) -------mm----+------------- Contract/Purchase Order #

  1. TYPE OF OPERATION

    Office of Legacy Management (LM)

    _---------_-- Research & Development 0 Production scale testing Cl Pilat Scale 0 Bench Scale Process 0 Theoretical Studies Cl Sample SC Analysis !J Production 0 Dis.posal/Storage 0 Prime ." 0 Subcontract& 0 Purchase Order 0 Facility Type 0 Manufacturing 0 University 0 Research Org&ization 0 Government Sponsored Facility Cl Other ---------_---__-____- Other information (i.e., cost + fixed fee, unit price, time & material, gtr) Coni+act/Purchase Order #

  2. Development of the Variable Atmosphere Testing Facility for Blow-Down Analysis of the Mars Hopper Prototype

    SciTech Connect (OSTI)

    Nathan D. Jerred; Robert C. O'Brien; Steven D. Howe; James E. O'Brien

    2013-02-01

    Recent developments at the Center for Space Nuclear Research (CSNR) on a Martian exploration probe have lead to the assembly of a multi-functional variable atmosphere testing facility (VATF). The VATF has been assembled to perform transient blow-down analysis of a radioisotope thermal rocket (RTR) concept that has been proposed for the Mars Hopper; a long-lived, long-ranged mobile platform for the Martian surface. This study discusses the current state of the VATF as well as recent blow-down testing performed on a laboratory-scale prototype of the Mars Hopper. The VATF allows for the simulation of Mars ambient conditions within the pressure vessel as well as to safely perform blow-down tests through the prototype using CO2 gas; the proposed propellant for the Mars Hopper. Empirical data gathered will lead to a better understanding of CO2 behavior and will provide validation of simulation models. Additionally, the potential of the VATF to test varying propulsion system designs has been recognized. In addition to being able to simulate varying atmospheres and blow-down gases for the RTR, it can be fitted to perform high temperature hydrogen testing of fuel elements for nuclear thermal propulsion.

  3. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2014-10-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  4. Application of reconstructive tomography to the measurement of density distribution in two-phase flow

    SciTech Connect (OSTI)

    Fincke, J.R.; Berggren, M.J.; Johnson, S.A.

    1980-01-01

    The technique of reconstructive tomography has been applied to the measurement of average density and density distribution in multiphase flows. The technique of reconstructive tomography provides a model independent method of obtaining flow field density information. The unique features of interest in application of a practical tomographic densitometer system are the limited number of data values and the correspondingly coarse reconstruction grid (0.5 by 0.5 cm). These features were studied both experimentally, through the use of prototype hardware on a 3-in. pipe, and analytically, through computer generation of simulated data. Prototypical data were taken on phantoms constructed of Plexiglas and laminated Plexiglas, wood, and polyurethane foam. Reconstructions obtained from prototype data were compared with reconstructions from the simulated data.

  5. Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation

    SciTech Connect (OSTI)

    Conrad, Ryan C.; Keller, Daniel T.; Morris, Scott J.; Smith, Leon E.

    2015-07-01

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, a technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.

  6. Energy.gov Page Types

    Broader source: Energy.gov [DOE]

    Learn about the standard page types available in the Energy.gov Drupal content management system. For information about other available page types, or to request a new kind of page type, contact...

  7. Laser applications

    SciTech Connect (OSTI)

    Edelson, M.C. )

    1989-11-01

    The breadth of current applications of laser technology is described. It is used as the basis for extrapolating to future application in such activities as AVLIS, SIS, ICP-MS, and RIMs.

  8. Scientific Exchange Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program / Scientific Exchange Application Scientific Exchange Application Please read all instructions before submitting your application. Interested applicants should complete the following application and provide the materials requested below. The PARC Steering Committee will evaluate these proposals and select those that offer the best chance to lead to new directions and publishable results. An effort will be made to achieve some balance in the various types of exchanges

  9. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  10. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE MACH 2 RAMGEN ENGINE

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2001-09-01

    The research and development effort of a new kind of combustion engine is presented. The engine is designed to convert the thrust from ramjet modules into shaft torque, which in turn can be used for electrical power generation or mechanical drive applications. An aggressive test program was undertaken that included evaluation of the existing engine, as well as incorporation of novel improvements to the thrust modules and supporting systems. Fuel mixing studies with Vortex Generators and bluff body flame holders illuminated the importance of increasing the shear-layer area and spreading angle to augment flame volume. Evaluation of flame-holding configurations (with variable fuel injection methods) concluded that the heat release zone, and therefore combustion efficiency, could be manipulated by judicious selection of bluff body geometry, and is less influenced by fuel injection distribution. Air film cooling studies demonstrated that acceptable combustor life could be achieved with optimized air film distribution patterns and thermal barrier coatings.

  11. Application for Federal Assistance SF-424

    Gasoline and Diesel Fuel Update (EIA)

    Number: 4040-0004 Expiration Date: 8/31/2016 * 1. Type of Submission: * 2. Type of Application: * 3. Date Received: 4. Applicant Identifier: 5a. Federal Entity Identifier: 5b. Federal Award Identifier: 6. Date Received by State: 7. State Application Identifier: * a. Legal Name: * b. Employer/Taxpayer Identification Number (EIN/TIN): * c. Organizational DUNS: * Street1: Street2: * City: County/Parish: * State: Province: * Country: * Zip / Postal Code: Department Name: Division Name: Prefix: *

  12. Application for Federal Assistance SF-424

    Energy Savers [EERE]

    Number: 4040-0004 Expiration Date: 8/31/2016 * 1. Type of Submission: * 2. Type of Application: * 3. Date Received: 4. Applicant Identifier: 5a. Federal Entity Identifier: 5b. Federal Award Identifier: 6. Date Received by State: 7. State Application Identifier: * a. Legal Name: * b. Employer/Taxpayer Identification Number (EIN/TIN): * c. Organizational DUNS: * Street1: Street2: * City: County/Parish: * State: Province: * Country: * Zip / Postal Code: Department Name: Division Name: Prefix: *

  13. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  14. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    SciTech Connect (OSTI)

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  15. Applicant Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicant Information General Information for Applicants Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Acceptance into the program Application packages are reviewed by a panel of experts and acceptance into the program is based primarily on the student's academic record, list of

  16. The Full Scale Seal Experiment - A Seal Industrial Prototype for Cigeo - 13106

    SciTech Connect (OSTI)

    Lebon, P.; Bosgiraud, J.M.; Foin, R.; Armand, G.

    2013-07-01

    The Full Scale Seal (FSS) Experiment is one of various experiments implemented by Andra, within the frame of the Cigeo (the French Deep Geological Repository) Project development, to demonstrate the technical construction feasibility and performance of seals to be constructed, at time of Repository components (shafts, ramps, drifts, disposal vaults) progressive closure. FSS is built inside a drift model fabricated on surface for the purpose. Prior to the scale 1:1 seal construction test, various design tasks are scheduled. They include the engineering work on the drift model to make it fit with the experimental needs, on the various work sequences anticipated for the swelling clay core emplacement and the concrete containment plugs construction, on the specialized handling tools (and installation equipment) manufactured and delivered for the purpose, and of course on the various swelling clay materials and low pH (below 11) concrete formulations developed for the application. The engineering of the 'seal-as-built' commissioning means (tools and methodology) must also be dealt with. The FSS construction experiment is a technological demonstrator, thus it is not focused on the phenomenological survey (and by consequence, on the performance and behaviour forecast). As such, no hydration (forced or natural) is planned. However, the FSS implementation (in particular via the construction and commissioning activities carried out) is a key milestone in view of comforting phenomenological extrapolation in time and scale. The FSS experiment also allows for qualifying the commissioning methods of a real sealing system in the Repository, as built, at time of industrial operations. (authors)

  17. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  18. Compare My Energy | Open Energy Information

    Open Energy Info (EERE)

    Compare My Energy AgencyCompany Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website:...

  19. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    SciTech Connect (OSTI)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-12-15

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0?T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30?cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300??T. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200?cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20?cm{sup 2}, to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B{sub 0} of 0.5, 1.0, and 1.5?T, to estimate how the MLC impact changes with B{sub 0}.Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was generally smaller in the perpendicular beam orientation. The peak-to-peak DSV distortion was below 300??T at SID?130?cm (perpendicular) and SID?140?cm (inline) for the 1.0?T design. (4) The simulation of different treatment fields was identified to cause dynamic changes in the field distribution. However, the estimated residual distortion was below 1.2?mm geometric distortion at SID?120?cm (perpendicular) and SID?130?cm (inline) for a 10?mT/m frequency-encoding gradient. (5) Due to magnetic saturation of the MLC materials, the field distortion remained constant at B{sub 0}>1.0?T.Conclusions: This work shows that the MRI field distortions caused by the MLC cannot be ignored and must be thoroughly investigated for any MRI-linac system. The numeric distortion values obtained for our 1.0?T magnet may vary for other magnet designs with substantially different fringe fields, however the concept of modest increases in the SID to reduce the distortion to a shimmable level is generally applicable.

  20. Allocation Proposal (ERCAP) Application Deadlines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Deadlines Allocation Proposal (ERCAP) Application Deadlines Award Type ERCAP Submission Open ERCAP Submission Deadline Award Decision Allocation Period Startup and Education Ongoing November 10, 2016 Within 3 weeks of applying 18 months from award (but must be renewed for the next allocation year) Production (DOE awarded) for the rest of allocation year (AY) 2016 Ongoing November 10, 2016 Within 4 weeks of applying (pending sufficient DOE reserves of time) through January 9, 2017 All

  1. Ridefinders Application

    Energy Savers [EERE]

    application to the U.S. Department of Energy (DOE) Employee Transportation Coordinator, Room 7A-156, Forrestal. U.S. Department of Energy Privacy Act Statement Check all...

  2. n-Type diamond and method for producing same

    DOE Patents [OSTI]

    Anderson, Richard J. (Oakland, CA)

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  3. Types of Lighting in Commercial Buildings - Lighting Types

    U.S. Energy Information Administration (EIA) Indexed Site

    is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts have...

  4. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  5. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    SciTech Connect (OSTI)

    Arsenyev, Sergey Andreyevich; Simakov, Evgenya Ivanovna; Shchegolkov, Dmitry; Boulware, Chase; Grimm, Terry; Rogacki, Adam

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead of on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.

  6. Performance of the moving voxel image reconstruction (MVIR) method in the fixed site detection system (FSDS) prototype

    SciTech Connect (OSTI)

    Estep, Robert J.

    2012-05-31

    We have developed a dynamic image reconstruction method called MVIR (Moving Voxel Image Reconstruction) for lane detection in multilane portal monitor systems. MVIR was evaluated for use in the Fixed Site Detection System, a prototype three-lane portal monitor system for EZ-pass toll plazas. As a baseline, we compared MVIR with a static image reconstruction method in analyzing the same real and simulated data sets. Performance was judged by the distributions of image intensities for source and no-source vehicles over many trials as a function of source strength. We found that MVIR produced significantly better results in all cases. The performance difference was greatest at low count rates, where source/no-source distributions were well separated with the MVIR method, allowing reliable source vehicle identification with a low probability of false positive identifications. Static reconstruction of the same data produced overlapping distributions that made source vehicle identification unreliable. The performance of the static method was acceptable at high count rates. Both algorithms reliably identified two strong sources passing through at nearly the same time.

  7. Adoption of Light-Emitting Diodes in Common Lighting Applications

    SciTech Connect (OSTI)

    Yamada, Mary; Chwastyk, Dan

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  8. Nevada Application Modify Water Right | Open Energy Information

    Open Energy Info (EERE)

    Form Type ApplicationNotice Form Topic Application for Permission to Change Point of Diversion, Manner of Use and Place of Use of the Public Waters of the State of Nevada...

  9. Idaho Right-of-Way Encroachment Application and Permit - Other...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way Encroachment Application and Permit - Other Encroachments Form Type...

  10. Colorado Construction Air Permit Application | Open Energy Information

    Open Energy Info (EERE)

    for a construction permit for construction of a commercial or industrial source of air pollution. Form Type ApplicationNotice Form Topic Air Pollution Control Division -...

  11. Property:Distributed Generation System Heating-Cooling Application...

    Open Energy Info (EERE)

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  12. Window Types | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    its U-factor. There are advantages and disadvantages to all types of frame materials, but vinyl, wood, fiberglass, and some composite frame materials provide greater...

  13. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    SciTech Connect (OSTI)

    Wilson, Joshua L

    2008-09-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed employing the three basic shapes discussed previously. Bench measurements are performed on the prototype cavities to evaluate dispersion by measuring the field distribution along these cavities. The measurement results are compared to the simulations and theoretical results, and good agreement is shown. Once validated, the developed models are used to design twisted accelerating structures with specific phase velocities and good accelerating performance.

  14. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  15. factsheet: National Prototype Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    products. It also modifies or enhances existing products and develops new, innovative manufacturing processes to solve the toughest manufacturing problems. The NPC offers a...

  16. Concord Cape Prototype

    SciTech Connect (OSTI)

    2010-07-09

    This case study describes a house that is designed to achieve an 87% reduction in source energy use when compared to the 2009 Building America Benchmark, and features high-R walls, roof, and foundation along with a high efficiency mechanical system.

  17. Digital Library Research & Prototyping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Memento Memento - Time Travel for the Web Memento wants to make it as straightforward to access the Web of the past as it is to access the current Web. The Memento...

  18. Archived Reference Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  19. Archived Reference Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  20. Archived Reference Building Type: Hospital

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  1. Archived Reference Building Type: Hospital

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  2. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect (OSTI)

    None

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  3. Evaluating Application Resilience with XRay

    SciTech Connect (OSTI)

    Chen, Sui; Bronevetsky, Greg; Li, Bin; Casas-Guix, Marc; Peng, Lu

    2015-05-07

    The rising count and shrinking feature size of transistors within modern computers is making them increasingly vulnerable to various types of soft faults. This problem is especially acute in high-performance computing (HPC) systems used for scientific computing, because these systems include many thousands of compute cores and nodes, all of which may be utilized in a single large-scale run. The increasing vulnerability of HPC applications to errors induced by soft faults is motivating extensive work on techniques to make these applications more resiilent to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithmspecific error detection and tolerance techniques. Effective use of such techniques requires a detailed understanding of how a given application is affected by soft faults to ensure that (i) efforts to improve application resilience are spent in the code regions most vulnerable to faults and (ii) the appropriate resilience technique is applied to each code region. This paper presents XRay, a tool to view the application vulnerability to soft errors, and illustrates how XRay can be used in the context of a representative application. In addition to providing actionable insights into application behavior XRay automatically selects the number of fault injection experiments required to provide an informative view of application behavior, ensuring that the information is statistically well-grounded without performing unnecessary experiments.

  4. Coaxial Coupling Scheme for TESLA/ILC-type Cavities

    SciTech Connect (OSTI)

    J.K. Sekutowicz, P. Kneisel

    2010-05-01

    This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

  5. Applications Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications Overview Advanced Computing and Visualization to Address National Transportation Issues Federal, regional, and state transportation research programs, as well as those from private industry, are moving toward simulation-based design and analysis for improvements in the efficiency, economics, and safety of transportation systems. Large-scale, detailed models of the systems and underlying phenomena in areas such as crashworthiness, aerodynamics, combustion, thermal management, weather

  6. Mathematical Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math Mathematical Applications Mathematica Mathematica is a fully integrated environment for technical computing. It performs symbolic manipulation of equations, integrals, differential equations and almost any mathematical expression. Read More » Matlab MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Read More »

  7. Chemistry Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Chemistry Applications Gaussian 09 Gaussian 09 is a connected series of programs for performing semi-empirical, density functional theory and ab initio molecular orbital calculations. Read More » GAMESS GAMESS (General Atomic and Molecular Electronic Structure System) is a general ab initio quantum chemistry package. Read More » AMBER AMBER (Assisted Model Building with Energy Refinement) is the collective name for a suite of programs designed to carry out molecular dynamics

  8. The secret lives of Cepheids: evolutionary changes and pulsation-induced shock heating in the prototype classical Cepheid ? Cep

    SciTech Connect (OSTI)

    Engle, Scott G.; Guinan, Edward F. [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Harper, Graham M. [School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); Neilson, Hilding R. [Department of Physics and Astronomy, East Tennessee State University, Box 70652, Johnson City, TN 37614 (United States); Evans, Nancy Remage, E-mail: scott.engle@villanova.edu [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-10-10

    Over the past decade, the Secret Lives of Cepheids (SLiC) program has been carried out at Villanova University to study aspects and behaviors of classical Cepheids that are still not well understood. In this, the first of several planned papers on program Cepheids, we report the current results for ? Cep, the Cepheid prototype. Ongoing photometry has been obtained to search for changes in the pulsation period, light-curve morphology, and amplitude. Combining our photometry with the times of maximum light compilation by Berdnikov et al. returns a small period change of dP/dt ?–0.1006 ± 0.0002 s yr{sup -1}. There is also evidence for a gradual light amplitude increase of ?0.011 mag (V band) and ?0.012 mag (B band) per decade over the last ?50 years. In addition, Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV spectrophotometry and XMM-Newton X-ray data were carried out to investigate the high-temperature plasmas present above the Cepheid photospheres. In total, from the five visits (eight exposures) with XMM-Newton, ? Cep is found to be a soft X-ray source (L {sub X} (0.3-2 keV) ?4.5-13 × 10{sup 28} erg s{sup -1}) with peak flux at kT = 0.6-0.9 keV. The X-ray activity is found to vary, possibly in phase with the stellar pulsations. From 2010-2013, nine observations of ? Cep were carried out with HST-COS. The UV emissions are also variable and well phased with the stellar pulsations. Maximum UV line emissions occur near, or slightly before, maximum optical light, varying by as much as 20 times. This variability shows that pulsation-induced shock heating plays a significant role in Cepheid atmospheres, possibly in addition to a quiescent, magnetic heating. The results of this study show Cepheid atmospheres to be rather complex and dynamic.

  9. IMS applications analysis

    SciTech Connect (OSTI)

    RODACY,PHILIP J.; REBER,STEPHEN D.; SIMONSON,ROBERT J.; HANCE,BRADLEY G.

    2000-03-01

    This report examines the market potential of a miniature, hand-held Ion Mobility Spectrometer. Military and civilian markets are discussed, as well as applications in a variety of diverse fields. The strengths and weaknesses of competing technologies are discussed. An extensive Ion Mobility Spectrometry (IMS) bibliography is included. The conclusions drawn from this study are: (1) There are a number of competing technologies that are capable of detecting explosives, drugs, biological, or chemical agents. The IMS system currently represents the best available compromise regarding sensitivity, specificity, and portability. (2) The military market is not as large as the commercial market, but the military services are more likely to invest R and D funds in the system. (3) Military applications should be addressed before commercial applications are addressed. (4) There is potentially a large commercial market for rugged, hand-held Ion Mobility Spectrometer systems. Commercial users typically do not invest R and D funds in this type of equipment rather, they wait for off-the-shelf availability.

  10. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  11. Property:Water Type | Open Energy Information

    Open Energy Info (EERE)

    Type Jump to: navigation, search Property Name Water Type Property Type String Pages using the property "Water Type" Showing 25 pages using this property. (previous 25) (next 25) 1...

  12. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Applications What are contaminants normally found in hydrogen from fueling nozzle? JP Hsu SmartChemistry.com Particulates are most common found in Hydrogen - 96% hydrogen fuel contains particulates in 108 Particulate Samplings. Typical Particulate filter - 0.035mg/kg SmartChemistry.com H 2 Station X Particulate Sample Particulate Concentration at 700 Bar: 2.0 mg/kg Particulate filter after sampling, in which 4.001mg particulates are found in 2 kilogram hydrogen SmartChemistry.com H 2

  13. Application Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESAP Application Porting and Performance IXPUG Performance and Debugging Tools Measuring Arithmetic Intensity Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov

  14. Solar type III radio bursts modulated by homochromous Alfvén waves

    SciTech Connect (OSTI)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2013-12-10

    Solar type III radio bursts and their production mechanisms have been intensively studied in both theory and observation and are believed to be the most important signatures of electron acceleration in active regions. Recently, Wu et al. proposed that the electron-cyclotron maser emission (ECME) driven by an energetic electron beam could be responsible for producing type III bursts and pointed out that turbulent Alfvén waves can greatly influence the basic process of ECME via the oscillation of these electrons in the wave fields. This paper investigates effects of homochromous Alfvén waves (HAWs) on ECME driven by electron beams. Our results show that the growth rate of the O-mode wave will be significantly modulated by HAWs. We also discuss possible application to the formation of fine structures in type III bursts, such as so-called solar type IIIb radio bursts.

  15. Oxygen generator for medical applications (USIC)

    SciTech Connect (OSTI)

    Staiger, C. L.

    2012-03-01

    The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible using a Membrane-PSA system.

  16. Commercialization of New Carbon Fiber Materials Based on Sustainable Resources for Energy Applications

    SciTech Connect (OSTI)

    Eberle, Cliff; Webb, Daniel C; Albers, Tracy; Chen, Chong

    2013-03-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers. This project will potentially lead to the first commercial application of lignin-based carbon fibers (LBCF). The goal of the commercial application is to replace expensive, Chinese-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help recapture jobs that were previously exported to China while resolving a supply chain vulnerability and reducing the production cost for GrafTech s high temperature thermal insulation. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, ORNL and GrafTech demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production. A plan was developed for the commercialization of LBCF thermal insulation, with key milestones including qualification of multiple scalable lignin sources in 2013, tons-scale production and field testing by customers in 2014, and product launch as soon thereafter as production capabilities can be constructed and commissioned.

  17. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  18. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBR’s. It should be recognized that the data presented in the initial report were evaluated only to the extent necessary to ensure that adequate data were obtained. Later reports provided further interpretation and detailed comparisons with prediction techniques. The conclusion of the isothermal physics measurements was that the FFTF nuclear characteristics were essentially as designed and all safety requirements were satisfied. From a nuclear point of view, the FFTF was qualified to proceed into power operation mode. The FFTF was completed in 1978 and first achieved criticality on February 9, 1980. Upon completion of the isothermal physics and reactor characterization programs, the FFTF operated for ten years from April 1982 to April 1992. Reactor operations of the FFTF were terminated and the reactor facility was then defueled, deactivated, and placed into cold standby condition. Deactivation of the reactor was put on hold from 1996 to 2000 while the U.S. Department of Energy examined alternative uses for the FFTF but then announced the permanent deactivation of the FFTF in December 2001. Its core support basket was later drilled in May 2005, so as to remove all remaining sodium coolant. On April 17, 2006, the American Nuclear Society designated the FFTF as a “National Nuclear Historic Landmark”.

  19. DOE specification: Valve-regulated type lead-acid storage batteries

    SciTech Connect (OSTI)

    1996-08-01

    This document contains a ``fill-in-the-blanks`` guide specification for procurement of sealed valve-regulated type lead-acid storage batteries, for uninterruptible power supply applications.

  20. SUPPLEMENT III REGARDING APPLICATION SUBMISSION

    Energy Savers [EERE]

    III REGARDING APPLICATION SUBMISSION SCHEDULE FOR: ADVANCED NUCLEAR ENERGY PROJECTS U.S. Department of Energy Loan Programs Office (As of January 19, 2016) THIRD SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED NUCLEAR ENERGY PROJECTS Solicitation Number: DE-SOL- DE-SOL-0007791 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Supplemental Supplement Date: January 19, 2016 The above-referenced Loan Guarantee Solicitation

  1. A Segmented, Enriched N-type Germanium Detector for Neutrinoless Double Beta-Decay Experiments

    SciTech Connect (OSTI)

    Leviner, L.; Aalseth, Craig E.; Ahmed, M. W.; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V.; Chan, Yuen-Dat; Egorov, Viatcheslav; Elliott, Steven R.; Gehman, Victor M.; Hossbach, Todd W.; Kephart, Jeremy; Kidd, M. F.; Konovalov, S.; Lesko, Kevin; Li, Jingyi; Mei, Dongming; Mikhailov, S.; Miley, Harry S.; Radford, D. C.; Reeves, James H.; Sandukovsky, Viatcheslav; Umatov, Valdimir; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A.

    2014-01-21

    We present data characterizing the performance of the _rst segmented, N- type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6x2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the Majorana collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the Majorana resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.

  2. Leak Detection and H2 Sensor Development for Hydrogen Applications

    SciTech Connect (OSTI)

    Brosha, Eric L.

    2012-07-10

    The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today outside of cost, derive from excessive false positives and false negatives arising from signal drift and unstable sensor baseline; both of these problems necessitate the need for unacceptable frequent calibration.

  3. Further developments in generating type-safe messaging

    SciTech Connect (OSTI)

    Neswold, R.; King, C.; /Fermilab

    2011-11-01

    At ICALEPCS 09, we introduced a source code generator that allows processes to communicate safely using data types native to each host language. In this paper, we discuss further development that has occurred since the conference in Kobe, Japan, including the addition of three more client languages, an optimization in network packet size and the addition of a new protocol data type. The protocol compiler is continuing to prove itself as an easy and robust way to get applications written in different languages hosted on different computer architectures to communicate. We have two active Erlang projects that are using the protocol compiler to access ACNET data at high data rates. We also used the protocol compiler output to deliver ACNET data to an iPhone/iPad application. Since it takes an average of two weeks to support a new language, we're willing to expand the protocol compiler to support new languages that our community uses.

  4. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect (OSTI)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  5. Property:DeviceType | Open Energy Information

    Open Energy Info (EERE)

    DeviceType Property Type String Description Used for MHK ISDB Allows Values Instrument;Sensor Pages using the property "DeviceType" Showing 25 pages using this property. (previous...

  6. Recent Progress in the Development of N-type Skutterudites | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy N-type Skutterudites Recent Progress in the Development of N-type Skutterudites Coupled with their outstanding mechanical properties, filled skutterudites show great promise for waste heat recovery applications. PDF icon uher.pdf More Documents & Publications Overview of Research on Thermoelectric Materials and Devices in China Proactive Strategies for Designing Thermoelectric Materials for Power Generation Nanostructures in Skutterudites

  7. Principal Types of Volcanoes | Open Energy Information

    Open Energy Info (EERE)

    Types of Volcanoes Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Principal Types of Volcanoes Abstract Abstract unavailable. Author John Watson...

  8. Type C: Caldera Resource | Open Energy Information

    Open Energy Info (EERE)

    C: Caldera Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type C: Caldera Resource Dictionary.png Type C: Caldera Resource: No definition has been...

  9. Lighting Control Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Control Types Lighting Control Types Characteristics of the most common lighting controls for offices and other public buildings are outlined below. Also provided is a ...

  10. CALiPER Application Reports | Department of Energy

    Energy Savers [EERE]

    Research & Development » Technology Application R&D » CALiPER Testing » CALiPER Application Reports CALiPER Application Reports Application Reports focus on specific product types and design scenarios, offering comparative analysis that puts LED performance in context relative to the overall lighting industry and benchmark technologies. This approach serves to educate the industry on market trends, potential issues, and important areas for improvement. LED COLOR-TUNABLE PRODUCTs

  11. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  12. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  13. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  14. Antiferroelectric Materials, Applications and Recent Progress on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiferroic Heterostructures | Argonne National Laboratory Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures Title Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures Publication Type Journal Article Year of Publication 2015 Authors Zhou, Z, Yang, Q, Liu, M, Zhang, Z, Zhang, X, Sun, D, Nan, T, Sun, N, Chen, X Journal Spin Volume 5 Start Page 1530001 Pagination 13 Date Published 04272015 Keywords

  15. Materials Applications for Non-Lethal: Aqueous Foams

    SciTech Connect (OSTI)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.

  16. Types of Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Types of Homes Types of Homes Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Some types of homes may require different considerations when it comes to energy

  17. Terahertz-based target typing.

    SciTech Connect (OSTI)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.; Barrick, Todd A.

    2008-09-01

    The purpose of this work was to create a THz component set and understanding to aid in the rapid analysis of transient events. This includes the development of fast, tunable, THz detectors, along with filter components for use with standard detectors and accompanying models to simulate detonation signatures. The signature effort was crucial in order to know the spectral range to target for detection. Our approach for frequency agile detection was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays.

  18. Striving toward noble-metal-free photocatalytic water splitting: The hydrogenated-graphene-TiO2 prototype

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen-Phan, Thuy -Duong; Luo, Si; Liu, Zongyuan; Gamalski, Andrew D.; Tao, Jing; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Senanayake, Sanjaya D.; Fujita, Etsuko; et al

    2015-08-20

    Graphane, graphone and hydrogenated graphene (HG) have been extensively studied in recent years due to their interesting properties and potential use in commercial and industrial applications. The present study reports investigation of hydrogenated graphene/TiO2-x (HGT) nanocomposites as photocatalysts for H2 and O2 production from water without the assistance of a noble metal co-catalyst. By combination of several techniques, the morphologies, bulk/atomic structure and electronic properties of all the powders were exhaustively interrogated. Hydrogenation treatment efficiently reduces TiO2 nanoparticles, while the graphene oxide sheets undergo the topotactic transformation from a graphene-like structure to a mixture of graphitic and turbostratic carbon (amorphous/disordered)more » upon altering the calcination atmosphere from a mildly reducing to a H2-abundant environment. Remarkably, the hydrogenated graphene-TiO2-x composite that results upon H2-rich reduction exhibits the highest photocatalytic H2 evolution performance equivalent to low loading of Pt (~0.12 wt%), whereas the addition of HG suppresses the O2 production. As a result, we propose that such an enhancement can be attributed to a combination of factors including the introduction of oxygen vacancies and Ti3+ states, retarding the recombination of charge carriers and thus, facilitating the charge transfer from TiO2-x to the carbonaceous sheet.« less

  19. Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results

    SciTech Connect (OSTI)

    Small IV, W; Maitland, D J; Wilson, T S; Bearinger, J P; Letts, S A; Trebes, J E

    2008-06-05

    A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter, providing a unique indication of the cumulative gas exposure.

  20. Validation of Minor Actinide Cross Sections by Studying Samples Irradiated for 492 Days at the Dounreay Prototype Fast Reactor - I: Radiochemical Analysis

    SciTech Connect (OSTI)

    Shinohara, N. [Japan Atomic Energy Research Institute (Japan); Kohno, N. [Japan Atomic Energy Research Institute (Japan); Nakahara, Y. [Japan Atomic Energy Research Institute (Japan); Tsujimoto, K. [Japan Atomic Energy Research Institute (Japan); Sakurai, T. [Japan Atomic Energy Research Institute (Japan); Mukaiyama, T. [Japan Atomic Energy Research Institute (Japan); Raman, S. [Oak Ridge National Laboratory (United States)

    2003-06-15

    Actinide samples irradiated in the Dounreay Prototype Fast Reactor for 492 effective full-power days were analyzed at Japan Atomic Energy Research Institute by radiochemical methods to measure the isotopic compositions of the fission products (molybdenum, zirconium, and neodymium isotopes) and of the actinides (uranium, neptunium, plutonium, americium, curium, and californium isotopes). In this first of two companion papers, procedures used for chemical analyses and the analyzed data are presented. There is good agreement between the current results and previous results obtained at Oak Ridge National Laboratory. Therefore, these analytical results could serve as a benchmark for future calculations and validation of nuclear data libraries. Such a validation is attempted in the companion paper.

  1. Mobile Data Collection Applications: A Proof of Concept

    SciTech Connect (OSTI)

    Chang, J

    2006-09-20

    This project's goal is to provide a proof of concept for mobile data collection applications, and identify the best ways such applications could be implemented and used. Such an application should decrease the time and resources users now need to devote to redundant data processes, and provide an easy of locating and retrieving data at a later time. The two types of available mobile devices, Personal Digital Assistants and Tablet Personal Computers, each have their particular strengths that suggest themselves for certain types of applications. As such, parallel data collection applications have been developed, with a common web application for uploading information to the database. While these aspects have been developed and proven, it still remains to refine these applications, develop the tables to hold their data, and field-test with users for their feedback.

  2. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  3. Idaho Right-of-Way Encroachment Application and Permit for Utilities...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way Encroachment Application and Permit for Utilities Form Type ApplicationNotice...

  4. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  5. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  6. Property:NEPA TMP/LeaseToApplication | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NEPATMPLeaseToApplication&oldid637466...

  7. Property:NEPA TMP/PreApplicationMeetingDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Date. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NEPATMPPreApplicationMeetingDate&oldid637468...

  8. Striving toward noble-metal-free photocatalytic water splitting: The hydrogenated-graphene-TiO2 prototype

    SciTech Connect (OSTI)

    Nguyen-Phan, Thuy -Duong; Luo, Si; Liu, Zongyuan; Gamalski, Andrew D.; Tao, Jing; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Senanayake, Sanjaya D.; Fujita, Etsuko; Rodriguez, Jose A.

    2015-08-20

    Graphane, graphone and hydrogenated graphene (HG) have been extensively studied in recent years due to their interesting properties and potential use in commercial and industrial applications. The present study reports investigation of hydrogenated graphene/TiO2-x (HGT) nanocomposites as photocatalysts for H2 and O2 production from water without the assistance of a noble metal co-catalyst. By combination of several techniques, the morphologies, bulk/atomic structure and electronic properties of all the powders were exhaustively interrogated. Hydrogenation treatment efficiently reduces TiO2 nanoparticles, while the graphene oxide sheets undergo the topotactic transformation from a graphene-like structure to a mixture of graphitic and turbostratic carbon (amorphous/disordered) upon altering the calcination atmosphere from a mildly reducing to a H2-abundant environment. Remarkably, the hydrogenated graphene-TiO2-x composite that results upon H2-rich reduction exhibits the highest photocatalytic H2 evolution performance equivalent to low loading of Pt (~0.12 wt%), whereas the addition of HG suppresses the O2 production. As a result, we propose that such an enhancement can be attributed to a combination of factors including the introduction of oxygen vacancies and Ti3+ states, retarding the recombination of charge carriers and thus, facilitating the charge transfer from TiO2-x to the carbonaceous sheet.

  9. Design and test of a trumpet secondary concentrator for a faceted stretched membrane primary in a dish-Stirling application

    SciTech Connect (OSTI)

    O`Gallagher, J.J.; Winston, R.; Diver, R.B.; Mahoney, A.R.

    1995-11-01

    A ``trumpet`` type nonimaging secondary concentrator has been designed and a prototype fabricated for test with the Cummins Power Generation (CPG) 7.5 kW{sub e} dish-Stirling system. Trumpets are families of hyperbolae of revolution which can be characterized by three parameters, the exit aperture radius, the asymptotic angle, and the truncation height. The test prototype unit was designed using a detailed ray trace code to simulate the radiation distribution from the primary and modeling the performance across a range of these trumpet design parameters. The unit is 26.7 cm (10.5 in.) deep by about 69 cm (27 in.) wide, and has a geometric concentration of 1.7X. The test units were fabricated from polished copper spinnings, overcoated with vapor deposited aluminum and aluminum oxide layers and are water cooled. The objectives and test procedures for the experiments are reviewed.

  10. Nevada Application for Extensions of Time (Water Right) | Open...

    Open Energy Info (EERE)

    Extensions of Time (Water Right) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Application for Extensions of Time (Water Right) Form Type...

  11. Microsoft Word - Application for Leave Tri-Form.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University APPLICATION FOR LEAVE SECTION: _______________________________________________ NAME: __________________________________________________ Requests _____ Hours of Leave TYPE OF LEAVE: ANNUAL SICK LEAVE WITHOUT PAY COMPENSATORY Other REMARKS: ___________________________________________________________________________________ BEGIN DATE: _____________________________ BEGIN TIME: ______________________________ END DATE: _____________________________ END TIME: ______________________________

  12. LEDs for Interior Office Applications Webcast | Department of Energy

    Energy Savers [EERE]

    LEDs for Interior Office Applications Webcast LEDs for Interior Office Applications Webcast In this March 18, 2010 webcast, Jason Tuenge and Michael Myer of Pacific Northwest National Laboratory described the performance and economic considerations of replacing either 4' T8 lamps or entire troffer-type luminaires with LED products. The webcast also compared manufacturer performance claims about these types of products against test results from DOE's CALiPER program. View presentation slides (PDF

  13. Alaska START Application

    Broader source: Energy.gov [DOE]

    Download the application for the START Program for Community Energy Planning and Projects–Round Three.

  14. Property:Geothermal/Type | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type String. Pages using the property "GeothermalType" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest...

  15. Type:Epoch | Open Energy Information

    Open Energy Info (EERE)

    Type:Epoch Jump to: navigation, search An Epoch is a measurement for a given length of time. The use of type pages has been deprecated. Please set properties to Quantity and use...

  16. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  17. Resource assessment for geothermal direct use applications

    SciTech Connect (OSTI)

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  18. Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 3

    SciTech Connect (OSTI)

    1995-04-01

    This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

  19. Crystal of GTP Cyclohydrolase Type IB

    DOE Patents [OSTI]

    Swairjo, Manal A.; Iwata-Reuyl, Dirk; de Crecy-Lagard, Valerie

    2012-12-11

    This invention relates to a novel, bacterial GTP Cyclohydrolase Type IB enzyme, and the crystal structure thereof.

  20. Science of Signatures Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Signatures Advanced Studies Institute Application Form Do not use MAC Preview tool to edit this form as it corrupts the data. Application deadline is February 21, 2016 5:00 PM (US Mountain Standard) A complete application package includes: * This Application Form * Cover Letter - 1 page cover letter describing your describing your interest in participating as an Advanced Studies Scholar and of your professional goals. * CV (resume) * One (1) Letter of Recommendation from a Reference Applicant

  1. Postdoc Application Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program » Application Process Postdoc Application Process Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Postdoc Program Office Email Submit general application or apply for specific posted position For initial consideration, you can submit a general application to the Postdoctoral Research program and/or for a specific posted position. Access the general application

  2. Application Porting and Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Porting and Performance Application Porting and Performance We expect many applications will need to make code modifications in order to run efficiently on the Cori Phase 2 Knights Landing manycore architecture. To run well on Cori Phase 2, your application will need to have good thread scalability, take advantage of vectorization opportunities, and manage multiple hierarchies of memory effectively. In the web pages that follow we document strategies for improving your application's

  3. Diffusion of n-type dopants in germanium

    SciTech Connect (OSTI)

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  4. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect (OSTI)

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), H?{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (?0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  5. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect (OSTI)

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  6. Introduction to computed microtomography and applications in Earth science

    Office of Scientific and Technical Information (OSTI)

    (Book) | SciTech Connect Introduction to computed microtomography and applications in Earth science Citation Details In-Document Search Title: Introduction to computed microtomography and applications in Earth science Authors: Rivers, M. [1] + Show Author Affiliations (UC) Publication Date: 2014-12-22 OSTI Identifier: 1168409 Resource Type: Book Resource Relation: Related Information: CMS Workshop Lectures, Advanced Applications of Synchrotron Radiation in Clay Science Publisher: 2014; Tha

  7. Validation of Minor Actinide Cross Sections by Studying Samples Irradiated for 492 Days at the Dounreay Prototype Fast Reactor - II: Burnup Calculations

    SciTech Connect (OSTI)

    Tsujimoto, K. [Japan Atomic Energy Research Institute (Japan); Kohno, N. [Japan Atomic Energy Research Institute (Japan); Shinohara, N. [Japan Atomic Energy Research Institute (Japan); Sakurai, T. [Japan Atomic Energy Research Institute (Japan); Nakahara, Y. [Japan Atomic Energy Research Institute (Japan); Mukaiyama, T. [Japan Atomic Energy Research Institute (Japan); Raman, S. [Oak Ridge National Laboratory (United States)

    2003-06-15

    To evaluate neutron cross-section data of minor actinides (MAs), separated actinide samples and dosimetry samples were irradiated at the Dounreay Prototype Fast Reactor for 492 effective full-power days. Irradiated samples were analyzed both at Oak Ridge National Laboratory and at Japan Atomic Energy Research Institute (JAERI). This independent duplication has resulted in the generation of reliable radiochemical analysis data. Based on the burnup calculations of major actinide ({sup 235}U and {sup 239}Pu) and dosimetry samples, the neutron flux distribution and the flux level were adjusted at the locations where MA samples were irradiated. The burnup calculations were carried out for MAs using the determined flux distribution and flux level. The calculated results were compared with the experimental data. A brief description of sample preparation and irradiation and a detailed discussion of radiochemical analysis at JAERI are given in a companion paper. The current paper discusses the burnup calculations and the validation of MA cross-section data in evaluated nuclear data libraries.

  8. SAGE Application Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Process SAGE Application Process Application deadline: March 27, 2016, 5:00 pm MDT Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 U.S. undergraduates Online Application Form (pdf) one (1) letter of interest two (2) references - use Reference Form (pdf) complete transcripts (unofficial is acceptable) proof of health

  9. Microsoft Word - applications_2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications program at ATLAS and CARIBU Dr. Libby McCutchan, Dr. Philippe Collon Presenters at the ATLAS user meeting: Extreme Materials, Development of fast-release solid catchers for rare-isotopes, The development of a new production capability for 211At - J. Nolen Improving Superconductors with Heavy-ion Irradiation - U. Welp CARIBU for Applications - J. Clark Beta-decay spectroscopy for applications - N. Scielzo Applications Nuclear Data Needs - A.A. Sonzogni AMS at ATLAS - R. Pardo

  10. Adjustable Speed Pumping Applications

    Broader source: Energy.gov [DOE]

    This tip sheet provides practical tips on the application of adjustable speed drives in industrial pumping systems.

  11. Student Volunteer Internship Application

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy Student Volunteer Internship Program application.

  12. Profiling Your Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling Your Application Profiling Your Application Introduction By quantifying the performance of your application on present-day architectures, you will be better able to prioritize, plan, and implement code changes that will enable good performance on Cori. Here, we provide general background on application profiling, as well as links to resources and tools available at NERSC to assist you in this effort. Background Of the platforms available at NERSC, we recommend profiling on Edison and

  13. Early application case studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early application case studies Early application case studies The Babbage test system was used to study representative applications and kernels in various scientific fields to gain experience with the challenges and strategies needed to optimize code performance on the MIC architecture. Below we highlight a few examples: BerkeleyGW The BerkeleyGW package is a materials science application that calculates electronic and optical properties with quantitative accuracy, a critical need in materials

  14. Application Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Application Case Studies Early work with NESAP Staff at NERSC as well as Cray and Intel Engineers have lead to a number of application case studies. Early application case studies The Babbage test system was used to study representative applications and kernels in various scientific fields to gain experience with the challenges and strategies needed to optimize code performance on the MIC architecture. Below we highlight a few examples: BerkeleyGW The BerkeleyGW package is a materials

  15. Los Alamos Dynamics Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School Application Form Do not use MAC Preview tool to edit this form as it corrupts the data. Application deadline is January 10, 2016 5:00 PM (US Mountain Standard) A complete application package includes: * This Application Form * Cover Letter - Page cover letter describing your interest in this summer school and multi-disciplinary cyber- physical dynamic systems research as well as your near term (1-3 year) academic and professional goals. * CV (resume) * One (1)

  16. MEMORANDUM TO: FILE FROM: TYPE OF OPERATION

    Office of Legacy Management (LM)

    , TYPE OF OPERATION ~_--_-----_---___ 69 Research & Development a Facility. Type 0 Production scale testing Cl Pilat Scale IK Bench Scale Process 0 Theoretical Studies u Sample & Analysis q Production 0 Disposal/Storage a Manufacturing 0 University 0 Research Organization 0 Government Sponsored Facility 0 Other --------------__----- TYPE OF CONTRACT ---------------- 0 Prime 0 Other information (i.e., cost 0 Subcontractor + fixed fee, unit price, 5 Purchase Order ~SlvtM ay LuPo~l- time

  17. Fundamental Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Science Applications Fundamental Science Applications Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Contact thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Fundamental Science Applications The DOE Basic Energy Science (BES) program supports research to understand, predict and ultimately control

  18. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

  19. Prototyping Of Patterned Functional Nanostructures

    DOE Patents [OSTI]

    Fan, Hongyou; Lopez, Gabriel P.; Brinker, Charles Jeffrey; Lu, Yunfeng

    2002-10-29

    The present invention provides a coating composition comprising: A coating composition comprising: TEOS; a surfactant; at least one organosilane; HCl; water; and ethanol. The present invention also provides films made from such a coating composition and a method for making such films.

  20. SU-8 doped and encapsulated n-type graphene nanomesh with high air stability

    SciTech Connect (OSTI)

    Al-Mumen, Haider [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States) [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical Engineering, University of Babylon, Babylon (Iraq); Dong, Lixin; Li, Wen, E-mail: wenli@egr.msu.edu [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)] [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2013-12-02

    N-type doping of graphene with long-term chemical stability in air represents a significant challenge for practical application of graphene electronics. This paper reports a reversible doping method to achieve highly stable n-type graphene nanomeshes, in which the SU-8 photoresist simultaneously serves as an effective electron dopant and an excellent encapsulating layer. The chemically stable n-type characteristics of the SU-8 doped graphene were evaluated in air using their Raman spectra, electrical transport properties, and electronic band structures. The SU-8 doping does minimum damage to the hexagonal carbon lattice of graphene and is completely reversible by removing the uncrosslinked SU-8 resist.

  1. Archived Reference Building Type: Full service restaurant

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  2. Archived Reference Building Type: Full service restaurant

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  3. Archived Reference Building Type: Outpatient health care

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  4. Archived Reference Building Type: Outpatient health care

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  5. Archived Reference Building Type: Midrise Apartment

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  6. Archived Reference Building Type: Midrise Apartment

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  7. Archived Reference Building Type: Small Hotel

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  8. Archived Reference Building Type: Small Hotel

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  9. Archived Reference Building Type: Large Hotel

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  10. Archived Reference Building Type: Large Hotel

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  11. Archived Reference Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  12. Archived Reference Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  13. Archived Reference Building Type: Quick service restaurant

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  14. Archived Reference Building Type: Quick service restaurant

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  15. Archived Reference Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  16. Archived Reference Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  17. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  18. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  19. Serum markers for type II diabetes mellitus

    DOE Patents [OSTI]

    Metz, Thomas O; Qian, Wei-Jun; Jacobs, Jon M; Polpitiya, Ashoka D; Camp, II, David G; Smith, Richard D

    2014-03-18

    A method for identifying persons with increased risk of developing type 2 diabetes mellitus utilizing selected biomarkers described hereafter either alone or in combination. The present invention allows for broad based, reliable, screening of large population bases and provides other advantages, including the formulation of effective strategies for characterizing, archiving, and contrasting data from multiple sample types under varying conditions.

  20. Archived Reference Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  1. Archived Reference Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  2. Web Applications for Data Analytics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Applications for Data Web Applications for Data Analytics Description and Overview NERSC is providing, on an experimental basis, web-based applications for data analytics. This ...

  3. Membrane-Associated Methane Monooygenase from Type X and Type I Methanotrophs

    SciTech Connect (OSTI)

    Antholine, William E.; DiSpirito, Alan A.

    2009-11-30

    Membrane-Associated Methane Monooxygenases from Type X and Type I Methanotrophs A.A. DiSirito and W.E. Antholine Project Number: DE-FG02-00ER15446 Final project report.

  4. Applicant Organization: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas, LLC Applicant Organization: Broin Companies

  5. Types of Hydropower Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines Types of Hydropower Turbines There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost. Terms used on this page are defined in the glossary. Impulse Turbine The impulse turbine generally uses the velocity of the water to

  6. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Types of Lighting Types of Lighting When it comes to lighting options, you have a number of choices. | Photo courtesy of <a href="http://www.flickr.com/photos/mncerts/6882037149/in/photostream/">Clean Energy Resource Teams</a>. When it comes to lighting options, you have a number of choices. | Photo courtesy of Clean Energy Resource Teams. You have several options to consider when selecting what type of lighting you should use in your home. When selecting energy-efficient

  7. Application Process and Eligibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program » Application Process and Eligibility Application Process and Eligibility Both US and non-US citizens are eligible to apply, but US citizenship may be required for some research. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email Applications for the program shall consist of a clearly defined research proposal of up to 300 words, written by the sponsor, describing the candidate's proposed research in

  8. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their properties; developing practical applications of materials, and providing world-class user facilities. Contact Us Division Leader (acting) Michael Hundley Email Deputy Division Leader Rick Martineau Email Chief of Staff Jeff Willis Email Division Office (505) 665-1131 Materials Physics Applications Division

  9. - Compliance Recertification Application 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About | PDF Documents CRA-2014 Table of Contents Executive Summary Structure of the CRA-2014 Section 8: Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP Section 15: Content of Compliance Recertification Application(s) Section 21: Inspections Section 22: Quality Assurance Section 23: Models and Computer Codes Section 24: Waste Characterization Section 25: Future State Assumptions Section 26: Expert Judgment Section 27: Peer Review Section 31: Application of

  10. New Combined FAC Application

    Office of Environmental Management (EM)

    Washington, DC 20585 MEMORANDUM FOR SITE ACQUISITION CAREER MANAGER FROM: SUBJECT: Application for In accordance with DOE Order 361.1B, paragraph 4.B, I hereby request the subject certification, for which I completed the applicable education, experience and training standards as documented below. 1. E-mail address: Duty station: 2. Previous certification (attached): Date last issued or renewed: 3. Education (FAC-C applications only): Bachelor's degree OR 24 semester hours among these

  11. Application Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESPRESSO, PARATEC, PARSEC etc. Like such DFT codes, it is heavily depedent on FFTs, Dense Linear algebra and tensor contraction type operations similar in nature to those... Read...

  12. Science of Signatures Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Recommendation from a Reference Applicant Information: Name (Last, First, MI) Citizenship* Best Contact Phone Number Email Address University enrolled in Advisor Name...

  13. Los Alamos Dynamics Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PII) such as address, SSN, etc. Applicant Information: Name (Last, First, MI) Citizenship* Best Contact Phone Number Email Address University enrolled in Emergency Contact...

  14. parking permit application - front

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete requested information in each applicable blank. For make of car: Use Ford, Chevrolet, Plymouth, Toyota, Volkswagen, etc., Not model name. Return original copy of the ...

  15. Application Porting and Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunities, and manage multiple hierarchies of memory effectively. In the web pages that follow we document strategies for improving your application's performance....

  16. Application Components | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Apply » Application Components Application Components APPLICATION SUBMISSION INFORMATION AVAILABLE MARCH 1, 2015. Application available at www.zintellect.com/Posting/Details/853 A complete application consists of the following documents. Use this checklist to keep track of the required documents. Curriculum Vitae (CV) CV must be uploaded by the applicant as part of the application and must include the following: Applicant Information Education History. List all institutions from which

  17. A COMPARISON OF TWO THERMAL INSULATION AND STRUCTURAL MATERIALS FOR USE IN TYPE B PACKAGINGS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-16

    This paper presents the summary of design features and test results of two Type B Shipping Package prototype configurations comprising different insulating materials developed by the Savannah River National Laboratory (SRNL) for the Department of Energy. The materials evaluated, a closed-cell polyurethane foam and a vacuformed ceramic fiber material, were selected to provide adequate structural protection to the package containment vessel during Normal Conditions of Transport (NCT) and Hypothetical Accident Condition (HAC) events and to provide thermal protection during the HAC fire. Polyurethane foam has been used in shipping package designs for many years because of the stiffness it provides to the structure and because of the thermal protection it provides during fire scenarios. This comparison describes how ceramic fiber material offers an alternative to the polyurethane foam in a specific overpack design. Because of the high operating temperature ({approx}2,300 F) of the ceramic material, it allows for contents with higher heat loads to be shipped than is possible with polyurethane foam. Methods of manufacturing and design considerations using the two materials will be addressed.

  18. The Three-Dimensional Structural Basis of Type II Hyperprolinemia...

    Office of Scientific and Technical Information (OSTI)

    The Three-Dimensional Structural Basis of Type II Hyperprolinemia Citation Details In-Document Search Title: The Three-Dimensional Structural Basis of Type II Hyperprolinemia Type ...

  19. Defining photometric peculiar type Ia supernovae

    SciTech Connect (OSTI)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  20. Renewable Energy Opportunities by Renovation Type

    Broader source: Energy.gov [DOE]

    Renewable energy opportunities should be considered and identified in the earliest stages of Federal project planning and the team should assess the renewable energy options based on the type of...

  1. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    by Storage Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","All Operators",6,"Monthly"...

  2. Property:CompanyType | Open Energy Information

    Open Energy Info (EERE)

    profit Pages using the property "CompanyType" Showing 4 pages using this property. E Eco Wave Power Ltd. + For Profit + N Nvision.Energy + For Profit + R Rentechno + For Profit...

  3. Hanford facility dangerous waste permit application

    SciTech Connect (OSTI)

    1991-09-18

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit.

  4. Geothermal Development Job Types and Impacts

    Broader source: Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  5. Strontium Transportation Type B Report-Fina

    Office of Environmental Management (EM)

    ORO-2183 Type B Accident Investigation Board Report Subcontractor Radioactive Release During the May 14, 2004, Transportation Activities Bechtel Jacobs Company LLC Oak Ridge, Tennessee June 2004 U.S. Department of Energy Oak Ridge Operations Office This page intentionally left blank. INDEPENDENT REPORT his report is an independent product of the Type B Accident Investigation Board (Board) appointed by Gerald G. Boyd, Manager, Oak Ridge Operations Office, U.S. Department of Energy. The Board was

  6. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation » Types of Insulation Types of Insulation In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes

  7. MEMORANDUM TO: FILE TYPE OF OPERATION

    Office of Legacy Management (LM)

    TYPE OF OPERATION _--__---~~--~---~ a Research & Development cl Facility Type 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process 0 Theoretical Studies a Sample SC Analysis 0 Hanuf actuiing 0 University a Research Organization 0 Government Sponsored Facility 0 Other ~---~~--_--_~-___--~ 0 Production 0 Disposal/Storage IYPLPEs!b!Iw!EI 0 Prime a 0 Subcontract& Other information (i.e., cost + fixed fee. unit price, *! Purchase Order time & material, qtc) _------

  8. Advanced fuel cells for transportation applications. Final report

    SciTech Connect (OSTI)

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  9. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect (OSTI)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm lithium metaborate solution respectively at the saturation temperature for 1000 psi (68.9 bar) coolant pressure. Boiling tests also revealed the formation of fine deposits of boron and lithium on the cladding surface which degraded the heat transfer rates. The boron and lithium metaborate precipitates after a 5 day test at 5000 ppm concentration and 1000 psi (68.9 bar) operating pressure reduced the heat transfer rate 21% and 30%, respectively for the two solutions.

  10. Apparatus for tensile testing plate-type ceramic specimens

    DOE Patents [OSTI]

    Liu, Kenneth C. (Oak Ridge, TN)

    1993-01-01

    Apparatus for tensile testing plate-type ceramic specimens having dogbone- or T-shaped end sections without introducing bending stresses in the specimens during the application of a dynamic tensile loading on the specimens is described. A pair of elongated pull rods disposed in a side-by-side relationship are used to grip the shoulders on each T-shaped end section. The pull rods are pivotally attached to a piston-displaceable, disk-shaped member so as to be longitudinally movable with respect to one another effecting the self-alignment thereof with the shoulders on the T-shaped end sections of the specimen to compensate for shoulders being located in different longitudinal positions.

  11. DOT-7A Type A packaging design guide

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-01-23

    The purpose of this Design Guide is to provide instruction for designing a U.S. Department of Transportation Specification 7A (DOT-7A) Type A packaging. Another purpose for this Design Guide is to support the evaluation and testing activities that are performed on new designs by a U.S. Department of Energy (DOE) test facility. This evaluation and testing program is called the DOT-7A Program. When an applicant has determined that a DOT-7A packaging is needed and not commercially available, a design may be created according to this document. The design should include a packaging drawing, specifications, analysis report, operating instructions, and a Packaging Qualification Checklist; all of which should be forwarded to a DOE/HQ approved test facility for evaluation and testing. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes.

  12. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  13. Application Process | Department of Energy

    Energy Savers [EERE]

    Application Process Application Process Application Process LPO APPLICATION PROCESS LPO has more than $40 billion in remaining loan and loan guarantee authority and is accepting applications under its two loan programs - the Innovative Clean Energy Projects (Title XVII) loan program and the Advanced Technology Vehicles Manufacturing (ATVM) loan program. Prospective applicants may use the LPO Online Application Portal to apply to both loan programs. Each loan program, however, has its own

  14. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang; Galbraith, Ross

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  15. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect (OSTI)

    S. Mukhopadhyay

    2003-06-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  16. PLZT film capacitors for power electronics and energy storage applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory PLZT film capacitors for power electronics and energy storage applications Title PLZT film capacitors for power electronics and energy storage applications Publication Type Journal Article Year of Publication 2015 Authors Ma, B, Hu, Z, Koritala, RE, Lee, TH, Dorris, SE, Balachandran, U Journal Journal of Materials Science: Materials in Electronics Start Page 1 Date Published 04102015 Abstract Ceramic film capacitors with high dielectric constant and high

  17. High Average Brightness Photocathode Development for FEL Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for FEL Applications Authors: Rao T. ; Ben-Zvi I. ; Skarita, J. ; Wang, E. Publication Date: 2013-08-26 OSTI Identifier: 1095687 Report Number(s): BNL--101607-2013-CP KA-04 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation: Conference: 35th International Free Electron

  18. Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application Citation Details In-Document Search Title: Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application Authors: Candy, J V Publication Date: 2011-07-12 OSTI Identifier: 1117989 Report Number(s): LLNL-CONF-491045 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: OCEANS'11, Kona, HI, United States, Sep 19 - Sep 22, 2011

  19. Building the Next Generation of Parallel Applications: Co-Design

    Office of Scientific and Technical Information (OSTI)

    Opportunities and Challenges. (Conference) | SciTech Connect Building the Next Generation of Parallel Applications: Co-Design Opportunities and Challenges. Citation Details In-Document Search Title: Building the Next Generation of Parallel Applications: Co-Design Opportunities and Challenges. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-04-01 OSTI Identifier: 1108313 Report Number(s): SAND2011-2822C 470544 DOE Contract Number: AC04-94AL85000 Resource Type:

  20. Building the next generation of scalable manycore applications and

    Office of Scientific and Technical Information (OSTI)

    libraries. (Conference) | SciTech Connect Building the next generation of scalable manycore applications and libraries. Citation Details In-Document Search Title: Building the next generation of scalable manycore applications and libraries. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-02-01 OSTI Identifier: 1109324 Report Number(s): SAND2011-1154C 471472 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: SIAM

  1. Quantum and Dirac Materials for Energy Applications Conference (QDM-15)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March » Quantum and Dirac Materials for Energy Applications Quantum and Dirac Materials for Energy Applications Conference (QDM-15) WHEN: Mar 08, 2015 8:00 AM - Mar 11, 2015 5:00 PM WHERE: La Fonda Hotel Santa Fe, NM CONTACT: Caryll Blount 505 665-3950 CATEGORY: Science TYPE: Conference INTERNAL: Calendar Login Event Description The purpose of the workshop is to discuss current status and future prospects for the quantum materials and Dirac materials for energy and information technology

  2. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for

    Energy Savers [EERE]

    Federal Facility Managers | Department of Energy Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers This guide provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for various room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons

  3. Lessons learned during Type A Packaging testing

    SciTech Connect (OSTI)

    O`Brien, J.H.; Kelly, D.L.

    1995-11-01

    For the past 6 years, the US Department of Energy (DOE) Office of Facility Safety Analysis (EH-32) has contracted Westinghouse Hanford Company (WHC) to conduct compliance testing on DOE Type A packagings. The packagings are tested for compliance with the U.S. Department of Transportation (DOT) Specification 7A, general packaging, Type A requirements. The DOE has shared the Type A packaging information throughout the nuclear materials transportation community. During testing, there have been recurring areas of packaging design that resulted in testing delays and/or initial failure. The lessons learned during the testing are considered a valuable resource. DOE requested that WHC share this resource. By sharing what is and can be encountered during packaging testing, individuals will hopefully avoid past mistakes.

  4. Fiber-type dosimeter with improved illuminator

    DOE Patents [OSTI]

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  5. Fiber-type dosimeter with improved illuminator

    DOE Patents [OSTI]

    Fox, R.J.

    1985-12-23

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  6. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  7. Portable Application Code Toolkit

    Energy Science and Technology Software Center (OSTI)

    2009-01-01

    PACT is a set of tools to help software developers create applications that will run on any platform and data that can be written/read on any platform.

  8. NESAP Application Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partner with approximately 20 application teams to help prepare codes for the Cori architecture. A key feature of the Cori system is the Intel Knights Landing processor which will...

  9. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  10. Niche Application Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Niche Application Opportunities Bart A. van Hassel United Technologies Research Center (UTRC), East Hartford, Connecticut, USA DOE Materials-Based Hydrogen Storage Summit Defining pathways for onboard automotive applications Golden, CO, USA January 27-28, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 10 100 1000 10000 0 100 200 300 400 500 600 700 800 900 1000 Useful Specific Power [W/kg] Useful Specific Energy [Wh/kg] Automotive 80

  11. ORISE: Multimedia Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multimedia Applications Multimedia Applications The Oak Ridge Institute for Science and Education (ORISE) collaborates with government agencies and organizations to develop technology-based learning tools that prepare health care and public officials for response to the most pressing public health challenges. ORISE uses its expertise in instructional design, graphic art, multimedia development, cultural competency and global health to create interactive training and educational programs. ORISE

  12. Application Porting and Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling Your Application Improving OpenMP Scaling Measuring and Understanding Memory Bandwidth Vectorization Using on-package memory Using High Performance Libraries and Tools Testbeds Cori Training Dungeon Session Worksheet NESAP NERSC-8 Procurement Programming models File Storage and I/O Edison PDSF Genepool Testbeds Retired Systems Storage & File Systems Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application Performance Training &

  13. Microsoft Word - SIP Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survivor Income Program (SIP) Benefit Application Revised 5/14 Page 1 of 1 Los Alamos National Security, LLC SURVIVOR INCOME PROGRAM (SIP) BENEFIT APPLICATION EMPLOYEE INFORMATION Name of Deceased: Male Female SSN: Z#: DOB: DOD: Age: Married? Date of Marriage: # Children under 18? # Children 18-22? Dependent parent? Include copy of Death Certificate ELIGIBLE SURVIVOR INFORMATION Spouse: DOB: Address: Age: Phone: E-mail: SSN: Disabled? Include copy of recorded Marriage Certificate Child: DOB:

  14. Applications of cavity optomechanics

    SciTech Connect (OSTI)

    Metcalfe, Michael

    2014-09-15

    “Cavity-optomechanics” aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  15. Reference Buildings by Building Type: Midrise Apartment

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  16. Reference Buildings by Building Type: Small Hotel

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  17. Reference Buildings by Building Type: Large Hotel

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  18. Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  19. Reference Buildings by Building Type: Hospital

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  20. Reference Buildings by Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  1. Reference Buildings by Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  2. Reference Buildings by Building Type: Medium office

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  3. Reference Buildings by Building Type: Primary school

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  4. Reference Buildings by Building Type: Supermarket

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  5. Structural integrity assessment of type 201LN stainless steel cryogenic pressure vessels

    SciTech Connect (OSTI)

    Rana, M.D.; Zawierucha, R.

    1995-12-01

    The ASME Boiler and Pressure Vessel Code Committee approved the Code Case 2123 in 1992 which allows the use of Type 201LN stainless steel in the construction of ASME Section VIII, Division 1 and Division 2 pressure vessels for -320{degrees}F applications. Type 201LN stainless steel is a nitrogen strengthened modified version of ASTM A240, Type 201 stainless steel with a restricted chemistry. The Code allowable design stresses for Type 201LN for Division 1 vessels are approximately 27% higher than Type 304 stainless steel and equal to that of the 5 Ni and 9 Ni steels. This paper discusses the important features of the Code Case 2123 and the structural integrity assessment of Type 201LN stainless steel cryogenic vessels. Tensile, Charpy-V-notch and fracture properties have been obtained on several heats of this steel including weldments. A linear-elastic fracture mechanics analysis has been conducted to assess the expected fracture mode and the fracture-critical crack sizes. The results have been compared with Type 304 stainless steel, 5 Ni and 9 Ni steel vessels.

  6. Pervasive Restart In MOOSE-based Applications

    SciTech Connect (OSTI)

    Derek Gaston; Cody Permann; David Andrs; John Peterson; Andrew Slaughter; Jason Miller

    2014-01-01

    Multiphysics applications are inherently complicated. Solving for multiple, interacting physical phenomena involves the solution of multiple equations, and each equation has its own data dependencies. Feeding the correct data to these equations at exactly the right time requires extensive effort in software design. In an ideal world, multiphysics applications always run to completion and produce correct answers. Unfortunately, in reality, there can be many reasons why a simulation might fail: power outage, system failure, exceeding a runtime allotment on a supercomputer, failure of the solver to converge, etc. A failure after many hours spent computing can be a significant setback for a project. Therefore, the ability to “continue” a solve from the point of failure, rather than starting again from scratch, is an essential component of any high-quality simulation tool. This process of “continuation” is commonly termed “restart” in the computational community. While the concept of restarting an application sounds ideal, the aforementioned complexities and data dependencies present in multiphysics applications make its implementation decidedly non-trivial. A running multiphysics calculation accumulates an enormous amount of “state”: current time, solution history, material properties, status of mechanical contact, etc. This “state” data comes in many different forms, including scalar, tensor, vector, and arbitrary, application-specific data types. To be able to restart an application, you must be able to both store and retrieve this data, effectively recreating the state of the application before the failure. When utilizing the Multiphysics Object Oriented Simulation Environment (MOOSE) framework developed at Idaho National Laboratory, this state data is stored both internally within the framework itself (such as solution vectors and the current time) and within the applications that use the framework. In order to implement restart in MOOSE-based applications, the total state of the system (both within the framework and without) must be stored and retrieved. To this end, the MOOSE team has implemented a “pervasive” restart capability which allows any object within MOOSE (or within a MOOSE-based application) to be declared as “state” data, and handles the storage and retrieval of said data.

  7. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    SciTech Connect (OSTI)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.

  8. Multiphysics Application Coupling Toolkit

    Energy Science and Technology Software Center (OSTI)

    2013-12-02

    This particular consortium implementation of the software integration infrastructure will, in large part, refactor portions of the Rocstar multiphysics infrastructure. Development of this infrastructure originated at the University of Illinois DOE ASCI Center for Simulation of Advanced Rockets (CSAR) to support the center's massively parallel multiphysics simulation application, Rocstar, and has continued at IllinoisRocstar, a small company formed near the end of the University-based program. IllinoisRocstar is now licensing these new developments as free, openmore » source, in hopes to help improve their own and others' access to infrastructure which can be readily utilized in developing coupled or composite software systems; with particular attention to more rapid production and utilization of multiphysics applications in the HPC environment. There are two major pieces to the consortium implementation, the Application Component Toolkit (ACT), and the Multiphysics Application Coupling Toolkit (MPACT). The current development focus is the ACT, which is (will be) the substrate for MPACT. The ACT itself is built up from the components described in the technical approach. In particular, the ACT has the following major components: 1.The Component Object Manager (COM): The COM package provides encapsulation of user applications, and their data. COM also provides the inter-component function call mechanism. 2.The System Integration Manager (SIM): The SIM package provides constructs and mechanisms for orchestrating composite systems of multiply integrated pieces.« less

  9. Multi-Application Small Light Water Reactor Final Report

    SciTech Connect (OSTI)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO{sub 2}, 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration, water desalination or district heating were not addressed directly in the economic analyses since these depend more on local conditions, demand and economy and can not be easily generalized. Current economic performance experience and available cost data were used. The preliminary cost estimate, based on a concept that could be deployed in less than a decade, is: (1) Net Electrical Output--1050 MWe; (2) Net Station Efficiency--23%; (3) Number of Power Units--30; (4) Nominal Plant Capacity Factor--95%; (5) Total capital cost--$1241/kWe; and (6) Total busbar cost--3.4 cents/kWh. The project includes a testing program that has been conducted at Oregon State University (OSU). The test facility is a 1/3-height and 1/254.7 volume scaled design that will operate at full system pressure and temperature, and will be capable of operation at 600 kW. The design and construction of the facility have been completed. Testing is scheduled to begin in October 2002. The MASLWR conceptual design is simple, safe, and economical. It operates at NSSS parameters much lower than for a typical PWR plant, and has a much simplified power generation system. The individual reactor modules can be operated as on/off units, thereby limiting operational transients to startup and shutdown. In addition, a plant can be built in increments that match demand increases. The ''pull and replace'' concept offers automation of refueling and maintenance activities. Performing refueling in a single location improves proliferation resistance and eliminates the threat of diversion. Design certification based on testing is simplified because of the relatively low cost of a full-scale prototype facility. The overall conclusion is that while the efficiency of the power generation unit is much lower (23% versus 30%), the reduction in capital cost due to simplification of design more than makes up for the increased cost of nuclear fuel. The design concept complies with the safety requirements and criteria. It also satisfies the goals for modularity, standard plant design, certification before construction, c

  10. Acquisition Description/ Category Solicitation Method Contract Type

    Energy Savers [EERE]

    3/15/2016 Acquisition Description/ Category Solicitation Method Contract Type Period of Performance Contract Value All EM Sites DOE-Wide commercial low-level waste treatment Energy Solutions, Inc. Perma-Fix Environmental Services, Inc. Philo-Technics, Ltd. Studsvik, Inc. Full and Open Competition Firm Fixed Price IDIQ 6/30/08-6/29/13 $450M Multiple award indefinite delivery/indefinite quality (IDIQ) Set-aside contracts for nationwide environmental services/ environmental cleanup Clauss

  11. Acquisition Description/ Category Solicitation Method Contract Type

    Office of Environmental Management (EM)

    2/8/2016 Acquisition Description/ Category Solicitation Method Contract Type Period of Performance Contract Value All EM Sites DOE-Wide commercial low-level waste treatment Energy Solutions, Inc. Perma-Fix Environmental Services, Inc. Philo-Technics, Ltd. Studsvik, Inc. Full and Open Competition Firm Fixed Price IDIQ 6/30/08-6/29/13 $450M Multiple award indefinite delivery/indefinite quality (IDIQ) Set-aside contracts for nationwide environmental services/ environmental cleanup Clauss

  12. Job Types | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Types | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  13. Type IV COPV Cold Gas Operation Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type IV COPV Cold Gas Operation Challenges DAVID W. GOTTHOLD November 30, 2015 1 Pacific Northwest National Laboratory Cold Gas Motivation and Challenges November 30, 2015 2 200 K H 2 Lower pressure Higher density H 2 CGO ~25% CF savings Cost Savings from reduced CF use Cold gas operation allows for reduced pressures for the same volume for significant CF and cost reductions. Materials properties change significantly at cold gas temperatures and must be studied. Example: HDPE DBT ~ 200 K Higher

  14. The Adversarial Route Analysis Tool: A Web Application

    SciTech Connect (OSTI)

    Casson, William H. Jr.

    2012-08-02

    The Adversarial Route Analysis Tool is a type of Google maps for adversaries. It's a web-based Geospatial application similar to Google Maps. It helps the U.S. government plan operations that predict where an adversary might be. It's easily accessible and maintainble and it's simple to use without much training.

  15. Jahn-Teller Effect: Its History and Applicability

    DOE R&D Accomplishments [OSTI]

    Teller, E.

    1981-08-31

    The interactions between Teller, Renner, Jahn and Landau which led to the formulation of the Jahn-Teller effect are discussed. The applicability of Jahn-Teller type of theory to superconductivity and the explanation proposed by the use of Goldstone particles are assessed.

  16. Section 15: Content of Compliance Recertification Application(s)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Content of Compliance Recertification Application(s) (40 CFR § 194.15) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Content of Compliance Recertification Application(s) (40 CFR § 194.15) Table of Contents 15.0 Content of Compliance Recertification Application(s) (40 CFR § 194.15) 15.1 Requirements 15.2 Background 15.3 1998 Certification Decision 15.4 Changes in the CRA-2004 15.5 EPA's

  17. Applications of Parallel Computers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computers Applications of Parallel Computers UCB CS267 Spring 2015 Tuesday & Thursday, 9:30-11:00 Pacific Time Applications of Parallel Computers, CS267, is a graduate-level course offered at the University of California, Berkeley. The course is being taught by UC Berkeley professor and LBNL Faculty Scientist Jim Demmel. CS267 is broadcast live over the internet and all NERSC users are invited to monitor the broadcast course, but course credit is available only to student registered for the

  18. Filter:Incentives By Type | Open Energy Information

    Open Energy Info (EERE)

    By Type Jump to: navigation, search This filter covers the property IncentiveType. Retrieved from "http:en.openei.orgwindex.php?titleFilter:IncentivesByType&oldid258666...

  19. Reflection type of terahertz imaging system using a high-T{sub c} superconducting oscillator

    SciTech Connect (OSTI)

    Kashiwagi, T.; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Markovi?, B.; Mirkovi?, J. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [National Institute for Materials Science, Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-01-13

    A reflection type of imaging system is shown at sub-terahertz frequencies generated from high-T{sub c} superconducting intrinsic Josephson junction mesa structures fabricated by single crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+?} to demonstrate how the sub-terahertz imaging technique using monochromatic radiation is powerful and unique for the variety of practical applications. Several examples are discussed in detail and are compared to other terahertz imaging systems.

  20. Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner core—coupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.