Powered by Deep Web Technologies
Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Systematic Effects in Type-1a Supernovae Surveys from Host Galaxy Spectra  

SciTech Connect

The physical relation between the properties of Type Ia supernovae and their host galaxies is investigated. Such supernovae are used to constrain the properties of dark energy, making it crucial to understand their physical properties and to check for systematic effects relating to the stellar populations of the progenitor stars from which these supernovae arose. This grant found strong evidence for two distinct populations of supernovae, and correlations between the progenitor stellar populations and the nature of the supernova light curves.

Strauss, Michael A. [Princeton University

2013-08-23T23:59:59.000Z

2

Type 1a Supernovae Observations are Consistent with a Static Universe  

E-Print Network (OSTI)

The finding that the widths of type 1a supernovae light curves increase with redshift appears to provide strong evidence for an expanding universe. This paper argues that the observations are consistent with a static cosmology where redshift is produced by a tired-light mechanism. For type 1a supernovae there is a strong correlation between peak luminosity and the width of the light curve, the Phillips relation. In an expanding universe this relation is used to combine the absolute magnitude with the stretch factor to obtain a corrected apparent peak magnitude. In a model for a static universe where width rather than stretch factor is used there is different apparent peak magnitude. Since the analysis program explicitly uses the stretch factor rather than width in its use of the Phillips relation its application in a static universe produces a systematic bias in the peak magnitudes. In addition, the stretch selection that is valid for an expanding universe produces another small bias in the data that must be included in a static universe. The aim of this paper is to show that, using the Phillips relation, and allowing for these biases, the data are consistent with a static model. In a static model the density distribution of type 1a supernovae is independent of redshift. This prediction agrees with the observations.

David F. Crawford

2013-07-24T23:59:59.000Z

3

High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term Maintenance: Final Technical Report  

SciTech Connect

The Quest Camera was installed at the Palomar Obervatory in California. The camera was used to carry out a survey of low redshift Type 1a supernovae.The purpose of this DOE grant was to perform short term maintenance on the QUEST camera.

Baltay, Charles

2012-10-16T23:59:59.000Z

4

Type Ia Supernovae Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Type Ia Supernovae Type Ia Supernovae Supernova-1.jpg Update: Recent Berkeley Lab Computing Sciences News about supernovae: read more... Key Challenges: Understanding Type Ia...

5

Prospective Type Ia supernova surveys from Dome A  

E-Print Network (OSTI)

Prospective Type Ia Supernova Surveys From Dome A A. Kim a ,are conducive toward Type Ia supernova surveys forheterogeneities within the Type Ia supernova class, reducing

Kim, A.

2010-01-01T23:59:59.000Z

6

Visualizing Type Ia Supernova Explosions at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Supernova Explosions Supernova Explosions Visualizing Type Ia Supernova Explosions Childs1a-Supernovasm.png Deep inside a dying star in a galaxy far, far away, a carbon fusion flame ignites. Ignition may happen in the middle or displaced slightly to one side, but this simulation explores the consequences of central ignition. In a localized hot spot, represented here by a deformed sphere with an average radius of 100 km, carbon is assumed to have already fused to iron, producing hot ash (~10 billion K) with a density about 20% less than its surroundings. As the burning progresses, this hot buoyant ash rises up and interacts with cold fuel. Rayleigh-Taylor fingers give rise to shear and turbulence, which interacts with the flame, causing it to move faster. In about 2 seconds, the energy released blows the entire white dwarf star up,

7

Turbulent Combustion in Type Ia Supernova Models  

E-Print Network (OSTI)

We review the astrophysical modeling of type Ia supernova explosions and describe numerical methods to implement numerical simulations of these events. Some results of such simulations are discussed.

F. K. Roepke; W. Hillebrandt

2006-09-15T23:59:59.000Z

8

Hydrogen in Type Ic Supernovae?  

E-Print Network (OSTI)

By definition, a Type Ic supernova (SN Ic) does not have conspicuous lines of hydrogen or helium in its optical spectrum. SNe Ic usually are modelled in terms of the gravitational collapse of bare carbon-oxygen cores. We consider the possibility that the spectra of ordinary (SN 1994I-like) SNe Ic have been misinterpreted, and that SNe Ic eject hydrogen. An absorption feature usually attributed to a blend of Si II 6355 and C II 6580 may be produced by H-alpha. If SN 1994I-like SNe Ic eject hydrogen, the possibility that hypernova (SN 1998bw-like) SNe Ic, some of which are associated with gamma-ray bursts, also eject hydrogen should be considered. The implications of hydrogen for SN Ic progenitors and explosion models are briefly discussed.

David Branch; David J. Jeffery; Timothy R. Young; E. Baron

2006-04-03T23:59:59.000Z

9

Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning in Supernovae Buoyant Burning Bubbles in Type Ia Supernovae bubble-s.jpeg Flame ignition in type Ia supernovae leads to isolated bubbles of burning buoyant fluid. As a...

10

Rates and progenitors of type Ia supernovae  

SciTech Connect

The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z {approx} 0.01-0.1 of r{sub V} = 4.26{sub -1.93 -0.10}{sup +1.39 +0.10} h{sup 3} x 10{sup -4} SNe Ia/yr/Mpc{sup 3} from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae.

Wood-Vasey, William Michael

2004-08-16T23:59:59.000Z

11

Theoretical cosmic Type Ia supernova rates  

E-Print Network (OSTI)

The aim of this work is the computation of the cosmic Type Ia supernova rates at very high redshifts (z>2). We adopt various progenitor models in order to predict the number of explosions in different scenarios for galaxy formation and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We also computed the Type Ia supernova rate in typical elliptical galaxies of different initial luminous masses and the total amount of iron produced by Type Ia supernovae in each case. It emerges that: it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; the monolithic collapse scenario predicts an increasing trend of the SN Ia rate at high redshifts whereas the predicted rate in the hierarchical scheme drops dramatically at high redshift; for the elliptical galaxies we note that the predicted maximum of the Type Ia supernova rate depends on the initial galactic mass. The maximum occurs earlier (at about 0.3 Gyr) in the most massive ellipticals, as a consequence of downsizing in star formation. We find that different delay time distributions predict different relations between the Type Ia supernova rate per unit mass at the present time and the color of the parent galaxies and that bluer ellipticals present higher supernova Type Ia rates at the present time.

R. Valiante; F. Matteucci; S. Recchi; F. Calura

2008-07-15T23:59:59.000Z

12

The Distant Type Ia Supernova Rate  

DOE R&D Accomplishments (OSTI)

We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

2002-05-28T23:59:59.000Z

13

Carnegie Supernova Project: Observations of Type IIn Supernovae  

E-Print Network (OSTI)

The observational diversity displayed by various Type IIn supernovae (SNe IIn) is explored and quantified. In doing so a more coherent picture ascribing the variety of observed SNe IIn types to particular progenitor scenarios is sought. Carnegie Supernova Project (CSP) optical and near-infrared light curves and visual-wavelength spectroscopy of the Type IIn SNe 2005kj, 2006aa, 2006bo, 2006qq and 2008fq are presented. Combined with previously published observations of the Type IIn SNe 2005ip and 2006jd (Stritzinger et al. 2012), the full CSP sample is used to derive physical parameters which describe the nature of the interaction between the expanding SN ejecta and the circum-stellar material (CSM). For each SN of our sample we find counterparts, identifying objects similar to SNe 1994W (SN 2006bo), 1998S (SN 2008fq) and 1988Z (SN 2006qq). We present the unprecedented initial u-band plateau of SN 2006aa, and its peculiar late-time luminosity and temperature evolution. For each SN, assuming the CSM was formed b...

Taddia, F; Sollerman, J; Phillips, M M; Anderson, J P; Boldt, L; Campillay, A; Castellón, S; Contreras, C; Folatelli, G; Hamuy, M; Heinrich-Josties, E; Krzeminski, W; Morrell, N; Burns, C R; Freedman, W L; Madore, B F; Persson, S E; Suntzeff, N B

2013-01-01T23:59:59.000Z

14

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network (OSTI)

Turbulence-Flame Interactions in Type Ia Supernovae A. J.Normalised time (e) Normalised flame speed Normalised time (length scale (cm) Laminar flame width Gibson scale Cell

Aspden, Andrew J; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (Authors 1, 2 & 3); Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (Author 4); Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (Author 5)

2008-01-01T23:59:59.000Z

15

New approaches for modeling type Ia supernovae  

SciTech Connect

Type Ia supernovae (SNe Ia) are the largest thermonuclearexplosions in the Universe. Their light output can be seen across greatstances and has led to the discovery that the expansion rate of theUniverse is accelerating. Despite the significance of SNe Ia, there arestill a large number of uncertainties in current theoretical models.Computational modeling offers the promise to help answer the outstandingquestions. However, even with today's supercomputers, such calculationsare extremely challenging because of the wide range of length and timescales. In this paper, we discuss several new algorithms for simulationsof SNe Ia and demonstrate some of their successes.

Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

2007-06-25T23:59:59.000Z

16

Late Light Curves of Normally-Luminous Type Ia Supernovae  

E-Print Network (OSTI)

The use of Type Ia supernovae as cosmological tools has reinforced the need to better understand these objects and their light curves. The light curves of Type Ia supernovae are powered by the nuclear decay of $^{56}Ni \\to ^{56}Co \\to ^{56}Fe$. The late time light curves can provide insight into the behavior of the decay products and their effect of the shape of the curves. We present the optical light curves of six "normal" Type Ia supernovae, obtained at late times with template image subtraction, and the fits of these light curves to supernova energy deposition models.

J. C. Lair; M. D. Leising; P. A. Milne; G. G. Williams

2006-01-05T23:59:59.000Z

17

Carbon Monoxide in type II supernovae  

E-Print Network (OSTI)

Infrared spectra of two type II supernovae 6 months after explosion are presented. The spectra exhibit a strong similarity to the observations of SN 1987A and other type II SNe at comparable epochs. The continuum can be fitted with a cool black body and the hydrogen lines have emissivities that are approximately those of a Case B recombination spectrum. The data extend far enough into the thermal region to detect emission by the first overtone of carbon monoxide. The molecular emission is modeled and compared with that in the spectra of SN 1987A. It is found that the flux in the CO first overtone is comparable to that found in SN 1987A. We argue that Carbon Monoxide forms in the ejecta of all type II SNe during the first year after explosion.

J. Spyromilio; B. Leibundgut; R. Gilmozzi

2001-07-16T23:59:59.000Z

18

Burning Thermals in Type Ia Supernovae A. J. Aspden1  

E-Print Network (OSTI)

Burning Thermals in Type Ia Supernovae A. J. Aspden1 , J. B. Bell1 , S. Dong2 , and S. E. Woosley2 ABSTRACT We develop a one-dimensional theoretical model for thermals burning in Type Ia supernovae based for the burning and for the expansion of the thermal due to changes in the background stratification found

Bell, John B.

19

Spectral diversity of Type Ia Supernovae  

E-Print Network (OSTI)

We use published spectroscopic and photometric data for 8 Type Ia supernovae to construct a dispersion spectrum for this class of object, showing their diversity over the wavelength range 3700A to 7100A. We find that the B and V bands are the spectral regions with the least dispersion, while the U band below 4100A is more diverse. Some spectral features such as the Si line at 6150A are also highly diverse. We then construct two objective measures of 'peculiarity' by (i) using the deviation of individual objects from the average SN Ia spectrum compared to the typical dispersion and (ii) applying principle component analysis. We demonstrate these methods on several SNe Ia that have previously been classified as peculiar.

J. Berian James; Tamara M. Davis; Brian P. Schmidt; Alex G. Kim

2006-05-05T23:59:59.000Z

20

Just What is a Supernova?  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter transfer in a binary system Distances to Type Ia Supernovae Slide 8 Supernova "CAT Scan" Type Ia Supernova lightcurves Type Ia Supernovae and Cosmology Type Ia Supernovae...

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Progenitors of type Ia supernovae in elliptical galaxies  

Science Conference Proceedings (OSTI)

Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than {approx}5% of type Ia supernovae observed in old stellar populations.

Gilfanov, M.; Bogdan, A.

2011-09-21T23:59:59.000Z

22

Could There Be A Hole In Type Ia Supernovae?  

E-Print Network (OSTI)

In the favored progenitor scenario, Type Ia supernovae arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et. al. show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.

Daniel Kasen; Peter Nugent; R. C. Thomas; Lifan Wang

2003-11-01T23:59:59.000Z

23

DISTRIBUTED FLAMES IN TYPE Ia SUPERNOVAE  

Science Conference Proceedings (OSTI)

At a density near a few x10{sup 7} g cm{sup -3}, the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkoehler number (Da{sub T}), which steadily declines from much greater than one to less than one as the density decreases to a few x10{sup 6} g cm{sup -3}. Classical scaling arguments predict that the turbulent flame speed s{sub T} , normalized by the turbulent intensity u-check, follows s{sub T}/u-check = Da{sub T}{sup 1/2} for Da{sub T} {approx}burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s{sub l}ambda and width l{sub l}ambda, and we refer to this kind of flame as a lambda-flame. The burning becomes a collection of lambda-flames spread over a region approximately the size of the {integral} scale. While the total burning rate continues to have a well-defined average, s{sub T}{approx}u-check, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s{sub T} can actually be roughly twice u-check for Da{sub T} {approx}> 1, and that localized excursions to as much as 5 times u-check can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da{sub T} {approx} 1. The lambda-flame speed and width can be predicted based on the turbulence in the star (specifically the energy dissipation rate epsilon*) and the turbulent nuclear burning timescale of the fuel tau {sup T}{sub nuc}. We propose a practical method for measuring s{sub l}ambda and l{sub l}ambda based on the scaling relations and small-scale computationally inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed SNe flames. These results will be useful both for characterizing the deflagration speed in larger full-star simulations, where the flame cannot be resolved, and for predicting when detonation occurs.

Aspden, A. J.; Bell, J. B. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (United States); Woosley, S. E. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

2010-02-20T23:59:59.000Z

24

Distributed Flames in Type Ia Supernovae  

E-Print Network (OSTI)

In the distributed burning regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning depends on the turbulent Damkohler number (Da), which steadily declines from much greater than one to less that one as the density decreases to a few 10^6 g/cc. Scaling arguments predict that the turbulent flame speed s, normalized by the turbulent intensity u, follows s/u=Da^1/2 for Da1, and that localized excursions to as much as five times u can occur. The lambda-flame speed and width can be predicted based on the turbulence in the star and the turbulent nuclear burning time scale of the fuel. We propose a practical method for measuring these based on the scaling relations and small-scale computationally-inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed supernovae flames.

Aspden, A J; Woosley, S E; 10.1088/0004-637X/710/2/1654

2011-01-01T23:59:59.000Z

25

Learning from the scatter in type ia supernovae  

SciTech Connect

Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here they probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub s}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub s} to within 5% with observations of 2000 Type Ia Supernovae. They identify three sources of systematic error--evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing--which will make this measurement difficult.

Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Vallinotto, Alberto; /Fermilab /Chicago U.

2005-11-01T23:59:59.000Z

26

Investigating the Flame Microstructure in Type Ia Supernovae  

E-Print Network (OSTI)

We present a numerical model to study the behavior of thermonuclear flames in the discontinuity approximation. This model is applied to investigate the Landau-Darrieus instability under conditions found in Type Ia supernova explosions of Chandrasekhar mass white dwarfs. This is a first step to explore the flame microstructure in these events. The model reproduces Landau's linearized stability analysis in early stages of the flame evolution and the stabilization in a cellular flame structure in the nonlinear stage.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2002-04-02T23:59:59.000Z

27

Visualizing Type Ia Supernova Explosions at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Childs1a-Supernovasm.png Deep inside a dying star in a galaxy far, far away, a carbon fusion flame ignites. Ignition may happen in the middle or displaced slightly to one side,...

28

The Rate of Type Ia Supernovae at High Redshift  

E-Print Network (OSTI)

We derive the rates of Type Ia supernovae (SNIa) over a wide range of redshifts using a complete sample from the IfA Deep Survey. This sample of more than 100 SNIa is the largest set ever collected from a single survey, and therefore uniquely powerful for a detailed supernova rate (SNR) calculation. Measurements of the SNR as a function of cosmological time offer a glimpse into the relationship between the star formation rate (SFR) and Type Ia SNR, and may provide evidence for the progenitor pathway. We observe a progressively increasing Type Ia SNR between redshifts z~0.3-0.8. The Type Ia SNR measurements are consistent with a short time delay (t~1 Gyr) with respect to the SFR, indicating a fairly prompt evolution of SNIa progenitor systems. We derive a best-fit value of SFR/SNR 580 h_70^(-2) M_solar/SNIa for the conversion factor between star formation and SNIa rates, as determined for a delay time of t~1 Gyr between the SFR and the Type Ia SNR. More complete measurements of the Type Ia SNR at z>1 are necessary to conclusively determine the SFR--SNR relationship and constrain SNIa evolutionary pathways.

Brian J. Barris; John L. Tonry

2005-09-22T23:59:59.000Z

29

THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES  

Science Conference Proceedings (OSTI)

Using data from the Sloan Digital Sky Supernova Survey-II (SDSS-II SN Survey), we measure the rate of Type Ia supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05 0.15) SNe Ia in highly star-forming galaxies. We consider that the high levels of dust in these systems may be obscuring the reddest and faintest SNe Ia.

Smith, Mathew [Department of Physics, University of Western Cape, Bellville 7530, Cape Town (South Africa); Nichol, Robert C. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Dilday, Benjamin [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Marriner, John; Frieman, Joshua [Center for Particle Astrophysics, Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Kessler, Richard [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States); Bassett, Bruce [African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg 7945 (South Africa); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Lampeitl, Hubert [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Sako, Masao [Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: matsmith2@gmail.com [Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden)

2012-08-10T23:59:59.000Z

30

The progenitors of subluminous type Ia supernovae  

DOE Green Energy (OSTI)

We find that spectroscopically peculiar subluminous SNe Ia come from an old population. Of the thirteen subluminous SNe Ia known, nine are found in E/S0 galaxies, and the remainder are found in early-type spirals. The probability that this is a chance occurrence is only 0.1%. The finding that subluminous SNe Ia are associated with an older stellar population indicates that for a sufficiently large lookback time (already accessible in current high redshift searches) they will not be found. Due to a scarcity in old populations, hydrogen and helium main sequence stars and He red giant stars that undergo Roche lobe overflow are unlikely to be the progenitors of subluminous SNe Ia. Earlier findings that overluminous SNe Ia (DELTA m{sub 15} (B) < 0.94) come from a young progenitor population are confirmed. The fact that subluminous SNe Ia and overluminous SNe Ia come from different progenitor populations and also have different properties is a prediction of the CO white dwarf merger progenitor scenario.

Howell, D. Andrew

2001-02-01T23:59:59.000Z

31

The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star  

E-Print Network (OSTI)

The absolute magnitudes of Type IA supernovae. Astrophys. J.in a Sublu- o minous Type Ia Supernova: SpectropolarimetryL. Could There Be a Hole in Type Ia Super- novae? Astrophys.

2008-01-01T23:59:59.000Z

32

Turbulence-Flame Interactions in Type Ia Supernovae  

SciTech Connect

The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to 8 x 107 g cm-3, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and 3 x 107 g cm-3 where the nature of the burning changes ualitatively. By 1 x 107 g cm-3, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, D_T \\sim u' l, where u' is the turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (Authors 1, 2& 3); Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (Author 4); Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (Author 5); Aspden, Andrew J; Aspden, Andrew J.; Bell, John B.; Day, Marc S.; Woosley, Stan E.; Zingale, Mike

2008-05-27T23:59:59.000Z

33

OPTICAL SIGNATURES OF CIRCUMSTELLAR INTERACTION IN TYPE IIP SUPERNOVAE  

E-Print Network (OSTI)

We propose new diagnostics for circumstellar interaction in Type IIP supernovae (SNe IIP) by the detection of high velocity (HV) absorption features in H? and HeI 10830 ?A lines during the photospheric stage. To demonstrate the method, we compute the ionization and excitation of H and He in supernova ejecta taking into account time-dependent effects and X-ray irradiation. We find that the interaction with a typical red supergiant wind should result in the enhanced excitation of the outer layers of unshocked ejecta and the emergence of corresponding HV absorption, i.e. a depression in the blue absorption wing of H? and a pronounced absorption of HeI 10830 ?A at a radial velocity of about ?10 4 km s ?1. We identify HV absorption in H? and HeI 10830 ?A lines of SN 1999em and in H? of SN 2004dj as being due to this effect. The derived mass loss rate is close to 10 ?6 M ? yr ?1 for both supernovae, assuming a wind velocity 10 km s ?1. We argue that, in addition to the HV absorption formed in the unshocked ejecta, spectra of SN 2004dj and SN 1999em show a HV notch feature that is formed in the cool dense shell (CDS) modified by the Rayleigh-Taylor instability. The CDS results from both shock breakout and radiative cooling of gas that has passed through the reverse shock wave. The notch becomes dominant in the HV absorption during the late photospheric phase, ? 60 d. The wind density deduced from the velocity of the CDS is consistent with the wind density found from the HV absorption produced by unshocked ejecta.

Nikolai N. Chugai; Roger A. Chevalier; Victor P. Utrobin

2007-01-01T23:59:59.000Z

34

Optical Signatures of Circumstellar Interaction in Type IIP Supernovae  

E-Print Network (OSTI)

We propose new diagnostics for circumstellar interaction in Type IIP supernovae by the detection of high velocity (HV) absorption features in Halpha and He I 10830 A lines during the photospheric stage. To demonstrate the method, we compute the ionization and excitation of H and He in supernova ejecta taking into account time-dependent effects and X-ray irradiation. We find that the interaction with a typical red supergiant wind should result in the enhanced excitation of the outer layers of unshocked ejecta and the emergence of corresponding HV absorption, i.e. a depression in the blue absorption wing of Halpha and a pronounced absorption of He I 10830 A at a radial velocity of about -10,000 km/s. We identify HV absorption in Halpha and He I 10830 A lines of SN 1999em and in Halpha of SN 2004dj as being due to this effect. The derived mass loss rate is close to 10^{-6} Msun/yr for both supernovae, assuming a wind velocity 10 km/s. We argue that, in addition to the HV absorption formed in the unshocked ejecta, spectra of SN 2004dj and SN 1999em show a HV notch feature that is formed in the cool dense shell (CDS) modified by the Rayleigh-Taylor instability. The CDS results from both shock breakout and radiative cooling of gas that has passed through the reverse shock wave. The notch becomes dominant in the HV absorption during the late photospheric phase, ~60 d. The wind density deduced from the velocity of the CDS is consistent with the wind density found from the HV absorption produced by unshocked ejecta.

Nikolai N. Chugai; Roger A. Chevalier; Victor P. Utrobin

2007-03-17T23:59:59.000Z

35

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network (OSTI)

The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to $8 \\times 10^7$ g cm$^{-3}$, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and $3 \\times 10^7$ g cm$^{-3}$ where the nature of the burning changes qualitatively. By $1 \\times 10^7$ g cm$^{-3}$, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, $D_T \\sim u' l$, where $u'$ is the turbulent intensity and $l$ is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

A. J. Aspden; J. B. Bell; M. S. Day; S. E. Woosley; M. Zingale

2008-11-17T23:59:59.000Z

36

VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE  

SciTech Connect

To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II {lambda}6355 and Ca II H and K are related to the B - V color at peak brightness. We find that the maximum-light velocity of Si II {lambda}6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II {lambda}6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II {lambda}6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia-even after removing a linear trend with velocity-indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P., E-mail: rfoley@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-12-01T23:59:59.000Z

37

Type Ia Supernova Spectral Line Ratios as LuminosityIndicators  

SciTech Connect

Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

2005-12-07T23:59:59.000Z

38

Type Ia Supernova: Burning and Detonation in the Distributed Regime  

E-Print Network (OSTI)

A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the ``distributed'' flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are assumed to have a quasi-steady-state structure similar to the laminar flame structure, but controlled by turbulent diffusion. Detonations cannot appear in the system as long as distributed flames are still quasi-steady-state, but this condition is violated when the distributed flame width becomes comparable to the size of largest turbulent eddies. When this happens, a transition to detonation may occur. For current best estimates of the turbulent energy, the most likely density for the transition to detonation is in the range 0.5 - 1.5 x 10^7 g cm^{-3}.

S. E. Woosley

2007-09-26T23:59:59.000Z

39

A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data  

Science Conference Proceedings (OSTI)

Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

Mosher, J.; /Pennsylvania U.; Sako, M.; /Pennsylvania U.; Corlies, L.; /Pennsylvania U. /Columbia U.; Folatelli, G.; /Tokyo U. /Carnegie Inst. Observ.; Frieman, J.; /Chicago U., KICP /Chicago U., Astron. Astrophys. Ctr.; Holtzman, J.; /New Mexico State U.; Jha, S.W.; /Rutgers U., Piscataway; Kessler, R.; /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP; Marriner, J.; /Fermilab; Phillips, M.M.; /Carnegie Inst. Observ.; Stritzinger, M.; /Aarhus U. /Stockholm U., OKC /Bohr Inst. /Carnegie Inst. Observ.

2012-06-01T23:59:59.000Z

40

A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA  

SciTech Connect

Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

Mosher, J.; Sako, M.; Corlies, L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Folatelli, G. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Frieman, J.; Kessler, R. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holtzman, J. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Marriner, J. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Phillips, M. M.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, M. [Oskar Klein Centre for Cosmo Particle Physics, AlbaNova University Center, 106 91 Stockholm (Sweden); Schneider, D. P., E-mail: jmosher@sas.upenn.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data  

E-Print Network (OSTI)

Consistency between Carnegie Supernova Project (CSP) and SDSS-II supernova (SN) survey ugri measurements has been evaluated by comparing SDSS and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 magnitude level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 magnitudes in ugri, with rms scatter ranging from 0.043 to 0.077 magnitudes. The u band agreement is promising, with the caveat that only four of the nine supernovae are well-observed in u and these four exhibit an 0.038 magnitude supernova-to-supernova scatter in this filter.

Mosher, J; Corlies, L; Folatelli, G; Frieman, J; Holtzman, J; Jha, S W; Kessler, R; Marriner, J; Phillips, M M; Stritzinger, M; Morrell, N; Schneider, D P

2012-01-01T23:59:59.000Z

42

On the hydrogen emission from the type Ia supernova 2002ic  

DOE Green Energy (OSTI)

The discovery of SN 2002ic by the Supernova Factory and the subsequent spectroscopic studies have led to the surprising finding that SN 2002ic is a type Ia supernova with strong ejecta-circumstellar interaction. Here we show that nearly 1 year after the explosion the supernova has become fainter overall, but the H-alpha emission has brightened and broadened dramatically compared to earlier observations. We have obtained spectropolarimetry data which show that the hydrogen-rich matter is highly aspherically distributed. These observations suggest that the supernova exploded inside a dense, clumpy, disk-like circumstellar environment.

Wang, Lifan; Baade, Dietrich; Hoflich, Peter; Wheeler, J. Craig; Kawabata, Koji; Nomoto, Ken'ichi

2003-12-10T23:59:59.000Z

43

LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT  

Science Conference Proceedings (OSTI)

We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0.31 Multiplication-Sign 10{sup -2}, supporting the previous work by Maeda et al., who focus on more massive Type II SNe. The dust mass does not appear to be correlated with progenitor mass.

Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C.; Andrews, Jennifer E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gallagher, Joseph S. [Department of Mathematics, Physics, and Computer Science, Raymond Walters College, 9555 Plain field Rd., Blue Ash, OH 45236 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21204 (United States); Ercolano, Barbara [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Welch, Douglas, E-mail: otsuka@stsci.edu, E-mail: otsuka@asiaa.sinica.edu.tw [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2012-01-01T23:59:59.000Z

44

Type Ia Supernovae Rates and Galaxy Clustering from the CFHT Supernova Legacy Survey  

E-Print Network (OSTI)

The Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS) has created a large homogeneous database of intermediate redshift (0.2 rates, properties, and host galaxy star formation rates. The SNLS SN Ia database has now been combined with a photometric redshift galaxy catalog and an optical galaxy cluster catalog to investigate the possible influence of galaxy clustering on the SN Ia rate, over and above the expected effect due to the dependence of SFR on clustering through the morphology-density relation. We identify three cluster SNe Ia, plus three additional possible cluster SNe Ia, and find the SN Ia rate per unit mass in clusters at intermediate redshifts is consistent with the rate per unit mass in field early-type galaxies and the SN Ia cluster rate from low redshift cluster targeted surveys. We also find the number of SNe Ia in cluster environments to be within a factor of two of expectations from the two component SNIa rate model.

M. L. Graham; C. J. Pritchet; M. Sullivan; S. D. J. Gwyn; J. D. Neill; E. Y. Hsiao; P. Astier; D. Balam; C. Balland; S. Basa; R. G. Carlberg; A. Conley; D. Fouchez; J. Guy; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; K. Perrett; N. Regnault; S. Baumont; J. Le Du; C. Lidman; S. Perlmutter; P. Ripoche; N. Suzuki; E. S. Walker; T. Zhang

2008-01-31T23:59:59.000Z

45

ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE  

SciTech Connect

I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

Clayton, Donald D., E-mail: claydonald@gmail.com [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States)

2013-01-01T23:59:59.000Z

46

Type Iax Supernovae: A New Class of Stellar Explosion  

E-Print Network (OSTI)

We describe observed properties of the Type Iax class of supernovae (SNe Iax), consisting of SNe observationally similar to its prototypical member, SN 2002cx. The class currently has 25 members, and we present optical photometry and/or optical spectroscopy for most of them. SNe Iax are spectroscopically similar to SNe Ia, but have lower maximum-light velocities (2000 M_V,peak > -18.9 mag), and most have hot photospheres. Relative to SNe Ia, SNe Iax have low luminosities for their light-curve shape. There is a correlation between luminosity and light-curve shape, similar to that of SNe Ia, but offset from that of SNe Ia and with larger scatter. Despite a host-galaxy morphology distribution that is highly skewed to late-type galaxies without any SNe Iax discovered in elliptical galaxies, there are several indications that the progenitor stars are white dwarfs (WDs): evidence of C/O burning in their maximum-light spectra, low ejecta masses, strong Fe lines in their late-time spectra, a lack of X-ray detections...

Foley, Ryan J; Chornock, R; Ganeshalingam, M; Li, W; Marion, G H; Morrell, N I; Pignata, G; Stritzinger, M D; Silverman, J M; Wang, X; Anderson, J P; Filippenko, A V; Freedman, W L; Hamuy, M; Jha, S W; Kirshner, R P; McCully, C; Persson, S E; Phillips, M M; Reichart, D E; Soderberg, A M

2012-01-01T23:59:59.000Z

47

Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae  

E-Print Network (OSTI)

In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particu...

Patat, F

2004-01-01T23:59:59.000Z

48

Hydrogen and helium traces in type Ib-c supernovae  

E-Print Network (OSTI)

The spectroscopic properties of a selected optical photospheric spectra of core collapse supernovae (CCSNe) are investigated.Special attention is devoted to traces of hydrogen at early phases. The generated spectra are found to match the observed ones reasonably well, including a list of only 23 candidate ions. Guided by SN Ib 1990I, the observed trough near 6300\\AA is attributed to H$\\alpha$ in almost all Type Ib events, although in some objects it becomes too weak to be discernible, especially at later phases. Alternative line identifications are discussed. Differences in the way hydrogen manifests its presence within CCSNe are highlighted. In Type Ib SNe, the H$\\alpha$ contrast velocity (i.e. line velocity minus the photospheric velocity) seems to increase with time at early epochs, reaching values as high as 8000 km s$^{-1}$ around 15-20 days after maximum and then remains almost constant. The derived photospheric velocities, indicate a lower velocity for Type II SNe 1987A and 1999em as compared to SN Ic 1994I and SN IIb 1993J, while Type Ib events display a somewhat larger variation. The scatter, around day 20, is measured to be $\\sim$5000 km s$^{-1}$. Following two simple approaches, rough estimates of ejecta and hydrogen masses are given. A mass of hydrogen of approximately 0.02 $M_\\odot$ is obtained for SN 1990I, while SNe 1983N and 2000H ejected $\\sim$0.008 $M_\\odot$ and $\\sim$0.08 $M_\\odot$ of hydrogen, respectively. SN 1993J has a higher hydrogen mass, $\\sim 0.7$ $M_\\odot$ with a large uncertainty. A low mass and thin hydrogen layer with very high ejection velocities above the helium shell, is thus the most likely scenario for Type Ib SNe. Some interesting and curious issues relating to oxygen lines suggest future investigations.

A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut; E. Baron; R. P. Kirshner

2005-12-22T23:59:59.000Z

49

THE DIFFUSE GAMMA-RAY BACKGROUND FROM TYPE Ia SUPERNOVAE  

SciTech Connect

The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper, we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae (SNe), extending earlier work that only included core-collapse SNe. We consider Type Ia events not only in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both SN types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus, our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays; total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.

Lien, Amy; Fields, Brian D. [Department of Physics, University of Illinois, Urbana, IL 61801 (United States)

2012-03-10T23:59:59.000Z

50

Métrologie des supernovae de type Ia pour la cosmologie : instrumentation et analyse calorimétrique.  

E-Print Network (OSTI)

??L'utilisation des supernovae de type Ia comme indicateurs de distance est un pilier du modčle de concordance actuel en cosmologie. Le travail d'instrumentation présenté dans… (more)

Juramy, Claire

2006-01-01T23:59:59.000Z

51

Toward Exascale Computing of Type Ia and Ib,c Supernovae: V&V...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toward Exascale Computing of Type Ia and Ib,c Supernovae: V&V of Current Models PI Name: Don Lamb PI Email: lamb@oddjob.uchicago.edu Institution: University Of Chicago Allocation...

52

Redshift-Independent Distances to Type Ia Supernovae  

E-Print Network (OSTI)

We describe a procedure for accurately determining luminosity distances to Type Ia supernovae (SNe Ia) without knowledge of redshift. This procedure, which may be used as an extension of any of the various distance determination methods currently in use, is based on marginalizing over redshift, removing the requirement of knowing $z$ a priori. We demonstrate that the Hubble diagram scatter of distances measured with this technique is approximately equal to that of distances derived from conventional redshift-specific methods for a set of 60 nearby SNe Ia. This indicates that accurate distances for cosmological SNe Ia may be determined without the requirement of spectroscopic redshifts, which are typically the limiting factor for the number of SNe that modern surveys can collect. Removing this limitation would greatly increase the number of SNe for which current and future SN surveys will be able to accurately measure distance. The method may also be able to be used for high-$z$ SNe Ia to determine cosmological density parameters without redshift information.

Brian J. Barris; John L. Tonry

2004-08-04T23:59:59.000Z

53

Fitting Type Ia supernovae with coupled dark energy  

E-Print Network (OSTI)

We discuss the possible consistency of the recently discovered Type Ia supernovae at z>1 with models in which dark energy is strongly coupled to a significant fraction of dark matter, and in which an (asymptotic) accelerated phase exists where dark matter and dark energy scale in the same way. Such a coupling has been suggested for a possible solution of the coincidence problem, and is also motivated by string cosmology models of "late time" dilaton interactions. Our analysis shows that, for coupled dark energy models, the recent data are still consistent with acceleration starting as early as at $z=3$ (to within 90% c.l.), although at the price of a large "non-universality" of the dark energy coupling to different matter fields. Also, as opposed to uncoupled models which seem to prefer a ``phantom'' dark energy, we find that a large amount of coupled dark matter is compatible with present data only if the dark energy field has a conventional equation of state w>-1.

Amendola, L; Piazza, F; Amendola, Luca; Gasperini, Maurizio; Piazza, Federico

2004-01-01T23:59:59.000Z

54

Nucleosynthesis in type Ia supernovae driven by asymmetric thermonuclear ignition  

Science Conference Proceedings (OSTI)

Type Ia Supernovae (SNe Ia) are believed to be thermonuclear explosions of a white dwarf. They can be used as mature cosmological standardized candles, leading to the discovery of the accelerating expansion of the Universe. However, the explosion mechanism has not yet been fully clarified. In this paper, we first present nucleosynthetic features of a leading explosion scenario, namely a delayed-detonation scenario. Based on this, we propose a new and strong observational constraint on the explosion mechanism through emission lines from neutron-rich Fe-peaks. Especially, we show that an asymmetry in the explosion is likely a generic feature. We further argue that the diversity arising from various viewing angles can be an origin of observational diversities of SNe Ia seen in their spectral features (suspected possible biases in cosmology) and colors (related to the extinction estimate in cosmology). Using these new insights could open up a possibility of using SNe Ia as more precise distance indicators than currently employed.

Maeda, Keiichi [Institute for the Physics and Mathematics of the Universe (IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

2012-11-12T23:59:59.000Z

55

The diversity of Type Ia Supernovae: evidence for systematics?  

E-Print Network (OSTI)

The photometric and spectroscopic properties of 26 well observed Type Ia Supernovae (SNeIa) were analyzed with the aim to explore SNIa diversity. The sample includes (Branch-)normal SNe as well as extreme events like SNe 1991T and 1991bg, while the truly peculiar SNIa, SN2000cx and SN2002cx are not included in our sample . A statistical treatment reveals the existence of three different groups. The first group (FAINT) consists of faint SNeIa similar to SN1991bg, with low expansion velocities and rapid evolution of SiII velocity. A second group consists of ``normal'' SNeIa, also with high temporal velocity gradient (HVG), but with brighter mean absolute magnitude =-19.3 and higher expansion velocities than the FAINT SNe. The third group includes both ``normal'' and SN1991T-like SNeIa: these SNe populate a narrow strip in the SiII velocity evolution plot, with a small velocity gradient (SVG), but have absolute magnitudes similar to HVGs. While the FAINT and HVG SNeIa together seem to define a relation between RSi(II) and Dm15(B), the SVG ones either do not conform with that relation or define a new, looser one. The RSi(II) pre-maximum evolution of HVGs is strikingly different from that of SVGs. The impact of this evidence on the understanding of SNIa diversity, in terms of explosion mechanisms, degree of ejecta mixing, and ejecta-CSM interaction, is discussed.

S. Benetti; E. Cappellaro; P. A. Mazzali; M. Turatto; G. Altavilla; F. Bufano; N. Elias-Rosa; R. Kotak; G. Pignata; M. Salvo; V. Stanishev

2004-11-02T23:59:59.000Z

56

LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS  

Science Conference Proceedings (OSTI)

Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

Foley, Ryan J.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Simon, Joshua D.; Burns, Christopher R. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Hamuy, Mario [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Morrell, Nidia I.; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Shields, Gregory A. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Sternberg, Assaf, E-mail: rfoley@cfa.harvard.edu [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany)

2012-06-20T23:59:59.000Z

57

A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE  

Science Conference Proceedings (OSTI)

Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets ({approx}15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at {approx}1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

Fox, Ori D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Chevalier, Roger A.; Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Soderberg, Alicia M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N., E-mail: ori.d.fox@nasa.gov [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

2011-11-01T23:59:59.000Z

58

Radio emission from shell-type supernova remnants  

E-Print Network (OSTI)

The evolution of the radio emission of shell-type Supernova remnants (SNRs) is modeled within the framework of the simple and commonly used assumptions that the mechanism of diffusive shock acceleration (DSA) is responsible for generating radio emitting electrons and that the magnetic field is the typical interstellar field compressed at the shock. It is considered that electrons are injected into the mechanism in test-particle regime directly from the high energy tail of the downstream Maxwellian distribution function. The model can be applied to most of the observed SNRs. It is shown that the model successfully explains the many averaged observational properties of evolved shell-type SNRs. In particular, the radio surface brightness ($\\Sigma$) evolves with diameter as $\\sim D^{-(0.3 \\div 0.5)}$, while the bounding shock is strong (Mach number is ${\\mathcal M} \\geq10$), followed by steep decrease (steeper than $\\sim D^{-4.5}$) for ${\\cal M} environmental parameters strongly reduce the usefulness of $\\Sigma - D$ relations as a tool for determining the distances to SNRs. The model predicts no radio emission from SNRs in the late radiative stage of evolution and the existence of radio-quiet but relatively active SNRs is possible. Our model easily explains very large-diameter radio sources such as the Galactic Loops and the candidates for Hypernova radio remnants. The model predicts that most of the observed SNRs are located in a tenuous phase of the ISM. From the comparison of the model results with the statistics of evolved shell-type SNRs, we were able to estimate the fraction of electrons accelerated from the thermal pool in the range $(3\\div 11) \\times 10^{- 4}$.

Abdul Asvarov

2006-08-03T23:59:59.000Z

59

A LUMINOUS AND FAST-EXPANDING TYPE Ib SUPERNOVA SN 2012au  

SciTech Connect

We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6 days until {approx} + 150 days after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absolute magnitude is M{sub R} = -18.7 {+-} 0.2 mag, which suggests that this supernova belongs to a very luminous group among Type Ib supernovae. The line velocity of He I {lambda}5876 is about 15,000 km s{sup -1} around maximum, which is much faster than that in a typical Type Ib supernova. From the quasi-bolometric peak luminosity of (6.7 {+-} 1.3) Multiplication-Sign 10{sup 42} erg s{sup -1}, we estimate the {sup 56}Ni mass produced during the explosion as {approx}0.30 M{sub Sun }. We also give a rough constraint to the ejecta mass 5-7 M{sub Sun} and the kinetic energy (7-18) Multiplication-Sign 10{sup 51} erg. We find a weak correlation between the peak absolute magnitude and He I velocity among Type Ib SNe. The similarities to SN 1998bw in the density structure inferred from the light-curve model as well as the large peak bolometric luminosity suggest that SN 2012au had properties similar to energetic Type Ic supernovae.

Takaki, Katsutoshi; Fukazawa, Yasushi; Itoh, Ryosuke; Ueno, Issei; Ui, Takahiro; Urano, Takeshi [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kawabata, Koji S.; Akitaya, Hiroshi; Moritani, Yuki; Ohsugi, Takashi; Uemura, Makoto; Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yamanaka, Masayuki [Kwasan Observatory, Kyoto University, Ohmine-cho Kita Kazan, Yamashina-ku, Kyoto 607-8471 (Japan); Maeda, Keiichi; Nomoto, Ken'ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Tanaka, Masaomi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kinugasa, Kenzo [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, 462-2 Nobeyama, Minamimaki, Nagano 384-1305 (Japan); Sasada, Mahito, E-mail: takaki@hep01.hepl.hiroshima-u.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

2013-08-01T23:59:59.000Z

60

Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae  

E-Print Network (OSTI)

In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particular, I have explored in detail the LE colour dependency from time and dust distribution, since this is a promising tool to determine the dust density and derive the effective presence of multiple scattering from the observed properties. Finally, again by means of Monte Carlo simulations, I have studied the effects of multiple scattering on the LE linear polarization, analyzing the dependencies from the dust parameters and geometry. Both the analytical formalism and MC codes described in this paper can be used for any LE for which the light curve of the central source is known.

F. Patat

2004-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM  

SciTech Connect

Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Chornock, Ryan; Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Coil, Alison L. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Griffith, Christopher V. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, Mansi M., E-mail: jsilverman@astro.as.utexas.edu [Observatories of the Carnegie Institution of Science, Pasadena, CA 91101 (United States); and others

2013-07-01T23:59:59.000Z

62

A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey  

E-Print Network (OSTI)

ABRIDGED We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z <0.17 and 27 SN events in 492 maxBCG clusters at 0.1 < z < 0.3$. We find values for the cluster SN Ia rate of $({0.37}^{+0.17+0.01}_{-0.12-0.01}) \\mathrm{SNu}r h^{2}$ and $({0.55}^{+0.13+0.02}_{-0.11-0.01}) \\mathrm{SNu}r h^{2}$ ($\\mathrm{SNu}x = 10^{-12} L_{x\\sun}^{-1} \\mathrm{yr}^{-1}$) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be $({0.31}^{+0.18+0.01}_{-0.12-0.01}) \\mathrm{SNu}r h^{2}$ and $({0.49}^{+0.15+0.02}_{-0.11-0.01})$ $\\mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be $({2.04}^{+1.99+0.07}_{-1.11-0.04}) \\mathrm{SNu}r h^{2}$ and $({0.36}^{+0.84+0.01}_...

Dilday, Benjamin; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A; Galbany, Lluís; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; Ihara, Yutaka; Jha, Saurabh W; Kessler, Richard; Lampeitl, Hubert; Marriner, John; Miquel, Ramon; Mollá, Mercedes; Nichol, Robert C; Nordin, Jakob; Riess, Adam G; Sako, Masao; Schneider, Donald P; Smith, Mathew; Sollerman, Jesper; Wheeler, J Craig; Östman, Linda; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

2010-01-01T23:59:59.000Z

63

Supernova Cosmology Project  

NLE Websites -- All DOE Office Websites (Extended Search)

& Additional Info The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample N....

64

Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae  

Science Conference Proceedings (OSTI)

The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.

Saurabh W. Jha

2012-10-03T23:59:59.000Z

65

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame  

E-Print Network (OSTI)

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame S. E structure which, de- pending on density, may involve separate regions of carbon, oxygen and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions

66

The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx} 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.

Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.; /Notre Dame U.; Kessler, Richard; /KICP, Chicago /Chicago U., EFI; Frieman, Joshua A.; /KICP, Chicago /Chicago U. /Fermilab; Jha, Saurabh W.; /Stanford U., Phys. Dept. /Rutgers U., Piscataway; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Kasen, Daniel; /UC, Santa Cruz; Marriner, John; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

2010-01-01T23:59:59.000Z

67

THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR  

Science Conference Proceedings (OSTI)

A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star-with R {approx} 200 R{sub Sun }-is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be Almost-Equal-To 2 M{sub Sun }, the explosion energy to be E = (6-10) Multiplication-Sign 10{sup 50} erg, and the {sup 56}Ni mass to be approximately 0.06 M{sub Sun }. The progenitor star was composed of a helium core of 3-4 M{sub Sun} and a thin hydrogen-rich envelope of Almost-Equal-To 0.1M{sub Sun} with a main-sequence mass estimated to be in the range of 12-15 M{sub Sun }. Our models rule out progenitors with helium-core masses larger than 8 M{sub Sun }, which correspond to M{sub ZAMS} {approx}> 25M{sub Sun }. This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.

Bersten, Melina C.; Nomoto, Ken'ichi; Folatelli, Gaston; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Benvenuto, Omar G. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Ergon, Mattias; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden); Benetti, Stefano; Ochner, Paolo; Tomasella, Lina [INAF-Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova (Italy); Botticella, Maria Teresa [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Fraser, Morgan; Kotak, Rubina, E-mail: melina.bersten@ipmu.jp [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom)

2012-09-20T23:59:59.000Z

68

A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4{sub -5.1}{sup +8.3})%.

Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC /Stockholm U.; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

2010-03-01T23:59:59.000Z

69

Flame-driven deflagration-to-detonation transitions in Type Ia supernovae?  

E-Print Network (OSTI)

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the internal flame structure. Some studies of the burning microphysics indicate that a deflagration-to-detonation transition may be possible here, provided the turbulent intensities are strong enough. Consequently, the magnitude of turbulent velocity fluctuations generated by the deflagration flame is analyzed at the onset of the distributed burning regime in several three-dimensional simulations of deflagrations in thermonuclear supernovae. It is shown that the corresponding probability density functions fall off towards high turbulent velocity fluctuations much more slowly than a Gaussian distribution. Thus, values claimed to be necessary for triggering a detonation are likely to be found in sufficiently large patches of the flame. Although the microphysical evolution of the burning is not followed and a successful deflagration-to-detonation transition cannot be guaranteed from simulations presented here, the results still indicate that such events may be possible in Type Ia supernova explosions.

F. K. Roepke

2007-09-26T23:59:59.000Z

70

Optical Spectra of Type Ia Supernovae at z=0.46 and z=1.2  

E-Print Network (OSTI)

We present optical spectra, obtained with the Keck 10-m telescope, of two high-redshift type Ia supernovae (SNe Ia) discovered by the High-z Supernova Search Team: SN 1999ff at z=0.455 and SN 1999fv at z~1.2, the highest-redshift published SN Ia spectrum. Both SNe were at maximum light when the spectra were taken. We compare our high-z spectra with low-z normal and peculiar SNe Ia as well as with SNe Ic, Ib, and II. There are no significant differences between SN 1999ff and normal SNe Ia at low redshift. SN 1999fv appears to be a SN Ia and does not resemble the most peculiar nearby SNe Ia.

Coil, A L; Filippenko, A V; Leonard, D C; Tonry, J; Riess, A G; Challis, P M; Clocchiatti, A; Garnavich, P M; Hogan, C J; Jha, S; Kirshner, R P; Leibundgut, B; Phillips, M M; Schmidt, B P; Schommer, R A; Smith, R C; Soderberg, A M; Spyromilio, J; Stubbs, C; Suntzeff, N B; Woudt, P A; Coil, Alison L.; Matheson, Thomas; Filippenko, Alexei V.; Leonard, Douglas C.; Tonry, John; Riess, Adam G.; Challis, Peter; Clocchiatti, Alejandro; Garnavich, Peter M.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Schmidt, Brian P.; Schommer, Robert A.; Soderberg, Alicia M.; Stubbs, Christopher; Suntzeff, Nicholas B.; Woudt, Patrick

2000-01-01T23:59:59.000Z

71

Limits on the Time Variation of the Fermi Constant G_F Based on Type Ia Supernova Observations  

E-Print Network (OSTI)

The light curve of a type Ia supernova decays at a rate set by the beta-decay lifetimes of the Ni-56 and Co-56 produced in the explosion. This makes such a light curve sensitive to the value of the Fermi constant G_F at the time of the supernova. Using data from the CfA Supernova Archive, we measure the dependence of the light curve decay rate on redshift and place a bound on the time variation of G_F of |(dG_F/dt)/G_F| < 10^(-9) / y.

Ferrero, Alejandro

2010-01-01T23:59:59.000Z

72

Prospects for Type Ia Supernova explosion mechanism identification with gamma rays  

E-Print Network (OSTI)

The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of of radioactive nuclei are produced during these events and they are expected to be strong gamma-ray emitters. In the past, several authors have investigated the use of this gamma-ray emission as a diagnostic tool. In this paper we have done a complete study of the gamma-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-center detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estimations of the SPI and IBIS instruments aboard INTEGRAL in such a way that our results can be used as a guideline to evaluate the capabilities of INTEGRAL in the study of type Ia supernovae. For the purpose of completeness we have also investigated the nuclear excitation and spallation reactions as a possible secondary source of gamma-rays present in some supernova scenarios. We conclude that this mechanism can be neglected due to its small contribution.

Jordi Gomez-Gomar; Jordi Isern; Pierre Jean

1997-09-05T23:59:59.000Z

73

Restframe I-band Hubble diagram for type Ia supernovae up toredshift z ~; 0.5  

SciTech Connect

We present a novel technique for fitting rest frame I-bandlight curves on a data set of 42 type Ia supernovae (SNe Ia). Using the result of the fit, we construct a Hubble diagram with 26 SNe from the subset at 0.01 < z < 0.1. Adding two SNe at z {approx} 0.5 yields results consistent with a flat Lambda-dominated ''concordance universe'' (OmegaM,Omega Lambda) = (0.25, 0.75). For one of these, SN 2000fr, new near infrared data are presented. The high redshift supernova NIR data are also used to test for systematic effects in the use of SNe Ia as distance estimators. A flat, Lambda = 0, universe where the faintness of supernovae at z {approx} 0.5 is due to grey dust homogeneously distributed in the intergalactic medium is disfavored based on the high-z Hubble diagram using this small data-set. However, the uncertainties are large and no firm conclusion may be drawn. We explore the possibility of setting limits on intergalactic dust based on B - I and B - V color measurements, and conclude that about 20 well measured SNe are needed to give statistically significant results. We also show that the high redshift restframe I-band data points are better fit by light curve templates that show a prominent second peak, suggesting that they are not intrinsically underluminous.

Nobili, S.; Amanullah, R.; Garavini, G.; Goobar, A.; Lidman, C.; Stanishev, V.; Aldering, G.; Antilogus, P.; Astier, P.; Burns, M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli,G.; Gibbons, R.; Goldhaber, G.; Groom, D.E.; Hook, I.; Howell, D.A.; Kim,A.G.; Knop, R.A.; Nugent, P.E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Thomas, R.C.; Wang, L.

2005-04-01T23:59:59.000Z

74

Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey  

E-Print Network (OSTI)

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z \\lesssim 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04+1.61-0.95 % of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used t...

Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V; Frieman, Joshua A; Galbany, Lluis; Garnavich, Peter M; Goobar, Ariel; Hopp, Ulrich; Ihara, Yutaka; Jha, Saurabh W; Kessler, Richard; Lampeitl, Hubert; Marriner, John; Miquel, Ramon; Molla, Mercedes; Nichol, Robert C; Nordin, Jakob; Riess, Adam G; Sako, Masao; Schneider, Donald P; Sollerman, Jesper; Wheeler, J Craig; Ostman, Linda; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

2010-01-01T23:59:59.000Z

75

Notes on the compatibility of type Ia supernovae data and varying--$G$ cosmology  

E-Print Network (OSTI)

Observational data for type Ia supernovae, shows that the expansion of the universe is accelerated. This accelerated expansion can be described by a cosmological constant or by dark energy models like quintessence. An interesting question may be raised here. Is it possible to describe the accelerated expansion of universe using varying--$G$ cosmological models? Here we shall show that the price for having accelerated expansion in slow--varying--$G$ models (in which the dynamical terms of $G$ are ignored) is to have highly non--conserved matter and also that it is in contradiction with other data.

Shojai, F

2013-01-01T23:59:59.000Z

76

The Cellular Burning Regime in Type Ia Supernova Explosions - II. Flame Propagation into Vortical Fuel  

E-Print Network (OSTI)

We investigate the interaction of thermonuclear flames in Type Ia supernova explosions with vortical flows by means of numerical simulations. In our study, we focus on small scales, where the flame propagation is no longer dominated by the turbulent cascade originating from large-scale effects. Here, the flame propagation proceeds in the cellular burning regime, resulting from a balance between the Landau-Darrieus instability and its nonlinear stabilization. The interaction of a cellularly stabilized flame front with a vortical fuel flow is explored applying a variety of fuel densities and strengths of the velocity fluctuations. We find that the vortical flow can break up the cellular flame structure if it is sufficiently strong. In this case the flame structure adapts to the imprinted flow field. The transition from the cellularly stabilized front to the flame structure dominated by vortices of the flow proceeds in a smooth way. The implications of the results of our simulations for Type Ia Supernova explosion models are discussed.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2003-12-08T23:59:59.000Z

77

Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario  

E-Print Network (OSTI)

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.

D. M. Townsley; A. C. Calder; S. M. Asida; I. R. Seitenzahl; F. Peng; N. Vladimirova; D. Q. Lamb; J. W. Truran

2007-06-07T23:59:59.000Z

78

The Cellular Burning Regime in Type Ia Supernova Explosions - I. Flame Propagation into Quiescent Fuel  

E-Print Network (OSTI)

We present a numerical investigation of the cellular burning regime in Type Ia supernova explosions. This regime holds at small scales (i.e. below the Gibson scale), which are unresolved in large-scale Type Ia supernova simulations. The fundamental effects that dominate the flame evolution here are the Landau-Darrieus instability and its nonlinear stabilization, leading to a stabilization of the flame in a cellular shape. The flame propagation into quiescent fuel is investigated addressing the dependence of the simulation results on the specific parameters of the numerical setup. Furthermore, we investigate the flame stability at a range of fuel densities. This is directly connected to the questions of active turbulent combustion (a mechanism of flame destabilization and subsequent self-turbulization) and a deflagration-to-detonation transition of the flame. In our simulations we find no substantial destabilization of the flame when propagating into quiescent fuels of densities down to ~10^7 g/cm^3, corroborating fundamental assumptions of large-scale SN Ia explosion models. For these models, however, we suggest an increased lower cutoff for the flame propagation velocity to take the cellular burning regime into account.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2003-12-03T23:59:59.000Z

79

THE LOW-VELOCITY, RAPIDLY FADING TYPE Ia SUPERNOVA 2002es  

SciTech Connect

SN 2002es is a peculiar subluminous Type Ia supernova (SN Ia) with a combination of observed characteristics never before seen in an SN Ia. At maximum light, SN 2002es shares spectroscopic properties with the underluminous SN 1991bg subclass of SNe Ia, but with substantially lower expansion velocities ({approx}6000 km s{sup -1}) more typical of the peculiar SN 2002cx subclass. Photometrically, SN 2002es differs from both SN 1991bg-like and SN 2002cx-like supernovae. Although at maximum light it is subluminous (M{sub B} = -17.78 mag), SN 2002es has a relatively broad light curve ({Delta}m{sub 15}(B) = 1.28 {+-} 0.04 mag), making it a significant outlier in the light-curve width versus luminosity relationship. We estimate a {sup 56}Ni mass of 0.17 {+-} 0.05 M{sub Sun} synthesized in the explosion, relatively low for an SN Ia. One month after maximum light, we find an unexpected plummet in the bolometric luminosity. The late-time decay of the light curves is inconsistent with our estimated {sup 56}Ni mass, indicating that either the light curve was not completely powered by {sup 56}Ni decay or the ejecta became optically thin to {gamma}-rays within a month after maximum light. The host galaxy is classified as an S0 galaxy with little to no star formation, indicating that the progenitor of SN 2002es is likely from an old stellar population. We also present a less extensive data set for SN 1999bh, an object which shares similar photometric and spectroscopic properties. Both objects were found as part of the Lick Observatory Supernova Search, allowing us to estimate that these objects should account for 2.5% of SNe Ia within a fixed volume. Current theoretical models are unable to explain the observed characteristics of SN 2002es.

Ganeshalingam, Mohan; Li Weidong; Filippenko, Alexei V.; Silverman, Jeffrey M.; Shen, Ken J. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Chornock, Ryan; Foley, Ryan J.; Kirshner, Robert P.; Calkins, Mike [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, Thomas [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Milne, Peter, E-mail: mganesh@astro.berkeley.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

2012-06-01T23:59:59.000Z

80

Analysis of Reaction-Diffusion Systems for Flame Capturing in Type Ia Supernova Simulations  

E-Print Network (OSTI)

We present a study of numerical behavior of a thickened flame used in Flame Capturing (FC, Khokhlov (1995)) for tracking thin unresolved physical flames in deflagration simulations. We develop a steady-state procedure for calibrating the flame model used, and test it against analytical results. We observe numerical noises generated by original realization of the technique. Alternative artificial burning rates are discussed, which produce acceptably quiet flames. Two new quiet models are calibrated to yield required "flame" speed and width, and further studied in 2D and 3D setting. Landau-Darrieus type instabilities of the flames are observed. One model also shows significantly anisotropic propagation speed on the grid, both effects increasingly pronounced at larger matter expansion as a result of burning; this makes the model unacceptable for use in type Ia supernova simulations. Another model looks promising for use in flame capturing at fuel to ash density ratio of order 3 and below. That "Model B" yields f...

Zhiglo, Andrey V

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SELF-SHIELDING OF SOFT X-RAYS IN TYPE Ia SUPERNOVA PROGENITORS  

SciTech Connect

There are insufficient super-soft ({approx}0.1 keV) X-ray sources in either spiral or elliptical galaxies to account for the rate of explosion of Type Ia supernovae (SNe Ia) in either the single-degenerate or the double-degenerate scenarios. We quantify the amount of circumstellar matter that would be required to suppress the soft X-ray flux by yielding a column density in excess of 10{sup 23} cm{sup -2}. We summarize evidence that appropriate quantities of matter are extant in SNe Ia and in recurrent novae that may be supernova precursors. The obscuring matter is likely to have a large, but not complete, covering factor and to be substantially non-spherically symmetric. Assuming that much of the absorbed X-ray flux is re-radiated as blackbody radiation in the UV, we estimate that {approx}<100 sources might be detectable in the Galaxy Evolution Explorer All-sky Survey.

Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX (United States)] [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Pooley, D., E-mail: wheel@astro.as.utexas.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

2013-01-10T23:59:59.000Z

82

HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT  

E-Print Network (OSTI)

We extend our previous three-dimensional, full-star simulations of the final hours of convection preceding ignition in Type Ia supernovae to higher resolution using the adaptive mesh refinement capability of our low Mach number code, MAESTRO. We report the statistics of the ignition of the first flame at an effective 4.34 km resolution and general flow field properties at an effective 2.17 km resolution. We find that off-center ignition is likely, with radius of 50 km most favored and a likely range of 40–75 km. This is consistent with our previous coarser (8.68 km resolution) simulations, implying that we have achieved sufficient resolution in our determination of likely ignition radii. The dynamics of the last few hot spots preceding ignition suggest that a multiple ignition scenario is not likely. With improved resolution, we can more clearly see the general flow pattern in the convective region, characterized by a strong outward plume with a lower speed recirculation. We show that the convective core is turbulent with a Kolmogorov spectrum and has a lower turbulent intensity and larger integral length scale than previously thought (on the order of 16 km s?1 and 200 km, respectively), and we discuss the potential consequences for the first flames. Key words: convection – hydrodynamics – methods: numerical – nuclear reactions, nucleosynthesis, abundances – supernovae: general – white dwarfs Online-only material: color figures 1.

A. Nonaka; A. J. Aspden; M. Zingale; A. S. Almgren; J. B. Bell; S. E. Woosley

2012-01-01T23:59:59.000Z

83

Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability  

SciTech Connect

Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2003-11-24T23:59:59.000Z

84

TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL  

SciTech Connect

The nature of carbon burning flames in Type Ia supernovae is explored as they interact with Kolmogorov turbulence. One-dimensional calculations using the Linear Eddy Model of Kerstein elucidate three regimes of turbulent burning. In the simplest case, large-scale turbulence folds and deforms thin laminar flamelets to produce a flame brush with a total burning rate given approximately by the speed of turbulent fluctuations on the integral scale, U{sub L} , This is the regime where the supernova explosion begins and where most of its pre-detonation burning occurs. As the density declines, turbulence starts to tear the individual flamelets, making broader structures that move faster. For a brief time, these turbulent flamelets are still narrow compared to their spacing and the concept of a flame brush moving with an overall speed of U{sub L} remains valid. However, the typical width of the individual flamelets, which is given by the condition that their turnover time equals their burning time, continues to increase as the density declines. Eventually, mixed regions almost as large as the integral scale itself are transiently formed. At that point, a transition to detonation can occur. The conditions for such a transition are explored numerically and it is estimated that the transition will occur for densities near 1 x 10{sup 7} g cm{sup -3}, provided the turbulent speed on the integral scale exceeds about 20% sonic. An example calculation shows the details of a detonation actually developing.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R.; Sankaran, V. [Combustion Research Facility, Sandia National Laboratory, Livermore, CA 94551 (United States); Aspden, A. J. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Roepke, F. K., E-mail: woosley@ucolick.or, E-mail: arkerst@sandia.go, E-mail: AJAspden@lbl.go, E-mail: fritz@mpa-Garching.mpg.d [Max Planck Institut fuer Astrophysik, Garching (Germany)

2009-10-10T23:59:59.000Z

85

Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

2010-01-01T23:59:59.000Z

86

CAN STELLAR MIXING EXPLAIN THE LACK OF TYPE Ib SUPERNOVAE IN LONG-DURATION GAMMA-RAY BURSTS?  

Science Conference Proceedings (OSTI)

The discovery of supernovae associated with long-duration gamma-ray burst observations is primary evidence that the progenitors of these outbursts are massive stars. One of the principle mysteries in understanding these progenitors has been the fact that all of these gamma-ray-burst-associated supernovae are Type Ic supernovae with no evidence of helium in the stellar atmosphere. Many studies have focused on whether or not this helium is simply hidden from spectral analyses. In this Letter, we show results from recent stellar models using new convection algorithms based on our current understanding of stellar mixing. We demonstrate that enhanced convection may lead to severe depletion of stellar helium layers, suggesting that the helium is not observed simply because it is not in the star. We also present light curves and spectra of these compact helium-depleted stars compared to models with more conventional helium layers.

Frey, Lucille H. [HPC-3, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Young, Patrick A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85276 (United States)

2013-08-10T23:59:59.000Z

87

Constraining the spin-down timescale of the white-dwarf progenitors of Type Ia supernovae  

E-Print Network (OSTI)

Justham (2011) and DiStefano et al.\\ (2011) proposed that the white-dwarf progenitor of a Type Ia supernova (SN Ia) may have to spin down before it can explode. As the white dwarf spin-down timescale is not well known theoretically, we here try to constrain it empirically (within the framework of this spin-down model) for progenitor systems that contain a giant donor and for which circumbinary material has been detected after the explosion: we obtain an upper limit of a few $10^{\\rm 7} {\\rm yr}$. Based on the study of Di Stefano & Kilic (2012) this means that it is too early to rule out the existence of a surviving companion in SNR 0509-67.5.

Meng, Xiangcun

2013-01-01T23:59:59.000Z

88

Towards a Cosmological Hubble Diagram for Type II-P Supernovae  

E-Print Network (OSTI)

Carnegie Supernova Project (CSP) (Freedman 2005), will bebeen observed by the CCCP and CSP both photometrically andresearch by the CCCP and CSP will improve our understanding

2006-01-01T23:59:59.000Z

89

Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect

We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift (z=0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40percent of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z~;;=0.5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes.

Nugent, Peter E; Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam, A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2008-02-28T23:59:59.000Z

90

Supernovae of the Same Brightness, Cut From Vastly Different Cosmic Cloth  

NLE Websites -- All DOE Office Websites (Extended Search)

Supernovae of the Supernovae of the Same Brightness, Cut From Vastly Different Cosmic Cloth Supernovae of the Same Brightness, Cut From Vastly Different Cosmic Cloth Berkeley Lab researchers make historic observation of rare Type 1a Supernova August 23, 2012 | Tags: Astrophysics Linda Vu, lvu@lbl.gov, +1 510 495 2402 ptf11kx.png The supernova PTF 11kx can be seen as the blue dot on the galaxy. The image was taken when the supernova was near maximum brightness by the Faulkes Telescope North. The system is located approximately 600 million light years away in the constellation Lynx. Image Credit: BJ Fulton (Las Cumbres Observatory Global Telescope Network) Exploding stars called Type 1a supernova are ideal for measuring cosmic distance because they are bright enough to spot across the Universe and

91

THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA  

Science Conference Proceedings (OSTI)

We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline ({Delta}m{sub 15}(B) = 1.69 {+-} 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

Foley, Ryan J.; Marion, G. Howie; Challis, Peter; Kirshner, Robert P.; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kromer, Markus; Taubenberger, Stefan; Hillebrandt, Wolfgang; Roepke, Friedrich K.; Ciaraldi-Schoolmann, Franco; Seitenzahl, Ivo R. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei Muenchen (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Hsiao, Eric Y.; Morrell, Nidia I. [Carnegie Observatories, Las Campanas Observatory, La Serena (Chile); Simcoe, Robert A., E-mail: rfoley@cfa.harvard.edu [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664D Cambridge, MA 02139 (United States); and others

2012-07-01T23:59:59.000Z

92

EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF CENTRAL DENSITY  

SciTech Connect

We present a study exploring a systematic effect on the brightness of Type Ia supernovae using numerical models that assume the single-degenerate paradigm. Our investigation varied the central density of the progenitor white dwarf at flame ignition, and considered its impact on the explosion yield, particularly the production and distribution of radioactive {sup 56}Ni, which powers the light curve. We performed a suite of two-dimensional simulations with randomized initial conditions, allowing us to characterize the statistical trends that we present. The simulations indicate that the production of Fe-group material is statistically independent of progenitor central density, but the mass of stable Fe-group isotopes is tightly correlated with central density, with a decrease in the production of {sup 56}Ni at higher central densities. These results imply that progenitors with higher central densities produce dimmer events. We provide details of the post-explosion distribution of {sup 56}Ni in the models, including the lack of a consistent centrally located deficit of {sup 56}Ni, which may be compared to observed remnants. By performing a self-consistent extrapolation of our model yields and considering the main-sequence lifetime of the progenitor star and the elapsed time between the formation of the white dwarf and the onset of accretion, we develop a brightness-age relation that improves our prediction of the expected trend for single degenerates and we compare this relation with observations.

Krueger, Brendan K.; Jackson, Aaron P.; Calder, Alan C. [Department of Physics and Astronomy, State University of New York-Stony Brook, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Brown, Edward F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Timmes, Francis X., E-mail: brendan.krueger@stonybrook.edu [Joint Institute for Nuclear Astrophysics, Notre Dame, IN (United States)

2012-10-01T23:59:59.000Z

93

The First Systematic Study of Type Ibc Supernova Multi-color Light-curves  

E-Print Network (OSTI)

We present detailed optical photometry for 25 Type Ibc supernovae within d~150 Mpc obtained with the robotic Palomar 60-inch telescope in 2004-2007. This study represents the first uniform, systematic, and statistical sample of multi-color SNe Ibc light-curves available to date. We correct the light-curves for host galaxy extinction using a new technique based on the photometric color evolution, namely, we show that the (V-R) color of extinction-corrected SNe Ibc at t~10 days after V-band maximum is tightly distributed, (V-R)=0.26+-0.06 mag. Using this technique, we find that SNe Ibc typically suffer from significant host galaxy extinction, E(B-V)~0.4 mag. A comparison of the extinction-corrected light-curves for SNe Ib and Ic reveals that they are statistically indistinguishable, both in luminosity and decline rate. We report peak absolute magnitudes of M_R=-17.9+-0.9 mag and M_R=-18.3+-0.6 mag for SNe Ib and Ic, respectively. Focusing on the broad-lined SNe Ic, we find that they are more luminous than the n...

Drout, Maria R; Gal-Yam, A; Cenko, S B; Fox, D B; Leonard, D C; Sand, D J; Moon, D -S; Arcavi, I; Green, Y

2010-01-01T23:59:59.000Z

94

MULTI-WAVELENGTH OBSERVATIONS OF THE ENDURING TYPE IIn SUPERNOVAE 2005ip AND 2006jd  

SciTech Connect

We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broadband UV, optical, and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd extend from UV to mid-infrared wavelengths, and like SN 2005ip, are compared to reported X-ray measurements to understand the nature of the progenitor. Both objects display a number of similarities with the 1988Z-like subclass of SN IIn including (1) remarkably similar early- and late-phase optical spectra, (2) a variety of high-ionization coronal lines, (3) long-duration optical and near-IR emission, and (4) evidence of cold and warm dust components. However, diversity is apparent, including an unprecedented late-time r-band excess in SN 2006jd. The observed differences are attributed to differences between the mass-loss history of the progenitor stars. We conclude that the progenitor of SN 2006jd likely experienced a significant mass-loss event during its pre-SN evolution akin to the great 19th century eruption of {eta} Carinae. Contrarily, as advocated by Smith et al., the circumstellar environment of SN 2005ip is found to be more consistent with a clumpy wind progenitor.

Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Taddia, Francesco; Fransson, Claes; Sollerman, Jesper [Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Fox, Ori D. [Astrophysics Science Division, Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Morrell, Nidia; Phillips, M. M.; Campillay, Abdo; Castellon, Sergio; Contreras, Carlos; Krzeminski, Wojtek [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Anderson, J. P.; Hamuy, Mario [Departamento de Astronomia, Universidad de Chile, Casilla 36D, Santiago (Chile); Boldt, Luis [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53111 Bonn (Germany); Brown, Peter J. [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Folatelli, Gaston [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Habergham, S. M.; James, Phil A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Hjorth, Jens [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Mattila, Seppo [Tuorla Observatory, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); and others

2012-09-10T23:59:59.000Z

95

EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv  

SciTech Connect

We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R {approx}< 4.5 R{sub Sun} (R {approx}< 1 R{sub Sun }) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R {approx}< 1/4 R{sub Sun} for the progenitor radius of this SN.

Corsi, A. [LIGO laboratory, California Institute of Technology, MS 100-36, Pasadena, CA 91125 (United States); Ofek, E. O.; Gal-Yam, A.; Arcavi, I.; Ben-Ami, S.; Rabinak, I. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Poznanski, D. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Mazzali, P. A. [INAF-Osservatorio Astronomico, vicolo dellOsservatorio, 5, I-35122 Padova (Italy); Kulkarni, S. R.; Kasliwal, M. M.; Horesh, A. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B.; Filippenko, A. V.; Kleiser, I. K. W.; Silverman, J. M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, D. B.; Howell, J. L. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Nakar, E. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, R., E-mail: corsi@caltech.edu [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel); and others

2012-03-15T23:59:59.000Z

96

Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2004-01-12T23:59:59.000Z

97

Constraining deflagration models of Type Ia supernovae through intermediate-mass elements  

E-Print Network (OSTI)

The physical structure of a nuclear flame is a basic ingredient of the theory of Type Ia supernovae (SNIa). Assuming an exponential density reduction with several characteristic times we have followed the evolution of a planar nuclear flame in an expanding background from an initial density 6.6 10^7 g/cm3 down to 2 10^6 g/cm3. The total amount of synthesized intermediate-mass elements (IME), from silicon to calcium, was monitored during the calculation. We have made use of the computed mass fractions, X_IME, of these elements to give an estimation of the total amount of IME synthesized during the deflagration of a massive white dwarf. Using X_IME and adopting the usual hypothesis that turbulence decouples the effective burning velocity from the laminar flame speed, so that the relevant flame speed is actually the turbulent speed on the integral length-scale, we have built a simple geometrical approach to model the region where IME are thought to be produced. It turns out that a healthy production of IME invol...

García-Senz, D; Cabezon, R M; Woosley, S E

2006-01-01T23:59:59.000Z

98

FLAMES IN TYPE Ia SUPERNOVA: DEFLAGRATION-DETONATION TRANSITION IN THE OXYGEN-BURNING FLAME  

Science Conference Proceedings (OSTI)

The flame in a Type Ia supernova is a conglomerate structure that, depending on density, may involve separate regions of carbon, oxygen, and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions increases as the density declines until eventually, below about 2 x 10{sup 7} g cm{sup -3}, only carbon burning remains active, the other two burning phases having 'frozen out' on stellar scales. Between 2 and 3 x 10{sup 7} g cm{sup -3}, however, there remains an energetic oxygen-burning region that trails the carbon burning by an amount that is sensitive to the turbulence intensity. As the carbon flame makes a transition to the distributed regime (Karlovitz number {approx}> 10), the characteristic separation between the carbon- and oxygen-burning regions increases dramatically, from a fraction of a meter to many kilometers. The oxygen-rich mixture between the two flames is created at a nearly constant temperature, and turbulence helps to maintain islands of well-mixed isothermal fuel as the temperature increases. The delayed burning of these regions can be supersonic and could initiate a detonation.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Aspden, A. J., E-mail: woosley@ucolick.org, E-mail: arkerst@sandia.gov, E-mail: ajaspden@lbl.gov [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, CA 94720 (United States)

2011-06-10T23:59:59.000Z

99

g-MODE EXCITATION DURING THE PRE-EXPLOSIVE SIMMERING OF TYPE Ia SUPERNOVAE  

SciTech Connect

Prior to the explosive burning of a white dwarf (WD) that makes a Type Ia supernova (SN Ia), the star 'simmers' for {approx}10{sup 3} yr in a convecting, carbon-burning region. I estimate the excitation of g-modes by convection during this phase and explore their possible effect on the WD. As these modes propagate from the core of the WD toward its surface, their amplitudes grow with decreasing density. Once the modes reach nonlinear amplitudes, they break and deposit their energy into a shell of mass {approx}10{sup -4} M{sub sun}. This raises the surface temperature by {approx}4 x 10{sup 8} K, which is sufficient to ignite a layer of helium, as is expected to exist for some SN Ia scenarios. This predominantly synthesizes {sup 40}Ca, but some amount of {sup 28}Si, {sup 32}S, and {sup 44}Ti may also be present. These ashes are expanded out with the subsequent explosion up to velocities of {approx}20, 000 km s{sup -1}, which may explain the high velocity features (HVFs) seen in many SNe Ia. The appearance of HVFs would therefore be a useful discriminant for determining between progenitors, since a flammable helium-rich layer will not be present for accretion from a C/O WD as in a merger scenario. I also discuss the implications of {sup 44}Ti production.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 E California Blvd., M/C 350-17, Pasadena, CA 91125 (United States)

2011-09-01T23:59:59.000Z

100

Capturing the Fire: Flame Energetics and Neutronizaton for Type Ia Supernova Simulations  

E-Print Network (OSTI)

We develop and calibrate a realistic model flame for hydrodynamical simulations of deflagrations in white dwarf (Type Ia) supernovae. Our flame model builds on the advection-diffusion-reaction model of Khokhlov and includes electron screening and Coulomb corrections to the equation of state in a self-consistent way. We calibrate this model flame--its energetics and timescales for energy release and neutronization--with self-heating reaction network calculations that include both these Coulomb effects and up-to-date weak interactions. The burned material evolves post-flame due to both weak interactions and hydrodynamic changes in density and temperature. We develop a scheme to follow the evolution, including neutronization, of the NSE state subsequent to the passage of the flame front. As a result, our model flame is suitable for deflagration simulations over a wide range of initial central densities and can track the temperature and electron fraction of the burned material through the explosion and into the expansion of the ejecta.

A. C. Calder; D. M. Townsley; I. R. Seitenzahl; F. Peng; O. E. B. Messer; N. Vladimirova; E. F. Brown; J. W. Truran; D. Q. Lamb

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Test for the Nature of the Type Ia Supernova Explosion Mechanism  

E-Print Network (OSTI)

Currently popular models for Type Ia supernovae (SNe Ia) fall into two general classes. The first comprises explosions of nearly pure carbon/oxygen (C/O) white dwarfs at the Chandrasekhar limit which ignite near their centers. The second consists of lower-mass C/O cores which are ignited by the detonation of an accreted surface helium layer. Explosions of the latter type produce copious Fe, Co and Ni K-alpha emission from 56Ni and 56Co decay in the detonated surface layers, emission which is much weaker from Chandrasekhar-mass models. The presence of this emission provides a simple and unambiguous discriminant between these two models for SNe Ia. Both mechanisms may produce 0.1-0.6 solar masses of 56Ni, making them bright gamma-ray line emitters. The time to maximum brightness of 56Ni decay lines is distinctly shorter in the sub-Chandrasekhar mass class of model (approximately 15 days) than in the Chandrasekhar mass model (approximately 30 days), making gamma-ray line evolution another direct test of the explosion mechanism. It should just be possible to detect K-shell emission from a sub-Chandrasekhar explosion from SNe Ia as far away as the Virgo cluster with the XMM Observatory. A 1 to 2 square meter X-ray telescope such as the proposed Con-X Observatory could observe K-alpha emission from sub-Chandrasekhar mass SNe Ia in the Virgo cluster, providing not just a detection, but high-accuracy flux and kinematic information.

Philip A. Pinto; Ronald G. Eastman; Tamara Rogers

2000-08-21T23:59:59.000Z

102

WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE  

SciTech Connect

Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

Wheeler, J. Craig, E-mail: wheel@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

2012-10-20T23:59:59.000Z

103

RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA  

Science Conference Proceedings (OSTI)

We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Chevalier, Roger A.; Irwin, Christopher M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya Street 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States); Chakraborti, Sayan [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India); Immler, Stefan, E-mail: Poonam.Chandra@rmc.ca [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-08-20T23:59:59.000Z

104

Direct Analysis of Spectra of the Peculiar Type Ia Supernova 2000cx  

E-Print Network (OSTI)

The Type Ia SN 2000cx exhibited multiple peculiarities, including a lopsided B-band light-curve peak that does not conform to current methods for using shapes of light curves to standardize SN Ia luminosities. We use the parameterized supernova synthetic-spectrum code SYNOW to study line identifications in the photospheric-phase spectra of SN 2000cx. Previous work established the presence of Ca II infrared-triplet features forming above velocity about 20,000 km/s, much higher than the photospheric velocity of about 10,000 km/s. We find Ti II features forming at the same high velocity. High-velocity line formation is partly responsible for the photometric peculiarities of SN 2000cx: for example, B-band flux blocking by Ti II absorption features that decreases with time causes the B light curve to rise more rapidly and decline more slowly than it otherwise would. SN 2000cx contains an absorption feature near 4530 A that may be H-beta, forming at the same high velocity. The lack of conspicuous H-alpha and P-alpha signatures does not necessarily invalidate the H-beta identification if the high-velocity line formation is confined to a clump that partly covers the photosphere and the H-alpha and P-alpha source functions are elevated relative to that of resonance scattering. The H-beta identification is tentative. If it is correct, the high-velocity matter must have come from a nondegenerate companion star.

D. Branch; R. C. Thomas; E. Baron; D. Kasen; K. Hatano; K. Nomoto; A. V. Filippenko; W. Li; R. J. Rudy

2004-01-15T23:59:59.000Z

105

EARLY PHASE OBSERVATIONS OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc  

Science Conference Proceedings (OSTI)

We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is DELTAm{sub 15}(B) = 0.65 +- 0.03, which is one of the slowest among SNe Ia. The peak V-band absolute magnitude is estimated to be M{sub V} = -19.90 +- 0.15 mag if no host extinction is assumed. It reaches M{sub V} = -20.19 +- 0.19 mag if we assume the host extinction of A{sub V} = 0.29 mag. SN 2009dc belongs to the most luminous class of SNe Ia, like SNe 2003fg and 2006gz. Our JHK{sub s} -band photometry shows that this SN is also one of the most luminous SNe Ia in near-infrared wavelengths. We estimate the ejected {sup 56}Ni mass of 1.2 +- 0.3 M{sub sun} for the no host extinction case (and of 1.6 +- 0.4 M{sub sun} for the host extinction of A{sub V} = 0.29 mag). The C II lambda6580 absorption line remains visible until a week after the maximum brightness, in contrast to its early disappearance in SN 2006gz. The line velocity of Si II lambda6355 is about 8000 km s{sup -1} around the maximum, being considerably slower than that of SN 2006gz. The velocity of the C II line is similar to or slightly less than that of the Si II line around the maximum. The presence of the carbon line suggests that the thick unburned C+O layer remains after the explosion. Spectropolarimetric observations by Tanaka et al. indicate that the explosion is nearly spherical. These observational facts suggest that SN 2009dc is a super-Chandrasekhar mass SN Ia.

Yamanaka, M.; Arai, A.; Chiyonobu, S.; Fukazawa, Y.; Ikejiri, Y.; Itoh, R.; Komatsu, T.; Miyamoto, H. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Kawabata, K. S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kinugasa, K.; Hashimoto, O.; Honda, S. [Gunma Astronomical Observatory, Takayama, Gunma 377-0702 (Japan); Tanaka, M. [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Imada, A.; Kuroda, D. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Kamogata, Asakuchi-shi, Okayama 719-0232 (Japan); Maeda, K.; Nomoto, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Kamata, Y. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Kawai, N. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Konishi, K., E-mail: myamanaka@hiroshima-u.ac.j [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan)

2009-12-20T23:59:59.000Z

106

THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE  

Science Conference Proceedings (OSTI)

We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

2012-11-01T23:59:59.000Z

107

Three-dimensional numerical simulations of Rayleigh-Taylorunstable flames in type Ia supernovae  

SciTech Connect

Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5x107 gm/cc, and half carbon/half oxygen fuel--conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation, and show that while fire-polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. Based on the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.

Zingale, M.; Woosley, S.E.; Rendleman, C.A.; Day, M.S.; Bell, J.B.

2005-01-28T23:59:59.000Z

108

Constraining deflagration models of Type Ia supernovae through intermediate-mass elements  

E-Print Network (OSTI)

The physical structure of a nuclear flame is a basic ingredient of the theory of Type Ia supernovae (SNIa). Assuming an exponential density reduction with several characteristic times we have followed the evolution of a planar nuclear flame in an expanding background from an initial density 6.6 10^7 g/cm3 down to 2 10^6 g/cm3. The total amount of synthesized intermediate-mass elements (IME), from silicon to calcium, was monitored during the calculation. We have made use of the computed mass fractions, X_IME, of these elements to give an estimation of the total amount of IME synthesized during the deflagration of a massive white dwarf. Using X_IME and adopting the usual hypothesis that turbulence decouples the effective burning velocity from the laminar flame speed, so that the relevant flame speed is actually the turbulent speed on the integral length-scale, we have built a simple geometrical approach to model the region where IME are thought to be produced. It turns out that a healthy production of IME involves the combination of not too short expansion times, t_c > 0.2 s, and high turbulent intensities. According to our results it could be difficult to produce much more than 0.2 solar masses of intermediate-mass elements within the deflagrative paradigma. The calculations also suggest that the mass of IME scales with the mass of Fe-peak elements, making it difficult to conciliate energetic explosions with low ejected nickel masses, as in the well observed SN1991bg or in SN1998de. Thus a large production of Si-peak elements, especially in combination with a low or a moderate production of iron, could be better addressed by either the delayed detonation route in standard Chandrasekhar-mass models or, perhaps, by the off-center helium detonation in the sub Chandrasekhar-mass scenario.

D. Garcia-Senz; E. Bravo; R. M. Cabezon; S. E. Woosley

2006-09-15T23:59:59.000Z

109

NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS  

SciTech Connect

For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off-set, above the bulk of {sup 56}Ni distribution, while species produced by the detonation are distributed more spherically.

Maeda, K. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Roepke, F.K.; Fink, M.; Hillebrandt, W.; Travaglio, C. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany); Thielemann, F.-K., E-mail: keiichi.maeda@ipmu.j [Department Physik, Universitaet Basel, CH-4056 Basel (Switzerland)

2010-03-20T23:59:59.000Z

110

Revealing Type Ia supernova physics with cosmic rates and nuclear gamma rays  

E-Print Network (OSTI)

Type Ia supernovae (SNIa) remain mysterious despite their central importance in cosmology and their rapidly increasing discovery rate. The progenitors of SNIa can be probed by the delay time between progenitor birth and explosion as SNIa. The explosions and progenitors of SNIa can be probed by MeV nuclear gamma rays emitted in the decays of radioactive nickel and cobalt into iron. We compare the cosmic star formation and SNIa rates, finding that their different redshift evolution requires a large fraction of SNIa to have large delay times. A delay time distribution of the form t^{-1.0 +/- 0.3} provides a good fit, implying 50% of SNIa explode more than ~ 1 Gyr after progenitor birth. The extrapolation of the cosmic SNIa rate to z = 0 agrees with the rate we deduce from catalogs of local SNIa. We investigate prospects for gamma-ray telescopes to exploit the facts that escaping gamma rays directly reveal the power source of SNIa and uniquely provide tomography of the expanding ejecta. We find large improvements relative to earlier studies by Gehrels et al. in 1987 and Timmes & Woosley in 1997 due to larger and more certain SNIa rates and advances in gamma-ray detectors. The proposed Advanced Compton Telescope, with a narrow-line sensitivity ~ 60 times better than that of current satellites, would, on an annual basis, detect up to ~ 100 SNIa (3 sigma) and provide revolutionary model discrimination for SNIa within 20 Mpc, with gamma-ray light curves measured with ~ 10 sigma significance daily for ~ 100 days. Even more modest improvements in detector sensitivity would open a new and invaluable astronomy with frequent SNIa gamma-ray detections.

Shunsaku Horiuchi; John F. Beacom

2010-06-30T23:59:59.000Z

111

Determination of Primordial Metallicity and Mixing in the Type IIP Supernova 1993W  

DOE Green Energy (OSTI)

We present the results of a large grid of synthetic spectra and compare them to early spectroscopic observations of SN 1993W. This supernova was discovered close to its explosion date and at a recession velocity of 5400 km/s is located in the Hubble flow. We focus here on two early spectra that were obtained approximately 5 and 9 days after explosion. We parameterize the outer supernova envelope as a power-law density profile in homologous expansion. In order to extract information on the value of the parameters a large number of models was required. We show that very early spectra combined with detailed models can provide constraints on the value of the power law index, the ratio of hydrogen to helium in the surface of the progenitor, the progenitor metallicity and the amount of radioactive nickel mixed into the outer envelope of the supernova. The spectral fits reproduce the observed spectra exceedingly well. The spectral results combined with the early photometry predict that the explosion date was 4.7 {+-} 0.7 days before the first spectrum was obtained. The ability to obtain the metallicity from early spectra make SN IIP attractive probes of chemical evolution in the universe and by showing that we have the ability to pin down the parameters of the progenitor and mixing during the supernova explosion, it is likely to make SN IIP useful cosmological distance indicators which are at the same time complementary to SNe Ia.

Baron, E.; Nugent, Peter E.; Branch, David; Hauschildt, Peter H.; Turatto, M.; Cappellaro, E.

2002-12-11T23:59:59.000Z

112

High Redshift Supernova Rates  

E-Print Network (OSTI)

We use a sample of 42 supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope as part of the Great Observatories Origins Deep Survey to measure the rate of core collapse supernovae to z~0.7 and type Ia supernovae to z~1.6. This significantly increases the redshift range where supernova rates have been estimated from observations. The rate of core collapse supernovae can be used as an independent probe of the cosmic star formation rate. Based on the observations of 17 core collapse supernovae, we measure an increase in the core collapse supernova rate by a factor of 1.6 in the range 0.3rate. The increase in the rate in this redshift range in consistent with recent measurements of the star formation rate derived from UV-luminosity densities and IR datasets. Based on 25 type Ia supernovae, we find a SN Ia rate that is a factor 3-5 higher at z~1 compared to earlier estimates at lower redshifts (zrate traces a higher star formation rate at redshifts z>1 compared to low redshift. At higher redshift (z>1), we find a suggested decrease in the type Ia rate with redshift. This evolution of the Ia rate with redshift is consistent with a type Ia progenitor model where there is a substantial delay between the formation of the progenitor star and the explosion of the supernova. Assuming that the type Ia progenitor stars have initial main sequence masses 3-8 M_Sun, we find that 5-7% of the available progenitors explode as type Ia supernovae.

Tomas Dahlen; Louis-Gregory Strolger; Adam G. Riess; Bahram Mobasher; Ranga-Ram Chary; Christopher J. Conselice; Henry C. Ferguson; Andrew S. Fruchter; Mauro Giavalisco; Mario Livio; Piero Madau; Nino Panagia; John L. Tonry

2004-06-24T23:59:59.000Z

113

LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx  

SciTech Connect

PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H and K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} gradually increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features, and many others, were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. The late-time spectra of PTF11kx are dominated by H{alpha} emission (with widths of full width at half-maximum intensity Almost-Equal-To 2000 km s{sup -1}), strong Ca II emission features ({approx}10,000 km s{sup -1} wide), and a blue 'quasi-continuum' due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The H{alpha} emission appears to increase in strength with time for {approx}1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.

Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E.; Filippenko, Alexei V.; Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pan, Yen-Chen; Hook, Isobel M., E-mail: jsilverman@astro.as.utexas.edu [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

2013-08-01T23:59:59.000Z

114

Supernova Cosmology Project  

NLE Websites -- All DOE Office Websites (Extended Search)

The Hubble Space Telescope Cluster Supernova Survey: The Hubble Space Telescope Cluster Supernova Survey: An Intensive HST Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters Survey Paper: Dawson et al. (The Supernova Cosmology Project) 2009, AJ, 138, 1271 [ADS] [arXiv] We present a new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 0.95, nine of which were in galaxy clusters. This strategy provides a SN sample that can be used to decouple the effects of host galaxy extinction and intrinsic color in high redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology.

115

Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants  

E-Print Network (OSTI)

%context {Recent observations of hard X-rays and very high energy gamma-rays from a number of young shell type supernova remnants indicate the importance of detailed quantitative studies of energy spectra of relativistic electrons formed via diffusive shock acceleration accompanied by intense nonthermal emission through synchrotron radiation and inverse Compton scattering.} %aim {The aim of this work was derivation of exact asymptotic solutions of the kinetic equation which describes the energy distribution of shock-accelerated electrons for an arbitrary energy-dependence of the diffusion coefficient.} %method {The asymptotic solutions at low and very high energy domains coupled with numerical calculations in the intermediate energy range allow analytical presentations of energy spectra of electrons for the entire energy region.} %results {Under the assumption that the energy losses of electrons are dominated by synchrotron cooling, we derived the exact asymptotic spectra of electrons without any restriction on the diffusion coefficient. We also obtained simple analytical approximations which describe, with accuracy better than ten percent, the energy spectra of nonthermal emission of shock-accelerated electrons due to the synchrotron radiation and inverse Compton scattering.} %conclusions {The results can be applied for interpretation of X-ray and gamma-ray observations of shell type supernova remnants, as well as other nonthermal high energy source populations like microquasars and large scale synchrotron jets of active galactic nuclei.

V. N. Zirakashvili; F. Aharonian

2006-12-25T23:59:59.000Z

116

Supernova Cosmology Project  

NLE Websites -- All DOE Office Websites (Extended Search)

at AAS Meetings IAU circulars Collaboration Papers Spectra and HST Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation R. Amanullah, et al., ApJ...

117

The Joint Efficient Dark-energy Investigation (JEDI): Measuring the cosmic expansion history from type Ia supernovae  

E-Print Network (OSTI)

JEDI (Joint Efficient Dark-energy Investigation) is a candidate implementation of the NASA-DOE Joint Dark Energy Mission (JDEM). JEDI will probe dark energy in three independent methods: (1) type Ia supernovae, (2) baryon acoustic oscillations, and (3) weak gravitational lensing. In an accompanying paper, an overall summary of the JEDI mission is given. In this paper, we present further details of the supernova component of JEDI. To derive model-independent constraints on dark energy, it is important to precisely measure the cosmic expansion history, H(z), in continuous redshift bins from z \\~ 0-2 (the redshift range in which dark energy is important). SNe Ia at z > 1 are not readily accessible from the ground because the bulk of their light has shifted into the near-infrared where the sky background is overwhelming; hence a space mission is required to probe dark energy using SNe. Because of its unique near-infrared wavelength coverage (0.8-4.2 microns), JEDI has the advantage of observing SNe Ia in the rest frame J band for the entire redshift range of 0 energy are discussed, with special emphasis on the improved precision afforded by the rest frame near-infrared data.

M. M. Phillips; Peter Garnavich; Yun Wang; David Branch; Edward Baron; Arlin Crotts; J. Craig Wheeler; Edward Cheng; Mario Hamuy; for the JEDI Team

2006-06-28T23:59:59.000Z

118

EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)  

SciTech Connect

On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot {approx}<10{sup -8}(w/100 km s{sup -1}) M{sub sun} yr{sup -1} from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, Derek B. [Astronomy and Astrophysics, Eberly College of Science, Pennsylvania State University, University Park, PA 16802 (United States); Quimby, Robert [IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba (Japan); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); De Bruyn, A. G. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Kamble, Atish; Wijers, Ralph A. M. J. [Center for Gravitation and Cosmology, University of Wisconsin, Milwaukee, WI 53211 (United States); Van der Horst, Alexander J. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, Chryssa [Space Science Office, VP-62, NASA-Marshall Space Flight Center, Huntsville, AL 35805 (United States); Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Gehrels, Neil [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

2012-02-10T23:59:59.000Z

119

A localised subgrid scale model for fluid dynamical simulations in astrophysics II: Application to type Ia supernovae  

E-Print Network (OSTI)

The dynamics of the explosive burning process is highly sensitive to the flame speed model in numerical simulations of type Ia supernovae. Based upon the hypothesis that the effective flame speed is determined by the unresolved turbulent velocity fluctuations, we employ a new subgrid scale model which includes a localised treatment of the energy transfer through the turbulence cascade in combination with semi-statistical closures for the dissipation and non-local transport of turbulence energy. In addition, subgrid scale buoyancy effects are included. In the limit of negligible energy transfer and transport, the dynamical model reduces to the Sharp-Wheeler relation. According to our findings, the Sharp-Wheeler relation is insuffcient to account for the complicated turbulent dynamics of flames in thermonuclear supernovae. The application of a co-moving grid technique enables us to achieve very high spatial resolution in the burning region. Turbulence is produced mostly at the flame surface and in the interior ash regions. Consequently, there is a pronounced anisotropy in the vicinity of the flame fronts. The localised subgrid scale model predicts significantly enhanced energy generation and less unburnt carbon and oxygen at low velocities compared to earlier simulations.

W. Schmidt; J. C. Niemeyer; W. Hillebrandt; F. K. Roepke

2006-01-23T23:59:59.000Z

120

Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova  

E-Print Network (OSTI)

We present early time high-resolution (VLT/UVES) and late time low-resolution (VLT/FORS) optical spectra of the normal type Ia supernova, SN 2001el. The high-resolution spectra were obtained 9 and 2 days before (B-band) maximum light in order to detect narrow hydrogen and/or helium emission lines from the SN CSM. No such lines were detected in our data. We therefore use photoionisation models to derive upper limits of 1x10^-5 and 6x10^-5 Msol/yr, assuming wind velocities of 10 and 50 km/s, respectively, for the mass loss rate from the progenitor system of SN 2001el. This excludes a symbiotic star in the upper mass loss rate regime from being the progenitor of SN 2001el. The low-resolution spectrum was obtained in the nebular phase of the supernova, \\~400 days after the maximum light, to search for any hydrogen rich gas originating from the SN progenitor system. However, we see no signs of Balmer lines in our spectrum. Therefore, we model the late time spectra to derive an upper limit of ~0.03 Msol for solar a...

Mattila, S; Sollerman, J; Kozma, C; Baron, E; Fransson, C; Leibundgut, B; Nomoto, K

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Stellar Evolution/Supernova Research Data Archives from the SciDAC Computational Astrophysics Consortium  

DOE Data Explorer (OSTI)

Theoretical high-energy astrophysics studies the most violent explosions in the universe - supernovae (the massive explosions of dying stars) and gamma ray bursts (mysterious blasts of intense radiation). The evolution of massive stars and their explosion as supernovae and/or gamma ray bursts describes how the "heavy" elements needed for life, such as oxygen and iron, are forged (nucleosynthesis) and ejected to later form new stars and planets. The Computational Astrophysics Consortium's project includes a Science Application Partnership on Adaptive Algorithms that develops software involved. The principal science topics are - in order of priority - 1) models for Type Ia supernovae, 2) radiation transport, spectrum formation, and nucleosynthesis in model supernovae of all types; 3) the observational implications of these results for experiments in which DOE has an interest, especially the Joint Dark Energy Mission, Supernova/Acceleration Probe (SNAP) satellite observatory, the Large Synoptic Survey Telescope (LSST), and ground based supernova searches; 4) core collapse supernovae; 5) gamma-ray bursts; 6) hypernovae from Population III stars; and 7) x-ray bursts. Models of these phenomena share a common need for nuclear reactions and radiation transport coupled to multi-dimensional fluid flow. The team has developed and used supernovae simulation codes to study Type 1A and core-collapse supernovae. (Taken from http://www.scidac.gov/physics/grb.html) The Stellar Evolution Data Archives contains more than 225 Pre-SN models that can be freely accessed.

Woosley, Stan [University of California, Santa Cruz

122

Prospects for Type Ia Supernova explosion mechanism identification with gamma rays  

E-Print Network (OSTI)

The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of of radioactive nuclei are produced during these events and they are expected to be strong gamma-ray emitters. In the past, several authors have investigated the use of this gamma-ray emission as a diagnostic tool. In this paper we have done a complete study of the gamma-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-center detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estim...

Gómez-Gomar, J; Jean, P; Gomez-Gomar, Jordi; Isern, Jordi; Jean, Pierre

1997-01-01T23:59:59.000Z

123

Determining the motion of the solar system relative to the cosmic microwave background using type Ia supernovae  

E-Print Network (OSTI)

We estimate the solar system motion relative to the cosmic microwave background using type Ia supernovae (SNe) measurements. We take into account the correlations in the error bars of the SNe measurements arising from correlated peculiar velocities. Without accounting for correlations in the peculiar velocities, the SNe data we use appear to detect the peculiar velocity of the solar system at about the 3.5 sigma level. However, when the correlations are correctly accounted for, the SNe data only detects the solar system peculiar velocity at about the 2.5 sigma level. We forecast that the solar system peculiar velocity will be detected at the 9 sigma level by GAIA and the 11 sigma level by the LSST. For these surveys we find the correlations are much less important as most of the signal comes from higher redshifts where the number density of SNe is insufficient for the correlations to be important.

Christopher Gordon; Kate Land; Anze Slosar

2007-11-27T23:59:59.000Z

124

SYSTEMATIC BLUESHIFT OF LINE PROFILES IN THE TYPE IIn SUPERNOVA 2010jl: EVIDENCE FOR POST-SHOCK DUST FORMATION?  

Science Conference Proceedings (OSTI)

Type IIn supernovae (SNe) show spectral evidence for strong interaction between their blast wave and dense circumstellar material (CSM) around the progenitor star. SN 2010jl was the brightest core-collapse supernova in 2010, and it was a Type IIn explosion with strong CSM interaction. Andrews et al. recently reported evidence for an infrared (IR) excess in SN 2010jl, indicating either new dust formation or the heating of CSM dust in an IR echo. Here we report multi-epoch spectra of SN 2010jl that reveal the tell-tale signature of new dust formation: emission-line profiles becoming systematically more blueshifted as the red side of the line is blocked by increasing extinction. The effect is seen clearly in the intermediate-width (400-4000 km s{sup -1}) component of H{alpha} beginning roughly 30 days after explosion. Moreover, we present near-IR spectra demonstrating that the asymmetry in the hydrogen-line profiles is wavelength dependent, appearing more pronounced at shorter wavelengths. This evidence suggests that new dust grains had formed quickly in the post-shock shell of SN 2010jl arising from CSM interaction. Since the observed dust temperature has been attributed to an IR echo and not to new dust, either (1) IR excess emission at {lambda} < 5 {mu}m is not a particularly sensitive tracer of new dust formation in SNe, or (2) some assumptions about expected dust temperatures might require further study. Lastly, we discuss one possible mechanism other than dust that might lead to increasingly blueshifted line profiles in SNe IIn, although the wavelength dependence of the asymmetry argues against this hypothesis in the case of SN 2010jl.

Smith, Nathan; Bian, Fuyan; Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cooper, Michael C. [Department of Physics and Astronomy, University of California, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Matheson, Thomas [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719-4933 (United States); Comerford, Julia M., E-mail: nathans@as.arizona.edu [Astronomy Department, University of Texas, Austin, TX 78712 (United States)

2012-01-15T23:59:59.000Z

125

Verifying the Cosmological Utility of Type Ia Supernovae:Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect

We analyze the mean rest-frame ultraviolet (UV) spectrum ofType Ia Supernovae(SNe) and its dispersion using high signal-to-noiseKeck-I/LRIS-B spectroscopyfor a sample of 36 events at intermediateredshift (z=0.5) discoveredby the Canada-France-Hawaii TelescopeSupernova Legacy Survey (SNLS). Weintroduce a new method for removinghost galaxy contamination in our spectra,exploiting the comprehensivephotometric coverage of the SNLS SNe and theirhost galaxies, therebyproviding the first quantitative view of the UV spectralproperties of alarge sample of distant SNe Ia. Although the mean SN Ia spectrumhas notevolved significantly over the past 40 percent of cosmic history,preciseevolutionary constraints are limited by the absence of acomparable sample ofhigh quality local spectra. The mean UV spectrum ofour z 0.5 SNe Ia and itsdispersion is tabulated for use in futureapplications. Within the high-redshiftsample, we discover significant UVspectral variations and exclude dust extinctionas the primary cause byexamining trends with the optical SN color. Although progenitormetallicity may drive some of these trends, the variations we see aremuchlarger than predicted in recent models and do not follow expectedpatterns.An interesting new result is a variation seen in the wavelengthof selected UVfeatures with phase. We also demonstrate systematicdifferences in the SN Iaspectral features with SN lightcurve width inboth the UV and the optical. Weshow that these intrinsic variations couldrepresent a statistical limitation in thefuture use of high-redshift SNeIa for precision cosmology. We conclude thatfurther detailed studies areneeded, both locally and at moderate redshift wherethe rest-frame UV canbe studied precisely, in order that future missions canconfidently beplanned to fully exploit SNe Ia as cosmological probes.

Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam,A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.G.; Conley,A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2007-11-02T23:59:59.000Z

126

A Measurement of the Rate of type-Ia Supernovae at Redshift $z\\approx$ 0.1 from the First Season of the SDSS-II Supernova Survey  

E-Print Network (OSTI)

We present a measurement of the rate of type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift $z\\le0.12$. Assuming a flat cosmology with $\\Omega_m = 0.3=1-\\Omega_\\Lambda$, we find a volumetric SN Ia rate of $[2.93^{+0.17}_{-0.04}({\\rm systematic})^{+0.90}_{-0.71}({\\rm statistical})] \\times 10^{-5} {\\rm SNe} {\\rm Mpc}^{-3} h_{70}^3 {\\rm year}^{-1}$, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift-evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rat...

Dilday, Benjamin; Frieman, J A; Holtzman, J; Marriner, J; Miknaitis, G; Nichol, R C; Romani, R; Sako, M; Bassett, B; Becker, A; Cinabro, D; De Jongh, F; Depoy, D L; Doi, M; Garnavich, P M; Hogan, C J; Jha, S; Konishi, K; Lampeitl, H; Marshall, J L; McGinnis, D; Prieto, J L; Riess, A G; Richmond, M W; Schneider, D P; Smith, M; Takanashi, N; Tokita, K; van der Heyden, K; Zheng, N Yasuda C; Barentine, J; Brewington, H; Choi, C; Crotts, A; Dembicky, J; Harvanek, M; Im, M; Ketzeback, W; Kleinman, S J; KrzesiĹ?ski, J; Long, D C; Malanushenko, E; Malanushenko, V; McMillan, R J; Nitta, A; Pan, K; Saurage, G; Snedden, S A; Watters, S; Wheeler, J C; York, D

2008-01-01T23:59:59.000Z

127

CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES  

SciTech Connect

We present R-band light curves of Type II supernovae (SNe) from the Caltech Core-Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three apparently distinct classes: plateau, slowly declining, and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core-collapse SNe will likely continue to provide new constraints on progenitor scenarios.

Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley; Becker, Adam B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Leonard, Douglas C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J. [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Soderberg, Alicia M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kiewe, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Scheps, Raphael [King's College, University of Cambridge, Cambridge CB2 1ST (United Kingdom); Birenbaum, Gali [12 Amos St, Ramat Chen, Ramat Gan 52233 (Israel); Chamudot, Daniel [20 Chen St, Petach Tikvah 49520 (Israel); Zhou, Jonathan, E-mail: iair.arcavi@weizmann.ac.il [101 Dunster Street, Box 398, Cambridge, MA 02138 (United States)

2012-09-10T23:59:59.000Z

128

ON THE INDUCED GRAVITATIONAL COLLAPSE OF A NEUTRON STAR TO A BLACK HOLE BY A TYPE Ib/c SUPERNOVA  

Science Conference Proceedings (OSTI)

It is understood that the supernovae (SNe) associated with gamma-ray bursts (GRBs) are of Type Ib/c. The temporal coincidence of the GRB and the SN continues to represent a major enigma of Relativistic Astrophysics. We elaborate here, from the earlier paradigm, that the concept of induced gravitational collapse is essential to explain the GRB-SN connection. The specific case of a close (orbital period <1 hr) binary system composed of an evolved star with a neutron star (NS) companion is considered. We evaluate the accretion rate onto the NS of the material expelled from the explosion of the core progenitor as a Type Ib/c SN and give the explicit expression of the accreted mass as a function of the nature of the components and binary parameters. We show that the NS can reach, in a few seconds, critical mass and consequently gravitationally collapse to a black hole. This gravitational collapse process leads to the emission of the GRB.

Rueda, Jorge A.; Ruffini, Remo, E-mail: jorge.rueda@icra.it, E-mail: ruffini@icra.it [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy)

2012-10-10T23:59:59.000Z

129

Supernova Discoveries from the Nearby Supernova Factory (SNfactory)  

DOE Data Explorer (OSTI)

The Nearby Supernova Factory is an experiment designed to collect data on more Type Ia supernovae than have ever been studied in a single project before, and in so doing, to answer some fundamental questions about the nature of the universe. Type Ia supernovae are extraordinarily bright, remarkably uniform objects which make excellent "standard candles" for measuring the expansion rate of the universe. However, such stellar explosions are very rare, occurring only a couple of times per millenium in a typical galaxy, and remaining bright enough to detect only for a few weeks. Previous studies of Type Ia supernovae led to the discovery of the mysterious "dark energy" that is causing the universe to expand at an accelerating rate. To reduce the statistical uncertainties in previous experimental data, extensive spectral and photometric monitoring of more Type Ia supernovae is required. The SNfactory collaboration has built an automated system consisting of specialized software and custom-built hardware that systematically searches the sky for new supernovae, screens potential candidates, then performs multiple spectral and photometric observations on each supernova. These observations are stored in a database to be made available to supernova researchers world-wide for further study and analysis [copied from http://snfactory.lbl.gov/snf/snf-about.html]. Users must register and agree to the open access honor system. Finding charts are in FITS format and may not be accessible through normal browser settings.

SNfactory International Collaboration,

130

Measuring Cosmology with Supernovae  

E-Print Network (OSTI)

Over the past decade, supernovae have emerged as some of the most powerful tools for measuring extragalactic distances. A well developed physical understanding of type II supernovae allow them to be used to measure distances independent of the extragalactic distance scale. Type Ia supernovae are empirical tools whose precision and intrinsic brightness make them sensitive probes of the cosmological expansion. Both types of supernovae are consistent with a Hubble Constant within ~10% of H_0 = 70 km/s/Mpc. Two teams have used type Ia supernovae to trace the expansion of the Universe to a look-back time more than 60% of the age of the Universe. These observations show an accelerating Universe which is currently best explained by a cosmological constant or other form of dark energy with an equation of state near w = p/rho = -1. While there are many possible remaining systematic effects, none appears large enough to challenge these current results. Future experiments are planned to better characterize the equation of state of the dark energy leading to the observed acceleration by observing hundreds or even thousands of objects. These experiments will need to carefully control systematic errors to ensure future conclusions are not dominated by effects unrelated to cosmology.

Saul Perlmutter; Brian P. Schmidt

2003-03-18T23:59:59.000Z

131

Aspherical supernovae  

E-Print Network (OSTI)

be associated w i t h gamma-ray bursts? D r . Peter Nugentinterest: 1. The gamma-ray burst/supernova connection: T h eof supernovae is the gamma-ray bursts ( G R B s ) . T h a t

Kasen, Daniel Nathan

2004-01-01T23:59:59.000Z

132

SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy  

E-Print Network (OSTI)

[abridged] We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova SN 2010ay at z\\approx0.067 imaged by the Pan-STARRS1 3{\\pi} survey just \\sim3 days after explosion. We estimate the explosion date and the peak luminosity of the SN, MR\\approx-20.2 mag, significantly brighter than known GRB-SNe and one of the most luminous SNe Ic ever discovered. We measure the photospheric expansion velocity of the explosion, v_ph\\approx19.2x10^3 km/s at \\sim40 days after explosion. In comparison with other broad-lined SNe, the characteristic velocity of SN 2010ay is 2-5x higher and similar to the measurements for GRB-SNe at comparable epochs. Moreover the velocity declines two times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56 Ni, M_Ni=0.9+0.2 M_solar. Our modeling of the light-curve points to a total ejecta mass, Mej\\approx4.7M_so...

Sanders, Nathan E; Valenti, S; Chomiuk, L; Berger, E; Smartt, S; Hurley, K; Barthelmy, S D; Chornock, R; Foley, R J; Levesque, E M; Narayan, G; Kirshner, R P; Botticella, M T; Briggs, M S; Connaughton, V; Terada, Y; Gehrels, N; Golenetskii, S; Mazets, E; Cline, T; von Kienlin, A; Boynton, W; Chambers, K C; Grav, T; Heasley, J N; Hodapp, K W; Jedicke, R; Kaiser, N; Kudritzki, R -P; Luppino, G A; Lupton, R H; Magnier, E A; Monet, D G; Morgan, J S; Onaka, P M; Price, P A; Stubbs, C W; Tonry, J L; Wainscoat, R J; Waterson, M F

2011-01-01T23:59:59.000Z

133

CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS  

SciTech Connect

Type IIn supernovae (SNe IIn) are rare events, constituting only a few percent of all core-collapse SNe, and the current sample of well-observed SNe IIn is small. Here, we study the four SNe IIn observed by the Caltech Core-Collapse Project (CCCP). The CCCP SN sample is unbiased to the extent that object selection was not influenced by target SN properties. Therefore, these events are representative of the observed population of SNe IIn. We find that a narrow P-Cygni profile in the hydrogen Balmer lines appears to be a ubiquitous feature of SNe IIn. Our light curves show a relatively long rise time (>20 days) followed by a slow decline stage (0.01-0.15 mag day{sup -1}), and a typical V-band peak magnitude of M{sub V} = -18.4 {+-} 1.0 mag. We measure the progenitor star wind velocities (600-1400 km s{sup -1}) for the SNe in our sample and derive pre-explosion mass-loss rates (0.026-0.12 M{sub Sun} yr{sup -1}). We compile similar data for SNe IIn from the literature and discuss our results in the context of this larger sample. Our results indicate that typical SNe IIn arise from progenitor stars that undergo luminous-blue-variable-like mass loss shortly before they explode.

Kiewe, Michael; Gal-Yam, Avishay; Arcavi, Iair [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, Douglas C.; Emilio Enriquez, J. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Bradley Cenko, S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J.; Soderberg, Alicia M., E-mail: avishay.gal-yam@weizmann.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-01-01T23:59:59.000Z

134

SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION  

SciTech Connect

We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first {approx}120 days shows the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the New Technology Telescope and a Subaru optical spectrum 16 days post-discovery both imply a good match with the well-studied subluminous SN 2005cs. The plateau-phase luminosity of SN 2009js and its plateau duration are more similar to the intermediate luminosity IIP SN 2008in. Thus, SN 2009js shares characteristics with both subluminous and intermediate luminosity supernovae (SNe). Its radioactive tail luminosity lies between SN 2005cs and SN 2008in, whereas its quasi-bolometric luminosity decline from peak to plateau (quantified by a newly defined parameter {Delta}logL, which measures adiabatic cooling following shock breakout) is much smaller than both the others'. We estimate the ejected mass of {sup 56}Ni to be low ({approx}0.007 M{sub Sun }). The SN explosion energy appears to have been small, similar to that of SN 2005cs. SN 2009js is the first subluminous SN IIP to be studied in the mid-infrared. It was serendipitously caught by Spitzer at very early times. In addition, it was detected by WISE 105 days later with a significant 4.6 {mu}m flux excess above the photosphere. The infrared excess luminosity relative to the photosphere is clearly smaller than that of SN 2004dj, which has been extensively studied in the mid-infrared. The excess may be tentatively assigned to heated dust with mass {approx}3 Multiplication-Sign 10{sup -5} M{sub Sun }, or to CO fundamental emission as a precursor to dust formation.

Gandhi, P. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yamanaka, M.; Itoh, R. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Tanaka, M. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Nozawa, T.; Maeda, K.; Moriya, T. J. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Kawabata, K. S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Saviane, I. [European Southern Observatory, Alonso de Cordova 3107, Santiago 19 (Chile); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Sasada, M. [Department of Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

2013-04-20T23:59:59.000Z

135

The nearby supernova factory  

Science Conference Proceedings (OSTI)

The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to {approx}12 SNe/month in 2003.

Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

2004-01-23T23:59:59.000Z

136

A Measurement of the Rate of type-Ia Supernovae at Redshift $z\\approx$ 0.1 from the First Season of the SDSS-II Supernova Survey  

E-Print Network (OSTI)

We present a measurement of the rate of type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift $z\\le0.12$. Assuming a flat cosmology with $\\Omega_m = 0.3=1-\\Omega_\\Lambda$, we find a volumetric SN Ia rate of $[2.93^{+0.17}_{-0.04}({\\rm systematic})^{+0.90}_{-0.71}({\\rm statistical})] \\times 10^{-5} {\\rm SNe} {\\rm Mpc}^{-3} h_{70}^3 {\\rm year}^{-1}$, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift-evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rate, $r_V \\propto (1+z)^{\\beta}$, we obtain a value of $\\beta = 1.5 \\pm 0.6$, i.e. the SN Ia rate is determined to be an increasing function of redshift at the $\\sim 2.5 \\sigma$ level. Fitting the results to a model in which the volumetric SN rate, $r_V=A\\rho(t)+B\\dot \\rho(t)$, where $\\rho(t)$ is the stellar mass density and $\\dot \\rho(t)$ is the star formation rate, we find $A = (2.8 \\pm 1.2) \\times 10^{-14} \\mathrm{SNe} \\mathrm{M}_{\\sun}^{-1} \\mathrm{year}^{-1}$, $B = (9.3^{+3.4}_{-3.1})\\times 10^{-4} \\mathrm{SNe} \\mathrm{M}_{\\sun}^{-1}$.

Benjamin Dilday; R. Kessler; J. A. Frieman; J. Holtzman; J. Marriner; G. Miknaitis; R. C. Nichol; R. Romani; M. Sako; B. Bassett; A. Becker; D. Cinabro; F. DeJongh; D. L. Depoy; M. Doi; P. M. Garnavich; C. J. Hogan; S. Jha; K. Konishi; H. Lampeitl; J. L. Marshall; D. McGinnis; J. L. Prieto; A. G. Riess; M. W. Richmond; D. P. Schneider; M. Smith; N. Takanashi; K. Tokita; K. van der Heyden; N. Yasuda; C. Zheng; J. Barentine; H. Brewington; C. Choi; A. Crotts; J. Dembicky; M. Harvanek; M. Im; W. Ketzeback; S. J. Kleinman; J. Krzesi?ski; D. C. Long; E. Malanushenko; V. Malanushenko; R. J. McMillan; A. Nitta; K. Pan; G. Saurage; S. A. Snedden; S. Watters; J. C. Wheeler; D. York

2008-01-22T23:59:59.000Z

137

Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova  

E-Print Network (OSTI)

We present early time high-resolution (VLT/UVES) and late time low-resolution (VLT/FORS) optical spectra of the normal type Ia supernova, SN 2001el. The high-resolution spectra were obtained at -9 and -2 days to allow the detection of narrow hydrogen and/or helium emission lines from the circumstellar medium of the SN. No such lines were detected, and we therefore use photoionisation models to derive upper limits of 9x10^-6 Msun/yr and 5x10^-5 Msun/yr for the mass loss rate from the progenitor system assuming velocities of 10 km/s and 50 km/s, respectively, for a wind extending to outside at least a few x 10^15 cm away from the SN explosion site. These limits exclude a symbiotic star in the upper mass loss rate regime from being the progenitor of SN 2001el. The low resolution spectrum was obtained in the nebular phase of the SN, 400 days after the maximum light, to search for any hydrogen rich gas originating from the SN progenitor system. However, we see no signs of Balmer lines in our spectrum. Therefore, we model the late time spectra to derive an upper limit of ~0.03 Msun for solar abundance material present at velocities lower than 1000 km/s within the SN explosion site. According to simulations of Marietta et al. (2000) this is less than the expected mass lost by a subgiant, red giant or main sequence secondary star at a small binary separation as a result of the SN explosion. Finally, we discuss the origin of high velocity Ca II lines. We see both the CaII IR triplet and the H&K lines in the -9 days spectrum at a very high velocity of up to 34000 km/s. The spectrum also shows a flat-bottomed Si II `6150 A' feature similar to the one previously observed in SN 1990N at -14 days. We compare these spectral features to those observed in SNe 1984A and 1990N at even higher velocities.

S. Mattila; P. Lundqvist; J. Sollerman; C. Kozma; E. Baron; C. Fransson; B. Leibundgut; K. Nomoto

2005-01-20T23:59:59.000Z

138

Hubble diagrams of soft and hard radiation sources in the graviton background: to an apparent contradiction between supernova 1a and gamma-ray burst observations  

E-Print Network (OSTI)

In the sea of super-strong interacting gravitons, non-forehead collisions with gravitons deflect photons, and this deflection may differ for soft and hard radiations. As a result, the Hubble diagram would not be a universal function and it will have a different view for such sources as supernovae in visible light and gamma-ray bursts. Observations of these two kinds are compared here with the limit cases of the Hubble diagram.

Michael A. Ivanov

2006-09-19T23:59:59.000Z

139

Modern supernova search  

Science Conference Proceedings (OSTI)

Supernovae play a critical role in observational cosmology as well as in astrophysics of stars and galaxies. Recent era has seen dramatic progress in the research of supernovae. Several programs to search systematically supernovae in nearby to distant galaxies have been very successful. Recent progresses in the modern supernova search are reviewed.

Myung Gyoon Lee

2001-01-01T23:59:59.000Z

140

Distant Supernovae and Cosmic Deceleration  

E-Print Network (OSTI)

Distant supernovae can now be detected routinely. To date 34 supernovae at $z > 0.1$ have been discovered. Among them are 12 Type~Ia supernovae confirmed spectroscopically and suited to measure the cosmic deceleration when appropriately employed as standard candles. However, peak magnitudes have been determined for only two objects so far and a determination of $q_0$ is not yet possible. We describe the current status of the searches and possible pitfalls of the method which rests on few basic assumptions. The importance of sufficient information on the distant events is stressed and the observations of SN~1995K are used as an example of the detailed procedures employed in the analysis. Only spectroscopic classification and light curves in at least two filter bands provide the basis to use correction schemes for the luminosity which have successfully been established in nearby samples. Time dilation has been detected acting on the light curve of SN~1995K at a redshift of 0.478, providing clear evidence of universal expansion. The observations are fully consistent with local Type Ia supernovae in an expanding universe but incompatible with the expectations from a static universe. The contributions of the new, large telescopes to this research area are described. The extension of the observations to even more distant objects will provide a better leverage to distinguish between the possible decelerations and the inclusion of Type II supernovae into the sample add an independent check on the cosmological distances.

B. Leibundgut; J. Spyromilio

1996-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry  

Science Conference Proceedings (OSTI)

We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo InterAmerican Obs. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /UC, Berkeley, Astron. Dept. /NOAO, Tucson /Inst. Astron., Honolulu /Res. Sch. Astron. Astrophys., Weston Creek /Washington U., Seattle, Astron. Dept. /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Stockholm U.

2007-01-08T23:59:59.000Z

142

TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY  

Science Conference Proceedings (OSTI)

We use Type Ia supernovae (SNe Ia) discovered by the Sloan Digital Sky Survey-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host-galaxy center, using the distance as a proxy for local galaxy properties (local star formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light curves using both MLCS2K2 and SALT2, and determine color (A{sub V} , c) and light-curve shape ({Delta}, x{sub 1}) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4{sigma} level) finding is that the average fitted A{sub V} from MLCS2K2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that supernovae (SNe) in elliptical galaxies tend to have narrower light curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

Galbany, Lluis; Miquel, Ramon; Oestman, Linda [Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Brown, Peter J.; Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); D'Andrea, Chris B.; Nichol, Robert C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Frieman, Joshua [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellise Avenue, Chicago, IL 60637 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Marriner, John [Center for Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Nordin, Jakob [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Smith, Mathew [Department of Physics, University of Western Cape, Bellville 7535, Cape Town (South Africa); Sollerman, Jesper [Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden); Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard, E-mail: lluis.galbany@ist.utl.pt [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); and others

2012-08-20T23:59:59.000Z

143

REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY  

SciTech Connect

The Palomar Transient Factory (PTF) is an optical wide-field variability survey carried out using a camera with a 7.8 deg{sup 2} field of view mounted on the 48 inch Oschin Schmidt telescope at Palomar Observatory. One of the key goals of this survey is to conduct high-cadence monitoring of the sky in order to detect optical transient sources shortly after they occur. Here, we describe the real-time capabilities of the PTF and our related rapid multiwavelength follow-up programs, extending from the radio to the {gamma}-ray bands. We present as a case study observations of the optical transient PTF10vdl (SN 2010id), revealed to be a very young core-collapse (Type II-P) supernova having a remarkably low luminosity. Our results demonstrate that the PTF now provides for optical transients the real-time discovery and rapid-response follow-up capabilities previously reserved only for high-energy transients like gamma-ray bursts.

Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Yaron, Ofer; Ben-Ami, Sagi; Xu Dong; Sternberg, Assaf [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M.; Quimby, Robert M.; Kulkarni, Shrinivas R.; Ofek, Eran O.; Walters, Richard [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter E.; Poznanski, Dovi [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Walker, Emma S., E-mail: avishay.gal-yam@weizmann.ac.il [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

2011-08-01T23:59:59.000Z

144

Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey  

E-Print Network (OSTI)

We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the proj...

Galbany, Lluis; Ostman, Linda; Brown, Peter J; Cinabro, David; D'Andrea, Chris B; Frieman, Joshua; Jha, Saurabh W; Marriner, John; Nichol, Robert C; Nordin, Jakob; Olmstead, Matthew D; Sako, Masao; Schneider, Donald P; Smith, Mathew; Sollerman, Jesper; Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Simmons, Audrey; Shelden, Alaina

2012-01-01T23:59:59.000Z

145

The nearby supernova factory  

SciTech Connect

The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to {approx}12 SNe/month in 2003.

Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

2004-01-23T23:59:59.000Z

146

DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY  

Science Conference Proceedings (OSTI)

We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t){proportional_to}(t - t{sub 0}) {sup n}) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure ({approx}30, 000 km s{sup -1} derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M{sub Sun} and a large ((5-10) Multiplication-Sign 10{sup 51} erg) kinetic energy, the later being close to the regime of GRB-SN properties.

Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Filippenko, Alexei V.; Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Mazzali, Paolo A. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Modjaz, Maryam [New York University, Center for Cosmology and Particle Physics, Department of Physics, 4 Washington Place, New York, NY 10003 (United States); Horesh, Assaf; Kulkarni, Shrinivas R.; Perley, Daniel [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Howell, D. Andrew; Graham, Melissa L.; Sand, David J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Horst, J. Chuck; Leonard, Douglas C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Im, Myunshin; Jeon, Yiseul [CEOU/Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Pian, Elena [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106-4030 (United States); Sullivan, Mark, E-mail: sagi.ben-ami@weizmann.ac.il [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford, OX1 3RH (United Kingdom); and others

2012-12-01T23:59:59.000Z

147

Hot Coal for Christmas: Dust Formation in the Swept-Up Shell Around The Peculiar Type Ib Supernova 2006jc  

E-Print Network (OSTI)

We present evidence for the formation of dust grains in an unusual Type Ib SN based on late-time spectra of SN 2006jc. The progenitor suffered a giant outburst qualitatively similar to those seen in LBVs just 2 years prior to the SN, and we speculate that the dust formation we observe is an indirect consequence of that event. The key evidence for dust formation seen in our optical spectra is (1) the appearance of a strong continuum emission source at red wavelengths, and (2) fading of the redshifted sides of narrow HeI emission lines. These two observed characteristics provide the strongest case yet for dust formation in any Type Ib/c SN. Both developments occurred simultaneously between 51 and 75 days after peak brightness, which is quick compared to other dusty SNe. The high temperature of the dust implies carbon and not silicates, and we describe how infrared photometry may test this conjecture. Geometric considerations indicate dust formation occurring in the dense gas swept-up by the forward shock, and n...

Smith, Nathan; Filippenko, Alexei V

2007-01-01T23:59:59.000Z

148

RELATIVISTIC SHOCK BREAKOUTS-A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE  

SciTech Connect

The light from a shock breakout of stellar explosions, which carries a wealth of information, strongly depends on the shock velocity at the time of the breakout. The emission from Newtonian breakouts, typical in regular core-collapse supernovae (SNe), has been explored extensively. However, a large variety of explosions result in mildly or ultrarelativistic breakouts, where the observed signature is unknown. Here we calculate the luminosity and spectrum produced by relativistic breakouts. In order to do so, we improve the analytic description of relativistic radiation-mediated shocks and follow the system from the breakout itself, through the planar phase and into the spherical phase. We limit our calculation to cases where the post-breakout acceleration of the gas ends during the planar phase (i.e., the final gas Lorentz factor {approx}< 30). We find that spherical relativistic breakouts produce a flash of gamma rays with energy, E{sub bo}, temperature, T{sub bo}, and duration, t{sup obs} b{sub o}, that provide the breakout radius ( Almost-Equal-To 5 R{sub Sun }(t{sup obs}{sub bo}/10 s)(T{sub bo}/50 keV){sup 2}) and the Lorentz factor ( Almost-Equal-To T{sub bo}/50 keV). They also always satisfy a relativistic breakout relation (t{sup obs}{sub bo}/20 s) {approx} (E{sub bo}/10{sup 46} erg){sup 1/2}(T{sub bo}/50 keV){sup -2.68}. The breakout flare is typically followed, on longer timescales, by X-rays that carry a comparable energy. We apply our model to a variety of explosions, including Type Ia and .Ia SNe, accretion-induced collapse, energetic SNe, and gamma-ray bursts (GRBs). We find that all these events produce detectable gamma-ray signals, some of which may have already been seen. Some particular examples are: (1) relativistic shock breakouts provide a natural explanation to the energy, temperature, and timescales of low-luminosity GRBs. Indeed, all observed low-luminosity GRBs satisfy the relativistic breakout relation. (2) Nearby broad-line Type Ib/c (like SN 2002ap) may produce a detectable {gamma}-ray signal. (3) Galactic Type Ia SNe may produce detectable {gamma}-ray flares. We conclude that relativistic shock breakouts provide a generic process for the production of gamma-ray flares.

Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2012-03-10T23:59:59.000Z

149

Magnetorotational supernovae with resistivities  

Science Conference Proceedings (OSTI)

We numerically investigate the effects of electrical resistivity on the dynamics of core-collapse supernovae. Initially strong magnetic fields and rapid rotations are assumed together with high resistivities. We find that resistivity acts as a negative ... Keywords: core-collapse, electric resistivity, magnetohydrodynamics, supernovae

Hidetomo Sawai; Shoichi Yamada; Kei Kotake

2010-02-01T23:59:59.000Z

150

The Nuclear Physics of Solar and Supernova Neutrino Detection  

E-Print Network (OSTI)

This talk provides a basic introduction for students interested in the responses of detectors to solar, supernova, and other low-energy neutrino sources. Some of the nuclear physics is then applied in a discussion of nucleosynthesis within a Type II supernova, including the r-process and the neutrino process.

W. C. Haxton

1999-01-15T23:59:59.000Z

151

Neutrino Nucleosynthesis in Supernovae  

Science Conference Proceedings (OSTI)

Neutrino nucleosynthesis is an important synthesis process for light elements in supernovae. One important physics input of neutrino nucleosynthesis is cross sections of neutrino-nucleus reactions. The cross sections of neutrino-{sup 12}C and {sup 4}He reactions are derived using new shell model Hamiltonians. With the new cross sections, light element synthesis of a supernova is investigated. The appropriate range of the neutrino temperature for supernovae is constrained to be between 4.3 MeV and 6.5 MeV from the {sup 11}B abundance in Galactic chemical evolution. Effects by neutrino oscillations are also discussed.

Yoshida, Takashi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Suzuki, Toshio [Department of Physics, College of Humanities and Sciences, Nihon University (Japan); Chiba, Satoshi [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Kajino, Toshitaka [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Department of Astronomy, Graduate School of Science, University of Tokyo (Japan); Yokomakura, Hidekazu; Kimura, Keiichi [Department of Physics, Graduate School of Science, Nagoya University (Japan); Takamura, Akira [Department of Mathematics, Toyota National College of Technology (Japan); Hartmann, Dieter H. [Department of Physics and Astronomy, Clemson University (United States)

2009-05-04T23:59:59.000Z

152

Automated search for supernovae  

SciTech Connect

This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

Kare, J.T.

1984-11-15T23:59:59.000Z

153

Berkeley automated supernova search  

SciTech Connect

The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

1981-01-01T23:59:59.000Z

154

Hydrogen issue in Core Collapse Supernovae  

E-Print Network (OSTI)

We discuss results of analyzing a time series of selected photospheric-optical spectra of core collapse supernovae (CCSNe). This is accomplished by means of the parameterized supernovae synthetic spectrum (SSp) code ``SYNOW''. Special attention is addressed to traces of hydrogen at early phases, especially for the stripped-envelope SNe (i.e. SNe Ib-c). A thin low mass hydrogen layer extending to very high ejection velocities above the helium shell, is found to be the most likely scenario for Type Ib SNe.

A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut

2006-11-06T23:59:59.000Z

155

Evolution of Dust Extinction and Supernova Cosmology  

E-Print Network (OSTI)

We have made a quantitative calculation for the systematic evolution of average extinction by interstellar dust in host galaxies of high-redshift Type Ia supernovae, by using a realistic model of photometric and chemical evolution of galaxies and supernova rate histories in various galaxy types. We find that average B band extinction at z \\sim 0.5 is typically 0.1-0.2 mag larger than present, under a natural assumption that dust optical depth is proportional to gas column density and gas metallicity. This systematic evolution causes average reddening with E(B-V) \\sim 0.025-0.05 mag with the standard extinction curve, and this is comparable with the observational uncertainty of the reddening of high-redshift supernovae. Therefore, our result does not contradict the observations showing no significant reddening in high-z supernovae. However, the difference in apparent magnitude between an open universe and a \\Lambda-dominated flat universe is only \\sim 0.2 mag at z \\sim 0.5, and hence this systematic evolution of extinction should be taken into account in a reliable measurement of cosmological parameters. Considering this uncertainty, we show that it is difficult to discriminate between an open and \\Lambda-dominated flat cosmologies from the current data.

Tomonori Totani; Chiaki Kobayashi

1999-10-04T23:59:59.000Z

156

Supernova Caught in the Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Supernova Caught in Supernova Caught in the Act Supernova Caught in the Act Earliest-ever Detection Made Possible by Computing, Networks August 25, 2011 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov ptf11kly.jpg Before and after images of supernova PTF 11kly as it appeared in the nearby M101 galaxy. Click to enlarge. (Images: Peter Nugent) A supernova discovered yesterday is closer to Earth-approximately 21 million light-years away-than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible by a specialized survey telescope and state-of-the-art computational tools. The discovery of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many

157

The Fall 2004 SDSS Supernova Survey  

E-Print Network (OSTI)

In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of ~2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05 - 0.35,...

Sako, M; Frieman, J A; Adelman-McCarthy, J; Becker, A; De Jongh, F; Dilday, B; Estrada, J; Hendry, J; Holtzman, J; Kaplan, J; Kessler, R; Lampeitl, H; Marriner, J P; Miknaitis, G; Riess, A; Tucker, D; Barentine, J; Blandford, R D; Brewington, H; Dembicky, J; Harvanek, M; Hawley, S; Hogan, C; Johnston, D; Kahn, S; Ketzeback, B; Kleinman, S; Krzesínski, J; Lamenti, D; Long, D; McMillan, R; Newman, P; Nitta, A; Nichol, R; Scranton, R; Sheldon, E S; Snedden, S A; Stoughton, C; York, D; Sako, Masao; Romani, Roger; Frieman, Josh; Carthy, Jen Adelman-Mc; Becker, Andrew; Jongh, Fritz De; Dilday, Ben; Estrada, Juan; Hendry, John; Holtzman, Jon; Kaplan, Jared; Kessler, Rick; Lampeitl, Hubert; Marriner, John; Miknaitis, Gajus; Riess, Adam; Tucker, Douglas

2005-01-01T23:59:59.000Z

158

The Fall 2004 SDSS Supernova Survey  

E-Print Network (OSTI)

In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of ~2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05 - 0.35, the so-called 'redshift desert', in the Hubble diagram. Detailed investigation of the spectral properties of these moderate-redshift SNe Ia will also provide a bridge between local SNe and high-redshift objects, and will help us understand the systematics for future cosmological applications that require high photometric precision. Finally, the large survey volume also provides the opportunity to select unusual supernovae for spectroscopic study that are poorly sampled in other surveys. We report on some of the early results from this program and discuss potential future applications.

Masao Sako; Roger Romani; Josh Frieman; Jen Adelman-McCarthy; Andrew Becker; Fritz DeJongh; Ben Dilday; Juan Estrada; John Hendry; Jon Holtzman; Jared Kaplan; Rick Kessler; Hubert Lampeitl; John Marriner; Gajus Miknaitis; Adam Riess; Douglas Tucker; J. Barentine; R. Blandford; H. Brewington; J. Dembicky; M. Harvanek; S. Hawley; C. Hogan; D. Johnston; S. Kahn; B. Ketzeback; S. Kleinman; J. Krzesinski; D. Lamenti; D. Long; R. McMillan; P. Newman; A. Nitta; R. Nichol; R. Scranton; E. Sheldon; S. Snedden; C. Stoughton; D. York; the SDSS Collaboration

2005-04-20T23:59:59.000Z

159

Supernova Science Center  

Science Conference Proceedings (OSTI)

The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

S. E. Woosley

2008-05-05T23:59:59.000Z

160

Supernova Simulation Images from the T-6 Group at Los Alamos National Laboratory (LANL)  

DOE Data Explorer (OSTI)

LANL's primary effort to numerically model supernova explosions is based in the Theoretical Astrophysics Group (T-6). Both thermonuclear supernovae and core- collapse supernovae are studied, with special emphasis placed on multi-dimensional simulations. Both types of supernova require a wide range of input physics, which is provided by research efforts throughout the lab. In particular this research benefits from other LANL efforts studying massive star evolution, equations of state and aspects of neutrino physics. [From http://laastro.lanl.gov/science/computation.html

Woosley, Stanford; SciDAC Computational Astrophysics Consortium

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Supernova rates and stellar populations  

E-Print Network (OSTI)

We discuss the results about the nature of type Ia Supernovae that can be derived by studying their rates in different stellar populations. While the evolution of SN photometry and spectra can constrain the explosion mechanism, the SN rate depends on the progenitor system. We review the current available data on rates as a function of parent galaxy color, morphology, star formation rate, radio luminosity and environment. By studying the variation of the rates with the color of the parent galaxy, a strong evidence was established that type Ia SNe come from both young and old stars. The dependence of the rates with the radio power of the parent galaxy is best reproduced by a bimodal distribution of delay time between the formation of the progenitor and its explosion as a SN. Cluster early-type galaxies show higher type Ia SN rate with respect to field galaxies, and this effect can be due either to traces of young stars or to differences in the delay time distribution.

F. Mannucci

2007-08-03T23:59:59.000Z

162

Asymmetric Explosions of Thermonuclear Supernovae  

E-Print Network (OSTI)

A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found that a total asymmetry of about 50 % is produced between the polar and equatorial directions for progenitors with a surface magnetic field B ~ 5 x 10^{7} G, and a composition C12 = 0.2 and O16 = 0.8 (in this case, the R-T instability saturates at scales \\~ 20 times the width of the flame front). This asymmetry is in good agreement with the inferred asymmetries from spectropolarimetric observations of very young supernova remnants, which have recently revealed intrinsic linear polarization interpreted as evidence of an asymmetric explosion in several objects,such as SN1999by, SN1996X, and SN1997dt. Larger magnetic field strengths will produce even larger asymmetries. We have also found that for lighter progenitors the total asymmetry is larger.

C. R. Ghezzi; E. M. de Gouveia Dal Pino; J. E. Horvath

2002-11-27T23:59:59.000Z

163

Dark energy constraints from a space-based supernova survey  

E-Print Network (OSTI)

We present a forecast of dark energy constraints that could be obtained from a large sample of distances to Type Ia supernovae detected and measured from space. We simulate the supernova events as they would be observed by a EUCLID-like telescope with its two imagers, assuming those would be equipped with 4 visible and 3 near infrared swappable filters. We account for known systematic uncertainties affecting the cosmological constraints, including those arising through the training of the supernova model used to fit the supernovae light curves. Using conservative assumptions and Planck priors, we find that a 18 month survey would yield constraints on the dark energy equation of state comparable to the cosmic shear approach in EUCLID: a variable two-parameter equation of state can be constrained to ~0.03 at z~0.3. These constraints are derived from distances to about 13,000 supernovae out to z=1.5, observed in two cones of 10 and 50 deg^2. These constraints do not require measuring a nearby supernova sample fr...

Astier, P; Pain, R; Balland, C

2010-01-01T23:59:59.000Z

164

SELECTION OF CORE DESIGN NO. 1 FOR TYPE 5 REPLACEMENT CORES IN SM-1 AND SM- 1A  

SciTech Connect

Nuclear and thermal analyses were performed to determine the characteristics of the Type 5 core in the SM-1 and SM-1A reactor plants as a function of geometry and composition. The following nuclear properties were investigated: core energy release, maximum midlife reactivity, average fuel burnup fraction, B-10 reactivity coefficient, and power distribution. Thermal parameter surveys determined the effects of channel thickness and power distribution upon the DNBR, nominal and hot channel thermal performance, and fuel plate thermal stress. From the nuclear and thermal analyses, a Type 5 core reference design was selected with fuel plates of 70-mil plate thick ness, 7-mil clad thickness, and 38 wt % UO/sub 2/ in the matrix, having initial core loading o4 108 Kg U/syup 235 and 260 gm B/sup 10/. (auth)

Davidson, S.L.; Paluszkiewicz, S.

1962-07-01T23:59:59.000Z

165

VHE Gamma-ray Supernova Remnants  

SciTech Connect

Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

Funk, Stefan; /KIPAC, Menlo Park

2007-01-22T23:59:59.000Z

166

Distant Supernovae and the Accelerating Universe  

E-Print Network (OSTI)

The observation of SN 1997ff at redshift 1.7 has been claimed to refute alternative models such as grey dust or evolution for the faintness of distant supernovae, leaving only an accelerating Universe as a viable model. However, a very simple one parameter evolution model, with the peak luminosity varying as an exponential function of cosmic time, converts the flux vs. distance law of the critical density matter-dominated model into that of the concordance Omega_matter = 0.3 flat vacuum-dominated model with an error no larger than 0.03 mag over the range 0-2 in redshift. A grey dust model that matches this accuracy can easily be contrived but it still fails by overproducing the far-IR background or distorting the CMB. Models that involve oscillation between photons and axions could emulate an exponential function of cosmic time without violating these background constraints. Clearly a better and well-tested understanding of the Type Ia supernova explosion mechanism and the origin of the correlation between the decay rate and luminosity is needed before any effort to reduce statistical errors in the supernova Hubble diagram to very small levels.

E. L. Wright

2002-01-12T23:59:59.000Z

167

Boiling of nuclear liquid in core-collapse supernova explosions  

E-Print Network (OSTI)

We investigate the possibility of boiling instability of nuclear liquid in the inner core of the proto-neutron star formed in the core collapse of a type II supernova. We derive a simple criterion for boiling to occur. Using this criterion for one of best described equations of state of supernova matter, we find that boiling is quite possible under the conditions realized inside the proto-neutron star. We discuss consequences of this process such as the increase of heat transfer rate and pressure in the boiling region. We expect that taking this effect into account in the conventional neutrino-driven delayed-shock mechanism of type II supernova explosions can increase the explosion energy and reduce the mass of the neutron-star remnant.

Peter Fomin; Dmytro Iakubovskyi; Yuri Shtanov

2007-08-31T23:59:59.000Z

168

Boiling of nuclear liquid in core-collapse supernova explosions  

E-Print Network (OSTI)

We investigate the possibility of boiling instability of nuclear liquid in the inner core of the proto-neutron star formed in the core collapse of a type II supernova. We derive a simple criterion for boiling to occur. Using this criterion for one of best described equations of state of supernova matter, we find that boiling is quite possible under the conditions realized inside the proto-neutron star. We discuss consequences of this process such as the increase of heat transfer rate and pressure in the boiling region. We expect that taking this effect into account in the conventional neutrino-driven delayed-shock mechanism of type II supernova explosions can increase the explosion energy and reduce the mass of the neutron-star remnant.

Fomin, Peter; Shtanov, Yuri

2007-01-01T23:59:59.000Z

169

THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS  

SciTech Connect

Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

Ji Suoqing; Fisher, Robert T. [University of Massachusetts Dartmouth, Department of Physics, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Garcia-Berro, Enrique [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Tzeferacos, Petros; Jordan, George; Lee, Dongwook [Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, IL 60637 (United States); Loren-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cremer, Pascal [Bethe Center for Theoretical Physics, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Behrends, Jan [Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany)

2013-08-20T23:59:59.000Z

170

Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets  

SciTech Connect

This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

Chad Pope; Larry L. Taylor; Soon Sam Kim

2007-02-01T23:59:59.000Z

171

The Lick Observatory Supernova Search  

Science Conference Proceedings (OSTI)

We report here the current status of the Lick Observatory Supernova Search (LOSS) with the Katzman Automatic Imaging Telescope (KAIT). The progress on both the hardware and the software of the system is described

W. D. Li; A. V. Filippenko; R. R. Treffers; A. Friedman; E. Halderson; R. A. Johnson; J. Y. King; M. Modjaz; M. Papenkova; Y. Sato; T. Shefler

2000-01-01T23:59:59.000Z

172

Asymmetric Explosions of Thermonuclear Supernovae  

E-Print Network (OSTI)

A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found...

Ghezzi, C R; Horváth, J E

2004-01-01T23:59:59.000Z

173

Asymmetric Explosions of Thermonuclear Supernovae  

E-Print Network (OSTI)

A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found that a total asymmetry of about 50 % is produced between the polar and equatorial directions for progenitors with a surface magnetic field B ? 5 × 10 7 G, and

C. R. Ghezzi; J. E. Horvath; Săo Paulo

2003-01-01T23:59:59.000Z

174

FIRST LABORATORY OBSERVATION OF SILICA GRAINS FROM CORE COLLAPSE SUPERNOVAE  

SciTech Connect

We report the discovery of two supernova silica (SiO{sub 2}) grains in the primitive carbonaceous chondrites LaPaZ 031117 and Grove Mountains 021710. Only five presolar silica grains have been previously reported from laboratory measurements but they all exhibit enrichments in {sup 17}O relative to solar, indicating origins in the envelopes of asymptotic giant branch stars. The two SiO{sub 2} grains identified in this study are characterized by moderate enrichments in {sup 18}O relative to solar, indicating that they originated in Type II supernova ejecta. If compared to theoretical models, the oxygen isotopic compositions of these grains can be reproduced by mixing of different supernova zones. While both theoretical models of grain condensation and recent NASA Spitzer Space Telescope observations have suggested the presence of silica in supernova ejecta, no such grains had been identified, until now, in meteorites. The discovery of these two silica grains provides definitive evidence of the condensation of silica dust in supernova ejecta.

Haenecour, Pierre; Floss, Christine; Zinner, Ernst [Laboratory for Space Sciences, McDonnell Center for the Space Sciences and Physics Department, Washington University, One Brookings Drive, St. Louis, MO 63130-4899 (United States); Zhao Xuchao; Lin Yangting, E-mail: haenecour@wustl.edu [Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

2013-05-01T23:59:59.000Z

175

A Critique of Supernova Data Analysis in Cosmology  

E-Print Network (OSTI)

Observational astronomy has shown significant growth over the last decade and made important contributions to cosmology. A major paradigm shift in cosmology was brought about by the observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although the supernovae data-sets of high quality are being produced, their statistical analysis leaves much to be desired. Instead of using the data to test the model directly, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.

Vishwakarma, Ram Gopal

2010-01-01T23:59:59.000Z

176

A Critique of Supernova Data Analysis in Cosmology  

E-Print Network (OSTI)

Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high quality supernovae data-sets are being produced, their statistical analysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.

Ram Gopal Vishwakarma; Jayant V. Narlikar

2010-10-25T23:59:59.000Z

177

Rates and progenitors of type Ia supernovae  

E-Print Network (OSTI)

Propulsion Laboratory, operated under contract NAS7-030001 with the National Aeronautics and SpacePropulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Wood-Vasey, William Michael

2004-01-01T23:59:59.000Z

178

Supernova Reverse Shocks and SiC Growth  

E-Print Network (OSTI)

We present new mechanisms by which the isotopic compositions of X-type grains of presolar SiC are altered by reverse shocks in Type II supernovae. We address three epochs of reverse shocks: pressure wave from the H envelope near t = 10 6 s; reverse shock from the presupernova wind near 10 8-10 9 s; reverse shock from the ISM near 10 10 s. Using 1-D hydrodynamics we show that the first creates a dense shell of Si and C atoms near 10 6 s in which the SiC surely condenses. The second reverse shock causes precondensed grains to move rapidly forward through decelerated gas of different isotopic composition, during which implantation, sputtering and further condensation occur simultaneously. The third reverse shock causes only further ion implantation and sputtering, which may affect trace element isotopic compositions. Using a 25M ? supernova model we propose solutions to the following unsolved questions: where does SiC condense?; why does SiC condense in preference to graphite?; why is condensed SiC 28 Si-rich?; why is O richness no obstacle to SiC condensation?; how many atoms of each isotope are impacted by a grain that condenses at time t0 at radial coordinate r0? These many considerations are put forward as a road map for interpreting SiC X grains found in meteorites and their meaning for supernova physics. Subject headings: —supernova remnants —dust extinction —infrared:stars —astrochemistry 1.

Ethan A. -n. Deneault; Donald D. Clayton

2003-01-01T23:59:59.000Z

179

The supernova that destroyed a galaxy  

NLE Websites -- All DOE Office Websites (Extended Search)

The supernova that destroyed a galaxy The supernova that destroyed a galaxy The supernova that destroyed a galaxy The research may solve the long-standing puzzle of how supermassive black holes were formed in the centers of some galaxies less then a billion years after the Big Bang. August 5, 2013 Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) The Los Alamos simulation is the most realistic cosmological supernova simulation ever performed of this process. New supercomputer simulations by Los Alamos scientists and collaborators capture in unprecedented detail extremely powerful supernovae explosions in the early universe and their effect on the nascent galaxies that gave birth

180

Supernovae and Cosmology Bruno Leibundgut  

E-Print Network (OSTI)

distances they have become critical probes to further explore astrophysical e#ects, like dust properties a secondary bias into the observations of the distant supernovae, which needs to be carefully evaluated of the universe, and the accelerated cosmic expansion directly inferred from the apparent faintness of the distant

Leibundgut, Bruno

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The supernova that destroyed a galaxy  

NLE Websites -- All DOE Office Websites (Extended Search)

August » August » The supernova that destroyed a galaxy The supernova that destroyed a galaxy The research may solve the long-standing puzzle of how supermassive black holes were formed in the centers of some galaxies less then a billion years after the Big Bang. August 5, 2013 Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) The Los Alamos simulation is the most realistic cosmological supernova simulation ever performed of this process. New supercomputer simulations by Los Alamos scientists and collaborators capture in unprecedented detail extremely powerful supernovae explosions in the early universe and their effect on the nascent galaxies that gave birth

182

The GALEX View of Supernova Hosts  

E-Print Network (OSTI)

We exploit the accumulating, high-quality, multi-wavelength imaging data of nearby supernova (SN) hosts to explore the relationship between SN production and host galaxy evolution. The Galaxy Evolution Explorer (GALEX, Martin et al., 2005) provides ultraviolet (UV) imaging in two bands, complementing data in the optical and infra-red (IR). We compare host properties, derived from spectral energy distribution (SED) fitting, with nearby, well-observed SN Ia light curve properties. We also explore where the hosts of different types of SNe fall relative to the red and blue sequences on the galaxy UV-optical color-magnitude diagram (CMD, Wyder et al., 2007). We conclude that further exploration and larger samples will provide useful results for constraining the progenitors of SNe.

Neill, James D; Seibert, Mark

2008-01-01T23:59:59.000Z

183

The GALEX View of Supernova Hosts  

E-Print Network (OSTI)

We exploit the accumulating, high-quality, multi-wavelength imaging data of nearby supernova (SN) hosts to explore the relationship between SN production and host galaxy evolution. The Galaxy Evolution Explorer (GALEX, Martin et al., 2005) provides ultraviolet (UV) imaging in two bands, complementing data in the optical and infra-red (IR). We compare host properties, derived from spectral energy distribution (SED) fitting, with nearby, well-observed SN Ia light curve properties. We also explore where the hosts of different types of SNe fall relative to the red and blue sequences on the galaxy UV-optical color-magnitude diagram (CMD, Wyder et al., 2007). We conclude that further exploration and larger samples will provide useful results for constraining the progenitors of SNe.

James D. Neill; Mark Sullivan; Mark Seibert

2008-12-22T23:59:59.000Z

184

Comment on the preprint Neutrino Flavor Evolution Near a Supernova`s Core  

SciTech Connect

The revised version of the widely circulated preprint ``Neutrino Flavor Evolution Near A Supernova`s Core`` by J. Pantaleone (astro-ph 9405008 on the bulletin Board, Indiana University preprint IUHET-276) is wrong. It contains two errors which lead to incorrect conclusions regarding neutrino flavor transformation in the supernova environment. In this short note we discuss these errors.

Pantaleone, J.; Qian, Yong-Zhong; Fuller, G.M.

1994-08-01T23:59:59.000Z

185

Supernovae constraints on dark energy and modified gravity models  

E-Print Network (OSTI)

We use the Type Ia Supernova gold sample to constrain the parameters of dark energy models namely the Cardassian, Dvali-Turner (DT) and generalized Chaplygin gas (GCG) models. In our best fit analysis for these dark energy proposals we consider flat and the non-flat priors. For all models, we find that relaxing the flatness condition implies that data favors a positive curvature; moreover, the GCG model is nearly flat, as required by Cosmic Microwave Background (CMB) observations.

M. C. Bento; O. Bertolami; N. M. C. Santos; A. A. Sen

2005-12-03T23:59:59.000Z

186

First-Year Spectroscopy for the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

Zheng, Chen; Romani, Roger W.; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A.; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert

2008-03-25T23:59:59.000Z

187

First-Year Spectroscopy for the SDSS-II Supernova Survey  

E-Print Network (OSTI)

This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

Chen Zheng; Roger W. Romani; Masao Sako; John Marriner; Bruce Bassett; Andrew Becker; Changsu Choi; David Cinabro; Fritz DeJongh; Darren L. Depoy; Ben Dilday; Mamoru Doi; Joshua A. Frieman; Peter M. Garnavich; Craig J. Hogan; Jon Holtzman; Myungshin Im; Saurabh Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; Jennifer L. Marshall; David McGinnis; Gajus Miknaitis; Robert C. Nichol; Jose Luis Prieto; Adam G. Riess; Michael W. Richmond; Donald P. Schneider; Mathew Smith; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden; Naoki Yasuda; Roberto J. Assef; John Barentine; Ralf Bender; Roger D. Blandford; Malcolm Bremer; Howard Brewington; Chris A. Collins; Arlin Crotts; Jack Dembicky; Jason Eastman; Alastair Edge; Ed Elson; Michael E. Eyler; Alexei V. Filippenko; Ryan J. Foley; Stephan Frank; Ariel Goobar; Michael Harvanek; Ulrich Hopp; Yutaka Ihara; Steven Kahn; William Ketzeback; Scott J. Kleinman; Wolfram Kollatschny; Jurek Krzesi?ski; Giorgos Leloudas; Daniel C. Long; John Lucey; Elena Malanushenko; Viktor Malanushenko; Russet J. McMillan; Christopher W. Morgan; Tomoki Morokuma; Atsuko Nitta; Linda Ostman; Kaike Pan; A. Kathy Romer; Gabrelle Saurage; Katie Schlesinger; Stephanie A. Snedden; Jesper Sollerman; Maximilian Stritzinger; Linda C. Watson; Shannon Watters; J. Craig Wheeler; Donald York

2008-02-21T23:59:59.000Z

188

First-Year Spectroscopy for the SDSS-II Supernova Survey  

E-Print Network (OSTI)

This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existi...

Zheng, Chen; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A; Garnavich, Peter M; Hogan, Craig J; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert; Marshall, Jennifer L; McGinnis, David; Miknaitis, Gajus; Nichol, Robert C; Prieto, Jose Luis; Riess, Adam G; Richmond, Michael W; Schneider, Donald P; Smith, Mathew; Takanashi, Naohiro; Tokita, Kouichi; van der Heyden, Kurt; Yasuda, Naoki; Assef, Roberto J; Barentine, John; Bender, Ralf; Blandford, Roger D; Bremer, Malcolm; Brewington, Howard; Collins, Chris A; Crotts, Arlin; Dembicky, Jack; Eastman, Jason; Edge, Alastair; Elson, Ed; Eyler, Michael E; Filippenko, Alexei V; Foley, Ryan J; Frank, Stephan; Goobar, Ariel; Harvanek, Michael; Hopp, Ulrich; Ihara, Yutaka; Kahn, Steven; Ketzeback, William; Kleinman, Scott J; Kollatschny, Wolfram; KrzesiĹ?ski, Jurek; Leloudas, Giorgos; Long, Daniel C; Lucey, John; Malanushenko, Elena; Malanushenko, Viktor; McMillan, Russet J; Morgan, Christopher W; Morokuma, Tomoki; Nitta, Atsuko; Ostman, Linda; Pan, Kaike; Romer, A Kathy; Saurage, Gabrelle; Schlesinger, Katie; Snedden, Stephanie A; Sollerman, Jesper; Stritzinger, Maximilian; Watson, Linda C; Watters, Shannon; Wheeler, J Craig; York, Donald

2008-01-01T23:59:59.000Z

189

Supernova Reverse Shocks and SiC Growth  

E-Print Network (OSTI)

We present new mechanisms by which the isotopic compositions of X-type grains of presolar SiC are altered by reverse shocks in Type II supernovae. We address three epochs of reverse shocks: pressure wave from the H envelope near t = 10$^6$s; reverse shock from the presupernova wind near 10$^8-10^9$s; reverse shock from the ISM near 10$^{10}$s. Using 1-D hydrodynamics we show that the first creates a dense shell of Si and C atoms near 10$^6$s in which the SiC surely condenses. The second reverse shock causes precondensed grains to move rapidly forward through decelerated gas of different isotopic composition, during which implantation, sputtering and further condensation occur simultaneously. The third reverse shock causes only further ion implantation and sputtering, which may affect trace element isotopic compositions. Using a 25M$_{\\odot}$ supernova model we propose solutions to the following unsolved questions: where does SiC condense?; why does SiC condense in preference to graphite?; why is condensed SiC $^{28}$Si-rich?; why is O richness no obstacle to SiC condensation?; how many atoms of each isotope are impacted by a grain that condenses at time t$_0$ at radial coordinate r$_0$? These many considerations are put forward as a road map for interpreting SiC X grains found in meteorites and their meaning for supernova physics.

E. A. -N. Deneault; D. D. Clayton; A. Heger

2003-02-06T23:59:59.000Z

190

Tachyon cosmology, supernovae data, and the big brake singularity  

SciTech Connect

We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard {lambda}CDM model.

Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Kamenshchik, A. Yu. [Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Department of Experimental Physics, University of Szeged, Dom Ter 9, Szeged 6720 (Hungary); Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Department of Experimental Physics, University of Szeged, Dom Ter 9, Szeged 6720 (Hungary); Department of Applied Science, London South Bank University, 103 Borough Road, London SE1 OAA (United Kingdom); Dipartimento di Scienze Fisiche e Mathematiche, Universita dell'Insubria, Via Valleggio 11, 22100 Como (Italy); INFN, sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Dipartimento di Fisica and INFN, via Irnerio 46, 40126 Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Kosygin street 2, 119334 Moscow (Russian Federation)

2009-04-15T23:59:59.000Z

191

Inside the supernova a powerful convective engine  

E-Print Network (OSTI)

We present an extensive study of the inception of supernova explosions by following the evolution of the cores of two massive stars (15 Msun and 25 Msun) in two dimensions. Our calculations begin at the onset of core collapse and stop several 100 ms after the bounce, at which time successful explosions of the appropriate magnitude have been obtained. (...) Guided by our numerical results, we have developed a paradigm for the supernova explosion mechanism. We view a supernova as an open cycle thermodynamic engine in which a reservoir of low-entropy matter (the envelope) is thermally coupled and physically connected to a hot bath (the protoneutron star) by a neutrino flux, and by hydrodynamic instabilities. (...) In essence, a Carnot cycle is established in which convection allows out-of-equilibrium heat transfer mediated by neutrinos to drive low entropy matter to higher entropy and therefore extracts mechanical energy from the heat generated by gravitational collapse. We argue that supernova explosions are ne...

Herant, M; Hix, W R; Fryer, C F; Colgate, S A; Marc Herant; Willy Benz; Chris F Fryer; Stirling Colgate

1994-01-01T23:59:59.000Z

192

A Massive Stellar Burst Before the Supernova  

NLE Websites -- All DOE Office Websites (Extended Search)

a huge amount of mass only 40 days before the supernova was detected. They labeled the event, SN 2010mc. "After NERSC tools found SN 2010mc, we went back through the archives...

193

Cosmic Ray Spectrum in Supernova Remnant Shocks  

E-Print Network (OSTI)

We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion assumed, and simple models for Alfvenic drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM, if the injection fraction is larger than 10^{-4}, the DSA is efficient enough to convert more than 20 % of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to E^{-1.6}. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM, with an injection fraction smaller than 10^{-4}, are inefficient accelerators with...

Kang, Hyesung

2010-01-01T23:59:59.000Z

194

The X-ray Crystal Structures of Human {alpha}-Phosphomannomutase 1 Reveal the Structural Basis of Congenital Disorder of Glycosylation Type 1a  

SciTech Connect

Carbohydrate-deficient glycoprotein syndrome type 1a (CDG-1a) is a congenital disease characterized by severe defects in nervous system development. It is caused by mutations in alpha -phosphomannomutase (of which there are two isozymes, {alpha}-PMM1 and {alpha}-PPM2). Here we report the X-ray crystal structures of human {alpha}-PMM1 in the open conformation, with and without the bound substrate, {alpha}-D-mannose 1-phosphate. {alpha}-PMM1, like most Haloalkanoic Acid Dehalogenase Superfamily (HADSF) members, consists of two domains, the cap and core, which open to bind substrate and then close to provide a solvent exclusive environment for catalysis. The substrate phosphate group is observed at a positively charged site of the cap domain, rather than at the core domain phosphoryl-transfer site defined by the D19 nucleophile and Mg{sup 2+} cofactor. This suggests that substrate binds first to the cap and then is swept into the active site upon cap closure. The orientation of the acid/base residue D21 suggests that {alpha}-PMM uses a different method of protecting the aspartylphosphate from hydrolysis than the HADSF member {beta}-phosphoglucomutase. It is hypothesized that the electrostatic repulsion of positive charges at the interface of the cap and core domains stabilizes {alpha}-PMM1 in the open conformation, and that the negatively charged substrate binds to the cap, thereby facilitating its closure over the core domain. The two isozymes {alpha}-PMM1 and {alpha}-PMM2 are shown to have a conserved active-site structure and to display similar kinetic properties. Analysis of the known mutation sites in the context of the structures reveals the genotype-phenotype relationship underlying CDG-1a.

Silvaggi,N.; Zhang, C.; Lu, Z.; Dai, J.; Dunaway-Mariano, D.; Allen, K.

2006-01-01T23:59:59.000Z

195

Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS)  

E-Print Network (OSTI)

To measure the supernova (SN) rates at intermediate redshift we performed the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the rate for both type Ia and core collapse (CC) SNe. We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of ~43000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour. The type Ia SN rate, at mean redshift z=0.3, amounts to 0.22^{+0.10+0.16}_{-0.08 -0.14} h_{70}^2 SNu, while the CC SN rate, at z=0.21, is 0.82^{+0.31 +0.30}_{-0.24 -0.26} h_{70}^2 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to local value, the CC SN rate at z=0.2 is higher by a factor of ~2 already at redshift, whereas the type Ia SN rate remains almost constant. This implies that a significant fraction of SN Ia progenitors has a lifetime longer than 2-3 Gyr. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. SN rates per unit volume were found to be consistent with other measurements showing a steeper evolution with redshift for CC SNe with respect to SNe Ia. Finally we have exploited the link between star formation (SF) and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

M. T. Botticella; M. Riello; E. Cappellaro; S. Benetti; G. Altavilla; A. Pastorello; M. Turatto; L. Greggio; F. Patat; S. Valenti; L. Zampieri; A. Harutyunyan; G. Pignata; S. Taubenberger

2007-10-19T23:59:59.000Z

196

Fingerprints of a Local Supernova  

E-Print Network (OSTI)

The results of precise analysis of elements and isotopes in meteorites, comets, the Earth, the Moon, Mars, Jupiter, the solar wind, solar flares, and the solar photosphere since 1960 reveal fingerprints of a local supernova (SN), undiluted by interstellar material. Heterogeneous SN debris formed the planets. The Sun formed on the neutron (n) rich SN core. The ground-state masses of nuclei reveal repulsive n-n interactions that trigger n-emission and a series of nuclear reactions that generate solar luminosity, the solar wind, and the measured flux of solar neutrinos. The location of the Sun's high-density core shifts relative to the solar surface as gravitational forces exerted by the major planets cause the Sun to experience abrupt acceleration and deceleration, like a yoyo on a string, in its orbit about the ever-changing centre-of-mass of the solar system. Solar cycles (surface magnetic activity, solar eruptions, and sunspots) and major climate changes arise from changes in the depth of the energetic SN co...

Manuel, Oliver

2009-01-01T23:59:59.000Z

197

Fingerprints of a Local Supernova  

E-Print Network (OSTI)

The results of precise analysis of elements and isotopes in meteorites, comets, the Earth, the Moon, Mars, Jupiter, the solar wind, solar flares, and the solar photosphere since 1960 reveal fingerprints of a local supernova (SN), undiluted by interstellar material. Heterogeneous SN debris formed the planets. The Sun formed on the neutron (n) rich SN core. The ground-state masses of nuclei reveal repulsive n-n interactions that trigger n-emission and a series of nuclear reactions that generate solar luminosity, the solar wind, and the measured flux of solar neutrinos. The location of the Sun's high-density core shifts relative to the solar surface as gravitational forces exerted by the major planets cause the Sun to experience abrupt acceleration and deceleration, like a yoyo on a string, in its orbit about the ever-changing centre-of-mass of the solar system. Solar cycles (surface magnetic activity, solar eruptions, and sunspots) and major climate changes arise from changes in the depth of the energetic SN core remnant in the interior of the Sun.

Oliver Manuel; Hilton Ratcliffe

2009-05-05T23:59:59.000Z

198

Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics  

E-Print Network (OSTI)

We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.

Tomasz Plewa

2006-11-24T23:59:59.000Z

199

On the Brightness of Supernova Ia  

E-Print Network (OSTI)

Before 1998 the universe expansion was thought to be slowing down. After 1998 the universe expansion is thought to be accelerating up. The key evidence came from the observed brightness of high redshift supernovae Ia in 1998. Astronomers found that the observed brightness of high redshift supernovae Ia is fainter than expected. Astronomers believe this means that the universe expansion is accelerating up. In this paper it is argued that if the ionized gas in the universe space is taken into account, then the brightness of the high redshift supernova Ia should be fainter than expected. The universe expansion does not need to be accelerating up. The exotic form of energy (dark energy) does not need to be introduce

Yijia Zheng

2013-10-01T23:59:59.000Z

200

Probing Exotic Physics With Supernova Neutrinos  

Science Conference Proceedings (OSTI)

Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

Kelso, Chris; Hooper, Dan

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Physics in Core-Collapse Supernovae  

SciTech Connect

Core-collapse and the launch of a supernova explosion form a very short episode of few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 1053 erg is transformed into observable neutrino-, kinetic-, and electromagnetic radiation energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

Liebendoerfer, Matthias [Universitat Basel, Switzerland; Fischer, T. [University of Basel; Froelich, C. [University of Chicago; Hix, William Raphael [ORNL; Langanke, Karlheinz [Gesellschaft fur Schwerionenforschung (GSI), Germany; Martinez-Pinedo, Gabriel [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mezzacappa, Anthony [ORNL; Scheidegger, Simon [Universitat Basel, Switzerland; Thielemann, Friedrich-Karl W. [Universitat Basel, Switzerland; Whitehouse, Stuart [Universitat Basel, Switzerland

2008-01-01T23:59:59.000Z

202

Nuclear Physics in Core-Collapse Supernovae  

SciTech Connect

Core collapse and the launch of a supernova explosion form a very short episode of a few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 10^{51} erg is transformed into observable neutrino, kinetic, and optical energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

Liebendoerfer, M. [University of Basel; Fischer, T. [University of Basel; Froelich, C. [University of Chicago, Chicago, IL; Hix, William Raphael [ORNL; Langanke, Karlheinz [Gesellschaft f?r Schwerionenforschung (GSI), Germany; Mart?nez-Pinedo, Gabriel [Gesellschaft f?r Schwerionenforschung (GSI), Germany; Mezzacappa, Anthony [ORNL; Scheidegger, Simon [Universit?t Basel, Switzerland; Thielemann, F.-K. [University of Basel; Whitehouse, S. [University of Basel

2008-10-01T23:59:59.000Z

203

Supernova VLBI in the present and with the SKA  

E-Print Network (OSTI)

VLBI is the only technology that will allow sub-milliarcsecond resolution imaging in the near future. As such, it is the only way to image expanding supernovae in nearby galaxies. Such images potentially allow us to study the early evolution of neutron stars or black holes left behind by core-collapse supernovae, the circumstellar wind history of the supernova progenitor stars, the shock acceleration of cosmic-ray particles in supernovae as well as the evolutionary process by which supernova shells merge into, and enrich, the ISM. I will discuss the results of the on-going VLBI imaging campaigns on supernovae 1986J and 1993J. I will also discuss the impact on supernova VLBI of the proposed South-African Karoo Array Telescope and Australian ASKAP arrays, as well as the SKA itself, as these telescopes will greatly increase the sensitivity of the global VLBI network.

M. F. Bietenholz

2008-02-28T23:59:59.000Z

204

Supernova VLBI in the present and with the SKA  

E-Print Network (OSTI)

VLBI is the only technology that will allow sub-milliarcsecond resolution imaging in the near future. As such, it is the only way to image expanding supernovae in nearby galaxies. Such images potentially allow us to study the early evolution of neutron stars or black holes left behind by core-collapse supernovae, the circumstellar wind history of the supernova progenitor stars, the shock acceleration of cosmic-ray particles in supernovae as well as the evolutionary process by which supernova shells merge into, and enrich, the ISM. I will discuss the results of the ongoing VLBI imaging campaigns on supernova 1986J and 1993J. I will also discuss the impact on supernova VLBI of the proposed South-African Karoo Array Telescope and Australian ASKAP arrays, as well as the SKA itself, as these telescopes will greatly increase the sensitivity of the global VLBI network. From planets to dark energy: the modern radio universe

unknown authors

2007-01-01T23:59:59.000Z

205

Supernova VLBI in the present and with the SKA  

E-Print Network (OSTI)

VLBI is the only technology that will allow sub-milliarcsecond resolution imaging in the near future. As such, it is the only way to image expanding supernovae in nearby galaxies. Such images potentially allow us to study the early evolution of neutron stars or black holes left behind by core-collapse supernovae, the circumstellar wind history of the supernova progenitor stars, the shock acceleration of cosmic-ray particles in supernovae as well as the evolutionary process by which supernova shells merge into, and enrich, the ISM. I will discuss the results of the on-going VLBI imaging campaigns on supernovae 1986J and 1993J. I will also discuss the impact on supernova VLBI of the proposed South-African Karoo Array Telescope and Australian ASKAP arrays, as well as the SKA itself, as these telescopes will greatly increase the sensitivity of the global VLBI network.

Bietenholz, M F

2008-01-01T23:59:59.000Z

206

Effects of Supernova Feedback on the Formation of Galaxies  

E-Print Network (OSTI)

We study the effects of Supernova (SN) feedback on the formation of galaxies using hydrodynamical simulations in a Lambda-CDM cosmology. We use an extended version of the code GADGET-2 which includes chemical enrichment and energy feedback by Type II and Type Ia SN, metal-dependent cooling and a multiphase model for the gas component. We focus on the effects of SN feedback on the star formation process, galaxy morphology, evolution of the specific angular momentum and chemical properties. We find that SN feedback plays a fundamental role in galaxy evolution, producing a self-regulated cycle for star formation, preventing the early consumption of gas and allowing disks to form at late times. The SN feedback model is able to reproduce the expected dependence on virial mass, with less massive systems being more strongly affected.

Cecilia Scannapieco; Patricia B. Tissera; Simon D. M. White; Volker Springel

2008-08-20T23:59:59.000Z

207

"Cosmologists have used these supernovae very pro-  

E-Print Network (OSTI)

bursts. For decades after their ini- tial discovery by military satel- lites in the 1960s, gamma-ray" bursts lasting more than two seconds) a gamma-ray burst accompanies the birth of a black hole from- ing new data on supernovae and gamma-ray bursts, and with computer scientists with expertise

Zhang, Yi

208

Spectroscopic confirmation of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey  

E-Print Network (OSTI)

The Subaru Deep Field (SDF) Supernova Survey discovered 10 Type Ia supernovae (SNe Ia) in the redshift range $1.5

Frederiksen, Teddy F; Hjorth, Jens; Maoz, Dan; Poznanski, Dovi

2012-01-01T23:59:59.000Z

209

Inside the Supernova: A Powerful Convective Engine  

E-Print Network (OSTI)

Condensed Abstract: We present an extensive study of the inception of supernova explosions by following the evolution of the cores of two massive stars (15 Msun and 25 Msun) in two dimensions. Our calculations begin at the onset of core collapse and stop several 100 ms after the bounce, at which time successful explosions of the appropriate magnitude have been obtained. (...) Guided by our numerical results, we have developed a paradigm for the supernova explosion mechanism. We view a supernova as an open cycle thermodynamic engine in which a reservoir of low-entropy matter (the envelope) is thermally coupled and physically connected to a hot bath (the protoneutron star) by a neutrino flux, and by hydrodynamic instabilities. (...) In essence, a Carnot cycle is established in which convection allows out-of-equilibrium heat transfer mediated by neutrinos to drive low entropy matter to higher entropy and therefore extracts mechanical energy from the heat generated by gravitational collapse. We argue that supernova explosions are nearly guaranteed and self-regulated by the high efficiency of the thermodynamic engine. (...) Convection continues to accumulate energy exterior to the neutron star until a successful explosion has occurred. At this time, the envelope is expelled and therefore uncoupled from the heat source (the neutron star) and the energy input ceases. This paradigm does not invoke new or modified physics over previous treatments, but relies on compellingly straightforward thermodynamic arguments. It provides a robust and self-regulated explosion mechanism to power supernovae which is effective under a wide range of physical parameters.

Marc Herant; Willy Benz; W. Raphael Hix; Chris F. Fryer; Stirling Colgate

1994-04-12T23:59:59.000Z

210

Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey  

Science Conference Proceedings (OSTI)

We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Survey in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.

Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Conley, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Hicken, M.; Krisciunas, K.; /Harvard-Smithsonian Ctr. Astrophys. /Fermilab /Harvard U. /UC, Berkeley, Astron. Dept. /KIPAC, Menlo Park /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Notre Dame U. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Res. Sch. Astron. Astrophys., Weston Creek /Chile U., Catolica /Toronto U., Astron. Dept. /Bohr Inst. /Stockholm U. /Texas A-M /European Southern Observ. /NOAO, Tucson /Ohio State U., Dept. Astron. /Inst. Astron., Honolulu

2007-01-05T23:59:59.000Z

211

Sloan Digital Sky Survey's (SDSS) Supernova Data and the Stripe82 Database  

DOE Data Explorer (OSTI)

The Sloan Digital Sky Survey (SDSS) is a series of three interlocking imaging and spectroscopic surveys, carried out over an eight-year period with a dedicated 2.5m telescope located at Apache Point Observatory in Southern New Mexico. The seventh data release (DR7) from the SDSS represents a completion of the overall, original project, though SDSS-III began in 2008 and will build upon the knowledge gained already.

The SDSS Supernova Survey was one of those three components of SDSS and SDSS-II, a 3-year extension of the original SDSS that operated from July 2005 to July 2008. The Supernova Survey was a time-domain survey, involving repeat imaging of the same region of sky every other night, weather permitting. The primary scientific motivation was to detect and measure light curves for several hundred supernovae through repeat scans of the SDSS Southern equatorial stripe 82 (about 2.5? wide by ~120? long). Over the course of three 3-month campaigns SDSS-II SN discovered and measured multi-band lightcurves for ~500 spectroscopically confirmed Type Ia supernovae in the redshift range z=0.05-0.4. In addition, the project harvested a few hundred light curves for SNe Ia and discovered about 80 spectroscopically confirmed core-collapse supernovae (supernova types Ib/c and II).[taken and edited from Supernova Survey page at http://www.sdss.org/supernova/aboutsupernova.html]

All three surveys summarized are:

  • Legacy: an imaging survey in five bands over a contiguous 7646 deg2 high-latitude elliptical region in the Northern Galactic Cap, plus an additional 750 deg2 in the Southern Galactic Cap, together with spectroscopy of complete samples of galaxies and quasars covering about 8200 square degrees. The total imaging area in the Legacy survey is 8423 square degrees.
  • SEGUE (Sloan Extension for Galactic Understanding and Exploration): additional imaging of 3240 deg2 of sky at lower Galactic latitudes, together with spectroscopy of 240,000 stars towards 200 sightlines covering 1400 square degrees (spread throughout the Legacy and SEGUE imaging footprints), to study the structure of the Milky Way.
  • Supernova: the equivalent of about 80 repeated imaging scans of the Southern Equatorial Stripe (ra > 310 or ra < 59; -1.25 > dec < 1.25) obtained in variable weather conditions (some clouds) to search for supernovae in the redshift range 0.1 < z < 0.4.
The catalog derived from the images includes more than 350 million celestial objects, and spectra of 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data are fully calibrated and reduced, carefully checked for quality, and publically accessible through efficient databases. The data have been publicly released in a series of annual data releases, culminating in the final data release, DR7.[Copied from http://www.sdss.org/dr7/start/aboutdr7.html

SDSS Collaboration

212

The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations  

E-Print Network (OSTI)

The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 sq. deg. region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometr...

Sako, Masao; Becker, A; Cinabro, D; De Jongh, F; Depoy, D L; Dilday, B; Doi, M; Frieman, J A; Garnavich, P M; Hogan, C J; Holtzman, J; Jha, S; Kessler, R; Konishi, K; Lampeitl, H; Marriner, J; Miknaitis, G; Nichol, R C; Prieto, J L; Reiss, A G; Richmond, M W; Romani, R; Schneider, D P; Smith, M; Subba-Rao, M; Takanashi, N; Tokita, K; van der Heyden, K; Yasuda, N; Zheng, C; Barentine, J; Brewington, H; Choi, C; Dembicky, J; Harnavek, M; Ihara, Y; Im, M; Ketzeback, W; Kleinman, S J; KrzesiĹ?ski, J; Long, D C; Malanushenko, E; Malanushenko, V; McMillan, R J; Morokuma, T; Nitta, A; Pan, K; Saurage, G; Snedden, S A

2007-01-01T23:59:59.000Z

213

Supernova constraints on Multi-coupled Dark Energy  

E-Print Network (OSTI)

The persisting consistency of ever more accurate observational data with the predictions of the standard LCDM cosmological model puts severe constraints on possible alternative scenarios, but still does not shed any light on the fundamental nature of the cosmic dark sector.As large deviations from a LCDM cosmology are ruled out by data, the path to detect possible features of alternative models goes necessarily through the definition of cosmological scenarios that leave almost unaffected the background and -- to a lesser extent -- the linear perturbations evolution of the universe. In this context,the Multi-coupled DE (McDE) model was proposed by Baldi 2012 as a particular realization of an interacting Dark Energy field characterized by an effective screening mechanism capable of suppressing the effects of the coupling at the background and linear perturbation level. In the present paper, for the first time, we challenge the McDE scenario through a direct comparison with real data, in particular with the luminosity distance of Type Ia supernovae. By studying the existence and stability conditions of the critical points of the associated background dynamical system, we select only the cosmologically consistent solutions, and confront their background expansion history with data. Confirming previous qualitative results, the McDE scenario appears to be fully consistent with the adopted sample of Type Ia supernovae, even for coupling values corresponding to an associated scalar fifth-force about four orders of magnitude stronger than standard gravity. Our analysis demonstrates the effectiveness of the McDE background screening, and shows some new non-trivial asymptotic solutions for the future evolution of the universe. Our results show how the background expansion history might be highly insensitive to the fundamental nature and to the internal complexity of the dark sector. [Abridged

Arpine Piloyan; Valerio Marra; Marco Baldi; Luca Amendola

2013-05-14T23:59:59.000Z

214

Dynamical Collective Calculation of Supernova Neutrino Signals  

SciTech Connect

We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

Gava, Jerome; Kneller, James; Volpe, Cristina; McLaughlin, G. C. [Institut de Physique Nucleaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

2009-08-14T23:59:59.000Z

215

Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating...  

Office of Scientific and Technical Information (OSTI)

Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information Awards Saul Perlmutter Photo Courtesy of...

216

The Physics of Core-Collapse Supernovae  

E-Print Network (OSTI)

Supernovae are nature's grandest explosions and an astrophysical laboratory in which unique conditions exist that are not achievable on Earth. They are also the furnaces in which most of the elements heavier than carbon have been forged. Scientists have argued for decades about the physical mechanism responsible for these explosions. It is clear that the ultimate energy source is gravity, but the relative roles of neutrinos, fluid instabilities, rotation and magnetic fields continue to be debated.

S. Woosley; H. -T. Janka

2006-01-12T23:59:59.000Z

217

The metamorphosis of Supernova SN2008D/XRF080109: a link between Supernovae and GRBs/Hypernovae  

E-Print Network (OSTI)

The only supernovae (SNe) to have shown early gamma-ray or X-ray emission thus far are overenergetic, broad-lined Type Ic SNe (Hypernovae - HNe). Recently, SN 2008D shows several novel features: (i) weak XRF, (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SNIc HNe, (iv) development of He lines as in SNeIb. Detailed analysis shows that SN 2008D was not a normal SN: its explosion energy (KE ~ 6*10^{51} erg) and ejected mass (~7 Msun) are intermediate between normal SNeIbc and HNe. We derive that SN 2008D was originally a ~30Msun star. When it collapsed a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

Paolo A. Mazzali; Stefano Valenti; Massimo Della Valle; Guido Chincarini; Daniel N. Sauer; Stefano Benetti; Elena Pian; Tsvi Piran; Valerio D'Elia; Nancy Elias-Rosa; Raffaella Margutti; Francesco Pasotti; L. Angelo Antonelli; Filomena Bufano; Sergio Campana; Enrico Cappellaro; Stefano Covino; Paolo D'Avanzo; Fabrizio Fiore; Dino Fugazza; Roberto Gilmozzi; Deborah Hunter; Kate Maguire; Elisabetta Maiorano; Paola Marziani; Nicola Masetti; Felix Mirabel; Hripsime Navasardyan; Ken'ichi Nomoto; Eliana Palazzi; Andrea Pastorello; Nino Panagia; Leonardo J. Pellizza; Re'em Sari; Stephen Smartt; Gianpiero Tagliaferri; Masaomi Tanaka; Stefan Taubenberger; Nozomu Tominaga; Carrie Trundle; Massimo Turatto

2008-07-10T23:59:59.000Z

218

The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations  

E-Print Network (OSTI)

The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 sq. deg. region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

Masao Sako; B. Bassett; A. Becker; D. Cinabro; F. DeJongh; D. L. Depoy; B. Dilday; M. Doi; J. A. Frieman; P. M. Garnavich; C. J. Hogan; J. Holtzman; S. Jha; R. Kessler; K. Konishi; H. Lampeitl; J. Marriner; G. Miknaitis; R. C. Nichol; J. L. Prieto; A. G. Riess; M. W. Richmond; R. Romani; D. P. Schneider; M. Smith; M. SubbaRao; N. Takanashi; K. Tokita; K. van der Heyden; N. Yasuda; C. Zheng; J. Barentine; H. Brewington; C. Choi; J. Dembicky; M. Harnavek; Y. Ihara; M. Im; W. Ketzeback; S. J. Kleinman; J. Krzesi?ski; D. C. Long; E. Malanushenko; V. Malanushenko; R. J. McMillan; T. Morokuma; A. Nitta; K. Pan; G. Saurage; S. A. Snedden

2007-08-21T23:59:59.000Z

219

K-corrections and spectral templates of Type Ia supernovae  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Hsiao, E. Y.

2008-01-01T23:59:59.000Z

220

Next-Generation Petascale Simulations of Type Ia Supernovae ...  

NLE Websites -- All DOE Office Websites (Extended Search)

deflagration to detonation transition model Deflagration to detonation transition model. Min lOng, Dan van Rossum, Sean Couch, George Jordan, Brad Gallagher, Don Lamb, University...

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Closest Type Ia Supernova in Decades Solves a Cosmic Mystery  

NLE Websites -- All DOE Office Websites (Extended Search)

use to measure cosmic growth, a technique that in 1998 led to the discovery of dark energy - and 13 years later to a Nobel Prize, "for the discovery of the accelerating...

222

Distributed Flames in Type Ia Supernovae A. J. Aspden1  

E-Print Network (OSTI)

generator trip controller AEC Canada, Ont. Hydro Nuclear reactor controller Argonne Token­based ACS of axioms of the logical theory. Part 2, 32.1.6 In summary, the practical options for Formal Arguments Case Studies: Verification Software Domain SACEM (Paris metro) GEC Alsthom, RATP Darlington nuclear

223

PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II  

SciTech Connect

Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

2012-06-20T23:59:59.000Z

224

The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary  

E-Print Network (OSTI)

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large ...

Frieman, Joshua A; Becker, A; Choi, C; Cinabro, D; De Jongh, F; Depoy, D L; Dilday, B; Doi, M; Garnavich, P M; Hogan, C J; Holtzman, J; Im, M; Jha, S; Kessler, R; Konishi, K; Lampeitl, H; Marriner, J; Marshall, J L; McGinnis, D; Miknaitis, G; Nichol, R C; Prieto, J L; Riess, A G; Richmond, M W; Romani, R; Sako, M; Schneider, D P; Smith, M; Takanashi, N; Tokita, K; van der Heyden, K; Yasuda, N; Zheng, C; Adelman-McCarthy, J; Annis, J; Assef, R J; Barentine, J; Bender, R; Blandford, R D; Boroski, W N; Bremer, M; Brewington, H; Collins, C A; Crotts, A; Dembicky, J; Eastman, J; Edge, A; Edmondson, E; Elson, E; Eyler, M E; Filippenko, A V; Foley, R J; Frank, S; Goobar, A; Gueth, T; Gunn, J E; Harvanek, M; Hopp, U; Ihara, Y; IveziÄ?, Ĺ˝; Kahn, S; Kaplan, J; Kent, S; Ketzeback, W; Kleinman, S J; Kollatschny, W; Kron, R G; KrzesiĹ?ski, J; Lamenti, D; Leloudas, G; Lin, H; Long, D C; Lucey, J; Lupton, R H; Malanushenko, E; Malanushenko, V; McMillan, R J; Méndez, J; Morgan, C W; Morokuma, T; Nitta, A; Ostman, L; Pan, K; Rockosi, C M; Romer, A K; Ruiz-Lapuente, P; Saurage, G; Schlesinger, K; Snedden, S A; Sollerman, J; Stoughton, C; Stritzinger, M; Subba-Rao, M; Tucker, D; Väisänen, P; Watson, L C; Watters, S; Wheeler, J C; Yanny, B; York, D

2007-01-01T23:59:59.000Z

225

The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary  

Science Conference Proceedings (OSTI)

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

Frieman, Joshua A.; /Fermilab /KICP, Chicago /Chicago U., Astron. Astrophys. Ctr.; Bassett, Bruce; /Cape Town U. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Choi, Changsu; /Seoul Natl. U.; Cinabro, David; /Wayne State U.; DeJongh, Don Frederic; /Fermilab; Depoy, Darren L.; /Ohio State U.; Doi, Mamoru; /Tokyo U.; Garnavich, Peter M.; /Notre Dame U.; Hogan, Craig J.; /Washington U., Seattle, Astron. Dept.; Holtzman, Jon; /New Mexico State U.; Im, Myungshin; /Seoul Natl. U.; Jha, Saurabh; /Stanford U., Phys. Dept.; Konishi, Kohki; /Tokyo U.; Lampeitl, Hubert; /Baltimore, Space Telescope Sci.; Marriner, John; /Fermilab; Marshall, Jennifer L.; /Ohio State U.; McGinnis, David; /Fermilab; Miknaitis, Gajus; /Fermilab; Nichol, Robert C.; /Portsmouth U.; Prieto, Jose Luis; /Ohio State U. /Rochester Inst. Tech. /Stanford U., Phys. Dept. /Pennsylvania U. /Penn State U., Astron. Astrophys. /Portsmouth U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo U. /Stanford U., Phys. Dept. /Fermilab /Fermilab /Ohio State U. /Stanford U., Phys. Dept. /Fermilab /Bristol U. /Apache Point Observ. /Liverpool John Moores U., ARI /Columbia U., CBA /Apache Point Observ. /Ohio State U. /Durham U. /Portsmouth U. /South African Astron. Observ. /Naval Academy, Annapolis /UC, Berkeley /UC, Berkeley /Ohio State U. /Stockholm U. /New Mexico State U. /Princeton U. Observ. /Tokyo U. /Washington U., Seattle, Astron. Dept. /Stanford U., Phys. Dept. /Jefferson Lab /Apache Point Observ. /Gottingen U. /Chicago U. /San Francisco State U. /DARK Cosmology Ctr. /Fermilab /Apache Point Observ. /Durham U. /Princeton U. Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Barcelona U. /Stockholm U. /Apache Point Observ. /Lick Observ. /Sussex U. /Barcelona U. /Apache Point Observ. /Ohio State U. /Apache Point Observ. /Fermilab /DARK Cosmology Ctr. /Chicago U. /Fermilab /South African Astron. Observ. /Ohio State U. /Apache Point Observ. /Texas U., McDonald Observ. /Fermilab

2007-09-14T23:59:59.000Z

226

The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary  

E-Print Network (OSTI)

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

Joshua A. Frieman; B. Bassett; A. Becker; C. Choi; D. Cinabro; F. DeJongh; D. L. Depoy; B. Dilday; M. Doi; P. M. Garnavich; C. J. Hogan; J. Holtzman; M. Im; S. Jha; R. Kessler; K. Konishi; H. Lampeitl; J. Marriner; J. L. Marshall; D. McGinnis; G. Miknaitis; R. C. Nichol; J. L. Prieto; A. G. Riess; M. W. Richmond; R. Romani; M. Sako; D. P. Schneider; M. Smith; N. Takanashi; K. Tokita; K. van der Heyden; N. Yasuda; C. Zheng; J. Adelman-McCarthy; J. Annis; R. J. Assef; J. Barentine; R. Bender; R. D. Blandford; W. N. Boroski; M. Bremer; H. Brewington; C. A. Collins; A. Crotts; J. Dembicky; J. Eastman; A. Edge; E. Edmondson; E. Elson; M. E. Eyler; A. V. Filippenko; R. J. Foley; S. Frank; A. Goobar; T. Gueth; J. E. Gunn; M. Harvanek; U. Hopp; Y. Ihara; Ž. Ivezi?; S. Kahn; J. Kaplan; S. Kent; W. Ketzeback; S. J. Kleinman; W. Kollatschny; R. G. Kron; J. Krzesi?ski; D. Lamenti; G. Leloudas; H. Lin; D. C. Long; J. Lucey; R. H. Lupton; E. Malanushenko; V. Malanushenko; R. J. McMillan; J. Mendez; C. W. Morgan; T. Morokuma; A. Nitta; L. Ostman; K. Pan; C. M. Rockosi; A. K. Romer; P. Ruiz-Lapuente; G. Saurage; K. Schlesinger; S. A. Snedden; J. Sollerman; C. Stoughton; M. Stritzinger; M. SubbaRao; D. Tucker; P. Vaisanen; L. C. Watson; S. Watters; J. C. Wheeler; B. Yanny; D. York

2007-08-21T23:59:59.000Z

227

Supernova shock revival by nuclear reactions  

Science Conference Proceedings (OSTI)

We performed hydrodynamic simulations of core collapse and bounce for a progenitor model with 15.0 solar mass, using ZEUS-MP code in axi-symmetric coordinate. Our numerical code is equipped with a nuclear reaction network including 13 alpha nuclei form {sup 4}He to {sup 56}Ni to investigate the potential role played by nuclear reactions in reviving a stalled shock wave at the central region of core-collapse supernovae. We found that the energy released by nuclear reactions is significantly helpful in accelerating shock waves and is able to produce energetic explosion even if inputted neutrino luminosity is low.

Nakamrua, Ko; Takiwaki, Tomoya; Kotake, Kei; Nishimura, Nobuya [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Department Physik, Universitaet Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

2012-11-12T23:59:59.000Z

228

Supernova / Acceleration Probe: a Satellite Experiment to Study the Nature of the Dark Energy  

Science Conference Proceedings (OSTI)

The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy, including discrimination of vacuum energy due to the cosmological constant and various classes of dynamical scalar fields. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy or equation of state w(z) can be similarly measured to 5% for the present value w{sub 0} and {approx} 0.1 for the time variation w' {triple_bond} dw/d ln a|{sub z=1}. For a fiducial SUGRA-inspired universe, w{sub 0} and w' can be measured to an even tighter uncertainty of 0.03 and 0.06 respectively. Note that no external priors are needed. As more accurate theoretical predictions for the small-scale weak-lensing shear develop, the conservative estimates adopted here for space-based systematics should improve, allowing even tighter constraints. While the survey strategy is tailored for supernova and weak gravitational lensing observations, the large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; /LBL, Berkeley /SLAC /Stockholm U. /Fermilab /Paris U., VI-VII /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Marseille, CPPM /Indiana U. /American Astron. Society /Caltech /Case Western Reserve U. /Cambridge U. /Saclay /Lyon, IPN

2005-08-15T23:59:59.000Z

229

Supernova/Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy  

Science Conference Proceedings (OSTI)

The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universes expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy, including discrimination of vacuum energy due to the cosmological constant and various classes of dynamical scalar fields. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1 percent. For a flat universe, the density-to-pressure ratio of dark energy or equation of state w(z) can be similarly measured to 5 percent for the present value w0 and {approx} 0.1 for the time variation w' is defined as dw/d ln a bar z = 1. For a fiducial SUGRA-inspired universe, w0 and w' can be measured to an even tighter uncertainty of 0.03 and 0.06 respectively. Note that no external priors are needed. As more accurate theoretical predictions for the small-scale weak-lensing shear develop, the conservative estimates adopted here for space-based systematics should improve, allowing even tighter constraints. While the survey strategy is tailored for supernova and weak gravitational lensing observations, the large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, E.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, C.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; Craig, W.; Day, C.; DeJongh, F.; Deustua, S.; Diehl, T.; Dodelson, S.; Ealet, A.; Ellis, R.; Emmet, W.; Fouchez, D.; Frieman, J.; Fruchter, A.; Gerdes, D.; Gladney, L.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Hoff, M.; Holland, S.; Huffer, M.; Hui, L.; Huterer, D.; Jain, B.; Jelinsky, P.; Karcher, A.; Kent, S.; Kahn, S.; Kim, A.; Kolbe, W.; Krieger, B.; Kushner, G.; Kuznetsova, N.; Lafever, R.; Lamoureux, J.; Lampton, M.; Le Fevre, O.; Levi, M.; Limon, P.; Lin, H.; Linder, E.; Loken, S.; Lorenzon, W.; Malina, R.; Marriner, J.; Marshall, P.; Massey, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Peoples, J.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Roe, N.; Rusin, D.; Scarpine, V.; Schubnell, M.; Sholl, M.; Samdja, G.; Smith, R.M.; Smoot, G.; Snyder, J.; Spadafora, A.; Stebbine, A.; Stoughton, C.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Tucker, D.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.; Wester, W.

2004-05-12T23:59:59.000Z

230

Uncorrelated Measurements of the Cosmic Expansion History and Dark Energy from Supernovae  

E-Print Network (OSTI)

We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter Omega_m can be accurately measured from other data, then the dark energy density history X(z)=rho_X(z)/rho_X(0) can trivially be derived from this expansion history H(z). In contrast to customary ``black box'' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z)^{-1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) ``gold'' sample to be consistent with the ``vanilla'' concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K-corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30-40% accuracy.

Yun Wang; Max Tegmark

2005-01-18T23:59:59.000Z

231

Matter Mixing in Axisymmetric Supernova Explosion  

E-Print Network (OSTI)

Growth of Rayleigh-Taylor (R-T) instabilities under the axisymmetric explosion are investigated by two-dimensional hydrodynamical calculations. The degree of the axisymmetric explosion and amplitude of the initial perturbation are varied parametrically to find the most favorable parameter for reproducing the observed line profile of heavy elements. It is found that spherical explosion can not produce $^{56}Ni$ travelling at high velocity ($\\sim 3000$km/sec), the presence of which is affirmed by the observation, even if the amplitude of initial perturbation is as large as 30%. On the other hand, strong axisymmetric explosion model produce high velocity $^{56}Ni$ too much. Weak axisymmetric explosion are favored for the reproduction of the observed line profile. We believe this result shows upper limit of the degree of the axisymmetric explosion. This fact will be important for the simulation of the collapse-driven supernova including rotation, magnetic field, and axisymmetric neutrino radiation, which have a possibility to cause axisymmetric supernova explosion. In addition, the origin of such a large perturbation does not seem to be the structure of the progenitor but the dynamics of the core collapse explosion itself since small perturbation can not produce the high velocity element even if the axisymmetric explosion models are adopted.

Shigehiro Nagataki; Tetsuya Shimizu; Katsuhiko Sato

1997-09-16T23:59:59.000Z

232

Supernovae as Nuclear and Particle Physics Laboratories  

Science Conference Proceedings (OSTI)

In the interior of supernovae, temperatures and densities exceed the range that is easily accessible by terrestrial experiments. With the improving sensitivities of neutrino and gravitational wave detectors, the chance of obtaining observations providing a deep view into the heart of a close-by supernova explosion is steadily increasing. Based on computational models, we investigate the imprint of the nuclear equation of state on the emission of neutrinos and gravitational waves. If a QCD phase transition to quark matter occurs during the immediate postbounce accretion phase, a strong second shock front is formed at a radius of order 10 km. Neutronized hadronic outer layers of the protoneutron star fall into it, are shock-heated, and lead to a rapid acceleration of the second shock wave. As soon as this shock reduces the electron degeneracy at the neutrinospheres, a sharp second neutrino burst is emitted, dominated by electron antineutrinos. Together with the abruptly increasing mean energies of {mu}- and {tau}-neutrinos, it may serve as a clear signature of the phase transition of the protoneutron star core to a more compact state.

Liebendoerfer, Matthias [Universitat Basel, Switzerland; Fischer, T. [University of Basel; Hempel, M. [Goethe University, Frankfurt, Germany; Mezzacappa, Anthony [ORNL; Pagliara, G. [Ruprecht-Karls-Universitaet, Heidelberg, Germany; Sagert, I. [Goethe University, Frankfurt, Germany; Schaffner-Bielich, J. [Ruprecht-Karls-Universitaet, Heidelberg, Germany; Scheidegger, Simon [Universitat Basel, Switzerland; Thielemann, Friedrich-Karl W. [Universitat Basel, Switzerland; Whitehouse, Stuart [Universitat Basel, Switzerland

2009-01-01T23:59:59.000Z

233

Diversity of the Supernova - Gamma-Ray Burst Connection  

E-Print Network (OSTI)

The connection between the long Gamma Ray Bursts (GRBs) and Type Ic Supernovae (SNe) has revealed interesting diversity. We review the following types of the GRB-SN connection. (1) GRB-SNe: The three SNe all explode with energies much larger than those of typical SNe, thus being called Hypernovae (HNe). They are massive enough for forming black holes. (2) Non-GRB HNe/SNe: Some HNe are not associated with GRBs. (3) XRF-SN: SN 2006aj associated with X-Ray Flash 060218 is dimmer than GRB-SNe and has very weak oxygen lines. Its progenitor mass is estimated to be small enough to form a neutron star rather than a black hole. (4) Non-SN GRB: Two nearby long GRBs were not associated SNe. Such ``dark HNe'' have been predicted in this talk (i.e., just before the discoveries) in order to explain the origin of C-rich (hyper) metal-poor stars. This would be an important confirmation of the Hypernova-First Star connection. We will show our attempt to explain the diversity in a unified manner with the jet-induced explosion model.

K. Nomoto; N. Tominaga; M. Tanaka; K. Maeda; T. Suzuki; J. S. Deng; P. A. Mazzali

2007-02-19T23:59:59.000Z

234

Toward Radiation-Magnetohydrodynamic Simulations in Core-Collapse Supernovae  

E-Print Network (OSTI)

We report a current status of our radiation-magnetohydrodynamic code for the study of core-collapse supernovae. In this contribution, we discuss the accuracy of our newly developed numerical code by presenting the test problem in a static background model. We also present the application to the spherically symmetric core-collapse simulations. Since close comparison with the previously published models is made, we are now applying it for the study of magnetorotational core-collapse supernovae.

Kotake, K; Yamada, S; Sato, K; Kotake, Kei; Ohnishi, Naofumi; Yamada, Shoichi; Sato, Katsuhiko

2006-01-01T23:59:59.000Z

235

Toward Radiation-Magnetohydrodynamic Simulations in Core-Collapse Supernovae  

E-Print Network (OSTI)

We report a current status of our radiation-magnetohydrodynamic code for the study of core-collapse supernovae. In this contribution, we discuss the accuracy of our newly developed numerical code by presenting the test problem in a static background model. We also present the application to the spherically symmetric core-collapse simulations. Since close comparison with the previously published models is made, we are now applying it for the study of magnetorotational core-collapse supernovae.

Kei Kotake; Naofumi Ohnishi; Shoichi Yamada; Katsuhiko Sato

2005-11-30T23:59:59.000Z

236

Supernova bangs as a tool to study big bang  

SciTech Connect

Supernovae and gamma-ray bursts are the most powerful explosions in observed Universe. This educational review tells about supernovae and their applications in cosmology. It is explained how to understand the production of light in the most luminous events with minimum required energy of explosion. These most luminous phenomena can serve as primary cosmological distance indicators. Comparing the observed distance dependence on red shift with theoretical models one can extract information on evolution of the Universe from Big Bang until our epoch.

Blinnikov, S. I., E-mail: Sergei.Blinnikov@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2012-09-15T23:59:59.000Z

237

Hierarchical Growth and Cosmic Star Formation: Enrichment, Outflows and Supernova Rates  

E-Print Network (OSTI)

The cosmic star formation histories are evaluated for different minimum masses of the initial halo structures, with allowance for realistic gas outflows. With a minimum halo mass of 10^{7} - 10^{8} M_odot and a moderate outflow efficiency, we reproduce both the current baryon fraction and the early chemical enrichment of the IGM. The intensity of the formation rate of ``normal'' stars is also well constrained by the observations: it has to be dominated by star formation in elliptical galaxies, except perhaps at very low redshift. The fraction of baryons in stars is predicted as are also the type Ia and II supernova event rates. Comparison with SN observations in the redshift range z=0-2 allows us to set strong constraints on the time delay of type Ia supernovae (a total delay of \\sim 4 Gyr is required to fit the data), the lower end of the mass range of the progenitors (2 - 8 M_odot) and the fraction of white dwarfs that reproduce the type Ia supernova (about 1 per cent). The intensity in the initial starburst of zero metallicity stars below 270 M_\\odot must be limited in order to avoid premature overenrichment of the IGM. Only about 10 - 20 % of the metals present in the IGM at z = 0 have been produced by population III stars at very high z. The remaining 80 - 90 % are ejected later by galaxies forming normal stars, with a maximum outflow efficiency occurring at a redshift of about 5. We conclude that 10^{-3} of the mass in baryons must lie in first massive stars in order to produce enough ionizing photons to allow early reionization of the IGM by z \\sim 15.

Frederic Daigne; Keith A. Olive; Joe Silk; Felix Stoehr; Elisabeth Vangioni

2005-09-07T23:59:59.000Z

238

Nucleosynthesis and Clump Formation in a Core Collapse Supernova  

E-Print Network (OSTI)

High-resolution two-dimensional simulations were performed for the first five minutes of the evolution of a core collapse supernova explosion in a 15 solar mass blue supergiant progenitor. The computations start shortly after bounce and include neutrino-matter interactions by using a light-bulb approximation for the neutrinos, and a treatment of the nucleosynthesis due to explosive silicon and oxygen burning. We find that newly formed iron-group elements are distributed throughout the inner half of the helium core by Rayleigh-Taylor instabilities at the Ni+Si/O and C+O/He interfaces, seeded by convective overturn during the early stages of the explosion. Fast moving nickel mushrooms with velocities up to about 4000 km/s are observed. This offers a natural explanation for the mixing required in light curve and spectral synthesis studies of Type Ib explosions. A continuation of the calculations to later times, however, indicates that the iron velocities observed in SN 1987 A cannot be reproduced because of a strong deceleration of the clumps in the dense shell left behind by the shock at the He/H interface.

K. Kifonidis; T. Plewa; H. -Th. Janka; E. Mueller

1999-11-10T23:59:59.000Z

239

DIVERSITY OF LUMINOUS SUPERNOVAE FROM NON-STEADY MASS LOSS  

Science Conference Proceedings (OSTI)

We show that the diversity in the density slope of the dense wind due to non-steady mass loss can be one way to explain the spectral diversity of Type II luminous supernovae (LSNe). The interaction of SN ejecta and wind surrounding it is considered to be a power source to illuminate LSNe because many LSNe show the wind signature in their spectra (Type IIn LSNe). However, there also exist LSNe without the spectral features caused by the wind (Type IIL LSNe). We show that, even if LSNe are illuminated by the interaction, it is possible that they do not show the narrow spectra from the wind if we take into account the non-steady mass loss of their progenitors. When the shock breakout takes place in a dense wind with the density structure {rho}{proportional_to}r{sup -w}, the ratio of the diffusion timescale in the optically thick region of the wind (t{sub d} ) and the shock propagation timescale of the entire wind after the shock breakout (t{sub s} ) strongly depends on w. For the case w {approx}< 1, both timescales are comparable (t{sub d} /t{sub s} {approx_equal} 1) and t{sub d} /t{sub s} gets smaller as w gets larger. For the case t{sub d} /t{sub s} {approx_equal} 1, the shock goes through the entire wind just after the light-curve (LC) peak, and narrow spectral lines from the wind cannot be observed after the LC peak (Type IIL LSNe). If t{sub d} /t{sub s} is much smaller, the shock wave continues to propagate in the wind after the LC peak, and unshocked wind remains (Type IIn LSNe). This difference can be obtained only through careful treatment of the shock breakout condition in a dense wind. The lack of narrow Lorentzian line profiles in Type IIL LSNe before the LC peak can also be explained by the difference in the density slope. Furthermore, we apply our model to Type IIn LSN 2006gy and Type IIL LSN 2008es and find that our model is consistent with the observations.

Moriya, Takashi J.; Tominaga, Nozomu, E-mail: takashi.moriya@ipmu.jp [Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

2012-03-10T23:59:59.000Z

240

The Sloan Digital Sky Survey-II Supernova Survey:Search Algorithm and Follow-up Observations  

Science Conference Proceedings (OSTI)

The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

Sako, Masao; /Pennsylvania U. /KIPAC, Menlo Park; Bassett, Bruce; /Cape Town U. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Cinabro, David; /Wayne State U.; DeJongh, Don Frederic; /Fermilab; Depoy, D.L.; /Ohio State U.; Doi, Mamoru; /Tokyo U.; Garnavich, Peter M.; /Notre Dame U.; Craig, Hogan, J.; /Washington U., Seattle, Astron. Dept.; Holtzman, Jon; /New Mexico State U.; Jha, Saurabh; /Stanford U., Phys. Dept.; Konishi, Kohki; /Tokyo U.; Lampeitl, Hubert; /Baltimore, Space Telescope Sci.; Marriner, John; /Fermilab; Miknaitis, Gajus; /Fermilab; Nichol, Robert C.; /Portsmouth U.; Prieto, Jose Luis; /Ohio State U.; Richmond, Michael W.; /Rochester Inst. Tech.; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Smith, Mathew; /Portsmouth U.; SubbaRao, Mark; /Chicago U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo U. /Apache Point Observ. /Seoul Natl. U. /Apache Point Observ. /Apache Point Observ. /Tokyo U. /Seoul Natl. U. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ.

2007-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Progress Report on the Berkeley/Anglo-Australian Observatory High-redshift Supernova Search  

DOE R&D Accomplishments (OSTI)

There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring {Omega}. It is the latter that I want to discuss in this paper.

Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R. A.; Couch, W.; Boyle, B.

1990-11-00T23:59:59.000Z

242

THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z {approx} 1  

SciTech Connect

We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1 < z < 1.3. In redshift bins centered on (z) = 0.39, (z) = 0.73, and (z) = 1.11, we find rates of 3.00{sup +1.28}{sub -0.94} {sup +1.04}{sub -0.57}, 7.39{sup +1.86}{sub -1.52} {sup +3.20}{sub -1.60}, and 9.57{sup +3.76}{sub -2.80} {sup +4.96}{sub -2.80}, respectively, given in units of yr{sup -1} Mpc{sup -3} 10{sup -4} h {sup 3}{sub 70}. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust-enshrouded environments in infrared bright galaxies. The first errors are statistical while the second ones are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z > 0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M {approx}> -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.

Dahlen, Tomas; Riess, Adam G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Mattila, Seppo; Kankare, Erkki [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Mobasher, Bahram, E-mail: dahlen@stsci.edu [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

2012-09-20T23:59:59.000Z

243

Aspects of Neutrino Production in Supernovae  

E-Print Network (OSTI)

I discuss neutrino production in supernovae (SNe) and the detection of both Galactic core collapse events and the diffuse extra-galactic MeV neutrino background expected from the integrated history of star formation. In particular, I consider what processes might affect our expectations for both. I focus on ``rapid'' rotation, defined as leading to millisecond initial neutron star spin periods. Rotation affects the neutrino luminosity, the average neutrino energy, the duration of the Kelvin-Helmholtz cooling epoch, and the ratios of luminosities and average energies between neutrino species; it can strongly suppresses the anti-electron as well as mu, anti-mu, tau, and anti-tau neutrino fluxes relative to those for the electron neutrinos. As a result, depending on the prevalence of rapid rotation in SN progenitors through cosmic time, this may affect predictions for the MeV neutrino background and the history of nucleosynthetic enrichment. I emphasize connections between the MeV neutrino background and tracers of the star formation rate density at high redshift in other neutrino and photon wavebands.

Todd A. Thompson

2006-08-10T23:59:59.000Z

244

Cosmic Rays and the Monogem Supernova Remnant  

E-Print Network (OSTI)

Recent findings indicate that the Monogem Ring supernova remnant (SNR) and the associated pulsar B0656+14 may be the 'Single Source' responsible for the knee in the cosmic ray (CR) energy spectrum at ~3 PeV. We estimate the contribution of this pulsar to CR in the PeV region. We conclude that although the pulsar can contribute to the formation of the knee, it cannot be the domimant source and a SNR is still needed. We also examine the possibility of the pulsar giving the peak of the extensive air shower (EAS) intensity observed from the region inside the Monogem Ring. If the experimental EAS results concerning a narrow source are confirmed, they can be important, since they give evidence: (i) for the acceleration of protons and heavier nuclei by the pulsar; (ii) for the existence of the confinement mechanism in SNR; (iii) that CR produced by the Monogem Ring SNR and associated pulsar B0656+14 were released recently giving rise to the formation of the knee and the observed narrow peak in the EAS intensity; (iv) for the Monogem Ring and the associated pulsar B0656+14 being identified as the Single Source proposed in our Single Source Model of the knee. A number of predictions of the examined scenario are made.

A. D. Erlykin; A. W. Wolfendale

2004-04-27T23:59:59.000Z

245

ON THE INTERPRETATION OF SUPERNOVA LIGHT ECHO PROFILES AND SPECTRA  

Science Conference Proceedings (OSTI)

The light echo (LE) systems of historical supernovae in the Milky Way and local group galaxies provide an unprecedented opportunity to reveal the effects of asymmetry on observables, particularly optical spectra. Scattering dust at different locations on the LE ellipsoid witnesses the supernova from different perspectives, and the light consequently scattered toward Earth preserves the shape of line profile variations introduced by asymmetries in the supernova photosphere. However, the interpretation of supernova LE spectra to date has not involved a detailed consideration of the effects of outburst duration and geometrical scattering modifications due to finite scattering dust filament dimension, inclination, and image point-spread function and spectrograph slit width. In this paper, we explore the implications of these factors and present a framework for future-resolved supernova LE spectra interpretation, and test it against Cas A and SN 1987A LE spectra. We conclude that the full modeling of the dimensions and orientation of the scattering dust using the observed LEs at two or more epochs is critical for the correct interpretation of LE spectra. Indeed, without doing so one might falsely conclude that differences exist when none are actually present.

Rest, A.; Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Sinnott, B.; Welch, D. L. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); R. J. Foley; Mandel, K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Huber, M. E. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, 3400 North Charles Street, MD 21218 (United States); Blondin, S., E-mail: arest@stsci.edu [Centre de Physique des Particules de Marseille (CPPM), Aix-Marseille Universite, CNRS/IN2P3, 163 avenue de Luminy, 13288 Marseille Cedex 9 (France)

2011-05-01T23:59:59.000Z

246

Geological isotope anomalies as signatures of nearby supernovae  

E-Print Network (OSTI)

Nearby supernova explosions may cause geological isotope anomalies via the direct deposition of debris or by cosmic-ray spallation in the earth's atmosphere. We estimate the mass of material deposited terrestrially by these two mechanisms, showing the dependence on the supernova distance. A number of radioactive isotopes are identified as possible diagnostic tools, such as Be-10, Al-26, Cl-36, Mn-53, Fe-60, and Ni-59, as well as the longer-lived I-129, Sm-146, and Pu-244. We discuss whether the 35 and 60 kyr-old Be-10 anomalies observed in the Vostok antarctic ice cores could be due to supernova explosions. Combining our estimates for matter deposition with results of recent nucleosynthesis yields, we calculate the expected signal from nearby supernovae using ice cores back to \\sim 300 kyr ago, and we discuss using deep ocean sediments back to several hundred Myr. In particular, we examine the prospects for identifying isotope anomalies due to the Geminga supernova explosion, and signatures of the possibility...

Ellis, Jonathan Richard; Schramm, David N; Ellis, John; Fields, Brian D; Schramm, David N

1996-01-01T23:59:59.000Z

247

Understanding Supernova Neutrino Physics using Low-Energy Beta-Beams  

E-Print Network (OSTI)

We show that fitting linear combinations of low-energy beta-beam spectra to supernova-neutrino energy-distributions reconstructs the response of a nuclear target to a supernova flux in a very accurate way. This allows one to make direct predictions about the supernova-neutrino signal in a terrestrial neutrino detector.

N. Jachowicz; G. C. McLaughlin

2005-11-24T23:59:59.000Z

248

EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT  

Science Conference Proceedings (OSTI)

The first light from a supernova (SN) emerges once the SN shock breaks out of the stellar surface. The first light, typically a UV or X-ray flash, is followed by a broken power-law decay of the luminosity generated by radiation that leaks out of the expanding gas sphere. Motivated by recent detection of emission from very early stages of several SNe, we revisit the theory of shock breakout and the following emission, paying special attention to the photon-gas coupling and deviations from thermal equilibrium. We derive simple analytic light curves of SNe from various progenitors at early times. We find that for more compact progenitors, white dwarfs, Wolf-Rayet stars (WRs), and possibly more energetic blue-supergiant explosions, the observed radiation is out of thermal equilibrium at the breakout, during the planar phase (i.e., before the expanding gas doubles its radius), and during the early spherical phase. Therefore, during these phases we predict significantly higher temperatures than previous analysis that assumed equilibrium. When thermal equilibrium prevails, we find the location of the thermalization depth and its temporal evolution. Our results are useful for interpretation of early SN light curves. Some examples are (1) red supergiant SNe have an early bright peak in optical and UV flux, less than an hour after breakout. It is followed by a minimum at the end of the planar phase (about 10 hr), before it peaks again once the temperature drops to the observed frequency range. In contrast, WRs show only the latter peak in optical and UV. (2) Bright X-ray flares are expected from all core-collapse SNe types. (3) The light curve and spectrum of the initial breakout pulse hold information on the explosion geometry and progenitor wind opacity. Its spectrum in more compact progenitors shows a (nonthermal) power law and its light curve may reveal both the breakout diffusion time and the progenitor radius.

Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2010-12-10T23:59:59.000Z

249

MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS  

SciTech Connect

Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant (>10 pc) cloud core, simultaneously enriching it and triggering its collapse. Here, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500{sup 3} effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances {approx}10{sup 18} cm and mix effectively with large regions of star-forming molecular gas. In fact, the {approx}2 M{sub Sun} of high-metallicity ejecta from a single core-collapse supernova is likely to mix with {approx}2 Multiplication-Sign 10{sup 4} M{sub Sun} of molecular gas material as it is collapsing. Thus, all stars forming late ( Almost-Equal-To 5 Myr) in the evolution of an H II region may be contaminated by supernova ejecta at the level {approx}10{sup -4}. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system and is potentially consistent with the observed variability in stellar elemental abundances. Supernova contamination of forming planetary systems may be a common, universal process.

Pan Liubin; Desch, Steven J.; Scannapieco, Evan; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)

2012-09-01T23:59:59.000Z

250

Constraints on supernovae dimming from photon-pseudo scalar coupling  

E-Print Network (OSTI)

An alternative mechanism that dims high redshift supernovae without cosmic acceleration utilizes an oscillation of photons into a pseudo-scalar particle during transit. Since angular diameter distance measures are immune to the loss of photons, this ambiguity in interpretation can be resolved by combining CMB acoustic peak measurements with the recent baryon oscillation detection in galaxy power spectra. This combination excludes a non-accelerating dark energy species at the 4sigma level regardless of the level of the pseudo-scalar coupling. While solutions still exist with substantial non-cosmological dimming of supernovae, they may be tested with future improvement in baryon oscillation experiments.

Yong-Seon Song; Wayne Hu

2005-07-29T23:59:59.000Z

251

Stability and Evolution of Supernova Fallback Disks  

E-Print Network (OSTI)

We show that thin accretion disks made of Carbon or Oxygen are subject to the same thermal ionization instability as Hydrogen and Helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 10^3 to 10^4 years), compact in size (a few 10^9 cm to 10^11 cm) and generally accreting at sub-Eddington rates (Mdot ~ a few 10^14 - 10^18 g/s). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly-born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets, at \\~10^11 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because it can spread beyond the Roche limit before becoming neutral.[Abridged

Kristen Menou; Rosalba Perna; Lars Hernquist

2001-02-27T23:59:59.000Z

252

Diversity of supernovae Ia determined using equivalent widths of Si II 4000  

E-Print Network (OSTI)

Spectroscopic and photometric properties of low and high-z supernovae Ia (SNe Ia) have been analyzed in order to achieve a better understanding of their diversity and to identify possible SN Ia sub-types. We use wavelet transformed spectra in which one can easily measure spectral features. We investigate the \\ion{Si}{II} 4000 equivalent width ($EW_w\\lbrace\\ion{Si}{II}\\rbrace$). The ability and, especially, the ease in extending the method to SNe at high-$z$ is demonstrated. We applied the method to 110 SNe Ia and found correlations between $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ and parameters related to the light-curve shape for 88 supernovae with available photometry. No evidence for evolution of $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ with redshift is seen. Three sub-classes of SNe Ia were confirmed using an independent cluster analysis with only light-curve shape, colour, and $EW_w\\lbrace\\ion{Si}{II}\\rbrace$. SNe from high-$z$ samples seem to follow a similar grouping to nearby objects. The $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ value measured on a single spectrum may point towards SN Ia sub-classification, avoiding the need for expansion velocity gradient calculations.

V. Arsenijevic; S. Fabbro; A. M. Mourao; A. J. Rica da Silva

2008-09-18T23:59:59.000Z

253

THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy  

SciTech Connect

In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

Burns, Christopher R.; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA, 91101 (United States); Stritzinger, Maximilian; Phillips, M. M.; Boldt, Luis; Campillay, Abdo; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Kattner, ShiAnne [Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Contreras, Carlos [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Victoria 3122 (Australia); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

2011-01-15T23:59:59.000Z

254

Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Meyers, Joshua Evan

2012-01-01T23:59:59.000Z

255

Could a nearby supernova explosion have caused a mass extinction?  

E-Print Network (OSTI)

We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by palaeontologists. We discuss the likely rate of such events in the light of the recent identification of Geminga as a supernova remnant less than 100 pc away and the discovery of a millisecond pulsar about 150 pc away, and observations of SN 1987A. The fluxes of $\\gamma$ radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer discussed. A supernova explosion of the order of 10 pc away could be expected every few hundred million years, and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs.

John Ellis; David N. Schramm

1993-03-02T23:59:59.000Z

256

The Number of Supernovae From Primordial Stars in the Universe  

DOE Green Energy (OSTI)

Recent simulations of the formation of the first luminous objects in the universe predict isolated very massive stars to form in dark matter halos with virial temperatures large enough to allow significant amounts of molecular hydrogen to form. We construct a semi-analytic model based on the Press-Schechter formalism and calibrate the minimum halos mass that may form a primordial star with the results from extensive adaptive mesh refinement simulations. The model also includes star formation in objects with virial temperatures in excess of ten thousand Kelvin. The free parameters are tuned to match the optical depth measurements by the WMAP satellite. The models explicitly includes the negative feedback of the destruction of molecular hydrogen by a soft UV background which is computed self-consistently. We predict high redshift supernova rates as one of the most promising tools to test the current scenario of primordial star formation. The supernova rate from primordial stars peaks at redshifts {approx}20. Using an analytic model for the luminosities of pair-instability supernovae we predict observable magnitudes and discuss possible observational strategies. Such supernovae would release enough metals corresponding to a uniform enrichment to a few hundred thousands of solar metalicity. If some of these stars produce gamma ray bursts our rates will be directly applicable to understanding the anticipated results from the SWIFT satellite. This study highlights the great potential for the James Webb space telescope in probing cosmic structure at redshifts greater than 20.

Wise, J

2004-12-15T23:59:59.000Z

257

SN 2006gy: Discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like Eta Carinae  

E-Print Network (OSTI)

(abridged) We report our discovery and observations of the peculiar Type IIn supernova SN2006gy in NGC1260, revealing that it reached a peak magnitude of -22, making it the most luminous supernova ever recorded. It is not yet clear what powers the total radiated energy of 1e51 erg, but we argue that any mechanism -- thermal emission, circumstellar interaction, or 56Ni decay -- requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star probably experienced an LBV eruption like the 19th century eruption of eta Carinae. Alternatively, radioactive decay of 56Ni may be a less objectionable hypothesis. That power source would imply a large Ni mass of 22 Msun, requiring that SN2006gy was a pair-instability supernova where the star's core was obliterated. SN2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we rule out the hypothesis that SN 2006gy was a ``Type IIa'' event. Instead, we propose that the progenitor may have been a very massive evolved object like eta Carinae that, contrary to expectations, failed to completely shed its massive hydrogen envelope before it died. Our interpretation of SN2006gy implies that the most massive stars can explode earlier than expected, during the LBV phase, preventing them from ever becoming Wolf-Rayet stars. SN2006gy also suggests that the most massive stars can create brilliant supernovae instead of dying ignominious deaths through direct collapse to a black hole.

Nathan Smith; Weidong Li; Ryan J. Foley; J. Craig Wheeler; Dave Pooley; Ryan Chornock; Alexei V. Filippenko; Jeffrey M. Silverman; Robert Quimby; Joshua S. Bloom; Charles Hansen

2006-12-21T23:59:59.000Z

258

Extremely Luminous Water Vapor Emission from a Type 2 Quasar at Redshift z = 0.66  

E-Print Network (OSTI)

A search for water masers in 47 Sloan Digital Sky Survey Type 2 quasars using the Green Bank Telescope has yielded a detection at a redshift of z = 0.660. This maser is more than an order of magnitude higher in redshift than any previously known and, with a total isotropic luminosity of 23,000 L_sun, also the most powerful. The presence and detectability of water masers in quasars at z ~ 0.3-0.8 may provide a better understanding of quasar molecular tori and disks, as well as fundamental quasar and galaxy properties such as black hole masses. Water masers at cosmologically interesting distances may also eventually provide, via direct distance determinations, a new cosmological observable for testing the reality and properties of dark energy, currently inferred primarily through Type 1a supernova measurements.

Richard Barvainis; Robert Antonucci

2005-06-10T23:59:59.000Z

259

How to See the Supernova Berkeley Lab Just Discovered | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered September 1, 2011 - 10:12am Addthis Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth - approximately 21 million light-years away - than any other of its kind in a generation. Linda Vu Skywatchers -- grab your binoculars and telescopes, and head for some clear dark skies. A new supernova has been discovered near the Big Dipper. Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley caught the supernova just hours after its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The researchers note

260

How to See the Supernova Berkeley Lab Just Discovered | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered September 1, 2011 - 10:12am Addthis Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth - approximately 21 million light-years away - than any other of its kind in a generation. Linda Vu Skywatchers -- grab your binoculars and telescopes, and head for some clear dark skies. A new supernova has been discovered near the Big Dipper. Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley caught the supernova just hours after its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The researchers note

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout  

E-Print Network (OSTI)

Neutrinos and gravitational waves are the only direct probes of the inner dynamics of a stellar core collapse. They are also the first signals to arrive from a supernova and, if detected, establish the moment when the shock wave is formed that unbinds the stellar envelope and later initiates the optical display upon reaching the stellar surface with a burst of UV and X-ray photons, the shock breakout (SBO). We discuss how neutrino observations can be used to trigger searches to detect the elusive SBO event. Observation of the SBO would provide several important constraints on progenitor structure and the explosion, including the shock propagation time (the duration between the neutrino burst and SBO), an observable that is important in distinguishing progenitor types. Our estimates suggest that next generation neutrino detectors could exploit the overdensity of nearby SNe to provide several such triggers per decade, more than an order of magnitude improvement over the present.

Matthew D. Kistler; Wick C. Haxton; Hasan Yuksel

2012-11-28T23:59:59.000Z

262

Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight  

E-Print Network (OSTI)

Correctly interpreting observations of sources such as type Ia supernovae (SNe Ia) require knowledge of the power spectrum of matter on AU scales - which is very hard to model accurately. Because under-dense regions account for much of the volume of the universe, light from a typical source probes a mean density significantly below the cosmic mean. The relative sparsity of sources implies that there could be a significant bias when inferring distances of SNe Ia, and consequently a bias in cosmological parameter estimation. While the weak lensing approximation should in principle give the correct prediction for this, linear perturbation theory predicts an effectively infinite variance in the convergence for ultra-narrow beams. We attempt to quantify the effect typically under-dense lines of sight might have in parameter estimation by considering three alternative methods for estimating distances, in addition to the usual weak lensing approximation. We find in each case this not only increases the errors in the...

Busti, V C; Clarkson, C

2013-01-01T23:59:59.000Z

263

Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout  

E-Print Network (OSTI)

Neutrinos and gravitational waves are the only direct probes of the inner dynamics of a stellar core collapse. They are also the first signals to arrive from a supernova and, if detected, establish the moment when the shock wave is formed that unbinds the stellar envelope and later initiates the optical display upon reaching the stellar surface with a burst of UV and X-ray photons, the shock breakout (SBO). We discuss how neutrino observations can be used to trigger searches to detect the elusive SBO event. Observation of the SBO would provide several important constraints on progenitor structure and the explosion, including the shock propagation time (the duration between the neutrino burst and SBO), an observable that is important in distinguishing progenitor types. Our estimates suggest that next generation neutrino detectors could exploit the overdensity of nearby SNe to provide several such triggers per decade, more than an order of magnitude improvement over the present.

Kistler, Matthew D; Yuksel, Hasan

2013-01-01T23:59:59.000Z

264

SIMULATIONS OF ACCRETION POWERED SUPERNOVAE IN THE PROGENITORS OF GAMMA-RAY BURSTS  

SciTech Connect

Observational evidence suggests a link between long-duration gamma-ray bursts (LGRBs) and Type Ic supernovae. Here, we propose a potential mechanism for Type Ic supernovae in LGRB progenitors powered solely by accretion energy. We present spherically symmetric hydrodynamic simulations of the long-term accretion of a rotating gamma-ray burst progenitor star, a 'collapsar', onto the central compact object, which we take to be a black hole. The simulations were carried out with the adaptive mesh refinement code FLASH in one spatial dimension and with rotation, an explicit shear viscosity, and convection in the mixing length theory approximation. Once the accretion flow becomes rotationally supported outside of the black hole, an accretion shock forms and traverses the stellar envelope. Energy is carried from the central geometrically thick accretion disk to the stellar envelope by convection. Energy losses through neutrino emission and nuclear photodisintegration are calculated but do not seem important following the rapid early drop of the accretion rate following circularization. We find that the shock velocity, energy, and unbound mass are sensitive to convective efficiency, effective viscosity, and initial stellar angular momentum. Our simulations show that given the appropriate combinations of stellar and physical parameters, explosions with energies {approx}5 Multiplication-Sign 10{sup 50} erg, velocities {approx}3000 km s{sup -1}, and unbound material masses {approx}> 6 M{sub Sun} are possible in a rapidly rotating 16 M{sub Sun} main-sequence progenitor star. Further work is needed to constrain the values of these parameters, to identify the likely outcomes in more plausible and massive LRGB progenitors, and to explore nucleosynthetic implications.

Lindner, Christopher C.; Milosavljevic, Milos; Kumar, Pawan [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Shen, Rongfeng [Department of Astronomy, and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4 (Canada)

2012-05-10T23:59:59.000Z

265

Dark Energy Constraints from the Cosmic Age and Supernova  

E-Print Network (OSTI)

Using the low limit of cosmic ages from globular cluster and the white dwarfs: $t_0 > 12$Gyr, together with recent new high redshift supernova observations from the HST/GOODS program and previous supernova data, we give a considerable estimation of the equation of state for dark energy, with uniform priors as weak as $0.2paper a new scenario of dark energy dubbed Quintom, which gives rise to the equation of state larger than -1 in the past and less than -1 today, satisfying current observations. In addition we've also considered the implications of recent X-ray gas mass fraction data on dark energy, which favors a negative running of the equation of state.

Bo Feng; Xiulian Wang; Xinmin Zhang

2004-04-11T23:59:59.000Z

266

Gamma-ray Emission from Crushed Clouds in Supernova Remnants  

E-Print Network (OSTI)

It is shown that the radio and gamma-ray emission observed from newly-found "GeV-bright" supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of neutral pions produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

Uchiyama, Yasunobu; Funk, Stefan; Tajima, Hiroyasu; Tanaka, Takaaki

2010-01-01T23:59:59.000Z

267

Role of dense matter in collective supernova neutrino transformations  

E-Print Network (OSTI)

For neutrinos streaming from a supernova (SN) core, dense matter suppresses self-induced flavor transformations if the electron density n_e significantly exceeds the neutrino density n_nu in the conversion region. If n_e is comparable to n_nu one finds multi-angle decoherence, whereas the standard self-induced transformation behavior requires that in the transformation region n_nu is safely above n_e. This condition need not be satisfied in the early phase after supernova core bounce. Our new multi-angle effect is a subtle consequence of neutrinos traveling on different trajectories when streaming from a source that is not point-like.

A. Esteban-Pretel; A. Mirizzi; S. Pastor; R. Tomas; G. G. Raffelt; P. D. Serpico; G. Sigl

2008-07-07T23:59:59.000Z

268

Neutrino Processes in Supernovae and the Physics of Protoneutron Star Winds  

E-Print Network (OSTI)

In preparation for a set of hydrodynamical simulations of core-collapse supernovae and protoneutron star winds, we investigate the rates of production and thermalization of $\

Todd A. Thompson; Adam Burrows

2000-09-28T23:59:59.000Z

269

Viscosity and Rotation in Core-Collapse Supernovae  

E-Print Network (OSTI)

We construct models of core-collapse supernovae in one spatial dimension, including rotation, angular momentum transport, and viscous dissipation employing an alpha-prescription. We compare the evolution of a fiducial 11 M_sun non-rotating progenitor with its evolution including a wide range of imposed initial rotation profiles (1.25supernova shock. This effect yields qualitatively new dynamics in models of supernovae. We explore several potential mechanisms for viscosity in the core-collapse environment: neutrino viscosity, turbulent viscosity caused by the magnetorotational instability (MRI), and turbulent viscosity by entropy- and composition-gradient-driven convection. We argue that the MRI is the most effective. We find that for rotation periods in the range P_0<~5 s, and a range of viscous stresses, that the post-bounce dynamics is significantly effected by the inclusion of this extra energy deposition mechanism; in several cases we obtain strong supernova explosions.

Todd A. Thompson; Eliot Quataert; Adam Burrows

2004-03-09T23:59:59.000Z

270

Core-Collapse Supernovae Induced by Anisotropic Neutrino Radiation  

E-Print Network (OSTI)

We demonstrate the important role of anisotropic neutrino radiation on the mechanism of core-collapse supernova explosions. Through a new parameter study with a fixed radiation field of neutrinos, we show that prolate explosions caused by globally anisotropic neutrino radiation is the most effective mechanism of increasing the explosion energy when the total neutrino luminosity is given. This is suggestive of the fact that the expanding materials of SN 1987A has a prolate geometry.

Yuko Motizuki; Hideki Madokoro; Tetsuya Shimizu

2004-06-11T23:59:59.000Z

271

Core collapse supernovae in the QCD phase diagram  

SciTech Connect

We compare two classes of hybrid equations of state with a hadron-to-quark matter phase transition in their application to core collapse supernova simulations. The first one uses the quark bag model and describes the transition to three-flavor quark matter at low critical densities. The second one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with parameters describing a phase transition to two-flavor quark matter at higher critical densities. These models possess a distinctly different temperature dependence of their transition densities which turns out to be crucial for the possible appearance of quark matter in supernova cores. During the early post-bounce accretion phase quark matter is found only if the phase transition takes place at sufficiently low densities as in the study based on the bag model. The increase critical density with increasing temperature, as obtained for our PNJL parametrization, prevents the formation of quark matter. The further evolution of the core collapse supernova as obtained applying the quark bag model leads to a structural reconfiguration of the central protoneutron star where, in addition to a massive pure quark matter core, a strong hydrodynamic shock wave forms and a second neutrino burst is released during the shock propagation across the neutrinospheres. We discuss the severe constraints in the freedom of choice of quark matter models and their parametrization due to the recently observed 2M{sub Circled-Dot-Operator} pulsar and their implications for further studies of core collapse supernovae in the QCD phase diagram.

Fischer, T., E-mail: t.fischer@gsi.de [Helmholtzzentrum fuer Schwerionenforschung GmbH, GSI (Germany); Blaschke, D. [University of Wroclaw, Institute for Theoretical Physics (Poland); Hempel, M. [University of Basel, Department of Physics (Switzerland); Klaehn, T.; Lastowiecki, R. [University of Wroclaw, Institute for Theoretical Physics (Poland); Liebendoerfer, M. [University of Basel, Department of Physics (Switzerland); Martinez-Pinedo, G. [Helmholtzzentrum fuer Schwerionenforschung GmbH, GSI (Germany); Pagliara, G.; Sagert, I. [Ruprecht-Karls-Universitaet, Institut fuer Theoretische Physik (Germany); Sandin, F. [Lulea Tekniska Universitet, Department of Computer Science and Electrical Engineering, EISLAB (Sweden); Schaffner-Bielich, J. [Ruprecht-Karls-Universitaet, Institut fuer Theoretische Physik (Germany); Typel, S. [Helmholtzzentrum fuer Schwerionenforschung GmbH, GSI (Germany)

2012-05-15T23:59:59.000Z

272

Diffuse supernova neutrino background is detectable in Super-Kamiokande  

Science Conference Proceedings (OSTI)

The diffuse supernova neutrino background (DSNB) provides an immediate opportunity to study the emission of MeV thermal neutrinos from core-collapse supernovae. The DSNB is a powerful probe of stellar and neutrino physics, provided that the core-collapse rate is large enough and that its uncertainty is small enough. To assess the important physics enabled by the DSNB, we start with the cosmic star formation history of Hopkins and Beacom (2006) and confirm its normalization and evolution by cross-checks with the supernova rate, extragalactic background light, and stellar mass density. We find a sufficient core-collapse rate with small uncertainties that translate into a variation of {+-}40% in the DSNB event spectrum. Considering thermal neutrino spectra with effective temperatures between 4-6 MeV, the predicted DSNB is within a factor 4-2 below the upper limit obtained by Super-Kamiokande in 2003. Furthermore, detection prospects would be dramatically improved with a gadolinium-enhanced Super-Kamiokande: the backgrounds would be significantly reduced, the fluxes and uncertainties converge at the lower threshold energy, and the predicted event rate is 1.2-5.6 events yr{sup -1} in the energy range 10-26 MeV. These results demonstrate the imminent detection of the DSNB by Super-Kamiokande and its exciting prospects for studying stellar and neutrino physics.

Horiuchi, Shunsaku [Department of Physics, School of Science, University of Tokyo, Tokyo 113-0033 (Japan); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Beacom, John F. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Astronomy, Ohio State University, Columbus, Ohio 43210 (United States); Dwek, Eli [Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2009-04-15T23:59:59.000Z

273

Neutron star/supernova remnant associations: the view from Tbilisi  

E-Print Network (OSTI)

We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the supernova remnants (SNRs) can be products of an off-centered supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical center of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical center of the associated SNR. Taking into account these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of associations. The possibilities of our approach are illustrated with some examples. We also show that the concept of an off-centered cavity SN explosion could be used to explain the peculiar structures of a number of SNRs and for searches for stellar remnants possibly associated with them.

V. V. Gvaramadze

2002-08-01T23:59:59.000Z

274

ASPHERICAL SUPERNOVA SHOCK BREAKOUT AND THE OBSERVATIONS OF SUPERNOVA 2008D  

Science Conference Proceedings (OSTI)

Shock breakout is the earliest, readily observable emission from a core-collapse supernova (SN) explosion. Observing SN shock breakout may yield information about the nature of the SN shock prior to exiting the progenitor and, in turn, about the core-collapse SN mechanism itself. X-ray outburst 080109, later associated with SN 2008D, is a very well-observed example of shock breakout from a core-collapse SN. Despite excellent observational coverage and detailed modeling, fundamental information about the shock breakout, such as the radius of breakout and driver of the light curve timescale, is still uncertain. The models constructed for explaining the shock breakout emission from SN 2008D all assume spherical symmetry. We present a study of the observational characteristics of aspherical shock breakout from stripped-envelope core-collapse SNe surrounded by a wind. We conduct two-dimensional, jet-driven SN simulations from stripped-envelope progenitors and calculate the resulting shock breakout X-ray spectra and light curves. The X-ray spectra evolve significantly in time as the shocks expand outward and are not fit well by single-temperature and radius blackbodies. The timescale of the X-ray burst light curve of the shock breakout is related to the shock crossing time of the progenitor, and not to the much shorter light crossing time that sets the light curve timescale in spherical breakouts. This could explain the long shock breakout light curve timescale observed for XRO 080109/SN 2008D. We also comment on the distribution of intermediate-mass elements in asymmetric explosions.

Couch, Sean M.; Wheeler, J. Craig; Milosavljevic, Milos [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Pooley, David [Eureka Scientific, Inc., Austin, TX 78756 (United States)

2011-02-01T23:59:59.000Z

275

Direct measurement of the $^{44}$Ti($\\alpha$,p) reaction of importance to supernovae, using reclaimed $^{44}$Ti  

E-Print Network (OSTI)

Direct measurement of the $^{44}$Ti($\\alpha$,p) reaction of importance to supernovae, using reclaimed $^{44}$Ti

CERN. Geneva; Lindroos, Mats; CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee; INTC

2007-01-01T23:59:59.000Z

276

Deep-Ocean Crusts as Telescopes: Using Live Radioisotopes to Probe Supernova Nucleosynthesis  

E-Print Network (OSTI)

Live 60Fe has recently been detected in a deep-ocean ferromanganese crust, isolated in layers dating from about 3 Myr ago. Since 60Fe has a mean life of 2.2 Myr, a near-Earth supernova is the only likely source for such a signal, and we explore here the consequences of a supernova origin. We combine the 60Fe data with several supernova nucleosynthesis models to calculate the supernova distance as a function of progenitor mass, finding an allowed range of 15-120 pc. We also predict the signals expected for several other radioisotopes, which are independent of the supernova distance. Species likely to be present near or above background levels are 10Be, 26Al, 53Mn, 182Hf and 244Pu. Of these, 182Hf and 244Pu are nearly background-free, presenting the best opportunities to provide strong confirmation of the supernova origin of the 60Fe signal, and to demonstrate that at least some supernovae are the source for the r-process. The accuracies of our predictions are hampered by large uncertainties in the predicted 60Fe yields for supernovae of different masses, so the new crust data motivate a redoubled theoretical attack on this problem.

Brian D. Fields; Kathrin A. Hochmuth; John Ellis

2004-10-22T23:59:59.000Z

277

Cosmic Rays from Supernovae Proven to Hit Earth | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cosmic Rays from Supernovae Proven to Hit Earth Cosmic Rays from Supernovae Proven to Hit Earth Cosmic Rays from Supernovae Proven to Hit Earth March 5, 2013 - 4:40pm Addthis When stars explode, the supernovas send off shock waves like the one shown in this artist's rendition, which accelerate protons to cosmic-ray energies through a process known as Fermi acceleration. Andy Freeberg SLAC National Accelerator Laboratory Did you know? Protons make up 90 percent of the cosmic rays that hit Earth's atmosphere, triggering showers of particles that reach the ground and creating radiation for air travelers. The energies of these protons as they leave the supernovae are far beyond what the most powerful particle colliders on Earth can produce. Cosmic rays, energetic particles that pelt Earth, are born in the violent

278

Nonstationary Rayleigh-Taylor instability in supernova ejecta  

SciTech Connect

This paper studies the effect of a nonstationary shell acceleration on the development of the Rayleigh-Taylor instability (RTI) in supernovae remnants (SNRs). Two groups of solutions describing acceleration and deceleration phase of the SNR shell are obtained. Using a special transformation (co-moving coordinate frame), an exact dispersion relation for nonstationary RTI is derived. It is shown that compressible and incompressible branches are separated for the spherically symmetric flow and only the former is unstable. The exact analytic solution is compared to a simpler WKB-like analysis and a good agreement is shown, which proves that this analysis can be useful and easily extended to further applications.

Ribeyre, X.; Hallo, L.; Tikhonchuk, V. T.; Bouquet, S.; Sanz, J. [Centre Lasers Intenses et Applications, Universite Bordeaux 1-CNRS-CEA, 33405 Talence Cedex (France); Commissariat a l'Energie Atomique, DIF/Departement de Physique Theorique et Appliquee, 91680, Bruyeres le Chatel (France); E.T.S.I., Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

2007-11-15T23:59:59.000Z

279

Cerenkov radiation by neutrinos in a supernova core  

E-Print Network (OSTI)

Neutrinos with a magnetic dipole moment propagating in a medium with a velocity larger than the phase velocity of light emit photons by the Cerenkov process. The Cerenkov radiation is a helicity flip process via which a left-handed neutrino in a supernova core may change into a sterile right-handed one and free-stream out of the core. Assuming that the luminosity of such sterile right-handed neutrinos is less than $10^{53}$ ergs/sec gives an upper bound on the neutrino magnetic dipole moment $\\mu_\

Subhendra Mohanty; Manoj K. Samal

1995-06-21T23:59:59.000Z

280

Supernova Relic Neutrino Search at Super-Kamiokande  

E-Print Network (OSTI)

A new Super-Kamiokande (SK) search for Supernova Relic Neutrinos (SRNs) was conducted using 2853 live days of data. Sensitivity is now greatly improved compared to the 2003 SK result, which placed a flux limit near many theoretical predictions. This more detailed analysis includes a variety of improvements such as increased efficiency, a lower energy threshold, and an expanded data set. New combined upper limits on SRN flux are between 2.8 and 3.0 nu_e cm^-2 s^-1 > 16 MeV total positron energy (17.3 MeV E_nu).

The Super-Kamiokande Collaboration; :; K. Bays; T. Iida; K. Abe; Y. Hayato; K. Iyogi; J. Kameda; Y. Koshio; L. Marti; M. Miura; S. Moriyama; M. Nakahata; S. Nakayama; Y. Obayashi; H. Sekiya; M. Shiozawa; Y. Suzuki; A. Takeda; Y. Takenaga; K. Ueno; K. Ueshima S. Yamada T. Yokozawa H. Kaji T. Kajita; K. Kaneyuki; T. McLachlan; K. Okumura; L. K. Pik; K. Martens; M. Vagins; L. Labarga; E. Kearns; M. Litos; J. L. Raaf; J. L. Stone; L. R. Sulak; W. R. Kropp; S. Mine; C. Regis; A. Renshaw; M. B. Smy; H. W. Sobel; K. S. Ganezer; J. Hill; W. E. Keig; S. Cho; J. S. Jang; J. Y. Kim; I. T. Lim; J. Albert; K. Scholberg; C. W. Walter; R. Wendell; T. Wongjirad; T. Ishizuka; S. Tasaka; J. G. Learned; S. Matsuno; S. Smith; T. Hasegawa; T. Ishida; T. Ishii; T. Kobayashi; T. Nakadaira; K. Nakamura; K. Nishikawa; Y. Oyama; K. Sakashita; T. Sekiguchi; T. Tsukamoto; A. T. Suzuki; Y. Takeuchi; M. Ikeda; K. Matsuoka; A. Minamino; A. Murakami; T. Nakaya; Y. Fukuda; Y. Itow; G. Mitsuka; M. Miyake; T. Tanaka; J. Hignight; J. Imber; C. K. Jung; I. Taylor; C. Yanagisawa; A. Kibayashi; H. Ishino; S. Mino; M. Sakuda; T. Mori; H. Toyota; Y. Kuno; S. B. Kim; B. S. Yang; H. Okazawa; Y. Choi; K. Nishijima; M. Koshiba; Y. Totsuka; M. Yokoyama; Y. Heng; S. Chen; H. Zhang; Z. Yang; P. Mijakowski; K. Connolly; M. Dziomba; R. J. Wilkes

2011-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The farthest known supernova: Support for an accelerating universeand a glimpse of the epoch of deceleration  

Science Conference Proceedings (OSTI)

We present photometric observations of an apparent Type Iasupernova (SN Ia) at a redshift of approximately 1.7, the farthest SNobserved to date. The supernova, SN 1997, was discovered in a repeatobservation by the Hubble Space Telescope (HST) of the Hubble DeepField{North (HDF-N), and serendipitously monitored with NICMOS on HSTthroughout the Thompson et al. GTO campaign. The SN type can bedetermined from the host galaxy type: an evolved, red elliptical lackingenough recent star formation to provide a significant population ofcore-collapse supernovae. The classification is further supported bydiagnostics available from the observed colors and temporal behavior ofthe SN, both of which match a typical SN Ia. The photometric record ofthe SN includes a dozen flux measurements in the I, J, and H bandsspanning 35 days in the observed frame. The redshift derived from the SNphotometry, z = 1:7 plus or minus 0:1, is in excellent agreement with theredshift estimate of z = 1:65 plus or minus 0:15 derived from the U_300B_450 V_-606 I_814 J_110 J_125 H_160 H_165 K_s photometry of the galaxy.Optical and near-infrared spectra of the host provide a very tentativespectroscopic redshift of 1.755. Fits to observations of the SN provideconstraints for the redshift-distance relation of SNe Ia and a powerfultest of the current accelerating Universe hypothesis. The apparent SNbrightness is consistent with that expected in the decelerating phase ofthe preferred cosmological model, Omega_M approximately equal to 1/3;Omega_Lambda approximately equal to 2/3. It is inconsistent with greydust or simple luminosity evolution, candidate astrophysical effectswhich could mimic previous evidence for an accelerating Universe from SNeIa at z approximately equal to 0:5. We consider several sources ofpotential systematic error including gravitational lensing, supernovamisclassification, sample selection bias, and luminosity calibrationerrors. Currently, none of these effects alone appears likely tochallenge our conclusions. Additional SNe Ia at z>1 will be requiredto test more exotic alternatives to the accelerating Universe hypothesisand to probe the nature of dark energy.

Riess, Adam G.; Nugent, Peter E.; Schmidt, Brian P.; Tonry, John; Dickinson, Mark; Gilliland, Ronald L.; Thompson, Rodger I.; Budavari,Tamas; Casertano, Stefano; Evans, Aaron S.; Filippenko, Alexei V.; Livio,Mario; Sanders, David B.; Shapley, Alice E.; Spinrad, Hyron; Steidel,Charles C.; Stern, Daniel; Surace, Jason; Veilleux, Sylvain

2001-04-01T23:59:59.000Z

282

Exploring the Outer Solar System with the ESSENCE Supernova Survey  

Science Conference Proceedings (OSTI)

We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21{sup o} < {beta} < -5{sup o}), reaching limiting magnitudes per observation of I {approx} 23.1 and R {approx} 23.7. We examine several of the newly detected objects in detail, including 2003 UC{sub 414}, which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS{sub 422} and 2007 TA{sub 418} have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the 'extended' or 'detached' scattered disk, 2004 VN{sub 112}, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only {approx}2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system.

Becker, A.C.; /Washington U., Seattle, Astron. Dept.; Arraki, K.; /Washington U., Seattle, Astron. Dept.; Kaib, N.A.; /Washington U., Seattle, Astron. Dept.; Wood-Vasey, W.M.; /Harvard-Smithsonian Ctr. Astrophys.; Aguilera, C.; /Cerro-Tololo InterAmerican Obs.; Blackman, J.W.; /Australian Natl. U., Canberra; Blondin, S.; /Harvard-Smithsonian Ctr. Astrophys.; Challis, P.; /Harvard-Smithsonian Ctr. Astrophys.; Clocchiatti, A.; /Rio de Janeiro, Pont. U. Catol.; Covarrubias, R.; /Kyushu Sangyo U.; Damke, G.; /Cerro-Tololo InterAmerican Obs.; Davis, T.M.; /Bohr Inst. /Queensland U.; Filippenko, A.V.; /UC, Berkeley; Foley, R.J.; /UC, Berkeley; Garg, A.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Garnavich, P.M.; /Notre Dame U.; Hicken, M.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Jha, S.; /Harvard U. /SLAC; Kirshner, R.P.; /Harvard-Smithsonian Ctr. Astrophys.; Krisciunas, K.; /Notre Dame U. /Texas A-M; Leibundgut, B.; /Munich, Tech. U. /UC, Berkeley /NOAO, Tucson /Washington U., Seattle, Astron. Dept. /Fermilab /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Chile U., Santiago /Ohio State U. /Cerro-Tololo InterAmerican Obs. /Harvard U. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Australian Natl. U., Canberra /Australian Natl. U., Canberra /Cerro-Tololo InterAmerican Obs. /Munich, Tech. U. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Cerro-Tololo InterAmerican Obs. /Texas A-M /Cerro-Tololo InterAmerican Obs.

2011-11-10T23:59:59.000Z

283

Role of isospin physics in supernova matter and neutron stars  

E-Print Network (OSTI)

We investigate the liquid-gas phase transition of hot protoneutron stars shortly after their birth following supernova explosion and the composition and structure of hyperon-rich (proto)neutron stars within a relativistic mean-field model where the nuclear symmetry energy has been constrained from the measured neutron skin thickness of finite nuclei. Light clusters are abundantly formed with increasing temperature well inside the neutrino-sphere for an uniform supernova matter. Liquid-gas phase transition is found to suppress the cluster yield within the coexistence phase as well as decrease considerably the neutron-proton asymmetry over a wide density range. We find symmetry energy has a modest effect on the boundaries and the critical temperature for the liquid-gas phase transition, and the composition depends more sensitively on the number of trapped neutrinos and temperature of the protoneutron star. The influence of hyperons in the dense interior of stars makes the overall equation of state soft. However, neutrino trapping distinctly delays the appearance of hyperons due to abundance of electrons. We also find that a softer symmetry energy further makes the onset of hyperon less favorable. The resulting structures of the (proto)neutron stars with hyperons and with liquid-gas phase transition are discussed.

Bharat K. Sharma; Subrata Pal

2010-10-28T23:59:59.000Z

284

A NEW X-RAY VIEW OF THE SUPERNOVA REMNANT G272.2-3.2 AND ITS ENVIRONMENT  

SciTech Connect

We present an analysis of Chandra X-Ray Observatory data detailing a Galactic supernova remnant, G272.2-3.2. A clear shell of emission is resolved as a series of filaments and knots around the entire rim of the remnant. Spectral analysis of these features show that they are consistent with shock heating of interstellar material in a clumpy medium. We contrast these X-ray images with 22 {mu}m Wide-field Infrared Survey Explorer (WISE) data to verify this interaction. Spatially separated from the shell we see a central diffuse region dominated by harder, hotter emission. Spatial spectroscopy shows a clear enhancement of metals consistent with a Type Ia explosion, namely S, Si, and Fe. We find no clear evidence for a compact object or pulsar wind nebula and argue for a Type Ia origin. Consideration of the ionization timescales suggest an age of 11,000 yr for G272.2-3.2.

McEntaffer, R. L.; Grieves, N.; DeRoo, C.; Brantseg, T., E-mail: randall-mcentaffer@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

2013-09-10T23:59:59.000Z

285

THREE-DIMENSIONAL EXPLOSION GEOMETRY OF STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE. I. SPECTROPOLARIMETRIC OBSERVATIONS  

Science Conference Proceedings (OSTI)

We study the multi-dimensional geometry of supernova (SN) explosions by means of spectropolarimetric observations of stripped-envelope SNe, i.e., SNe without a hydrogen-rich layer. We perform spectropolarimetric observations of two stripped-envelope SNe, Type Ib SN 2009jf and Type Ic SN 2009mi. Both objects show non-zero polarization at the wavelength of the strong lines. They also show a loop in the Stokes Q - U diagram, which indicates a non-axisymmetric, three-dimensional ion distribution in the ejecta. We show that five out of six stripped-envelope SNe, which have been observed spectropolarimetrically so far, show such a loop. This implies that a three-dimensional geometry is common in stripped-envelope SNe. We find that stronger lines tend to show higher polarization. This effect is not related to the geometry, and must be corrected for to compare the polarization of different lines or different objects. Even after the correction, however, there remains a dispersion of polarization degree among different objects. Such a dispersion might be caused by three-dimensional clumpy ion distributions viewed from different directions.

Tanaka, Masaomi; Iye, Masanori [National Astronomical Observatory, Mitaka, Tokyo (Japan); Kawabata, Koji S.; Yamanaka, Masayuki [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima (Japan); Hattori, Takashi; Aoki, Kentaro; Sasaki, Toshiyuki [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Mazzali, Paolo A. [Max-Planck Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Muenchen (Germany); Maeda, Keiichi; Nomoto, Ken'ichi [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Pian, Elena, E-mail: masaomi.tanaka@nao.ac.jp [Istituto Naz. di Astrofisica-Oss. Astron., Via Tiepolo, 11, 34131 Trieste (Italy)

2012-07-20T23:59:59.000Z

286

Neutrino-Matter Interaction Rates in Supernovae: The Essential Microphysics of Core Collapse  

E-Print Network (OSTI)

Neutrino-matter interaction rates are central to the core collapse phenomenon and, perhaps, to the viability of the mechanism of core-collapse supernova explosions. In this paper we catalog and discuss the major neutrino scattering, absorption, and production processes that together influence the outcome of core collapse and the cooling of protoneutron stars. These are the essential inputs into the codes used to simulate the supernova phenomenon and an understanding of these processes is a prerequisite to continuing progress in supernova theory.

Adam Burrows; Todd A. Thompson

2002-11-18T23:59:59.000Z

287

Dedicated Supernova Detection by a Network of Neutral Current Spherical TPC's  

E-Print Network (OSTI)

Supernova neutrinos can easily be detected by a spherical gaseous TPC detector measuring very low energy nuclear recoils. The expected rates are quite large for a neutron rich target since the neutrino nucleus neutral current interaction yields a coherent contribution of all neutrons. As a matter of fact for a typical supernova at 10 kpc, about 1000 events are expected using a spherical detector of radius 4 m with Xe gas at a pressure of 10 Atm. A world wide network of several such simple, stable and low cost supernova detectors with a running time of a few centuries is quite feasible.

J. D. Vergados; Y. Giomataris

2005-11-16T23:59:59.000Z

288

Dedicated Supernova Detection by a Network of Neutral Current Spherical TPC's  

E-Print Network (OSTI)

Supernova neutrinos can easily be detected by a spherical gaseous TPC detector measuring very low energy nuclear recoils. The expected rates are quite large for a neutron rich target since the neutrino nucleus neutral current interaction yields a coherent contribution of all neutrons. As a matter of fact for a typical supernova at 10 kpc, about 1000 events are expected using a spherical detector of radius 4 m with Xe gas at a pressure of 10 Atm. A world wide network of several such simple, stable and low cost supernova detectors with a running time of a few centuries is quite feasible.

Vergados, J D

2005-01-01T23:59:59.000Z

289

NUMERICAL STUDY OF THE VISHNIAC INSTABILITY IN SUPERNOVA REMNANTS  

Science Conference Proceedings (OSTI)

The Vishniac instability is thought to explain the complex structure of radiative supernova remnants in their Pressure-Driven Thin Shell (PDTS) phase after a blast wave (BW) has propagated from a central explosion. In this paper, the propagation of the BW and the evolution of the PDTS stage are studied numerically with the two-dimensional (2D) code HYDRO-MUSCL for a finite-thickness shell expanding in the interstellar medium (ISM). Special attention is paid to the adiabatic index, {gamma}, and three distinct values are taken for the cavity ({gamma}{sub 1}), the shell ({gamma}{sub 2}), and the ISM ({gamma}{sub 3}) with the condition {gamma}{sub 2} < {gamma}{sub 1}, {gamma}{sub 3}. This low value of {gamma}{sub 2} accounts for the high density in the shell achieved by a strong radiative cooling. Once the spherical background flow is obtained, the evolution of a 2D-axisymmetric perturbation is computed from the linear to the nonlinear regime. The overstable mechanism, previously demonstrated theoretically by E. T. Vishniac in 1983, is recovered numerically in the linear stage and is expected to produce and enhance anisotropies and clumps on the shock front, leading to the disruption of the shell in the nonlinear phase. The period of the increasing oscillations and the growth rate of the instability are derived from several points of view (the position of the perturbed shock front, mass fluxes along the shell, and density maps), and the most unstable mode differing from the value given by Vishniac is computed. In addition, the influence of several parameters (the Mach number, amplitude and wavelength of the perturbation, and adiabatic index) is examined and for wavelengths that are large enough compared to the shell thickness, the same conclusion arises: in the late stage of the evolution of the radiative supernova remnant, the instability is dampened and the angular initial deformation of the shock front is smoothed while the mass density becomes uniform with the angle. As a result, our model shows that the supernova remnant returns to a stable evolution and the Vishniac instability does not lead to the fragmentation of the shock as predicted by the theory.

Michaut, C.; Cavet, C.; Bouquet, S. E.; Roy, F.; Nguyen, H. C., E-mail: claire.michaut@obspm.fr [LUTH, Observatoire de Paris, CNRS, Universite Paris-Diderot, F-92190 Meudon (France)

2012-11-10T23:59:59.000Z

290

Climate Zone 1A | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Climate Zone 1A Jump to: navigation, search A type of climate defined in the ASHRAE...

291

nu-Process Nucleosynthesis in Population III Core-Collapse Supernovae  

E-Print Network (OSTI)

We investigate the effects of neutrino-nucleus interactions (the nu-process) on the production of iron-peak elements in Population III core-collapse supernovae. The nu-process and the following proton and neutron capture reactions produce odd-Z iron-peak elements in complete and incomplete Si burning region. This reaction sequence enhances the abundances of Sc, Mn, and Co in the supernova ejecta. The supernova explosion models of 15 M_sol and 25 M_sol stars with the nu-process well reproduce the averaged Mn/Fe ratio observed in extremely metal-poor halo stars. In order to reproduce the observed Mn/Fe ratio, the total neutrino energy in the supernovae should be 3 - 9 x 10^{53} ergs. Stronger neutrino irradiation and other production sites are necessary to reproduce the observed Sc/Fe and Co/Fe ratios, although these ratios increase by the nu-process.

Takashi Yoshida; Hideyuki Umeda; Ken'ichi Nomoto

2007-10-01T23:59:59.000Z

292

GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light  

E-Print Network (OSTI)

Training Network “Gamma-Ray Bursts: An Enigma and a Tool”,Journal GRB 020410: A Gamma-Ray Burst Afterglow DiscoveredSubject headings: gamma rays: bursts – supernova: general

2004-01-01T23:59:59.000Z

293

Nuclear liquid-gas phase transition and supernovae evolution  

E-Print Network (OSTI)

It is shown that the large density fluctuations appearing at the onset of the first order nuclear liquid-gas phase transition can play an important role in the supernovae evolution. Due to these fluctuations, the neutrino gas may be trapped inside a thin layer of matter near the proto-neutron star surface. The resulting increase of pressure may induce strong particle ejection a few hundred milliseconds after the bounce of the collapse, contributing to the revival of the shock wave. The Hartree-Fock+RPA scheme, with a finite-range nucleon-nucleon effective interaction, is employed to estimate the effects of the neutrino trapping due to the strong density fluctuations, and to discuss qualitatively the consequences of the suggested new scenario.

Jerome Margueron; Jesus Navarro; Patrick Blottiau

2004-01-26T23:59:59.000Z

294

Stardust, Supernovae and the Chirality of the Amino Acids  

SciTech Connect

A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

Boyd, R N; Kajino, T; Onaka, T

2011-03-09T23:59:59.000Z

295

Fission Cycling in Supernova Nucleosynthesis: Active-Sterile Neutrino Oscillations  

E-Print Network (OSTI)

We investigate nucleosynthesis in the supernovae post-core bounce neutrino-driven wind environment in the presence of active-sterile neutrino transformation. We consider active-sterile neutrino oscillations for a range of mixing parameters: vacuum mass-squared differences of 0.1 eV^2 10^-4. We find a consistent r-process pattern for a large range of mixing parameters that is in rough agreement with the halo star CS 22892-052 abundances and the pattern shape is determined by fission cycling. We find that the allowed region for the formation of the r-process peaks overlaps the LSND and NSBL (3+1) allowed region.

J. Beun; G. C. McLaughlin; R. Surman; W. R. Hix

2006-02-01T23:59:59.000Z

296

Neutrino signature of supernova hydrodynamical instabilities in three dimensions  

E-Print Network (OSTI)

The first full-scale three-dimensional (3D) core-collapse supernova (SN) simulations with sophisticated neutrino transport show pronounced effects of the standing accretion shock instability (SASI) for two high-mass progenitors (20 and 27 M_sun). In a low-mass progenitor (11.2 M_sun), large-scale convection is the dominant nonradial hydrodynamic instability in the postshock accretion layer. The SASI-associated modulation of the neutrino signal (80 Hz in our two examples) will be clearly detectable in IceCube or the future Hyper-Kamiokande detector, depending on progenitor properties, distance, and observer location relative to the main SASI sloshing direction. The neutrino signal from the next galactic SN can therefore diagnose the nature of the hydrodynamic instability.

Irene Tamborra; Florian Hanke; Bernhard Mueller; Hans-Thomas Janka; Georg Raffelt

2013-07-30T23:59:59.000Z

297

Probing Dark Energy via Neutrino and Supernova Observatories  

SciTech Connect

A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

2006-07-10T23:59:59.000Z

298

Comment on ”Cerenkov radiation by neutrinos in a supernova core”  

E-Print Network (OSTI)

It had been pointed out by Mohanty and Samal[1] that the helicity flipping Cerenkov process ?L ? ?R +? or ? +?L ? ?R could be an important cooling mechanism for the supernova core. Comparing the neutrino emissivity by the Cerenkov process with observations of SN1987A, a restrictive bound on the neutrino magnetic moment was established. Subsequently it was pointed out by Raffelt[2] that, this result was based on a numerical error in the calculation of the refractive index of the SN core and using the correct numbers it was shown that the photons in a SN core do not have a space-like dispersion relation, so the Cerenkov helicity flip process would not occur. Here we show that the earlier estimate of refractive index was based on the thermodynamic formula for susceptibility which turns out to be invalid for real photons or plasmons even in the static limit. However an analysis of the dispersion relations of plasmons in an

Subhendra Mohanty; Sarira Sahu

1997-01-01T23:59:59.000Z

299

Comment on ''Cerenkov radiation by neutrinos in a supernova core"  

E-Print Network (OSTI)

The helicity changing Cerenkov radiation in a supernova core was used earlier to put a restrictive bound on the neutrino magnetic moment. Subsequently it was pointed out, that this result was based on a numerical error in the calculationn of the refractive index of the SN core and using the correct numbers it was shown that the photons in a SN core do not have a space-like dispersion relation, so the Cerenkov process would not occur. Here we show that the earlier estimate of refractive index was based on the thermodynamic formula for susceptibility which is inapplicable for real photons or plasmons. However in an ultrarelativistic plasma the plasmon has a space-like branch in the dispersion relation hence the Cerenkov radiation of a plasmon is kinematically allowed. We show that the observations of neutrino flux from SN1987A put a constraint on the neutrino magnetic moment $\\mu_{\

Subhendra Mohanty; Sarira Sahu

1997-10-07T23:59:59.000Z

300

Properties of heavy and superheavy nuclei in supernova environments  

SciTech Connect

The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation. We investigate the stability of nuclei with respect to {alpha} and {beta} decay. We find that the presence of the electrons leads to stabilizing effects for {alpha} decay at high electron densities. Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with respect to {beta}-decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.

Buervenich, T. J.; Mishustin, I. N.; Greiner, W. [Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany)

2008-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reduced Beta Decay Rates of Iron Isotopes for Supernova Physics  

SciTech Connect

During the late phases of stellar evolution beta decay on iron isotopes, in the core of massive stars, plays a crucial role in the dynamics of core-collapse. The beta decay contributes in maintaining a 'respectable' lepton-to-baryon ratio (PSI{sub e}) of the core prior to collapse which results in a larger shock energy to power the explosion. It is indeed a fine tuning of the parameter PSI{sub e} at various stages of supernova physics which can lead to a successful transformation of the collapse into an explosion. The calculations presented here might help in fine-tuning of PSI{sub e} for the collapse simulators of massive stars.

Nabi, Jameel-Un [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23460, N.W.F.P. (Pakistan)

2009-07-07T23:59:59.000Z

302

Constraints on Dark Energy from Supernovae, Gamma Ray Bursts, Acoustic Oscillations, Nucleosynthesis and Large Scale Structure and the Hubble constant  

E-Print Network (OSTI)

The luminosity distance vs. redshift law is now measured using supernovae and gamma ray bursts, and the angular size distance is measured at the surface of last scattering by the CMB and at z = 0.35 by baryon acoustic oscillations. In this paper this data is fit to models for the equation of state with w = -1, w = const, and w(z) = w_0+w_a(1-a). The last model is poorly constrained by the distance data, leading to unphysical solutions where the dark energy dominates at early times unless the large scale structure and acoustic scale constraints are modified to allow for early time dark energy effects. A flat LambdaCDM model is consistent with all the data.

Edward L. Wright

2007-01-22T23:59:59.000Z

303

Spin flip of neutrinos with magnetic moment in core-collapse supernova  

Science Conference Proceedings (OSTI)

Neutrinos with magnetic moment experience chirality flips while scattering off charged particles. It is known that if neutrino is a Dirac fermion, then such chirality flips lead to the production of sterile right-handed neutrinos inside the core of a star during the stellar collapse, which may facilitate the supernova explosion and modify the supernova neutrino signal. In the present paper we reexamine the production of right-handed neutrinos during the collapse using a dynamical model of the collapse. We refine the estimates of the values of the Dirac magnetic moment which are necessary to substantially alter the supernova dynamics and neutrno signal. It is argued in particular that Super-Kamiokande will be sensitive at least to {mu}{sub {nu}Dirac} = 10{sup -13{mu}}{sub B} in case of a galactic supernova explosion. Also we briefly discuss the case of Majorana neutrino magnetic moment. It is pointed out that in the inner supernova core spin flips may quickly equilibrate electron neutrinos with nonelectron antineutrinos if {mu}{sub {nu}Majorana} {>=} 10{sup -12{mu}}{sub B}. This may lead to various consequences for supernova physics.

Lychkovskiy, O. V., E-mail: lychkovskiy@itep.ru; Blinnikov, S. I. [Institute for Theoretical and Experimental Physics (Russian Federation)

2010-04-15T23:59:59.000Z

304

AN EMERGING CLASS OF BRIGHT, FAST-EVOLVING SUPERNOVAE WITH LOW-MASS EJECTA  

SciTech Connect

A recent analysis of supernova (SN) 2002bj revealed that it was an apparently unique type Ib SN. It showed a high peak luminosity, with absolute magnitude M{sub R} {approx} -18.5, but an extremely fast-evolving light curve. It had a rise time of <7 days followed by a decline of 0.25 mag day{sup -1} in B band and showed evidence for very low mass of ejecta (<0.15 M{sub sun}). Here we discuss two additional historical events, SN 1885A and SN 1939B, showing similarly fast light curves and low ejected masses. We discuss the low mass of ejecta inferred from our analysis of the SN 1885A remnant in M31 and present for the first time the spectrum of SN 1939B. The old environments of both SN 1885A (in the bulge of M31) and SN 1939B (in an elliptical galaxy with no traces of star formation activity) strongly support old white dwarf (WD) progenitors for these SNe. We find no clear evidence for helium in the spectrum of SN 1939B, as might be expected from a helium-shell detonation on a WD, suggested to be the origin of SN 2002bj. Finally, the discovery of all the observed fast-evolving SNe in nearby galaxies suggests that the rate of these peculiar SNe is at least 1%-2% of all SNe.

Perets, Hagai B. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Badenes, Carles; Arcavi, Iair; Gal-yam, Avishay [Department of Particle Physics and Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Simon, Joshua D., E-mail: hperets@cfa.harvard.edu [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

2011-04-01T23:59:59.000Z

305

DIRECT CONFIRMATION OF THE ASYMMETRY OF THE CAS A SUPERNOVA WITH LIGHT ECHOES  

SciTech Connect

We report the first detection of asymmetry in a supernova (SN) photosphere based on SN light echo (LE) spectra of Cas A from the different perspectives of dust concentrations on its LE ellipsoid. New LEs are reported based on difference images, and optical spectra of these LEs are analyzed and compared. After properly accounting for the effects of finite dust-filament extent and inclination, we find one field where the He I {lambda}5876 and H{alpha} features are blueshifted by an additional {approx}4000 km s{sup -1} relative to other spectra and to the spectra of the Type IIb SN 1993J. That same direction does not show any shift relative to other Cas A LE spectra in the Ca II near-infrared triplet feature. We compare the perspectives of the Cas A LE dust concentrations with recent three-dimensional modeling of the SN remnant (SNR) and note that the location having the blueshifted He I and H{alpha} features is roughly in the direction of an Fe-rich outflow and in the opposite direction of the motion of the compact object at the center of the SNR. We conclude that Cas A was an intrinsically asymmetric SN. Future LE spectroscopy of this object, and of other historical SNe, will provide additional insight into the connection of the explosion mechanism to SN then to SNR, as well as give crucial observational evidence regarding how stars explode.

Rest, A.; Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Foley, R. J.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sinnott, B.; Welch, D. L. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Badenes, C. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Bergmann, M. [6530 E. Clinton St., Scottsdale, AZ 85254 (United States); Bhatti, W. A.; Huber, M. E. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, 3400 North Charles Street, MD 21218 (United States); Blondin, S. [Centre de Physique des Particules de Marseille (CPPM), Aix-Marseille Universite, CNRS/IN2P3, 163 Avenue de Luminy, 13288 Marseille Cedex 9 (France); Challis, P.; Damke, G. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Finley, H. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Kasen, D. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Matheson, T. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719-4933 (United States); Mazzali, P. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany); Minniti, D. [Vatican Observatory, V00120 Vatican City State (Italy); Nakajima, R., E-mail: marcelbergmann@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

2011-05-01T23:59:59.000Z

306

Neutrino energy loss rates and positron capture rates on $^{55}$Co for presupernova and supernova physics  

E-Print Network (OSTI)

Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently being used for calculation of stellar weak interaction rates of $fp$-shell nuclide with success. Neutrino losses from proto-neutron stars play a pivotal role to decide if these stars would be crushed into black holes or explode as supernovae. The product of abundance and positron capture rates on $^{55}$Co is substantial and as such can play a role in fine tuning of input parameters of simulation codes specially in the presupernova evolution. Recently we introduced our calculation of capture rates on $^{55}$Co, in a luxurious model space of $7 \\hbar \\omega$, employing the pn-QRPA theory with a separable interaction. Simulators, however, may require these rates on a fine scale. Here we present for the first time an expanded calculation of the neutrino energy loss rates and positron capture rates on $^{55}$Co on an extensive temperature-density scale. These type of scale is appropriate for interpolation purposes and of greater utility for simulation codes. The pn-QRPA calculated neutrino energy loss rates are enhanced roughly up to two orders of magnitude compared with the large-scale shell model calculations and favor a lower entropy for the core of massive stars.

Jameel-Un Nabi; Muhammad Sajjad

2011-08-03T23:59:59.000Z

307

Roles of Supernova Ejecta in Nucleosynthesis of Light Elements, Li, Be, and B  

E-Print Network (OSTI)

Explosions of type Ic supernovae (SNe Ic) are investigated using a relativistic hydrodynamic code to study roles of their outermost layers of the ejecta in light element nucleosynthesis through spallation reactions as a possible mechanism of the "primary" process. We have confirmed that the energy distribution of the outermost layers with a mass fraction of only 0.001 % follows the empirical formula proposed by previous work when the explosion is furious. In such explosions, a significant fraction of the ejecta ($>$0.1 % in mass) have the energy greater than the threshold energy for spallation reactions. On the other hand, it is found that the outermost layers of ejecta become more energetic than the empirical formula would predict when the explosion energy per unit ejecta mass is smaller than $\\sim 1.3\\times 10^{51}{ergs/}\\Msun$. As a consequence, it is necessary to numerically calculate explosions to estimate light element yields from SNe Ic. The usage of the empirical formula would overestimate the yields ...

Shigeyama, K N T

2004-01-01T23:59:59.000Z

308

Roles of Supernova Ejecta in Nucleosynthesis of Light Elements, Li, Be, and B  

E-Print Network (OSTI)

Explosions of type Ic supernovae (SNe Ic) are investigated using a relativistic hydrodynamic code to study roles of their outermost layers of the ejecta in light element nucleosynthesis through spallation reactions as a possible mechanism of the "primary" process. We have confirmed that the energy distribution of the outermost layers with a mass fraction of only 0.001 % follows the empirical formula proposed by previous work when the explosion is furious. In such explosions, a significant fraction of the ejecta ($>$0.1 % in mass) have the energy greater than the threshold energy for spallation reactions. On the other hand, it is found that the outermost layers of ejecta become more energetic than the empirical formula would predict when the explosion energy per unit ejecta mass is smaller than $\\sim 1.3\\times 10^{51}{ergs/}\\Msun$. As a consequence, it is necessary to numerically calculate explosions to estimate light element yields from SNe Ic. The usage of the empirical formula would overestimate the yields by a factor of $\\gtsim 3$ for energetic explosions such as SN 1998bw and underestimate the yields by a similar factor for less energetic explosions like SN 1994I. The yields of light elements Li, Be, and B (LiBeB) from SNe Ic are estimated by solving the transfer equation of cosmic rays originated from ejecta of SNe Ic and compared with observations.

Ko Nakamura; Toshikazu Shigeyama

2004-04-15T23:59:59.000Z

309

Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight  

E-Print Network (OSTI)

Correctly interpreting observations of sources such as type Ia supernovae (SNe Ia) require knowledge of the power spectrum of matter on AU scales - which is very hard to model accurately. Because under-dense regions account for much of the volume of the universe, light from a typical source probes a mean density significantly below the cosmic mean. The relative sparsity of sources implies that there could be a significant bias when inferring distances of SNe Ia, and consequently a bias in cosmological parameter estimation. While the weak lensing approximation should in principle give the correct prediction for this, linear perturbation theory predicts an effectively infinite variance in the convergence for ultra-narrow beams. We attempt to quantify the effect typically under-dense lines of sight might have in parameter estimation by considering three alternative methods for estimating distances, in addition to the usual weak lensing approximation. We find in each case this not only increases the errors in the inferred density parameters, but also introduces a bias in the posterior value.

V. C. Busti; R. F. L. Holanda; C. Clarkson

2013-09-25T23:59:59.000Z

310

The Laminar Flame Speedup by Neon-22 Enrichment in White Dwarf Supernovae  

E-Print Network (OSTI)

Carbon-oxygen white dwarfs contain neon-22 formed from alpha-captures onto nitrogen during core He burning in the progenitor star. In a white dwarf (type Ia) supernova, the neon-22 abundance determines, in part, the neutron-to-proton ratio and hence the abundance of radioactive nickel-56 that powers the lightcurve. The neon-22 abundance also changes the burning rate and hence the laminar flame speed. We tabulate the flame speedup for different initial carbon and neon-22 abundances and for a range of densities. This increase in the laminar flame speed--about 30% for a neon-22 mass fraction of 6%--affects the deflagration just after ignition near the center of the white dwarf, where the laminar speed of the flame dominates over the buoyant rise, and in regions of lower density ~ 10^7 g/cm3 where a transition to distributed burning is conjectured to occur. The increase in flame speed will decrease the density of any transition to distributed burning.

David A. Chamulak; Edward F. Brown; Francis X. Timmes

2006-12-18T23:59:59.000Z

311

FAILED-DETONATION SUPERNOVAE: SUBLUMINOUS LOW-VELOCITY Ia SUPERNOVAE AND THEIR KICKED REMNANT WHITE DWARFS WITH IRON-RICH CORES  

SciTech Connect

Type Ia supernovae (SNe Ia) originate from the thermonuclear explosions of carbon-oxygen (C-O) white dwarfs (WDs). The single-degenerate scenario is a well-explored model of SNe Ia where unstable thermonuclear burning initiates in an accreting, Chandrasekhar-mass WD and forms an advancing flame. By several proposed physical processes, the rising, burning material triggers a detonation, which subsequently consumes and unbinds the WD. However, if a detonation is not triggered and the deflagration is too weak to unbind the star, a completely different scenario unfolds. We explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe. We show that failed-detonation SNe expel a few 0.1 M{sub Sun} of burned and partially burned material and that a fraction of the material falls back onto the WD, polluting the remnant WD with intermediate-mass and iron-group elements that likely segregate to the core forming a WD whose core is iron rich. The remaining material is asymmetrically ejected at velocities comparable to the escape velocity from the WD, and in response, the WD is kicked to velocities of a few hundred km s{sup -1}. These kicks may unbind the binary and eject a runaway/hypervelocity WD. Although the energy and ejected mass of the failed-detonation SN are a fraction of typical thermonuclear SNe, they are likely to appear as subluminous low-velocity SNe Ia. Such failed detonations might therefore explain or are related to the observed branch of peculiar SNe Ia, such as the family of low-velocity subluminous SNe (SN 2002cx/SN 2008ha-like SNe).

Jordan, George C. IV; Van Rossum, Daniel R. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States); Perets, Hagai B. [Physics Department, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Fisher, Robert T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States)

2012-12-20T23:59:59.000Z

312

Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Garavini, G.; Supernova Cosmology Project

2008-01-01T23:59:59.000Z

313

Hydrostatic Equilibrium with Degenerate Fermions, Type-II Supernova, and Neutrino Burst  

E-Print Network (OSTI)

much less than free charged particles do. In particular, the existing blackbody radiation of photons

Murayama, Hitoshi

314

FORMATION OF C{sub n} MOLECULES IN OXYGEN-RICH INTERIORS OF TYPE II SUPERNOVAE  

SciTech Connect

Two reaction-rate-based kinetic models for condensation of carbon dust via the growth of precursor linear carbon chains are currently under debate: the first involves the formation of C{sub 2} molecules via radiative association of free C atoms, and the second forms C{sub 2} molecules by the endoergic reaction CO + C {yields} C{sub 2} + O. Both are followed by C captures until the linear chain eventually makes an isomeric transition to ringed carbon on which rapid growth of graphite may occur. These two approaches give vastly different results. Because of the high importance of condensable carbon for current problems in astronomy, we study these competing claims with an intentionally limited reaction rate network which clearly shows that initiation by C + C {yields} C{sub 2} + {gamma} is the dominant pathway to carbon rings. We propose an explanation for why the second pathway is not nearly as effective as its proponents calculated it to be.

Yu Tianhong; Meyer, Bradley S.; Clayton, Donald D. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

2013-05-20T23:59:59.000Z

315

From Convection to Explosion: End-to-End Simulation of Type Ia Supernovae  

E-Print Network (OSTI)

INCITE award at the Oak Ridge Leadership Computational Facility (OLCF) at Oak Ridge National Laboratory

Bell, John B.

316

Effect of Collective Neutrino Oscillations on the Neutrino Mechanism of Core-Collapse Supernovae  

E-Print Network (OSTI)

In the seconds after collapse of a massive star, the newborn proto-neutron star (PNS) radiates neutrinos of all flavors. The absorption of electron-type neutrinos below the radius of the stalled shockwave may drive explosions (the "neutrino mechanism"). Because the heating rate is proportional to the square of neutrino energy, flavor conversion of mu and tau neutrinos to electron-type neutrinos via collective neutrino oscillations (CnuO) may in principle increase the heating rate and drive explosions. In order to assess the potential importance of CnuO for the shock revival, we solve the steady-state boundary value problem of spherically-symmetric accretion between the PNS surface (r_nu) and the shock (r_S), including a scheme for flavor conversion via CnuO. For a given r_nu, PNS mass (M), accretion rate (Mdot), and assumed values of the neutrino energies from the PNS, we calculate the critical neutrino luminosity above which accretion is impossible and explosion results. We show that CnuO can decrease the critical luminosity by a factor of at most ~1.5, but only if the flavor conversion is fully completed inside r_S and if there is no matter suppression. The magnitude of the effect depends on the model parameters (M, Mdot, and r_nu) through the shock radius and the physical scale for flavor conversion. We quantify these dependencies and find that CnuO could lower the critical luminosity only for small M and Mdot, and large r_nu. However, for these parameter values CnuO are suppressed due to matter effects. By quantifying the importance of CnuO and matter suppression at the critical neutrino luminosity for explosion, we show in agreement with previous studies that CnuO are unlikely to affect the neutrino mechanism of core-collapse supernovae significantly.

Ondrej Pejcha; Basudeb Dasgupta; Todd A. Thompson

2011-06-28T23:59:59.000Z

317

THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95  

Science Conference Proceedings (OSTI)

We report on the direct detection and characterization of the probable red supergiant (RSG) progenitor of the intermediate-luminosity Type II-Plateau (II-P) supernova (SN) 2012aw in the nearby (10.0 Mpc) spiral galaxy Messier 95 (M95; NGC 3351). We have identified the star in both Hubble Space Telescope images of the host galaxy, obtained 17-18 yr prior to the explosion, and near-infrared ground-based images, obtained 6-12 yr prior to the SN. The luminous supergiant showed evidence for substantial circumstellar dust, manifested as excess line-of-sight extinction. The effective total-to-selective ratio of extinction to the star was R'{sub V} Almost-Equal-To 4.35, which is significantly different from that of diffuse interstellar dust (i.e., R{sub V} = 3.1), and the total extinction to the star was therefore, on average, A{sub V} Almost-Equal-To 3.1 mag. We find that the observed spectral energy distribution for the progenitor star is consistent with an effective temperature of 3600 K (spectral type M3), and that the star therefore had a bolometric magnitude of -8.29. Through comparison with recent theoretical massive-star evolutionary tracks we can infer that the RSG progenitor had an initial mass 15 {approx}star had initial mass {approx}17-18 M{sub Sun }. The circumstellar dust around the progenitor must have been destroyed in the explosion, as the visual extinction to the SN is found to be low (A{sub V} = 0.24 mag with R{sub V} = 3.1).

Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Mailcode 220-6, Pasadena, CA 91125 (United States); Cenko, S. Bradley; Filippenko, Alexei V., E-mail: vandyk@ipac.caltech.edu, E-mail: cenko@berkeley.edu, E-mail: afilippenko@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); and others

2012-09-10T23:59:59.000Z

318

THE BLAST-WAVE-DRIVEN INSTABILITY AS A VEHICLE FOR UNDERSTANDING SUPERNOVA EXPLOSION STRUCTURE  

Science Conference Proceedings (OSTI)

Blast-wave-driven instabilities play a rich and varied role in supernovae (SNe) evolution from explosion to remnant, but interpreting their role is difficult due to the enormous complexity of stellar systems. We consider the simpler idealized problem of an interface between two constant-density fluids perturbed from spherical and driven by a central blast wave. Where valid, the existence of unified solutions suggests that general conclusions can be drawn about the likely asymptotic structure of the mixing zone. To this end, we apply buoyancy-drag and bubble merger models that include effects of divergence and compressibility. In general, these effects preclude the true self-similar evolution of classical Rayleigh-Taylor (RT), but can be incorporated into a quasi-self-similar growth model. Loss of memory of initial conditions (ICs) can occur in the model, but requires pre-explosion mode numbers higher than predicted for Type II SNe, suggesting that their late-time structure is influenced by details of the initial perturbations. Where low modes dominate, as in the Type Ia Tycho remnant, they result from initial perturbations rather than generation from smaller scales. Therefore, the structure observed now contains direct information about the explosion process. When large-amplitude modes exist in the ICs, the contribution from the Richtmyer-Meshkov (RM) instability is significant compared to RT. Such RM growth can yield proximity of the forward shock to the growing spikes and structure that strongly resembles that observed in Tycho. Laser-driven laboratory experiments offer a promising avenue for testing model and simulation descriptions of blast-wave-driven instabilities and making connections to their astrophysical counterparts.

Miles, Aaron R. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: miles15@llnl.gov

2009-05-01T23:59:59.000Z

319

The Blast-Wave-Driven Instability as a Vehicle for Understanding Supernova Explosion Structure  

Science Conference Proceedings (OSTI)

Blast-wave-driven instabilities play a rich and varied role throughout the evolution of supernovae from explosion to remnant, but interpreting their role is difficult due to the enormous complexity of the stellar systems. We consider the simpler and fundamental hydrodynamic instability problem of a material interface between two constant-density fluids perturbed from spherical and driven by a divergent central Taylor-Sedov blast wave. The existence of unified solutions at high Mach number and small density ratio suggests that general conclusions can be drawn about the likely asymptotic structure of the mixing zone. To this end we apply buoyancy-drag and bubble merger models modified to include the effects of divergence and radial velocity gradients. In general, these effects preclude the true self-similar evolution of classical Raleigh-Taylor, but can be incorporated into a quasi-self-similar growth picture. Loss of memory of initial conditions can occur in the quasi-self-similar model, but requires initial mode numbers higher than those predicted for pre-explosion interfaces in Type II SNe, suggesting that their late-time structure is likely strongly influenced by details of the initial perturbations. Where low-modes are dominant, as in the Type Ia Tycho remnant, they result from initial perturbations rather than generation from smaller scales. Therefore, structure observed now contains direct information about the explosion process. When large-amplitude modes are present in the initial conditions, the contribution to the perturbation growth from the Richtmyer-Meshkov instability is significant or dominant compared to Rayleigh-Taylor. Such Richtmyer-Meshkov growth can yield proximity of the forward shock to the growing spikes and structure that strongly resembles that observed in the Tycho. Laser-driven high-energy-density laboratory experiments offer a promising avenue for testing model and simulation descriptions of blast-wave-driven instabilities and making connections to their astrophysical counterparts.

Miles, A R

2008-05-27T23:59:59.000Z

320

FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147  

Science Conference Proceedings (OSTI)

We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 Multiplication-Sign 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent H{alpha} filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d'Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Hanabata, Y. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Lemoine-Goumard, M. [Universite Bordeaux 1, CNRS/IN2p3, Centre d'Etudes Nucleaires de Bordeaux Gradignan, 33175 Gradignan (France); Takahashi, T., E-mail: katsuta@slac.stanford.edu, E-mail: uchiyama@slac.stanford.edu [Institute of Space and Astronautical Science, Japanese Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

2012-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fission Cycling in a Supernova r-process  

E-Print Network (OSTI)

Recent halo star abundance observations exhibit an important feature of consequence to the r-process: the presence of a main r-process between the second and third peaks which is consistent among halo stars. We explore fission cycling and steady-beta flow as the driving mechanisms behind this feature. The presence of fission cycling during the r-process can account for nucleosynthesis yields between the second and third peaks, whereas the presence of steady-beta flow can account for consistent r-process patterns, robust under small variations in astrophysical conditions. We employ the neutrino-driven wind of the core-collapse supernova to examine fission cycling and steady-beta flow in the r-process. As the traditional neutrino-driven wind model does not produce the required very neutron-rich conditions for these mechanisms, we examine changes to the neutrino physics necessary for fission cycling to occur in the neutrino-driven wind environment, and we explore under what conditions steady-beta flow is obtained.

J. Beun; G. C. McLaughlin; R. Surman; W. R. Hix

2007-07-30T23:59:59.000Z

322

Detecting extra-galactic supernova neutrinos in the Antarctic ice  

E-Print Network (OSTI)

Building on the technological success of the IceCube neutrino telescope, we outline a prospective low-energy extension that utilizes the clear ice of the South Pole. Aiming at a 10 Mton effective volume and a 10 MeV threshold, the detector would provide sufficient sensitivity to detect neutrino bursts from core-collapse supernovae (SNe) in nearby galaxies. The detector geometry and required density of instrumentation are discussed along with the requirements to control the various sources of background. We find that the resulting detector will be able to detect SNe from beyond 10 Mpc, delivering between 11 and 46 regular core-collapse SN detections per decade. It would further allow to study more speculative phenomena, such as optically dark (failed) SNe, where the collapse proceeds directly to a black hole, at a detection rate similar to the regular SNe. We find that the biggest technological challenge lies in the required large number of large area photo-sensors, with simultaneous strict limits on the allowed noise rates. If both can be realized, the detector concept we present will reach the required sensitivity in a cost effective manner and hence offers a route to future routine observations of SNe with neutrinos.

Sebastian Böser; Marek Kowalski; Lukas Schulte; Nora Linn Strotjohann; Markus Voge

2013-04-09T23:59:59.000Z

323

Observational Evidence from Supernovae for a Contracting Universe  

E-Print Network (OSTI)

New precision in measuring extragalactic distances using supernovae has confirmed with high probability an accelerating increase in redshift with distance. This has been interpreted as implying the existence of dark energy in an expanding and accelerating, flat universe. A more logical explanation of these observations follows directly from an observation made by Erwin Schrodinger in 1939 that in a closed Friedmann universe every quantum wave function changes with spacetime geometry. Double the size of the universe and both the wavelengths of photons and the sizes of atoms double. When the evolution of atoms and photons are combined, the meaning of Hubble redshift is reversed. Redshift is characteristic of contracting universes. The magnitude-redshift curve for a contracting universe has exactly the accelerating form recently observed and is in excellent quantitative agreement with the data of Riess et al. 1998, Knop et al. 2003, and others. An observed maximum redshift of 1.3 gives a minimum age estimate for the universe of 114 billion years. The time until collapse is estimated to be 15 billion years or less.

William Q. Sumner

2004-02-28T23:59:59.000Z

324

Infrared [Fe II] and Dust Emissions from Supernova Remnants  

E-Print Network (OSTI)

Supernova remnants (SNRs) are strong thermal emitters of infrared radiation. The most prominent lines in the near-infrared spectra of SNRs are [Fe II] lines. The [Fe II] lines are from shocked dense atomic gases, so they trace SNRs in dense environments. After briefly reviewing the physics of the [Fe II] emission in SNR shocks, I describe the observational results which show that there are two groups of SNRs bright in [Fe II] emission: middle-aged SNRs interacting with molecular clouds and young core-collapse SNRs in dense circumstellar medium. The SNRs belonging to the former group are also bright in near-infrared H$_2$ emission, indicating that both atomic and molecular shocks are pervasive in these SNRs. The SNRs belonging to the latter group have relatively small radii in general, implying that most of them are likely the remnants of SN IIL/b or SN IIn that had strong mass loss before the explosion. I also comment on the "[Fe II]-H$_2$ reversal" in SNRs and on using the [Fe II]-line luminosity as an indic...

Koo, Bon-Chul

2013-01-01T23:59:59.000Z

325

IDENTIFICATION CAMPAIGN OF SUPERNOVA REMNANT CANDIDATES IN THE MILKY WAY. I. CHANDRA OBSERVATION OF G308.3-1.4  

Science Conference Proceedings (OSTI)

ROSAT all-sky survey data have provided another window in which to search for supernova remnants (SNRs). In re-examining this data archive, a list of unidentified extended X-ray objects have been suggested as promising SNR candidates. However, most of these targets have not yet been fully explored by state-of-the-art X-ray observatories. To select a pilot target for a long-term identification campaign, we observed the brightest candidate, G308.3-1.4, with the Chandra X-ray Observatory. An incomplete shell-like X-ray structure that is well correlated with the radio shell emission at 843 MHz has been revealed. The X-ray spectrum suggests the presence of a shock-heated plasma. All these evidences confirm G308.3-1.4 as an SNR. The brightest X-ray point source detected in this field of view is also the one located closest to the geometrical center of G308.3-1.4, which has a soft spectrum. The intriguing temporal variability and the identification of the optical/infrared counterpart rule out the possibility of an isolated neutron star. On the other hand, the spectral energy distribution from the K{sub s} band to the R band suggests a late-type star. Together with a putative periodicity of {approx}1.4 hr, the interesting excesses in the V and B bands and in H{alpha} suggest that this source is a promising candidate for a compact binary that survived a supernova explosion.

Hui, C. Y.; Seo, K. A.; Woo, Y. J. [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Huang, R. H. H.; Lu, T.-N.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Trepl, L. [Astrophysikalisches Institut und Universitaets-Sternwarte, Universitaet Jena, Schillergaesschen 2-3, 07745 Jena (Germany); Walter, F. M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

2012-05-01T23:59:59.000Z

326

The discovery of high-redshift supernovae and their cosmological implications  

SciTech Connect

In this thesis the author discusses the methodology for doing photometry: from procedure of extracting supernova counts from images that contain combined supernova plus galaxy flux, to standard star calibration, to additional instrumental corrections that arise due to the multiple telescopes used for observations. He discusses the different sources of photometric error and their correlations, and the construction of the covariance matrix for all the points in the light curve. He then describes the K corrections which account for the redshifting of spectra that are necessary to compare the photometry of the high-redshift data with those from nearby (z < 0.1) supernovae. Finally, he uses the first seven of the supernovae to test the hypothesis that they live in an under-dense bubble where the locally measured Hubble constant differs significantly from the true Hubble constant. He also uses the data to place limits on the value of the Hubble constant. Discussions of several other important aspects of the data analysis are or will be included in other papers. These topics include a description of how the covariance matrix is used to generate light-curve fits, a discussion of non-photometric systematic errors that also effect the measurements, and a discussion of the application of the supernovae to address other scientific/cosmological problems.

Kim, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Physics Div.

1997-09-01T23:59:59.000Z

327

Slowly fading super-luminous supernovae that are not pair-instability explosions  

E-Print Network (OSTI)

Super-luminous supernovae that radiate more than 10^44 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-30 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae...

Nicholl, M; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T -W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

2013-01-01T23:59:59.000Z

328

The observed neutron star mass distribution as a probe of the supernova explosion mechanism  

E-Print Network (OSTI)

The observed distribution of neutron star (NS) masses reflects the physics of core-collapse supernova explosions and the structure of the massive stars that produce them at the end of their evolution. We present a Bayesian analysis that directly compares the NS mass distribution observed in double NS systems to theoretical models of NS formation. We find that models with standard binary mass ratio distributions are strongly preferred over independently picking the masses from the initial mass function, although the strength of the inference depends on whether current assumptions for identifying the remnants of the primary and secondary stars are correct. Second, NS formation models with no mass fallback are favored because they reduce the dispersion in NS masses. The double NS system masses thus directly point to the mass coordinate where the supernova explosion was initiated, making them an excellent probe of the supernova explosion mechanism. If we assume no fallback and simply vary the mass coordinate sepa...

Pejcha, Ondrej; Kochanek, Christopher S

2012-01-01T23:59:59.000Z

329

An optical and near infrared search for a pulsar in Supernova 1987A  

SciTech Connect

We describe a search for an optical pulsar in the remnant of Supernova 1987A. We have performed over one hundred separate observations of the supernova, covering wavelengths from 3500 angstroms to 1.8 microns, with sensitivity to pulsations as faint as magnitude 22.7. As of September 26, 1990, we have not seen evidence for pulsations due to a pulsar in the supernova. We discuss the implications of this result on predictions of pulsar optical luminosity. We have constructed for the search two photodiode detectors and a data system. We describe their design, calibration and performance. These detectors have allowed us to increase our sensitivity as much as a factor of 5 over standard photomultiplier tubes, and extend this search to near infrared wavelengths. 59 refs., 10 figs., 1 tab.

Sasseen, T.P.

1990-12-01T23:59:59.000Z

330

Signals of the QCD Phase Transition in Core-Collapse Supernovae  

Science Conference Proceedings (OSTI)

We explore the implications of the QCD phase transition during the postbounce evolution of core-collapse supernovae. Using the MIT bag model for the description of quark matter and assuming small bag constants, we find that the phase transition occurs during the early postbounce accretion phase. This stage of the evolution can be simulated with general relativistic three-flavor Boltzmann neutrino transport. The phase transition produces a second shock wave that triggers a delayed supernova explosion. If such a phase transition happens in a future galactic supernova, its existence and properties should become observable as a second peak in the neutrino signal that is accompanied by significant changes in the energy of the emitted neutrinos.

Sagert, I. [Goethe University, Frankfurt, Germany; Hempel, M. [Goethe University, Frankfurt, Germany; Pagliara, G. [Goethe University, Frankfurt, Germany; Schaffner-Bielich, J. [Goethe University, Frankfurt, Germany; Fischer, T. [University of Basel; Mezzacappa, Anthony [ORNL; Thielemann, F.-K. [University of Basel; Liebendoerfer, M. [University of Basel

2009-01-01T23:59:59.000Z

331

Detecting the QCD phase transition in the next Galactic supernova neutrino burst  

SciTech Connect

Predictions of the thermodynamic conditions for phase transitions at high baryon densities and large chemical potentials are currently uncertain and largely phenomenological. Neutrino observations of core-collapse supernovae can be used to constrain the situation. Recent simulations of stellar core collapse that include a description of quark matter predict a sharp burst of {nu}{sub e} several hundred milliseconds after the prompt {nu}{sub e} neutronization burst. We study the observational signatures of that {nu}{sub e} burst at current neutrino detectors--IceCube and Super-Kamiokande. For a Galactic core-collapse supernova, we find that signatures of the QCD phase transition can be detected, regardless of the neutrino oscillation scenario. The detection would constitute strong evidence of a phase transition in the stellar core, with implications for the equation of state at high matter density and the supernova explosion mechanism.

Dasgupta, Basudeb [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Fischer, Tobias; Liebendoerfer, Matthias [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Horiuchi, Shunsaku [Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Mirizzi, Alessandro [II Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Sagert, Irina [Institut fuer Theoretische Physik, Goethe Universitaet, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Ruprecht-Karls-Universitaet, Philosophenweg 16, 69120 Heidelberg (Germany); Schaffner-Bielich, Juergen [Institut fuer Theoretische Physik, Ruprecht-Karls-Universitaet, Philosophenweg 16, 69120 Heidelberg (Germany)

2010-05-15T23:59:59.000Z

332

Search for supernova {sup 60}Fe in the Earth's microfossil record  

Science Conference Proceedings (OSTI)

Approximately 2.8 Myr before the present our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of {sup 60}Fe in a deep-sea ferromanganese crust. The signature for this supernova event should also reside in magnetite (Fe{sub 3}O{sub 4}) microfossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction, provided the bacteria preferentially uptake iron from fine-grained iron oxides and ferric hydroxides. Using empirically derived microfossil concentrations in a deep-sea drill core, we deduce a conservative estimate of the {sup 60}Fe fraction as {sup 60}Fe/Fe Almost-Equal-To 3.6 Multiplication-Sign 10{sup -15}. This value sits comfortably within the sensitivity limit of present accelerator mass spectrometry capabilities.

Bishop, S.; Ludwig, P.; Egli, R.; Faestermann, T.; Korschinek, G.; Rugel, G. [Technische Universitaet Muenchen, James Franck Str. 1, D-85748 Garching (Germany); Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Theresienstrasse 41 80333 Munich (Germany); Technische Universitaet Muenchen, James Franck Str. 1, D-85748 Garching (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra. 400, D-01328 Dresden (Germany)

2012-11-12T23:59:59.000Z

333

The Reduction of the Electron Abundance during the Pre-explosion Simmering in White Dwarf Supernovae  

E-Print Network (OSTI)

Prior to the explosion of a carbon-oxygen white dwarf in a Type Ia supernova there is a long "simmering," during which the 12C + 12C reaction gradually heats the white dwarf on a long (~ 1000 yr) timescale. Piro & Bildsten showed that weak reactions during this simmering set a maximum electron abundance Ye at the time of the explosion. We investigate the nuclear reactions during this simmering with a series of self-heating, at constant pressure, reaction network calculations. Unlike in AGB stars, proton captures onto 22Ne and heavier trace nuclei do not play a significant role. The 12C abundance is sufficiently high that the neutrons preferentially capture onto 12C, rather than iron group nuclei. As an aid to hydrodynamical simulations of the simmering phase, we present fits to the rates of heating, electron capture, change in mean atomic mass, and consumption of 12C in terms of the screened thermally averaged cross section for 12C + 12C. Our evaluation of the net heating rate includes contributions from electron captures into the 3.68 MeV excited state of 13C. This results in a slightly larger energy release, per 12C consumed, than that found by Piro & Bildsten, but less than that released for a burn to only 20Ne and 23Na. We compare our one-zone results to more accurate integrations over the white dwarf structure to estimate the amount of 12C that must be consumed to raise the white dwarf temperature, and hence to determine the net reduction of Ye during simmering.

David A. Chamulak; Edward F. Brown; F. X. Timmes; Kimberly Dupczak

2008-01-10T23:59:59.000Z

334

The Mechanism of Core-Collapse Supernova Explosions: A Status Report  

E-Print Network (OSTI)

We review the status of the current quest to understand the mechanism of core-collapse supernovae, if neutrino-driven. In the process, we discuss the spherical explosion paradigm and its problems, some results from our new suite of collapse calculations performed using a recently-developed 1D implicit, multi-group, Feautrier/tangent-ray, Boltzmann solver coupled to explicit predictor/corrector hydrodynamics, the basic energetics of supernova explosions, and the promise of multi-D radiation/hydro simulations to explain why the cores of massive stars explode.

Adam Burrows; Todd A. Thompson

2002-10-09T23:59:59.000Z

335

On-line recognition of supernova neutrino bursts in the LVD detector  

E-Print Network (OSTI)

In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.

N. Yu. Agafonova; M. Aglietta; P. Antonioli; G. Bari; A. Bonardi; V. V. Boyarkin; G. Bruno; W. Fulgione; P. Galeotti; M. Garbini; P. L. Ghia; P. Giusti; F. Gomez; E. Kemp; V. V. Kuznetsov; V. A. Kuznetsov; A. S. Malguin; H. Menghetti; A. Pesci; R. Persiani; I. A. Pless; A. Porta; V. G. Ryasny; O. G. Ryazhskaya; O. Saavedra; G. Sartorelli; M. Selvi; C. Vigorito; L. Votano; V. F. Yakushev; G. T. Zatsepin; A. Zichichi

2007-10-01T23:59:59.000Z

336

IMPACT OF SUPERNOVA DYNAMICS ON THE {nu}p-PROCESS  

Science Conference Proceedings (OSTI)

We study the impact of the late-time dynamical evolution of ejecta from core-collapse supernovae on {nu}p-process nucleosynthesis. Our results are based on hydrodynamical simulations of neutrino-driven wind ejecta. Motivated by recent two-dimensional wind simulations, we vary the dynamical evolution during the {nu}p-process and show that final abundances strongly depend on the temperature evolution. When the expansion is very fast, there is not enough time for antineutrino absorption on protons to produce enough neutrons to overcome the {beta}{sup +}-decay waiting points and no heavy elements beyond A = 64 are produced. The wind termination shock or reverse shock dramatically reduces the expansion speed of the ejecta. This extends the period during which matter remains at relatively high temperatures and is exposed to high neutrino fluxes, thus allowing for further (p, {gamma}) and (n, p) reactions to occur and to synthesize elements beyond iron. We find that the {nu}p-process starts to efficiently produce heavy elements only when the temperature drops below {approx}3 GK. At higher temperatures, due to the low alpha separation energy of {sup 60}Zn (S{sub {alpha}} = 2.7 MeV) the reaction {sup 59}Cu(p, {alpha}){sup 56}Ni is faster than the reaction {sup 59}Cu(p, {gamma}){sup 60}Zn. This results in the closed NiCu cycle that we identify and discuss here for the first time. We also investigate the late phase of the {nu}p-process when the temperatures become too low to maintain proton captures. Depending on the late neutron density, the evolution to stability is dominated by {beta}{sup +} decays or by (n, {gamma}) reactions. In the latter case, the matter flow can even reach the neutron-rich side of stability and the isotopic composition of a given element is then dominated by neutron-rich isotopes.

Arcones, A. [Department of Physics, University of Basel, CH-4056 Basel (Switzerland); Froehlich, C. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Martinez-Pinedo, G., E-mail: a.arcones@unibas.ch, E-mail: cfrohli@ncsu.edu [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

2012-05-01T23:59:59.000Z

337

TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE  

SciTech Connect

Two-dimensional (2D) hydrodynamical simulations of progenitor evolution of a 23 M{sub sun} star, close to core collapse (in {approx}1 hr in one dimension (1D)), with simultaneously active C, Ne, O, and Si burning shells, are presented and contrasted to existing 1D models (which are forced to be quasi-static). Pronounced asymmetries and strong dynamical interactions between shells are seen in 2D. Although instigated by turbulence, the dynamic behavior proceeds to sufficiently large amplitudes that it couples to the nuclear burning. Dramatic growth of low-order modes is seen as well as large deviations from spherical symmetry in the burning shells. The vigorous dynamics is more violent than that seen in earlier burning stages in the three-dimensional (3D) simulations of a single cell in the oxygen burning shell, or in 2D simulations not including an active Si shell. Linear perturbative analysis does not capture the chaotic behavior of turbulence (e.g., strange attractors such as that discovered by Lorenz), and therefore badly underestimates the vigor of the instability. The limitations of 1D and 2D models are discussed in detail. The 2D models, although flawed geometrically, represent a more realistic treatment of the relevant dynamics than existing 1D models, and present a dramatically different view of the stages of evolution prior to collapse. Implications for interpretation of SN1987A, abundances in young supernova remnants, pre-collapse outbursts, progenitor structure, neutron star kicks, and fallback are outlined. While 2D simulations provide new qualitative insight, fully 3D simulations are needed for a quantitative understanding of this stage of stellar evolution. The necessary properties of such simulations are delineated.

David Arnett, W.; Meakin, Casey, E-mail: wdarnett@gmail.com, E-mail: casey.meakin@gmail.com [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

2011-06-01T23:59:59.000Z

338

A CR-hydro-NEI Model of Multi-wavelength Emission from the Vela Jr. Supernova Remnant (SNR RX J0852.0-4622)  

E-Print Network (OSTI)

Based largely on energy budget considerations and the observed cosmic-ray (CR) ionic composition, supernova remnant (SNR) blast waves are the most likely sources of CR ions with energies at least up to the "knee" near 3 PeV. Shocks in young shell-type TeV-bright SNRs are surely producing TeV particles, but the emission could be dominated by ions producing neutral pion-decay emission or electrons producing inverse-Compton gamma-rays. Unambiguously identifying the GeV-TeV emission process in a particular SNR will not only help pin down the origin of CRs, it will add significantly to our understanding of the diffusive shock acceleration (DSA) mechanism and improve our understanding of supernovae and the impact SNRs have on the circumstellar medium. In this study, we investigate the Vela Jr. SNR, an example of TeV-bright non-thermal SNRs. We perform hydrodynamic simulations coupled with non-linear DSA and non-equilibrium ionization near the forward shock (FS) to confront currently available multi-wavelength data....

Lee, Shiu-Hang; Ellison, Donald C; Nagataki, Shigehiro; Patnaude, Daniel J

2013-01-01T23:59:59.000Z

339

Penetration of Supernova Ejecta in the Solar System T. Athanassiadou ? and B.D. Fields Departments of Physics and Astronomy,  

E-Print Network (OSTI)

In this paper, we investigate the mechanism by which supernova ejecta can penetrate the solar system, and in particular, directly deposit live radioactivities on Earth. A purely hydrodynamic interaction between a supernova blast and the solar wind yields a limit of 10 pc as the maximum supernova explosion distance in order for supernova plasma to penetrate within 1AU. However, there exists evidence that the vast majority of heavy elements in a supernova remnant may be depleted onto grains, hence they can be considered as charged particles which do not participate in the plasma dynamics of the interaction of the supernova plasma and the solar wind. We examine the motion of these charged particles as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation and gravitational field. We find that given the large incoming velocities of the charged grains, they suffer little or no deflection within the solar system. Consequently, the dust penetration to 1 AU has essentially 100 % transmission probability, and the dust capture onto the earth should have a geometric cross section. PoS(NIC X)099

T. Athanassiadou

2008-01-01T23:59:59.000Z

340

A Massive Star Odyssey, from Main Sequence to Supernova Proceedings IAU Symposium No. 212, c  

E-Print Network (OSTI)

, gamma­ ray bursts. In this proceedings, we review the mechanisms by which the potential energy from of massive stars can help constrain these mechanisms. 1. Introduction Supernovae (SNe) and Gamma­Ray Bursts (Frail et al. 2001). These relativistic explosions produce strong bursts of gamma­ray emission

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

On Deep-Ocean Fe-60 as a Fossil of a Near-Earth Supernova  

E-Print Network (OSTI)

Live $^{60}$Fe has recently been reported in a deep-ocean ferromanganese crust. Analysis of the isotopic ratios in the sample suggests that the measured $^{60}$Fe abundance exceeds the levels generated by terrestrial and cosmogenic sources, and it has been proposed that the excess of $^{60}$Fe is a signature of a supernova that exploded near the earth several Myr ago. In this paper, we consider the possible background sources, and confirm that the measured $^{60}$Fe is significantly higher than all known backgrounds, in contrast with the reported abundance of live $^{53}$Mn. We discuss scenarios in which the data are consistent with a supernova event at a distance $D \\sim 30$ pc and an epoch $t_{\\rm SN} \\sim 5$ Myr ago. We propose tests that could confirm or refute the interpretation of the $^{60}$Fe discovery, including searches for $^{10}$Be, $^{129}$I and $^{146}$Sm. Such a nearby supernova event might have had some impact on the earth's biosphere, principally by enhancing the cosmic-ray flux. This might have damaged the earth's ozone layer, enhancing the penetration of solar ultraviolet radiation. In this connection, we comment on the Middle Miocene and Pliocene mini-extinction events. We also speculate on the possibility of a supernova-induced "cosmic-ray winter," if cosmic rays play a significant role in seeding cloud formation.

Brian D. Fields; John Ellis

1998-11-29T23:59:59.000Z

342

Supernova explosions, 511 keV photons, gamma ray bursts and mirror matter  

E-Print Network (OSTI)

There are three astroparticle physics puzzles which fire the imagination: the origin of the ``Great Positron Producer'' in the galactic bulge, the nature of the gamma-ray bursts central engine and the mechanism of supernova explosions. We show that the mirror matter model has the potential to solve all three of these puzzles in one beautifully simple strike.

R. Foot; Z. K. Silagadze

2004-04-27T23:59:59.000Z

343

ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: {chi}{sup 2}-MINIMIZATION OF PARAMETER FITS  

SciTech Connect

We present fits of generalized semi-analytic supernova (SN) light curve (LC) models for a variety of power inputs including {sup 56}Ni and {sup 56}Co radioactive decay, magnetar spin-down, and forward and reverse shock heating due to supernova ejecta-circumstellar matter (CSM) interaction. We apply our models to the observed LCs of the H-rich superluminous supernovae (SLSN-II) SN 2006gy, SN 2006tf, SN 2008am, SN 2008es, CSS100217, the H-poor SLSN-I SN 2005ap, SCP06F6, SN 2007bi, SN 2010gx, and SN 2010kd, as well as to the interacting SN 2008iy and PTF 09uj. Our goal is to determine the dominant mechanism that powers the LCs of these extraordinary events and the physical conditions involved in each case. We also present a comparison of our semi-analytical results with recent results from numerical radiation hydrodynamics calculations in the particular case of SN 2006gy in order to explore the strengths and weaknesses of our models. We find that CS shock heating produced by ejecta-CSM interaction provides a better fit to the LCs of most of the events we examine. We discuss the possibility that collision of supernova ejecta with hydrogen-deficient CSM accounts for some of the hydrogen-deficient SLSNe (SLSN-I) and may be a plausible explanation for the explosion mechanism of SN 2007bi, the pair-instability supernova candidate. We characterize and discuss issues of parameter degeneracy.

Chatzopoulos, E.; Wheeler, J. Craig; Vinko, J. [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Horvath, Z. L.; Nagy, A., E-mail: manolis@astro.as.utexas.edu [Department of Optics and Quantum Electronics, University of Szeged (Hungary)

2013-08-10T23:59:59.000Z

344

NEW EQUATIONS OF STATE IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE  

Science Conference Proceedings (OSTI)

We discuss three new equations of state (EOS) in core-collapse supernova simulations. The new EOS are based on the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich (HS), which includes excluded volume effects and relativistic mean-field (RMF) interactions. We consider the RMF parameterizations TM1, TMA, and FSUgold. These EOS are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport. The results obtained for the new EOS are compared with the widely used EOS of H. Shen et al. and Lattimer and Swesty. The systematic comparison shows that the model description of inhomogeneous nuclear matter is as important as the parameterization of the nuclear interactions for the supernova dynamics and the neutrino signal. Furthermore, several new aspects of nuclear physics are investigated: the HS EOS contains distributions of nuclei, including nuclear shell effects. The appearance of light nuclei, e.g., deuterium and tritium, is also explored, which can become as abundant as alphas and free protons. In addition, we investigate the black hole formation in failed core-collapse supernovae, which is mainly determined by the high-density EOS. We find that temperature effects lead to a systematically faster collapse for the non-relativistic LS EOS in comparison with the RMF EOS. We deduce a new correlation for the time until black hole formation, which allows the determination of the maximum mass of proto-neutron stars, if the neutrino signal from such a failed supernova would be measured in the future. This would give a constraint for the nuclear EOS at finite entropy, complementary to observations of cold neutron stars.

Hempel, M.; Liebendoerfer, M. [Departement Physik, Universitaet Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Fischer, T. [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Schaffner-Bielich, J. [Institut fuer Theoretische Physik, Ruprecht-Karls-Universitaet, Philosophenweg 16, 69120 Heidelberg (Germany)

2012-03-20T23:59:59.000Z

345

On the plasma temperature in supernova remnants with cosmic-ray modified shocks  

E-Print Network (OSTI)

Context: Multiwavelength observations of supernova remnants can be explained within the framework of the diffusive shock acceleration theory, which allows effective conversion of the explosion energy into cosmic rays. Although the models of nonlinear shocks describe reasonably well the nonthermal component of emission, certain issues, including the heating of the thermal plasma and the related X-ray emission, remain still open. Aims: To discuss how the evolution and structure of supernova remnants is affected by strong particle acceleration at the forward shock. Methods: Analytical estimates combined with detailed discussion of the physical processes. Results: The overall dynamics is shown to be relatively insensitive to the amount of particle acceleration, but the post-shock gas temperature can be reduced to a relatively small multiple, even as small as six times, the ambient temperature with a very weak dependence on the shock speed. This is in marked contrast to pure gas models where the temperature is ins...

O'Connor-Drury, L; Malyshev, D; Gabici, S

2008-01-01T23:59:59.000Z

346

On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-collapse Supernovae  

SciTech Connect

We have conducted a series of numerical experiments with the spherically-symmetric, general-relativistic neutrino radiation hydrodynamics code Agile-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general-relativistic gravity, hydrodynamics, and transport; (2) using older weak interactions, including the omission of non-isoenergetic neutrino scattering, versus up-to-date weak interactions; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has non-negligible effects on the outcomes of our simulations. Finally, we discuss the impact these results have for current, and future, multidimensional models.

Lentz, Eric J [ORNL; Mezzacappa, Anthony [ORNL; Messer, Bronson [ORNL; Liebendoerfer, Matthias [Universitat Basel, Switzerland; Hix, William Raphael [ORNL; Bruenn, S. W. [Florida Atlantic University

2012-01-01T23:59:59.000Z

347

IONIZED ABSORBERS AS EVIDENCE FOR SUPERNOVA-DRIVEN COOLING OF THE LOWER GALACTIC CORONA  

SciTech Connect

We show that the ultraviolet absorption features, newly discovered in Hubble Space Telescope spectra, are consistent with being formed in a layer that extends a few kpc above the disk of the Milky Way. In this interface between the disk and the Galactic corona, high-metallicity gas ejected from the disk by supernova feedback can mix efficiently with the virial-temperature coronal material. The mixing process triggers the cooling of the lower corona down to temperatures encompassing the characteristic range of the observed absorption features, producing a net supernova-driven gas accretion onto the disk at a rate of a few M{sub Sun} yr{sup -1}. We speculate that this mechanism explains how the hot mode of cosmological accretion feeds star formation in galactic disks.

Fraternali, Filippo; Marasco, Antonino [Department of Physics and Astronomy, University of Bologna, via Berti Pichat 6/2, I-40127 Bologna (Italy); Marinacci, Federico [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Binney, James, E-mail: filippo.fraternali@unibo.it [Rudolf Peierls Centre for Theoretical Physics, Keble Road, OX1 3NP Oxford (United Kingdom)

2013-02-20T23:59:59.000Z

348

Measurement of the 44Ti(alpha,p)47V reaction cross section, of relevance to gamma-ray observation of core collapse supernovae, using reclaimed 44Ti.  

E-Print Network (OSTI)

Measurement of the 44Ti(alpha,p)47V reaction cross section, of relevance to gamma-ray observation of core collapse supernovae, using reclaimed 44Ti.

Murphy, AStJ; Ayranov, M; Bastin, B; Bemmerer, D; Bingham, R; Bunka, M; Butler, P; Catherall, R; Cocolios, TE; Davinson, T; Delahaye, P; Dorsival, A; Dressler, R; van Duppen, P; Fallis, J; Fox, S; Fulton, BR; Kowalska, M; Laird, A; Lotay, G; Saint Laurent, MG; Marin, A; Mendonca1, JT; de Oliveira, F; Roger, T; Ruiz, C; Sahin, L; Schumann, D; de Sereville1, N; Sorlin, O; Stora, T; Traykov, E; Voulot, D; Wang, C HT; Wenander, FJC; Woods, PJ

2012-01-01T23:59:59.000Z

349

Neutrino chirality flip in a supernova and the bound on the neutrino magnetic moment  

E-Print Network (OSTI)

The neutrino chirality-flip process under the conditions of the supernova core is investigated in detail with the plasma polarization effects in the photon propagator taken into account. It is shown that the contribution of the proton fraction of plasma is essential. New upper bounds on the neutrino magnetic moment are obtained: mu_nu flip. The best astrophysical upper bound on the neutrino magnetic moment is improved by the factor of 3 to 7.

A. V. Kuznetsov; N. V. Mikheev

2006-06-25T23:59:59.000Z

350

Energy Input and Mass Redistribution by Supernovae in the Interstellar Medium  

E-Print Network (OSTI)

We present the results of numerical studies of supernova remnant evolution and their effects on galactic and globular cluster evolution. We show that parameters such as the density and the metallicity of the environment significantly influence the evolution of the remnant, and thus change its effects on the global environment (e.g., globular clusters, galaxies) as a source of thermal and kinetic energy. We conducted our studies using a one-dimensional hydrodynamics code, in which we implemented a metallicity dependent cooling function. Global time-dependent quantities such as the total kinetic and thermal energies and the radial extent are calculated for a grid of parameter sets. The quantities calculated are the total energy, the kinetic energy, the thermal energy, the radial extent, and the mass. We distinguished between the hot, rarefied bubble and the cold, dense shell, as those two phases are distinct in their roles in a gas-stellar system. We also present power-law fits to those quantities as a function of environmental parameters after the extensive cooling has ceased. The power-law fits enable simple incorporation of improved supernova energy input and matter redistribution (including the effect of the local conditions) in galactic/globular cluster models. Our results for the energetics of supernova remnants in the late stages of their expansion give total energies ranging from 9e49 to 3e50 ergs, with a typical case being 1e50 erg, depending on the surrounding environment. About 8.5e49 erg of this energy can be found in the form of kinetic energy. Supernovae play an important role in the evolution of the interstellar medium

Katsuyo Thornton; Michael Gaudlitz; Hans-Thomas Janka; Matthias Steinmetz

1997-06-17T23:59:59.000Z

351

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

352

Science magazine names Supernova Cosmology Project "Breakthrough of the  

NLE Websites -- All DOE Office Websites (Extended Search)

December 17, 1998 December 17, 1998 Go to Berkeley Lab Home Page Contacts: Saul Perlmutter, (510) 486-5203, s_perlmutter@lbl.gov Paul Preuss, (510) 486-6249, paul_preuss@lbl.gov Lynn Yarris, (510) 486-5375, lcyarris@lbl.gov Additional Information: Down-to-Earth Benefits from Far-Out Science Supernova Cosmology Project Research Site Jan 98 news release: Universe To Last Forever Search for Omega: Will the Universe Last Forever Fate of the Universe and the Cosmological Constant Revolution in Telescopes: The Keck The oldest, farthest supernova NERSC: Computers and Cosmology Images: High-resolution versions of image on this page Still images from the Supernova Cosmology Project website Online movie clip BERKELEY, CA -- By observing distant, ancient exploding stars, physicists and astronomers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and elsewhere have determined that the universe is expanding at an accelerating rate -- an observation that implies the existence of a mysterious, self-repelling property of space first proposed by Albert Einstein, which he called the cosmological constant. This extraordinary finding has been named Science magazine's "Breakthrough of the Year for 1998."

353

The Role of Collective Neutrino Flavor Oscillations in Core-Collapse Supernova Shock Revival  

E-Print Network (OSTI)

We explore the effects of collective neutrino flavor oscillations due to neutrino-neutrino interactions on the neutrino heating behind a stalled core-collapse supernova shock. We carry out axisymmetric (2D) radiation-hydrodynamic core-collapse supernova simulations, tracking the first 400 ms of the post-core-bounce evolution in 11.2 solar mass and 15 solar mass progenitor stars. Using inputs from these 2D simulations, we perform neutrino flavor oscillation calculations in multi-energy single-angle and multi-angle single-energy approximations. Our results show that flavor conversions do not set in until close to or outside the stalled shock, enhancing heating by not more than a few percent in the most optimistic case. Consequently, we conclude that the postbounce pre-explosion dynamics of standard core-collapse supernovae remains unaffected by neutrino oscillations. Multi-angle effects in regions of high electron density can further inhibit collective oscillations, strengthening our conclusion.

Basudeb Dasgupta; Evan P. O'Connor; Christian D. Ott

2011-06-06T23:59:59.000Z

354

Core-collapse supernova equations of state based on neutron star observations  

E-Print Network (OSTI)

Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 15 and 40 solar mass progenitors. We do not find any simple correlations between individual nuclear matter properties at saturation and the outcome of these simulations. However, the new equations of state lead to the most compact neutron stars among the relativistic mean-field models which we considered. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s=4 neutron star.

Andrew W. Steiner; Matthias Hempel; Tobias Fischer

2012-07-09T23:59:59.000Z

355

Neutrino Transfer in Three Dimensions for Core-Collapse Supernovae. I. Static Configurations  

E-Print Network (OSTI)

We develop a numerical code to calculate the neutrino transfer with multi-energy and multi-angle in three dimensions (3D) for the study of core-collapse supernovae. The numerical code solves the Boltzmann equations for neutrino distributions by the discrete-ordinate (S_n) method with a fully implicit differencing for time advance. The Boltzmann equations are formulated in the inertial frame with collision terms being evaluated to the zeroth order of v/c. A basic set of neutrino reactions for three neutrino species is implemented together with a realistic equation of state of dense matter. The pair process is included approximately in order to keep the system linear. We present numerical results for a set of test problems to demonstrate the ability of the code. The numerical treatments of advection and collision terms are validated first in the diffusion and free streaming limits. Then we compute steady neutrino distributions for a background extracted from a spherically symmetric, general relativistic simulation of 15Msun star and compare them with the results in the latter computation. We also demonstrate multi-D capabilities of the 3D code solving neutrino transfers for artificially deformed supernova cores in 2D and 3D. Formal solutions along neutrino paths are utilized as exact solutions. We plan to apply this code to the 3D neutrino-radiation hydrodynamics simulations of supernovae. This is the first article in a series of reports on the development.

Kohsuke Sumiyoshi; Shoichi Yamada

2012-01-11T23:59:59.000Z

356

Effects of Initial Conditions on Compressible Mixing in Supernova-Relevant Laboratory Experiments  

Science Conference Proceedings (OSTI)

In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this paper, we summarize recent results from our computational study of unstable systems driven by high Mach number shock and blast waves. For planar multimode systems, compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. Initial conditions predicted by some recent stellar calculations are incompatible with self-similarity.

Miles, A R; Edwards, M; Greenough, J

2004-04-30T23:59:59.000Z

357

Bison Wind Farm 1A | Open Energy Information  

Open Energy Info (EERE)

Farm 1A Farm 1A Jump to: navigation, search Name Bison Wind Farm 1A Facility Bison Wind 1A Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Minnesota Power Developer Minnesota Windpower Energy Purchaser Minnesota Windpower Location Northwest of New Salem ND Coordinates 46.9815°, -101.507421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9815,"lon":-101.507421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Injection of Short-Lived Radionuclides into the Early Solar System from a Faint Supernova with Mixing-Fallback  

E-Print Network (OSTI)

Several short-lived radionuclides (SLRs) were present in the early solar system, some of which should have formed just prior to or soon after the solar system formation. Stellar nucleosynthesis has been proposed as the mechanism for production of SLRs in the solar system, but no appropriate stellar source has been found to explain the abundances of all solar system SLRs. In this study, we propose a faint supernova with mixing and fallback as a stellar source of SLRs with mean lives of <5 Myr (26Al, 41Ca, 53Mn, and 60Fe) in the solar system. In such a supernova, the inner region of the exploding star experiences mixing, a small fraction of mixed materials is ejected, and the rest undergoes fallback onto the core. The modeled SLR abundances agree well with their solar system abundances if mixing-fallback occurs within the C/O-burning layer. In some cases, the initial solar system abundances of the SLRs can be reproduced within a factor of 2. The dilution factor of supernova ejecta to the solar system materials is ~10E-4 and the time interval between the supernova explosion and the formation of oldest solid materials in the solar system is ~1 Myr. If the dilution occurred due to spherically symmetric expansion, a faint supernova should have occurred nearby the solar system forming region in a star cluster.

A. Takigawa; J. Miki; S. Tachibana; G. R. Huss; N. Tominaga; H. Umeda; K. Nomoto

2008-08-11T23:59:59.000Z

359

Superlative Supercomputers: Argonne's Mira to Accelerate Scientific...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Senior Writer, Office of Science How is Mira assisting researchers? By simulating the nuclear combustion that sets off type 1a supernovae. By identifying new materials for...

360

ON THE AMPLIFICATION OF MAGNETIC FIELD BY A SUPERNOVA BLAST SHOCK WAVE IN A TURBULENT MEDIUM  

SciTech Connect

We have performed extensive two-dimensional magnetohydrodynamic simulations to study the amplification of magnetic fields when a supernova blast wave propagates into a turbulent interstellar plasma. The blast wave is driven by injecting high pressure in the simulation domain. The interstellar magnetic field can be amplified by two different processes, occurring in different regions. One is facilitated by the fluid vorticity generated by the 'rippled' shock front interacting with the background turbulence. The resulting turbulent flow keeps amplifying the magnetic field, consistent with earlier work. The other process is facilitated by the growth of the Rayleigh-Taylor instability at the contact discontinuity between the ejecta and the shocked medium. This can efficiently amplify the magnetic field and tends to produce the highest magnetic field. We investigate the dependence of the amplification on numerical parameters such as grid-cell size and on various physical parameters. We show that the magnetic field has a characteristic radial profile such that the downstream magnetic field gets progressively stronger away from the shock. This is because the downstream magnetic field needs a finite time to reach the efficient amplification, and will get further amplified in the Rayleigh-Taylor region. In our simulation, we do not observe a systematic strong magnetic field within a small distance to the shock. This indicates that if the magnetic-field amplification in supernova remnants indeed occurs near the shock front, other processes such as three-dimensional instabilities, plasma kinetics, and/or cosmic ray effect may need to be considered to explain the strong magnetic field in supernova remnants.

Guo Fan; Li Shengtai; Li Hui; Li, David [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Giacalone, Joe; Jokipii, J. R. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States)

2012-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Supergiant Supernova-Blown Bubble in the Spiral Galaxy NGC 1620  

E-Print Network (OSTI)

We present UBR and H$\\alpha$ imaging of NGC 1620, a highly inclined spiral galaxy that contains a large scale, arc-like feature of radius 3 kpc in its outer disk at a distance of $\\sim$ 11 kpc from the center. What is unusual about this arc-like feature is its stellar nature and the presence of a luminous star cluster at its center. The arc is fragmented into HII region complexes and OB star clusters and shows two kinks in optical continuum light. It spans an angle of 220$^{\\circ}$ on our U image and a full, though fragmented, circle on an unsharp masked R image. It is centered on a young star cluster that is the most luminous clump in blue optical continuum light besides the nucleus of the galaxy. This central star cluster has UBR colors and a surface brightness similar to those of other HII regions, but is a relatively weak H$\\alpha$ emitter. It consists of at least three unresolved condensations in optical continuum light. Its location at the center of the arc and its prominence within the galaxy suggests that it has been the site of several generations of supernova explosions that swept up the surrounding gas into a supershell. When it attained a radius of $0.5-1$ kpc, this shell became gravitationally unstable and formed the stars which now delineate the arc. The constraints imposed by the survival of the expanding arc against random stellar motions and the age of the stars in the arc yield a required energy input by a minimum of 400 and a maximum of 6500 supernovae. In this scenario the asymmetry in surface brightness of the arc reflects the radial gradient of the gas density in the disk of NGC 1620, while the kinks reflect inhomogeneities in the original gas distribution with respect to the central star cluster. The supernova superbubble formed at least $5 \\times 10^7$ yr ago so that, unless

J. Patricia Vader; Brian Chaboyer

1994-12-06T23:59:59.000Z

362

VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM  

Science Conference Proceedings (OSTI)

Stellar feedback drives the circulation of matter from the disk to the halo of galaxies. We perform three-dimensional magnetohydrodynamic simulations of a vertical column of the interstellar medium with initial conditions typical of the solar circle in which supernovae drive turbulence and determine the vertical stratification of the medium. The simulations were run using a stable, positivity-preserving scheme for ideal MHD implemented in the FLASH code. We find that the majority ( Almost-Equal-To 90%) of the mass is contained in thermally stable temperature regimes of cold molecular and atomic gas at T gas at 5000 K gas fills 50%-60% of the volume near the plane, with hotter gas associated with supernova remnants (30%-40%) and cold clouds (gas accounts for most of the mass and volume, while hot gas dominates at |z| > 3 kpc. The magnetic field in our models has no significant impact on the scale heights of gas in each temperature regime; the magnetic tension force is approximately equal to and opposite the magnetic pressure, so the addition of the field does not significantly affect the vertical support of the gas. The addition of a magnetic field does reduce the fraction of gas in the cold (gas. However, our models lack rotational shear and thus have no large-scale dynamo, which reduces the role of the field in the models compared to reality. The supernovae drive oscillations in the vertical distribution of halo gas, with the period of the oscillations ranging from Almost-Equal-To 30 Myr in the T gas to {approx}100 Myr in the 10{sup 6} K gas, in line with predictions by Walters and Cox.

Hill, Alex S.; Matthew Haffner, L. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI (United States); Ryan Joung, M. [Department of Astronomy, Columbia University, New York, NY (United States); Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY (United States); Benjamin, Robert A. [Department of Physics, University of Wisconsin-Whitewater, Whitewater, WI (United States); Klingenberg, Christian [Department of Mathematics, Wuerzburg University, Emil Fischer Strasse 30, Wuerzburg (Germany); Waagan, Knut, E-mail: alex.hill@csiro.au [Department of Applied Mathematics, University of Washington, Seattle, WA (United States)

2012-05-10T23:59:59.000Z

363

Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations  

E-Print Network (OSTI)

We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the AGILE-Boltztran supernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J. 376,701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of non-interacting nucleons. Secondly, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron captures.

Tobias Fischer; Karlheinz Langanke; Gabriel Martinez-Pinedo

2013-09-17T23:59:59.000Z

364

PTF 10bzf (SN 2010ah): A BROAD-LINE Ic SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY  

Science Conference Proceedings (OSTI)

We present the discovery and follow-up observations of a broad-line Type Ic supernova (SN), PTF 10bzf (SN 2010ah), detected by the Palomar Transient Factory (PTF) on 2010 February 23. The SN distance is {approx_equal}218 Mpc, greater than GRB 980425/SN 1998bw and GRB 060218/SN 2006aj, but smaller than the other SNe firmly associated with gamma-ray bursts (GRBs). We conducted a multi-wavelength follow-up campaign with Palomar 48 inch, Palomar 60 inch, Gemini-N, Keck, Wise, Swift, the Allen Telescope Array, Combined Array for Research in Millimeter-wave Astronomy, Westerbork Synthesis Radio Telescope, and Expanded Very Large Array. Here we compare the properties of PTF 10bzf with those of SN 1998bw and other broad-line SNe. The optical luminosity and spectral properties of PTF 10bzf suggest that this SN is intermediate, in kinetic energy and amount of {sup 56}Ni, between non-GRB-associated SNe like 2002ap or 1997ef, and GRB-associated SNe like 1998bw. No X-ray or radio counterpart to PTF 10bzf was detected. X-ray upper limits allow us to exclude the presence of an underlying X-ray afterglow as luminous as that of other SN-associated GRBs such as GRB 030329 or GRB 031203. Early-time radio upper limits do not show evidence for mildly relativistic ejecta. Late-time radio upper limits rule out the presence of an underlying off-axis GRB, with energy and wind density similar to the SN-associated GRB 030329 and GRB 031203. Finally, by performing a search for a GRB in the time window and at the position of PTF 10bzf, we find that no GRB in the interplanetary network catalog could be associated with this SN.

Corsi, A. [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, CA 91125 (United States); Ofek, E. O.; Kulkarni, S. R.; Kasliwal, M. M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Poznanski, D.; Nugent, P. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arcavi, I.; Gal-Yam, A.; Green, Y.; Xu, D.; Ben-ami, S. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Mazzali, P. A. [INAF-Osservatorio Astronomico, vicolo dell'Osservatorio 5, I-35122 Padova (Italy); Howell, D. A.; Murray, D. [Las Cumbres Observatory Global Telescope Network, Inc., Santa Barbara, CA 93117 (United States); Sullivan, M. [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Bloom, J. S.; Cenko, S. B. [Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 (United States); Law, N. M., E-mail: corsi@caltech.edu [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto M5S 3H4, Ontario (Canada)

2011-11-10T23:59:59.000Z

365

A CHANDRA OBSERVATION OF SUPERNOVA REMNANT G350.1-0.3 AND ITS CENTRAL COMPACT OBJECT  

Science Conference Proceedings (OSTI)

We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high-resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnant's western half is mostly low-temperature, shocked interstellar/circumstellar medium with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 {mu}m data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well correlated. These results help to explain this remnant's peculiar asymmetries and shed new light on its dynamics and evolution.

Lovchinsky, I.; Slane, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Hughes, J. P. [Rutgers University, The State University of New Jersey, Piscataway, NJ (United States); Ng, C.-Y. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Lazendic, J. S. [School of Physics, Monash University, Clayton, VIC 3800 (Australia); Gelfand, J. D. [New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Brogan, C. L., E-mail: ilovchin@fas.harvard.edu, E-mail: slane@cfa.harvard.edu, E-mail: bryan.gaensler@sydney.edu.au, E-mail: jph@physics.rutgers.edu, E-mail: ncy@hep.physics.mcgill.ca, E-mail: Jasmina.Lazendic-Galloway@monash.edu, E-mail: jg168@astro.physics.nyu.edu, E-mail: cbrogan@cv.nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903 (United States)

2011-04-10T23:59:59.000Z

366

INJECTION AND ACCELERATION OF ELECTRONS AT A STRONG SHOCK: RADIO AND X-RAY STUDY OF YOUNG SUPERNOVA 2011dh  

Science Conference Proceedings (OSTI)

In this paper, we develop a model for the radio and X-ray emissions from the Type IIb supernova (SN IIb) 2011dh in the first 100 days after the explosion, and investigate a spectrum of relativistic electrons accelerated at a strong shock wave. The widely accepted theory of particle acceleration, the so-called diffusive shock acceleration (DSA) or Fermi mechanism, requires seed electrons with modest energy with {gamma} {approx} 1-100, and little is known about this pre-acceleration mechanism. We derive the energy distribution of relativistic electrons in this pre-accelerated energy regime. We find that the efficiency of the electron acceleration must be low, i.e., {epsilon}{sub e} {approx}< 10{sup -2} as compared to the conventionally assumed value of {epsilon}{sub e} {approx} 0.1. Furthermore, independent of the low value of {epsilon}{sub e}, we find that the X-ray luminosity cannot be attributed to any emission mechanisms suggested as long as these electrons follow the conventionally assumed single power-law distribution. A consistent view between the radio and X-ray can only be obtained if the pre-acceleration injection spectrum peaks at {gamma} {approx} 20-30 and then only a fraction of these electrons eventually experience the DSA-like acceleration toward the higher energy-then the radio and X-ray properties are explained through the synchrotron and inverse Compton mechanisms, respectively. Our findings support the idea that the pre-acceleration of the electrons is coupled with the generation/amplification of the magnetic field.

Maeda, Keiichi, E-mail: keiichi.maeda@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

2012-10-20T23:59:59.000Z

367

Compton Electrons and Electromagnetic Pulse in Supernovae and Gamma-Ray Bursts  

E-Print Network (OSTI)

When gamma-rays emerge from a central source they may undergo Compton scattering in surrounding matter. The resulting Compton-scattered electrons radiate. Coherent radiation by such Compton electrons follows nuclear explosions above the Earth's atmosphere. Particle acceleration in instabilities produced by Compton electron currents may explain the radio emission by SN1998bw. Bounds on coherent radiation are suggested for supernovae and gamma-ray bursts; these bounds are very high, but it is unknown if coherent radiation occurs in these objects.

J. I. Katz

1999-08-19T23:59:59.000Z

368

TeV Scale Quantum Gravity and Mirror Supernovae as Sources of Gamma Ray Bursts  

E-Print Network (OSTI)

Mirror matter models have been suggested recently as an explanation of neutrino puzzles and microlensing anomalies. We show that mirror supernovae can be a copious source of energetic gamma rays if one assumes that the quantum gravity scale is in the TeV range. We show that under certain assumptions plausible in the mirror models, the gamma energies could be degraded to the 10 MeV range (and perhaps even further) so as to provide an explanation of observed gamma ray bursts. This mechanism for the origin of the gamma ray bursts has the advantage that it neatly avoids the ``baryon load problem''.

R. N. Mohapatra; S. Nussinov; V. L. Teplitz

1999-09-22T23:59:59.000Z

369

Gamma Ray Burst triggering Supernova Explosion (and other effects on neighbouring stars)  

E-Print Network (OSTI)

The initial burst of a gamma ray burst (GRB) is usually followed by a longer-lived afterglow emitted at longer wavelengths. The evidence for a physical connection between GRBs and core collapse supernovae (SN) has increased since the discovery of GRB afterglows. So far SN signatures have been found in only a few GRBs. Here we propose the possibility of a GRB triggering the collapse of a WR or RG star in a binary system producing a SN, and typical signatures. We also look at the effects of GRBs on MS and WD stars in the neighbourhood. The possibility of GRBs retarding star formation in an interstellar cloud is also discussed.

C. Sivaram; Kenath Arun

2010-09-28T23:59:59.000Z

370

Neutrino deuteron reaction in the heating mechanism of core-collapse supernovae  

E-Print Network (OSTI)

We examine a potential role of the neutrino deuteron reactions in the mechanism of supernova explosion by evaluating the energy transfer cross section for the neutrino heating. We calculate the energy loss rate due to the neutrino absorptions through the charged-current process as well as the neutrino scattering through the neutral-current process. In so doing, we adopt a detailed evaluation of cross sections for the neutrino deuteron reactions with the phenomenological Lagrangian approach. We find the energy transfer cross section for the deuteron is larger than those for $^{3}$H, $^{3}$He and $^{4}$He for neutrino temperatures (T$_\

Nakamura, S X; Sato, T

2009-01-01T23:59:59.000Z

371

Neutrino deuteron reaction in the heating mechanism of core-collapse supernovae  

E-Print Network (OSTI)

We examine a potential role of the neutrino deuteron reactions in the mechanism of supernova explosion by evaluating the energy transfer cross section for the neutrino heating. We calculate the energy loss rate due to the neutrino absorptions through the charged-current process as well as the neutrino scattering through the neutral-current process. In so doing, we adopt a detailed evaluation of cross sections for the neutrino deuteron reactions with the phenomenological Lagrangian approach. We find the energy transfer cross section for the deuteron is larger than those for $^{3}$H, $^{3}$He and $^{4}$He for neutrino temperatures (T$_\

S. X. Nakamura; K. Sumiyoshi; T. Sato

2009-06-04T23:59:59.000Z

372

Award Types  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Awards Team (505) 667-7824 Email Types of Awards The Awards...

373

Chandra Observations of the Eastern Limb of the Vela Supernova Remnant  

E-Print Network (OSTI)

We present results from two Chandra/ACIS observations of the so-called Vela ``Bullet D'' region on the eastern limb of the Vela supernova remnant. The Bullet D region is a bright X-ray feature, identified by Aschenbach et al. (1995) from the ROSAT All-Sky Survey, which protrudes beyond the blast wave on the eastern side of the remnant. It has been suggested that this feature is a fragment of supernova ejecta which is just now pushing beyond the position of the main blast wave. An alternate explanation is that the feature is a ``break-out'' of the shock in which inhomogeneities in the ambient medium cause the shock to be non-spherical. The Chandra image shows a fragmented, filamentary morphology within this region. The Chandra spectra show strong emission lines of O, Ne, and Mg. Equilibrium ionization models indicate that the O and Ne abundances are significantly enhanced compared to solar values. However, non-equilibrium ionization models can fit the data with solar O abundances and Ne abundances enhanced by only a factor of two. The Chandra data are more consistent with the shock breakout hypothesis, although they cannot exclude the fragment of ejecta hypothesis.

P. P. Plucinsky; R. K Smith; R. J. Edgar; T. J. Gaetz; P. O. Slane; W. P. Blair; L. K. Townsley; P. S. Broos

2001-12-12T23:59:59.000Z

374

SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS  

SciTech Connect

This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to address a number of linked issues: the treatment of hydrodynamics and neutrino diffusion in two and three dimensions; the treatment of the underlying nuclear microphysics that governs neutrino transport and neutrino energy deposition; the understanding of the associated nucleosynthesis, including the r-process and neutrino process; the investigation of the consequences of new neutrino phenomena, such as oscillations; and the characterization of the neutrino signal that might be recorded in terrestrial detectors. This was a collaborative effort with Oak Ridge National Laboratory, State University of New York at Stony Brook, University of Illinois at Urbana-Champaign, University of California at San Diego, University of Tennessee at Knoxville, Florida Atlantic University, North Carolina State University, and Clemson. The collaborations tie together experts in hydrodynamics, nuclear physics, computer science, and neutrino physics. The University of Washington contributions to this effort include the further development of techniques to solve the Bloch-Horowitz equation for effective interactions and operators; collaborative efforts on developing a parallel Lanczos code; investigating the nuclear and neutrino physics governing the r-process and neutrino physics; and exploring the effects of new neutrino physics on the explosion mechanism, nucleosynthesis, and terrestrial supernova neutrino detection.

Haxton, Wick

2012-03-07T23:59:59.000Z

375

EVIDENCE FOR PARTICLE ACCELERATION TO THE KNEE OF THE COSMIC RAY SPECTRUM IN TYCHO'S SUPERNOVA REMNANT  

Science Conference Proceedings (OSTI)

Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the 'knee' of the CR spectrum at 10{sup 15} eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since CR nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration significantly modifies the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho's supernova (SN 1572, henceforth Tycho), which reveal a previously unknown, strikingly ordered pattern of non-thermal high-emissivity stripes in the projected interior of the remnant, with spacing that corresponds to the gyroradii of 10{sup 14}-10{sup 15} eV protons. Spectroscopy of the stripes shows the plasma to be highly turbulent on the (smaller) scale of the Larmor radii of TeV energy electrons. Models of the shock amplification of magnetic fields produce structure on the scale of the gyroradius of the highest energy CRs present, but they do not predict the highly ordered pattern we observe. We interpret the stripes as evidence for acceleration of particles to near the knee of the CR spectrum in regions of enhanced magnetic turbulence, while the observed highly ordered pattern of these features provides a new challenge to models of DSA.

Eriksen, Kristoffer A.; Hughes, John P. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Badenes, Carles [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Fesen, Robert [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Ghavamian, Parviz [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Moffett, David [Department of Physics, Furman University, Greenville, SC 29613 (United States); Plucinksy, Paul P.; Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Rakowski, Cara E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

2011-02-20T23:59:59.000Z

376

Electron-Ion Temperature Equilibration at Collisionless Shocks in Supernova Remnants  

E-Print Network (OSTI)

The topic of this review is the current state of our knowledge about the degree of initial equilibration between electrons, protons and ions at supernova remnant (SNR) shocks. Specifically, the question has been raised as to whether there is an inverse relationship between the shock velocity and the equilibration similar to the relationship between equilibration and Alfvén Mach number seen in interplanetary shocks (Schwartz et al., 1988). This review aims to compile every method that has been used to measure the equilibration and every SNR on which they have been tested. I review each method, its problems and uncertainties and how those would effect the degree of equilibration (or velocity) inferred. The final compilation of observed electron to proton temperature ratios as a function of shock velocity gives an accurate, conservative picture of the state of our knowledge and the avenues we need to pursue to make progress in our understanding of the relation between the velocity of a shock and the degree of equilibration. Key words: shock waves, supernova remnants, cosmic rays, X-rays: ISM, ISM: individual

Cara E. Rakowski

2005-01-01T23:59:59.000Z

377

Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae  

E-Print Network (OSTI)

We present the results of numerical experiments, in which we study how the asphericities induced by the growth of the standing accretion shock instability (SASI) produce the gravitational waveforms in the postbounce phase of core-collapse supernovae. To obtain the neutrino-driven explosions, we parameterize the neutrino fluxes emitted from the central protoneutron star and approximate the neutrino transfer by a light-bulb scheme. We find that the waveforms due to the anisotropic neutrino emissions show the monotonic increase with time, whose amplitudes are up to two order-of-magnitudes larger than the ones from the convective matter motions outside the protoneutron stars. We point out that the amplitudes begin to become larger when the growth of the SASI enters the nonlinear phase, in which the deformation of the shocks and the neutrino anisotropy become large. From the spectrum analysis of the waveforms, we find that the amplitudes from the neutrinos are dominant over the ones from the matter motions at the frequency below $\\sim 100$ Hz, which are suggested to be within the detection limits of the detectors in the next generation such as LCGT and the advanced LIGO for a supernova at 10 kpc. As a contribution to the gravitational wave background, we show that the amplitudes from this source could be larger at the frequency above $\\sim$ 1 Hz than the primordial gravitational wave backgrounds, but unfortunately, invisible to the proposed space-based detectors.

Kei Kotake; Naofumi Ohnishi; Shoichi Yamada

2006-07-11T23:59:59.000Z

378

MAGNETOROTATIONALLY DRIVEN SUPERNOVAE AS THE ORIGIN OF EARLY GALAXY r-PROCESS ELEMENTS?  

SciTech Connect

We examine magnetorotationally driven supernovae as sources of r-process elements in the early Galaxy. On the basis of thermodynamic histories of tracer particles from a three-dimensional magnetohydrodynamical core-collapse supernova model with approximated neutrino transport, we perform nucleosynthesis calculations with and without considering the effects of neutrino absorption reactions on the electron fraction (Y{sub e} ) during post-processing. We find that the peak distribution of Y{sub e} in the ejecta is shifted from {approx}0.15 to {approx}0.17 and broadened toward higher Y{sub e} due to neutrino absorption. Nevertheless, in both cases, the second and third peaks of the solar r-process element distribution can be reproduced well. The rare progenitor configuration that was used here, characterized by a high rotation rate and a large magnetic field necessary for the formation of bipolar jets, could naturally provide a site for the strong r-process in agreement with observations of the early Galactic chemical evolution.

Winteler, C.; Perego, A.; Vasset, N.; Nishimura, N.; Liebendoerfer, M.; Thielemann, F.-K. [Physics Department, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Kaeppeli, R. [Seminar for applied Mathematics, ETH Zuerich, Raemistrasse 101, 8092 Zuerich (Switzerland); Arcones, A., E-mail: christian.winteler@unibas.ch [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 2, D-64289 Darmstadt (Germany)

2012-05-01T23:59:59.000Z

379

ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE  

SciTech Connect

We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.