Powered by Deep Web Technologies
Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Systematic Effects in Type-1a Supernovae Surveys from Host Galaxy Spectra  

SciTech Connect (OSTI)

The physical relation between the properties of Type Ia supernovae and their host galaxies is investigated. Such supernovae are used to constrain the properties of dark energy, making it crucial to understand their physical properties and to check for systematic effects relating to the stellar populations of the progenitor stars from which these supernovae arose. This grant found strong evidence for two distinct populations of supernovae, and correlations between the progenitor stellar populations and the nature of the supernova light curves.

Strauss, Michael A. [Princeton University

2013-08-23T23:59:59.000Z

2

High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term Maintenance: Final Technical Report  

SciTech Connect (OSTI)

The Quest Camera was installed at the Palomar Obervatory in California. The camera was used to carry out a survey of low redshift Type 1a supernovae.The purpose of this DOE grant was to perform short term maintenance on the QUEST camera.

Baltay, Charles

2012-10-16T23:59:59.000Z

3

Visualizing Type Ia Supernova Explosions at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supernova Explosions Supernova Explosions Visualizing Type Ia Supernova Explosions Childs1a-Supernovasm.png Deep inside a dying star in a galaxy far, far away, a carbon fusion flame ignites. Ignition may happen in the middle or displaced slightly to one side, but this simulation explores the consequences of central ignition. In a localized hot spot, represented here by a deformed sphere with an average radius of 100 km, carbon is assumed to have already fused to iron, producing hot ash (~10 billion K) with a density about 20% less than its surroundings. As the burning progresses, this hot buoyant ash rises up and interacts with cold fuel. Rayleigh-Taylor fingers give rise to shear and turbulence, which interacts with the flame, causing it to move faster. In about 2 seconds, the energy released blows the entire white dwarf star up,

4

Models for Type I supernovae  

SciTech Connect (OSTI)

Two rather disjoint scenarios for Type I supernovae are presented. One is based upon mass accretion by a white dwarf in a binary system. The second involves a star having some 8 to 10 times the mass of the sun which may or may not be a solitary star. Despite the apparent dissimilarities in the models it may be that each occurs to some extent in nature for they both share the possibility of producing substantial quantities of /sup 56/Ni and explosions in stars devoid of hydrogen envelopes. These are believed to be two properties that must be shared by any viable Type I model.

Woosley, S.E.; Weaver, T.A.; Taam, R.E.

1980-06-17T23:59:59.000Z

5

Thermonuclear supernova models, and observations of Type Ia supernovae  

E-Print Network [OSTI]

In this paper, we review the present state of theoretical models of thermonuclear supernovae, and compare their predicitions with the constraints derived from observations of Type Ia supernovae. The diversity of explosion mechanisms usually found in one-dimensional simulations is a direct consequence of the impossibility to resolve the flame structure under the assumption of spherical symmetry. Spherically symmetric models have been successful in explaining many of the observational features of Type Ia supernovae, but they rely on two kinds of empirical models: one that describes the behaviour of the flame on the scales unresolved by the code, and another that takes account of the evolution of the flame shape. In contrast, three-dimensional simulations are able to compute the flame shape in a self-consistent way, but they still need a model for the propagation of the flame in the scales unresolved by the code. Furthermore, in three dimensions the number of degrees of freedom of the initial configuration of the white dwarf at runaway is much larger than in one dimension. Recent simulations have shown that the sensitivity of the explosion output to the initial conditions can be extremely large. New paradigms of thermonuclear supernovae have emerged from this situation, as the Pulsating Reverse Detonation. The resolution of all these issues must rely on the predictions of observational properties of the models, and their comparison with current Type Ia supernova data, including X-ray spectra of Type Ia supernova remnants.

E. Bravo; C. Badenes; D. Garcia-Senz

2004-12-07T23:59:59.000Z

6

Hydrogen in Type Ic Supernovae?  

E-Print Network [OSTI]

By definition, a Type Ic supernova (SN Ic) does not have conspicuous lines of hydrogen or helium in its optical spectrum. SNe Ic usually are modelled in terms of the gravitational collapse of bare carbon-oxygen cores. We consider the possibility that the spectra of ordinary (SN 1994I-like) SNe Ic have been misinterpreted, and that SNe Ic eject hydrogen. An absorption feature usually attributed to a blend of Si II 6355 and C II 6580 may be produced by H-alpha. If SN 1994I-like SNe Ic eject hydrogen, the possibility that hypernova (SN 1998bw-like) SNe Ic, some of which are associated with gamma-ray bursts, also eject hydrogen should be considered. The implications of hydrogen for SN Ic progenitors and explosion models are briefly discussed.

David Branch; David J. Jeffery; Timothy R. Young; E. Baron

2006-05-09T23:59:59.000Z

7

The distant type Ia supernova rate  

SciTech Connect (OSTI)

We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R.S.; Aldering, G.; Astier, P.; Deustua, S.E.; Fruchter, A.S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hardin, D.; Hook, I.M.; Howell, D.A.; Irwin, M.J.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Lee, J.C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N.A.

2002-05-20T23:59:59.000Z

8

The Distant Type Ia Supernova Rate  

DOE R&D Accomplishments [OSTI]

We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

2002-05-28T23:59:59.000Z

9

Theoretical models for Type I and Type II supernova  

SciTech Connect (OSTI)

Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate /sup 12/C(..cap alpha..,..gamma..)/sup 16/O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs.

Woosley, S.E.; Weaver, T.A.

1985-01-01T23:59:59.000Z

10

Type Ia Supernova Explosion: Gravitationally Confined Detonation  

Science Journals Connector (OSTI)

We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The scenario follows from relaxing assumptions of symmetry and involves a detonation born near the stellar surface. The explosion begins with an essentially central ignition of a deflagration that results in the formation of a buoyancy-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion following the deflagration redistributes mass in a way that ensures production of intermediate-mass and iron group elements with ejecta having a strongly layered structure and a mild amount of asymmetry following from the early deflagration phase. This asymmetry, combined with the amount of stellar expansion determined by details of the evolution (principally the energetics of deflagration, timing of detonation, and structure of the progenitor), can be expected to create a family of mildly diverse Type Ia supernova explosions.

T. Plewa; A. C. Calder; D. Q. Lamb

2004-01-01T23:59:59.000Z

11

BORON SYNTHESIS IN TYPE Ic SUPERNOVAE  

SciTech Connect (OSTI)

We investigate the {nu}-process in an energetic Type Ic supernova (SN Ic) and the resultant productions of the light elements including boron and its stable isotopes. SN Ic is a very unique boron source because it can produce boron not only through spallation reactions as discussed in Nakamura and Shigeyama but also the {nu}-process. The {nu}-process is considered to occur in core-collapse supernovae and previous studies were limited to SNe II. Although the progenitor star of an SN Ic does not posses an He envelope so that {sup 7}Li production via the {nu}-process is unlikely, {sup 11}B can be produced in the C-rich layers. We demonstrate a hydrodynamic simulation of a SN Ic explosion and estimate the amounts of the light elements produced via the {nu}-process for the first time, and also the subsequent spallation reactions between the outermost layers of the compact SN Ic progenitor and the ambient medium. We find that the {nu}-process in the current SN Ic model produces a significant amount of {sup 11}B, which is diluted by {sup 10}B from spallation reactions to get closer to B isotopic ratios observed in meteorites. We also confirm that high-temperature {mu} and {tau} neutrinos and their anti-neutrinos, reasonably suggested from the compact structure of SN Ic progenitors, enhance the light-element production through the neutral current reactions, which may imply an important role of SNe Ic in the Galactic chemical evolution.

Nakamura, Ko; Kajino, Toshitaka [National Astronomical Observatory of Japan, Mitaka, Tokyo (Japan); Yoshida, Takashi; Shigeyama, Toshikazu [Department of Astronomy, Graduate School of Science, University of Tokyo, Tokyo (Japan)

2010-08-01T23:59:59.000Z

12

EARLY EMISSION FROM TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a {approx}10{sup 3} s long UV/optical flash with a luminosity of {approx}1 to {approx}3 Multiplication-Sign 10{sup 39} erg s{sup -1}. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t{sub drop} {approx} 1 hr due to the deviation from pure radiation domination.

Rabinak, Itay; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Livne, Eli, E-mail: itay.rabinak@weizmann.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

2012-09-20T23:59:59.000Z

13

THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of approx10{sup 10} M{sub sun}, leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing {sup 56}Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the {sup 56}Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between {sup 56}Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age-{sup 56}Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of approx3 Gyr for SN Ia hosts, above which they are less likely to produce SNe Ia with {sup 56}Ni masses above approx0.5 M{sub sun}.

Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Sullivan, Mark [University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Conley, Alex [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ONM5S3H8 (Canada); Seibert, Mark; Madore, Barry F. [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA, 91101 (United States); Neff, Susan G. [Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Bianchi, Luciana [Center for Astrophysical Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Donas, Jose; Milliard, Bruno [Laboratoire d'Astrophysique de Marseille, BP 8, Traverse du Siphon, 13376 Marseille Cedex 12 (France); Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Lee, Young-Wook [Center for Space Astrophysics, Yonsei University, Seoul 120-749 (Korea, Republic of); Rich, R. Michael [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2009-12-20T23:59:59.000Z

14

Type Ia supernova rate studies from the SDSS-II Supernova Study  

SciTech Connect (OSTI)

The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered {approx} 500 spectroscopically confirmed SNe Ia with densely sampled (once every {approx} 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents {approx} 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

Dilday, Benjamin; /Chicago U.

2008-08-01T23:59:59.000Z

15

Simulations of Turbulent Thermonuclear Burning in Type Ia Supernovae  

E-Print Network [OSTI]

Type Ia supernovae have recently received considerable attention because it appears that they can be used as "standard candles" to measure cosmic distances out to billions of light years away from us. Observations of type Ia supernovae seem to indicate that we are living in a universe that started to accelerate its expansion when it was about half its present age. These conclusions rest primarily on phenomenological models which, however, lack proper theoretical understanding, mainly because the explosion process, initiated by thermonuclear fusion of carbon and oxygen into heavier elements, is difficult to simulate even on supercomputers. Here, we investigate a new way of modeling turbulent thermonuclear deflagration fronts in white dwarfs undergoing a type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows for full coupling between the front geometry and the flow field. New results of the method applied to the problem of type Ia supernovae are obtained. It is shown that in 2-D with high spatial resolution and a physically motivated subgrid scale model for the nuclear flames numerically "converged" results can be obtained, but for most initial conditions the stars do not explode. In contrast, simulations in 3-D, do give the desired explosions and many of their properties, such as the explosion energies, lightcurves and nucleosynthesis products, are in very good agreement with observed type Ia supernovae.

W. Hillebrandt; M. Reinecke; W. Schmidt; F. K. Roepke; C. Travaglio; J. C. Niemeyer

2004-05-11T23:59:59.000Z

16

CONDENSATION IN EJECTA FROM DENSE THERMONUCLEAR SUPERNOVAE. T. Yu1, B. S. Meyer1, A. V. Fedkin2, and L. Grossman2,3, 1Department of Physics and Astronomy, Clemson University, Clemson, SC  

E-Print Network [OSTI]

CONDENSATION IN EJECTA FROM DENSE THERMONUCLEAR SUPERNOVAE. T. Yu1, B. S. Meyer1, A. V. Fedkin2 Thermonuclear Supernova Model: Thermonuclear (Type Ia) supernovae are explosions of white dwarf stars. Our model and then oxy- gen burning proceed under degenerate conditions, a thermonuclear runaway occurs, which leads

Grossman, Lawrence

17

Double degenerates and progenitors of supernovae type Ia  

E-Print Network [OSTI]

We report on systematic radial velocity surveys for white dwarf - white dwarf binaries (double degenerates - DDs) including SPY (ESO Supernovae Ia progenitor survey) recently carried out at the VLT. A large sample of DD will allow us to put strong constrains on the phases of close binary evolution of the progenitor systems and to perform an observational test of the DD scenario for supernovae of type Ia. We explain how parameters of the binaries can be derived from various methods. Results for a sample of DDs are presented and discussed.

R. Napiwotzki; L. Yungelson; G. Nelemans; T. R. Marsh; B. Leibundgut; A. Renzini; D. Homaier; D. Koester; S. Moehler; N. Christlieb; D. Reimers; H. Drechsel; U. Heber; C. Karl; E. -M. Pauli

2004-03-25T23:59:59.000Z

18

Surface detonation in type Ia supernova explosions?  

E-Print Network [OSTI]

We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.

F. K. Roepke; S. E. Woosley

2006-09-25T23:59:59.000Z

19

New approaches for modeling type Ia supernovae  

E-Print Network [OSTI]

ich and J. Stein. On the thermonuclear runaway in Type IaSmall-Scale Stability of Thermonuclear Flames o in Type IaS. E. Woosley. The thermonuclear explosion of chandrasekhar

Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

2007-01-01T23:59:59.000Z

20

CONSTRAINING EXPLOSION TYPE OF YOUNG SUPERNOVA REMNANTS USING 24 ?m EMISSION MORPHOLOGY  

E-Print Network [OSTI]

Determination of the explosion type of supernova remnants (SNRs) can be challenging, as SNRs are hundreds to thousands of years old and supernovae are classified based on spectral properties days after explosion. Previous ...

Peters, Charee L.

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Learning from the scatter in type Ia supernovae  

SciTech Connect (OSTI)

Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here we probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub 8}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub 8} to within 5% with observations of 2000 Type Ia Supernovae. We identify three sources of systematic error - evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing - which will make this measurement difficult.

Dodelson, Scott [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (United States); Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637-1433 (United States); Vallinotto, Alberto [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (United States); Department of Physics, The University of Chicago, Chicago, Illinois 60637-1433 (United States)

2006-09-15T23:59:59.000Z

22

Type Ia supernovae selection and forecast of cosmology constraints for the Dark Energy Survey  

Science Journals Connector (OSTI)

We present the results of a study of selection criteria to identify Type Ia supernovae photometrically in a simulated mixed sample of Type Ia supernovae and core collapse supernovae. The simulated sample is a mockup of the expected results of the Dark Energy Survey. Fits to the \\{MLCS2k2\\} and SALT2 Type Ia supernova models are compared and used to help separate the Type Ia supernovae from the core collapse sample. The Dark Energy Task Force Figure of Merit (modified to include core collapse supernovae systematics) is used to discriminate among the various selection criteria. This study of varying selection cuts for Type Ia supernova candidates is the first to evaluate core collapse contamination using the Figure of Merit. Different factors that contribute to the Figure of Merit are detailed. With our analysis methods, both SALT2 and \\{MLCS2k2\\} Figures of Merit improve with tighter selection cuts and higher purities, peaking at 98% purity.

Eda Gjergo; Jefferson Duggan; John D. Cunningham; Steve Kuhlmann; Rahul Biswas; Eve Kovacs; Joseph P. Bernstein; Harold Spinka

2013-01-01T23:59:59.000Z

23

The Recurrent Nova U Scorpii - A Type Ia Supernova Progenitor  

E-Print Network [OSTI]

We derive the mass of the white dwarf in the eclipsing recurrent nova U Sco from the radial velocity semi-amplitudes of the primary and secondary stars. Our results give a high white dwarf mass of M_1 = 1.55 \\pm 0.24M_\\odot, consistent with the thermonuclear runaway model of recurrent nova outbursts. We confirm that U Sco is the best Type Ia supernova progenitor known, and predict that the time to explosion is within ~700,000 years.

T. D. Thoroughgood; V. S. Dhillon; S. P. Littlefair; T. R. Marsh; D. A. Smith

2001-09-28T23:59:59.000Z

24

Tension in the Recent Type Ia Supernovae Datasets  

E-Print Network [OSTI]

In the present work, we investigate the tension in the recent Type Ia supernovae (SNIa) datasets Constitution and Union. We show that they are in tension not only with the observations of the cosmic microwave background (CMB) anisotropy and the baryon acoustic oscillations (BAO), but also with other SNIa datasets such as Davis and SNLS. Then, we find the main sources responsible for the tension. Further, we make this more robust by employing the method of random truncation. Based on the results of this work, we suggest two truncated versions of the Union and Constitution datasets, namely the UnionT and ConstitutionT SNIa samples, whose behaviors are more regular.

Hao Wei

2010-04-07T23:59:59.000Z

25

KPD1930+2752 - a candidate Type Ia supernova progenitor  

E-Print Network [OSTI]

We present spectra of the pulsating sdB star KPD1930+2752 which confirm that this star is a binary. The radial velocities measured from the H-alpha and HeI6678 spectral lines vary sinusoidally with the same period (2h 17m) as the ellipsoidal variability seen by Billeres et al. (2000). The amplitude of the orbital motion (349.3+-2.7 km/s) combined with the canonical mass for sdB stars (0.5 solar masses) implies a total mass for the binary of 1.47+-0.01 solar masses The unseen companion star is almost certainly a white dwarf star. The binary will merge within about 200 million years due to gravitational wave radiation. The accretion of helium and other elements heavier than hydrogen onto the white dwarf which then exceeds the Chandrasekhar mass (1.4 solar masses) is a viable model for the cause of Type Ia supernovae. KPD1930+2752 is the first star to be discovered which is a good candidate for the progenitor of a Type Ia supernova of this type which will merge on an astrophysically interesting timescale.

P. F. L. Maxted; T. R. Marsh; R. C. North

2000-07-18T23:59:59.000Z

26

Double-detonation explosions as progenitors of type Iax supernovae  

E-Print Network [OSTI]

It has recently been proposed that one sub-class of type Ia supernovae (SNe Ia) is sufficiently both distinct and common to be classified separately from the bulk of SNe Ia, with a suggested class name of "type Iax supernovae" (SNe Iax), after SN 2002cx. We show that the population properties of this class can be understood if the events originate from helium double-detonation sub-Chandrasekhar mass explosions, in which a carbon--oxygen white dwarf (CO WD) accumulates a helium layer from a non-degenerate helium star. We have incorporated detailed binary evolution calculations for the progenitor systems into a binary population synthesis model to obtain birthrates and delay times for such events. The predicted Galactic event rate is $\\sim$$0.6-1.8\\times 10^{-3}\\,{\\rm yr}^{-1}$, in good agreement with the measured rates of SNe Iax. In addition, predicted delay times are $\\sim$70\\,Myr$-$710\\,Myr, consistent with the fact that SNe Iax have so far only been discovered in late-type galaxies. Based on the CO WD mass...

Wang, Bo; Han, Zhanwen

2013-01-01T23:59:59.000Z

27

THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of {approx}100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of {approx}1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

Stritzinger, Maximilian D. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm (Sweden); Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel [Carnegie Observatories, Las Campanas Observatory, La Serena (Chile); Boldt, Luis N. [Argelander Institut fuer Astronomie, Universitaet Bonn, D-53111 Bonn (Germany); Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Contreras, Carlos [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Victoria 3122 (Australia); Gonzalez, Sergio [Atacama Large Millimeter/Submillimeter Array, European Southern Observatory (Chile); Folatelli, Gaston [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Salgado, Francisco [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Hamuy, Mario, E-mail: max.stritzinger@astro.su.se, E-mail: max@dark-cosmology.dk, E-mail: mstritzinger@lco.cl [Departamento de Astronomia, Universidad de Chile, Santiago (Chile)

2011-11-15T23:59:59.000Z

28

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network [OSTI]

The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to $8 \\times 10^7$ g cm$^{-3}$, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and $3 \\times 10^7$ g cm$^{-3}$ where the nature of the burning changes qualitatively. By $1 \\times 10^7$ g cm$^{-3}$, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, $D_T \\sim u' l$, where $u'$ is the turbulent intensity and $l$ is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

A. J. Aspden; J. B. Bell; M. S. Day; S. E. Woosley; M. Zingale

2008-11-17T23:59:59.000Z

29

Type Ia Supernova Hubble Residuals and Host-Galaxy Properties  

SciTech Connect (OSTI)

Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the?m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

2014-01-17T23:59:59.000Z

30

Large Late-time Asphericities in Three Type IIP Supernovae  

E-Print Network [OSTI]

Type II-plateau supernovae (SNe IIP) are the result of the explosions of red supergiants and are the most common subclass of core-collapse supernovae. Past observations have shown that the outer layers of the ejecta of SNe IIP are largely spherical, but the degree of asphericity increases toward the core. We present evidence for high degrees of asphericity in the inner cores of three recent SNe IIP (SNe 2006my, 2006ov, and 2007aa), as revealed by late-time optical spectropolarimetry. The three objects were all selected to have very low interstellar polarization (ISP), which minimizes the uncertainties in ISP removal and allows us to use the continuum polarization as a tracer of asphericity. The three objects have intrinsic continuum polarizations in the range of 0.83-1.56% in observations taken after the end of the photometric plateau, with the polarization dropping to almost zero at the wavelengths of strong emission lines. Our observations of SN 2007aa at earlier times, taken on the photometric plateau, sho...

Chornock, Ryan; Li, Weidong; Silverman, Jeffrey M; ;,

2009-01-01T23:59:59.000Z

31

CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2013-06-20T23:59:59.000Z

32

Type Ia Supernova: Burning and Detonation in the Distributed Regime  

E-Print Network [OSTI]

A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the ``distributed'' flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are assumed to have a quasi-steady-state structure similar to the laminar flame structure, but controlled by turbulent diffusion. Detonations cannot appear in the system as long as distributed flames are still quasi-steady-state, but this condition is violated when the distributed flame width becomes comparable to the size of largest turbulent eddies. When this happens, a transition to detonation may occur. For current best estimates of the turbulent energy, the most likely density for the transition to detonation is in the range 0.5 - 1.5 x 10^7 g cm^{-3}.

S. E. Woosley

2007-09-26T23:59:59.000Z

33

Intermediate-band Photometry of Type Ia Supernovae  

E-Print Network [OSTI]

We present optical light curves of five Type Ia supernovae (2002er, 2002fk, 2003cg, 2003du, 2003fk). The photometric observations were performed in a set of intermediate-band filters. SNe 2002er, 2003du appear to be normal SN Ia events with similar light curve shapes, while SN 2003kf shows the behavior of a brighter SN Ia with slower decline rate after maximum. The light curves of SN 2003cg is unusual; they show a fast rise and dramatic decline near maximum and do not display secondary peak at longer wavelengths during 15-30 days after maximum light. This suggests that SN 2003cg is likely to be an intrinsically subluminous, 91bg-like SN Ia. Exploration of SN Ia feature lines through intermediate-band photometry is briefly discussed.

Wang, X; Zhang, T; Li, Z; Wang, Xiaofeng; Zhou, Xu; Zhang, Tianmeng; Li, Zongwei

2004-01-01T23:59:59.000Z

34

Type Ia Supernovae Yielding Distances with 3-4% Precision  

E-Print Network [OSTI]

The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14-0.20 mag from broadband optical light curves, yielding individual distances accurate to ~7-10%. Here we identify a subset of SN Ia that erupt in environments having high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, these SN can be calibrated to within ~0.065-0.075 mag, corresponding to ~3-4% in distance -- the best yet with SN Ia by a substantial margin. The small scatter suggests that variations in only one or two progenitor properties account for their light-curve-width/color/luminosity relation.

Kelly, Patrick L; Burke, David L; Hicken, Malcolm; Ganeshalingam, Mohan; Zheng, Weikang

2014-01-01T23:59:59.000Z

35

Signatures of A Companion Star in Type Ia Supernovae  

E-Print Network [OSTI]

While type Ia Supernovae (SNe Ia) have been used as precise cosmological distance indicators, their progenitor systems remain unresolved. One of the key questions is if there is a non-degenerate companion star at the time of a thermonuclear explosion of a white dwarf (WD). In this paper, we investigate if an interaction between the SN ejecta and the companion star may result in observable footprints around the maximum brightness and thereafter, by performing multi-dimensional radiation transfer simulations based on hydrodynamic simulations of the interaction. We find that such systems result in variations in various observational characteristics due to different viewing directions, while the predicted behaviors (redder and fainter for the companion direction) are opposite to what were suggested by the previous study. The variations are generally modest and within observed scatters. However, the model predicts trends between some observables different from observationally derived, thus a large sample of SNe Ia...

Maeda, Keiichi; Shigeyama, Toshikazu

2014-01-01T23:59:59.000Z

36

A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data  

E-Print Network [OSTI]

Consistency between Carnegie Supernova Project (CSP) and SDSS-II supernova (SN) survey ugri measurements has been evaluated by comparing SDSS and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 magnitude level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 magnitudes in ugri, with rms scatter ranging from 0.043 to 0.077 magnitudes. The u band agreement is promising, with the caveat that only four of the nine supernovae are well-observed in u and these four exhibit an 0.038 magnitude supernova-to-supernova scatter in this filter.

Mosher, J; Corlies, L; Folatelli, G; Frieman, J; Holtzman, J; Jha, S W; Kessler, R; Marriner, J; Phillips, M M; Stritzinger, M; Morrell, N; Schneider, D P

2012-01-01T23:59:59.000Z

37

A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA  

SciTech Connect (OSTI)

Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

Mosher, J.; Sako, M.; Corlies, L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Folatelli, G. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Frieman, J.; Kessler, R. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holtzman, J. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Marriner, J. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Phillips, M. M.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, M. [Oskar Klein Centre for Cosmo Particle Physics, AlbaNova University Center, 106 91 Stockholm (Sweden); Schneider, D. P., E-mail: jmosher@sas.upenn.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

2012-07-15T23:59:59.000Z

38

A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data  

SciTech Connect (OSTI)

Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

Mosher, J.; /Pennsylvania U.; Sako, M.; /Pennsylvania U.; Corlies, L.; /Pennsylvania U. /Columbia U.; Folatelli, G.; /Tokyo U. /Carnegie Inst. Observ.; Frieman, J.; /Chicago U., KICP /Chicago U., Astron. Astrophys. Ctr.; Holtzman, J.; /New Mexico State U.; Jha, S.W.; /Rutgers U., Piscataway; Kessler, R.; /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP; Marriner, J.; /Fermilab; Phillips, M.M.; /Carnegie Inst. Observ.; Stritzinger, M.; /Aarhus U. /Stockholm U., OKC /Bohr Inst. /Carnegie Inst. Observ.

2012-06-01T23:59:59.000Z

39

RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first Almost-Equal-To 0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X {sub 56} Almost-Equal-To (4-6) Multiplication-Sign 10{sup -2} of {sup 56}Ni distributed between a depth of Almost-Equal-To 10{sup -2} and 0.3 M {sub Sun} below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

2012-11-10T23:59:59.000Z

40

ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE  

SciTech Connect (OSTI)

I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

Clayton, Donald D., E-mail: claydonald@gmail.com [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame  

E-Print Network [OSTI]

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame S. E of these regions can be supersonic and could initiate a detonation. Subject headings: supernovae: general a late time transition of the thermonuclear burning to a detonation wave (e.g., Hoflich et al. 1995

42

Hydrogen and helium traces in type Ib-c supernovae  

E-Print Network [OSTI]

The spectroscopic properties of a selected optical photospheric spectra of core collapse supernovae (CCSNe) are investigated.Special attention is devoted to traces of hydrogen at early phases. The generated spectra are found to match the observed ones reasonably well, including a list of only 23 candidate ions. Guided by SN Ib 1990I, the observed trough near 6300\\AA is attributed to H$\\alpha$ in almost all Type Ib events, although in some objects it becomes too weak to be discernible, especially at later phases. Alternative line identifications are discussed. Differences in the way hydrogen manifests its presence within CCSNe are highlighted. In Type Ib SNe, the H$\\alpha$ contrast velocity (i.e. line velocity minus the photospheric velocity) seems to increase with time at early epochs, reaching values as high as 8000 km s$^{-1}$ around 15-20 days after maximum and then remains almost constant. The derived photospheric velocities, indicate a lower velocity for Type II SNe 1987A and 1999em as compared to SN Ic 1994I and SN IIb 1993J, while Type Ib events display a somewhat larger variation. The scatter, around day 20, is measured to be $\\sim$5000 km s$^{-1}$. Following two simple approaches, rough estimates of ejecta and hydrogen masses are given. A mass of hydrogen of approximately 0.02 $M_\\odot$ is obtained for SN 1990I, while SNe 1983N and 2000H ejected $\\sim$0.008 $M_\\odot$ and $\\sim$0.08 $M_\\odot$ of hydrogen, respectively. SN 1993J has a higher hydrogen mass, $\\sim 0.7$ $M_\\odot$ with a large uncertainty. A low mass and thin hydrogen layer with very high ejection velocities above the helium shell, is thus the most likely scenario for Type Ib SNe. Some interesting and curious issues relating to oxygen lines suggest future investigations.

A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut; E. Baron; R. P. Kirshner

2006-04-04T23:59:59.000Z

43

INCOMPLETE CARBON-OXYGEN DETONATION IN TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

Incomplete carbon-oxygen detonation with reactions terminating after burning of C{sup 12} in the leading C{sup 12} + C{sup 12} reaction (C-detonation) may occur in the low-density outer layers of white dwarfs exploding as Type Ia supernovae (SNe Ia). Previous studies of carbon-oxygen detonation structure and stability at low densities were performed under the assumption that the velocity of a detonation wave is derived from complete burning of carbon and oxygen to iron. In fact, at densities {rho} {<=} 10{sup 6} g cm{sup -3} the detonation in SNe Ia may release less than a half of the available nuclear energy. In this paper, we study basic properties of such detonations. We find that the length of an unsupported steady-state C-detonation is {approx_equal}30-100 times greater than previously estimated and that the decreased energy has a drastic effect on the detonation stability. In contrast to complete detonations which are one-dimensionally stable, C-detonations may be one-dimensionally unstable and propagate by periodically re-igniting themselves via spontaneous burning. The re-ignition period at {rho} {<=} 10{sup 6} g cm{sup -3} is estimated to be greater than the timescale of an SN Ia explosion. This suggests that propagation and quenching of C-detonations at these densities could be affected by the instability. Potential observational implications of this effect are discussed.

Dominguez, Inma [Departamento de Fisica Teorica y del Cosmos, University of Granada, 18071 Granada (Spain); Khokhlov, Alexei [Department of Astronomy and Astrophysics and the Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

2011-04-01T23:59:59.000Z

44

Gamma-rays from Type Ia supernova SN2014J  

E-Print Network [OSTI]

The whole set of INTEGRAL observations of type Ia supernova SN2014J, covering the period 16-162 days after the explosion has being analyzed. For spectral fitting the data are split into early and late periods covering days 16-35 and 50-162, respectively, optimized for Ni-56 and Co-56 lines. As expected for the early period much of the gamma-ray signal is confined to energies below $\\sim$200 keV, while for the late period it is most strong above 400 keV. In particular, in the late period Co-56 lines at 847 and 1248 keV are detected at 4.7 and 4.3 sigma respectively. The lightcurves in several representative energy bands are calculated for the entire period. The resulting spectra and lightcurves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical 1D models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass WD. Late optical spectra (day 136 after the explosion) show rather symmetric ...

Churazov, E; Isern, J; Bikmaev, I; Bravo, E; Chugai, N; Grebenev, S; Jean, P; Knödlseder, J; Lebrun, F; Kuulkers, E

2015-01-01T23:59:59.000Z

45

Search for double degenerate progenitors of supernovae type Ia with SPY  

E-Print Network [OSTI]

We report on a large survey for double degenerate (DD) binaries as potential progenitors of type Ia supernovae with the UVES spectrograph at the ESO VLT (ESO SN Ia Progenitor surveY - SPY).

R. Napiwotzki; H. Drechsel; U. Heber; C. Karl; E. -M. Pauli; N. Christlieb; H. -J. Hagen; D. Reimers; D. Koester; S. Moehler; D. Homeier; B. Leibundgut; A. Renzini; T. R. Marsh; G. Nelemans; L. Yungelson

2002-10-07T23:59:59.000Z

46

Type Ia supernova rate at a redshift of ~;0.1  

SciTech Connect (OSTI)

We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift {approx} 0.13. The result is 0.125{sub -0.034-0.028}{sup +0.044+0.028} h{sub 70}{sup 2} SNu where 1 SNu = 1 SN/10{sup 10} L{sub {circle_dot}}{sup B}/century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

Blanc, G.; Afonso, C.; Alard, C.; Albert, J.N.; Aldering, G.; Amadon, A.; Andersen, J.; Ansari, R.; Aubourg, E.; Balland, C.; Bareyre,P.; Beaulieu, J.P.; Charlot, X.; Conley, A.; Coutures, C.; Dahlen, T.; Derue, F.; Fan, X.; Ferlet, R.; Folatelli, G.; Fouque, P.; Garavini, G.; Glicenstein, J.F.; Goldman, B.; Goobar, A.; Gould, A.; Graff, D.; Gros,M.; Haissinski, J.; Hamadache, C.; Hardin, D.; Hook, I.M.; deKat, J.; Kent, S.; Kim, A.; Lasserre, T.; LeGuillou, L.; Lesquoy, E.; Loup, C.; Magneville, C.; Marquette, J.B.; Maurice, E.; Maury, A.; Milsztajn, A.; Moniez, M.; Mouchet, M.; Newberg, H.; Nobili, S.; Palanque-Delabrouille,N.; Perdereau, O.; Prevot, L.; Rahal, Y.R.; Regnault, N.; Rich, J.; Ruiz-Lapuente, P.; Spiro, M.; Tisserand, P.; Vidal-Madjar, A.; Vigroux,L.; Walton, N.A.; Zylberajch, S.

2004-05-11T23:59:59.000Z

47

Type II-P supernovae as standardized candles: improvements using near-infrared data .  

E-Print Network [OSTI]

??We present the first near-infrared Hubble diagram for Type II-P supernovae (SNe), to further explore their value as distance indicators.We use a modified version of… (more)

Maguire, K.

2010-01-01T23:59:59.000Z

48

The Diversity of Variations in the Spectra of Type Ia Supernovae  

E-Print Network [OSTI]

for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Lifan Wang Committee Members, Nicholas Suntze George Kattawar Sean McDeavitt Head of Department, George R. Welch August 2012 Major Subject: Physics iii ABSTRACT The Diversity... of Variations in the Spectra of Type Ia Supernovae. (August 2012) Andrew James Wagers, B.A., Berea College; M.S., Stephen F. Austin State University Chair of Advisory Committee: Dr. Lifan Wang Type Ia supernovae (SNe Ia) are currently the best probe...

Wagers, Andrew James

2012-10-19T23:59:59.000Z

49

{chi}{sup 2} versus median statistics in supernova type Ia data analysis  

SciTech Connect (OSTI)

In this paper we compare the performances of the {chi}{sup 2} and median likelihood analysis in the determination of cosmological constraints using type Ia supernovae data. We perform a statistical analysis using the 307 supernovae of the Union 2 compilation of the Supernova Cosmology Project and find that the {chi}{sup 2} statistical analysis yields tighter cosmological constraints than the median statistic if only supernovae data is taken into account. We also show that when additional measurements from the cosmic microwave background and baryonic acoustic oscillations are considered, the combined cosmological constraints are not strongly dependent on whether one applies the {chi}{sup 2} statistic or the median statistic to the supernovae data. This indicates that, when complementary information from other cosmological probes is taken into account, the performances of the {chi}{sup 2} and median statistics are very similar, demonstrating the robustness of the statistical analysis.

Barreira, A. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Avelino, P. P. [Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

2011-10-15T23:59:59.000Z

50

A LUMINOUS AND FAST-EXPANDING TYPE Ib SUPERNOVA SN 2012au  

SciTech Connect (OSTI)

We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6 days until {approx} + 150 days after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absolute magnitude is M{sub R} = -18.7 {+-} 0.2 mag, which suggests that this supernova belongs to a very luminous group among Type Ib supernovae. The line velocity of He I {lambda}5876 is about 15,000 km s{sup -1} around maximum, which is much faster than that in a typical Type Ib supernova. From the quasi-bolometric peak luminosity of (6.7 {+-} 1.3) Multiplication-Sign 10{sup 42} erg s{sup -1}, we estimate the {sup 56}Ni mass produced during the explosion as {approx}0.30 M{sub Sun }. We also give a rough constraint to the ejecta mass 5-7 M{sub Sun} and the kinetic energy (7-18) Multiplication-Sign 10{sup 51} erg. We find a weak correlation between the peak absolute magnitude and He I velocity among Type Ib SNe. The similarities to SN 1998bw in the density structure inferred from the light-curve model as well as the large peak bolometric luminosity suggest that SN 2012au had properties similar to energetic Type Ic supernovae.

Takaki, Katsutoshi; Fukazawa, Yasushi; Itoh, Ryosuke; Ueno, Issei; Ui, Takahiro; Urano, Takeshi [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kawabata, Koji S.; Akitaya, Hiroshi; Moritani, Yuki; Ohsugi, Takashi; Uemura, Makoto; Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yamanaka, Masayuki [Kwasan Observatory, Kyoto University, Ohmine-cho Kita Kazan, Yamashina-ku, Kyoto 607-8471 (Japan); Maeda, Keiichi; Nomoto, Ken'ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Tanaka, Masaomi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kinugasa, Kenzo [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, 462-2 Nobeyama, Minamimaki, Nagano 384-1305 (Japan); Sasada, Mahito, E-mail: takaki@hep01.hepl.hiroshima-u.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

2013-08-01T23:59:59.000Z

51

Rates, progenitors and cosmic mix of Type Ia supernovae  

Science Journals Connector (OSTI)

......2004) from the supernova survey spin-off of the GOODS project (Giavalisco et al. 2004). The mentioned Gaussian DDT is...fig. 13 in Greggio (2005). For this reason, we take the liberty of re-discussing here the Della Valle et al. interpretation......

Laura Greggio; Alvio Renzini; Emanuele Daddi

2008-08-01T23:59:59.000Z

52

Explosions of O-Ne-Mg Cores, the Crab Supernova, and Subluminous Type II-P Supernovae  

E-Print Network [OSTI]

We present results of simulations of stellar collapse and explosions in spherical symmetry for progenitor stars in the 8-10 solar mass range with an O-Ne-Mg core. The simulations were continued until nearly one second after core bounce and were performed with the Prometheus/Vertex code with a variable Eddington factor solver for the neutrino transport, including a state-of-the-art treatment of neutrino-matter interactions. Particular effort was made to implement nuclear burning and electron capture rates with sufficient accuracy to ensure a smooth continuation, without transients, from the progenitor evolution to core collapse. Using two different nuclear equations of state (EoSs), a soft version of the Lattimer & Swesty EoS and the significantly stiffer Wolff & Hillebrandt EoS, we found no prompt explosions, but instead delayed explosions, powered by neutrino heating and the neutrino-driven baryonic wind which sets in about 200 ms after bounce. The models eject little nickel ( 0.46, which suggests a chemical composition that is not in conflict with galactic abundances. No low-entropy matter with Ye << 0.5 is ejected. This excludes such explosions as sites of a low-entropy r-process. The low explosion energy and nucleosynthetic implications are compatible with the observed properties of the Crab supernova, and the small nickel mass supports the possibility that our models explain some subluminous Type II-P supernovae.

F. S. Kitaura; H. -Th. Janka; W. Hillebrandt

2005-12-02T23:59:59.000Z

53

Search for double degenerate progenitors of supernovae type Ia with SPY  

E-Print Network [OSTI]

We report on a large survey for double degenerate (DD) binaries as potential progenitors of type Ia supernovae with the UVES spectrograph at the ESO VLT (SN Ia Progenitor surveY - SPY). About 560 white dwarfs were checked for radial velocity variations until now. Ninety new DDs have been discovered, including short period systems with masses close to the Chandrasekhar mass.

R. Napiwotzki; N. Christlieb; H. Drechsel; H. -J. Hagen; U. Heber; D. Homeier; C. Karl; D. Koester; B. Leibundgut; T. R. Marsh; S. Moehler; G. Nelemans; E. -M. Pauli; D. Reimers; A. Renzini; L. Yungelson

2002-10-29T23:59:59.000Z

54

Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae  

SciTech Connect (OSTI)

The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.

Saurabh W. Jha

2012-10-03T23:59:59.000Z

55

Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1  

E-Print Network [OSTI]

Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1 , J. B. Bell1 , and S. E. Woosley2 oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen

56

On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae  

E-Print Network [OSTI]

The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization - which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism - is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.

F. K. Roepke; W. Hillebrandt

2004-04-26T23:59:59.000Z

57

Constraining the double-degenerate scenario for Type Ia supernovae from merger ejected matter  

E-Print Network [OSTI]

We follow the mass blown during the WD-WD merger process in the Double-Degenerate (DD) scenario for type Ia supernovae (SN Ia), and find that the interaction of the SN ejecta with this wind affects the early (thermal energy and then to additional radiation. The radiation could be interpreted as an explosion originating from a progenitor having a radius of one solar radius or more, contradicting observations of SN 2011fe.

Levanon, Naveh; García-Berro, Enrique

2014-01-01T23:59:59.000Z

58

Radio and X-Ray Emission as Probes of Type IIP Supernovae and Red Supergiant Mass Loss  

E-Print Network [OSTI]

Type IIP (plateau) supernovae are thought to come from stars with initial mass about 8-25 solar masses that end their lives as red supergiants. The expected stellar end points can be found from evolutionary calculations and the corresponding mass loss properties at this point can be estimated from typical values for Galactic stars. The mass loss densities of observed supernovae can be estimated from observations of the thermal X-ray and radio synchrotron emission that result from the interaction of the supernova with the surrounding wind. Type IIP supernovae are expected to have energy-conserving interaction during typical times of observation. Because Type IIP supernovae have an extended period of high optical luminosity, Compton cooling can affect the radio emitting electrons, giving rise to a relatively flat radio light curve in the optically thin regime. Alternatively, a high efficiency of magnetic field production results in synchrotron cooling of the radio emitting electrons. Both the X-ray and radio luminosities are sensitive to the mass loss and initial masses of the progenitor stars, although the turn-on of radio emission is probably the best estimator of circumstellar density. Both the mass loss density and the variation of density with stellar mass are consistent with expectations for the progenitor stars deduced from direct observations of recent supernovae. Current observations are consistent with mass being the only parameter; observations of a supernova in a metal poor region might show how the mass loss depends on metallicity.

Roger A. Chevalier; Claes Fransson; Tanja K. Nymark

2005-09-15T23:59:59.000Z

59

Flame-driven deflagration-to-detonation transitions in Type Ia supernovae?  

E-Print Network [OSTI]

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the internal flame structure. Some studies of the burning microphysics indicate that a deflagration-to-detonation transition may be possible here, provided the turbulent intensities are strong enough. Consequently, the magnitude of turbulent velocity fluctuations generated by the deflagration flame is analyzed at the onset of the distributed burning regime in several three-dimensional simulations of deflagrations in thermonuclear supernovae. It is shown that the corresponding probability density functions fall off towards high turbulent velocity fluctuations much more slowly than a Gaussian distribution. Thus, values claimed to be necessary for triggering a detonation are likely to be found in sufficiently large patches of the flame. Although the microphysical evolution of the burning is not followed and a successful deflagration-to-detonation transition cannot be guaranteed from simulations presented here, the results still indicate that such events may be possible in Type Ia supernova explosions.

F. K. Roepke

2007-09-26T23:59:59.000Z

60

Beyond the bubble catastrophe of Type Ia supernovae: Pulsating Reverse Detonation models  

E-Print Network [OSTI]

We describe a mechanism by which a failed deflagration of a Chandrasekhar-mass carbon-oxygen white dwarf can turn into a successful thermonuclear supernova explosion, without invoking an ad hoc high-density deflagration-detonation transition. Following a pulsating phase, an accretion shock develops above a core of 1 M_sun composed of carbon and oxygen, inducing a converging detonation. A three-dimensional simulation of the explosion produced a kinetic energy of 1.05E51 ergs and 0.70 M_sun of 56Ni, ejecting scarcely 0.01 M_sun of C-O moving at low velocities. The mechanism works under quite general conditions and is flexible enough to account for the diversity of normal Type Ia supernovae. In given conditions the detonation might not occur, which would reflect in peculiar signatures in the gamma and UV-wavelengths

Eduardo Bravo; Domingo Garcia-Senz

2006-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates  

Science Journals Connector (OSTI)

Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ?4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or ×0.1. The changes in the nucleosynthesis owing to the modification of the rates of these fusion reactions are also quite modest; for instance, no species with a mass fraction larger than 0.02 experiences a variation of its yield larger than a factor of 2. We provide the sensitivity of the yields of the most abundant species with respect to the rates of the most intense reactions with protons, neutrons, and ?. In general, the yields of Fe-group nuclei are more robust than the yields of intermediate-mass elements. Among the species with yields larger than 10?8M?, 35S has the largest sensitivity to the nuclear reaction rates. It is remarkable that the reactions involving elements with Z>22 have a tiny influence on the supernova nucleosynthesis. Among the charged-particle reactions, the most influential on supernova nucleosynthesis are 30Si+p?31P+?, 20Ne+??24Mg+?, and 24Mg+??27Al+p. The temperatures at which a modification of their rate has a larger impact are in the range 2?T?4 GK.Conclusions: The explosion model (i.e., the assumed conditions and propagation of the flame) chiefly determines the element production of type Ia supernovae and derived quantities such as their luminosity, while the nuclear reaction rates used in the simulations have a small influence on the kinetic energy and final chemical composition of the ejecta. Our results show that the uncertainty in individual thermonuclear reaction rates cannot account for discrepancies of a factor of 2 between isotopic ratios in type Ia supernovae and those in the solar system, especially within the Fe group.

Eduardo Bravo and Gabriel Martínez-Pinedo

2012-05-18T23:59:59.000Z

62

Small-scale Interaction of Turbulence with Thermonuclear Flames in Type Ia Supernovae  

E-Print Network [OSTI]

Microscopic turbulence-flame interactions of thermonuclear fusion flames occuring in Type Ia Supernovae were studied by means of incompressible direct numerical simulations with a highly simplified flame description. The flame is treated as a single diffusive scalar field with a nonlinear source term. It is characterized by its Prandtl number, Pr << 1, and laminar flame speed, S_L. We find that if S_L ~ u', where u' is the rms amplitude of turbulent velocity fluctuations, the local flame propagation speed does not significantly deviate from S_L even in the presence of velocity fluctuations on scales below the laminar flame thickness. This result is interpreted in the context of subgrid-scale modeling of supernova explosions and the mechanism for deflagration-detonation-transitions.

J. C. Niemeyer; W. K. Bushe; G. R. Ruetsch

1999-05-07T23:59:59.000Z

63

VLBI OBSERVATIONS OF THE TYPE I b/c SUPERNOVA 2009bb  

SciTech Connect (OSTI)

We report on VLBI as well as Very Large Array radio observations of the Type I b/c supernova 2009bb. The high radio luminosity of this supernova seems to require relativistic outflow, implying that the early radio emission was 'engine-driven', that is, driven by collimated outflow from a compact object, even though no gamma-ray emission was seen. The radio light curve shows a general decline, with a 'bump' near t = 52 d, seen most prominently at 5 GHz. The light-curve bump could be either engine-driven or it might represent the turn-on of the normal radio emission from a supernova, driven by interaction with the circumstellar material rather than by the engine. We undertook VLBI observations to resolve SN 2009bb's relativistic outflow. Our observations constrain the angular outer radius at an age of 85 d to be <0.64 mas, corresponding to <4 x 10{sup 17} cm and an average apparent expansion speed of <1.74 c. This result is consistent with the moderately relativistic ejecta speeds implied by the radio luminosity and spectrum.

Bietenholz, M. F. [Hartebeesthoek Radio Observatory, P.O. Box 443, Krugersdorp, 1740 (South Africa); Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, Theory Division, 60 Garden Street, Cambridge, MA 02138 (United States); Bartel, N. [Department of Physics and Astronomy, York University, Toronto, M3J 1P3, Ontario (Canada); Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); Horiuchi, S. [Canberra Deep Space Communication Complex, P.O. Box 1035, Tuggeranong, ACT 2901 (Australia); Phillips, C. J.; Tzioumis, A. K.; Wieringa, M. H. [Australia Telescope National Facility, Epping NSW (Australia); Chugai, N. N. [Institute of Astronomy, RAS, Pyatnitskaya 48, Moscow 119017 (Russian Federation)

2010-12-10T23:59:59.000Z

64

Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Deflagration to Detonation Density  

E-Print Network [OSTI]

We explore the effects of the deflagration to detonation transition (DDT) density on the production of Ni-56 in thermonuclear supernova explosions (type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear supernovae with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of Ni-56 masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of Ni-56 and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range 1-3x10^7 g/cc. We find a quadratic dependence ...

Jackson, Aaron P; Townsley, Dean M; Chamulak, David A; Brown, Edward F; Timmes, F X

2010-01-01T23:59:59.000Z

65

Reconstruction of Hessence Dark Energy and the Latest Type Ia Supernovae Gold Dataset  

E-Print Network [OSTI]

Recently, many efforts have been made to build dark energy models whose equation-of-state parameter can cross the so-called phantom divide $w_{de}=-1$. One of them is the so-called hessence dark energy model in which the role of dark energy is played by a non-canonical complex scalar field. In this work, we develop a simple method based on Hubble parameter $H(z)$ to reconstruct the hessence dark energy. As examples, we use two familiar parameterizations for $H(z)$ and fit them to the latest 182 type Ia supernovae Gold dataset. In the reconstruction, measurement errors are fully considered.

Hao Wei; Ningning Tang; Shuang Nan Zhang

2007-02-28T23:59:59.000Z

66

Reconstruction of a Deceleration Parameter from the Latest Type Ia Supernovae Gold Dataset  

E-Print Network [OSTI]

In this paper, a parameterized deceleration parameter $q(z)= 1/2 - a/(1 + z)^b$ is reconstructed from the latest type Ia supernovae gold dataset. It is found out that the transition redshift from decelerated expansion to accelerated expansion is at $z_T=0.35^{+0.14}_{-0.07}$ with $1\\sigma$ confidence level in this parameterized deceleration parameter. And, the best fit values of parameters in $1\\sigma$ errors are $a=1.56^{+0.99}_{-0.55}$ and $b=3.82^{+3.70}_{-2.27}$.

Lixin Xu; Chengwu Zhang; Baorong Chang; Hongya Liu

2007-01-17T23:59:59.000Z

67

A luminous, blue progenitor system for a type-Iax supernova  

E-Print Network [OSTI]

Type-Iax supernovae (SN Iax) are stellar explosions that are spectroscopically similar to some type-Ia supernovae (SN Ia) at maximum light, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from other SN, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal SN Ia. These are not rare; SN Iax occur at a rate between 5 and 30% of the normal SN Ia rate. The leading models for SN Iax are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying they are "less successful" cousins of normal SN Ia, where complete disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type-Iax SN 2012Z in deep pre-explosion imaging. Its luminosity, colors, environment, and similarity to the progenitor of the Galactic helium nova V445 Puppis, suggest that SN 2012Z was the explosio...

McCully, Curtis; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D

2014-01-01T23:59:59.000Z

68

Study of the Detonation Phase in the Gravitationally Confined Detonation Model of Type Ia Supernovae  

E-Print Network [OSTI]

We study the gravitationally confined detonation (GCD) model of Type Ia supernovae through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single point, off-center flame ignition in carbon-oxygen white dwarfs. The simulations are unique in terms of the degree to which non-idealized physics is used to treat the reactive flow, including weak reaction rates and a time dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high density core of the white dwarf; and an efficient method for nucleosynthesis post-processing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here, a self regulating process comprised of neutronization and stellar expansion results in final \\iso{Ni}{56} masses of $\\sim$1.1\\msun. But, more energetic models result in larger total NSE and stable Fe peak yields. The total yield of intermediate mass elements is $\\sim0.1$\\msun and the explosion energies are all around 1.5$\\times10^{51}$ ergs. The explosion models are briefly compared to the inferred properties of recent Type Ia supernova observations. The potential for surface detonation models to produce lower luminosity (lower \\iso{Ni}{56} mass) supernovae is discussed.

Casey A. Meakin; Ivo Seitenzahl; Dean Townsley; George C. Jordan IV; James Truran; Don Lamb

2008-06-30T23:59:59.000Z

69

Sensitivity study of explosive nucleosynthesis in Type Ia supernovae: I. Modification of individual thermonuclear reaction rates  

E-Print Network [OSTI]

We explore the sensitivity of the nucleosynthesis due to type Ia supernovae with respect to uncertainties in nuclear reaction rates. We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf, and have post-processed the thermodynamic trajectories of every mass-shell with a nucleosynthetic code, with increases (decreases) by a factor of ten on the rates of 1196 nuclear reactions. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. For selected reactions, we have recomputed the nucleosynthesis with alternative prescriptions for their rates taken from the JINA REACLIB database, and have analyzed the temperature ranges where modifications of their rates have the strongest effect on nucleosynthesis. The nucleosynthesis resulting from the Type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of 12C nuclei. The energy of the explosion changes by less than \\sim4%. The changes in the nucleosynthesis due to the modification of the rates of fusion reactions are as well quite modest, for instance no species with a mass fraction larger than 0.02 experiences a variation of its yield larger than a factor of two. We provide the sensitivity of the yields of the most abundant species with respect to the rates of the most intense reactions with protons, neutrons, and alphas. In general, the yields of Fe-group nuclei are more robust than the yields of intermediate-mass elements. Among the charged particle reactions, the most influential on supernova nucleosynthesis are 30Si + p \\rightleftarrows 31P + {\\gamma}, 20Ne + {\\alpha} \\rightleftarrows 24Mg + {\\gamma}, and 24Mg + {\\alpha} \\rightleftarrows 27Al + p. The temperatures at which a modification of their rate has a larger impact are in the range 2 < T < 4 GK. (abridged)

Eduardo Bravo; Gabriel Martínez-Pinedo

2012-04-09T23:59:59.000Z

70

Inference for the dark energy equation of state using Type IA supernova data  

E-Print Network [OSTI]

The surprising discovery of an accelerating universe led cosmologists to posit the existence of "dark energy"--a mysterious energy field that permeates the universe. Understanding dark energy has become the central problem of modern cosmology. After describing the scientific background in depth, we formulate the task as a nonlinear inverse problem that expresses the comoving distance function in terms of the dark-energy equation of state. We present two classes of methods for making sharp statistical inferences about the equation of state from observations of Type Ia Supernovae (SNe). First, we derive a technique for testing hypotheses about the equation of state that requires no assumptions about its form and can distinguish among competing theories. Second, we present a framework for computing parametric and nonparametric estimators of the equation of state, with an associated assessment of uncertainty. Using our approach, we evaluate the strength of statistical evidence for various competing models of dark energy. Consistent with current studies, we find that with the available Type Ia SNe data, it is not possible to distinguish statistically among popular dark-energy models, and that, in particular, there is no support in the data for rejecting a cosmological constant. With much more supernova data likely to be available in coming years (e.g., from the DOE/NASA Joint Dark Energy Mission), we address the more interesting question of whether future data sets will have sufficient resolution to distinguish among competing theories.

Christopher Genovese; Peter Freeman; Larry Wasserman; Robert Nichol; Christopher Miller

2008-05-27T23:59:59.000Z

71

Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario  

E-Print Network [OSTI]

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.

D. M. Townsley; A. C. Calder; S. M. Asida; I. R. Seitenzahl; F. Peng; N. Vladimirova; D. Q. Lamb; J. W. Truran

2007-06-07T23:59:59.000Z

72

Timescale stretch parameterization of Type Ia supernova B-band light curves  

SciTech Connect (OSTI)

R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF {approx} 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects.

Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

2001-04-01T23:59:59.000Z

73

Radio and X-Ray Emission as Probes of Type IIP Supernovae and Red Supergiant Mass Loss  

E-Print Network [OSTI]

Type IIP (plateau) supernovae are thought to come from stars with initial mass about 8-25 solar masses that end their lives as red supergiants. The expected stellar end points can be found from evolutionary calculations and the corresponding mass loss properties at this point can be estimated from typical values for Galactic stars. The mass loss densities of observed supernovae can be estimated from observations of the thermal X-ray and radio synchrotron emission that result from the interaction of the supernova with the surrounding wind. Type IIP supernovae are expected to have energy-conserving interaction during typical times of observation. Because Type IIP supernovae have an extended period of high optical luminosity, Compton cooling can affect the radio emitting electrons, giving rise to a relatively flat radio light curve in the optically thin regime. Alternatively, a high efficiency of magnetic field production results in synchrotron cooling of the radio emitting electrons. Both the X-ray and radio lu...

Chevalier, R A; Nymark, T K; Chevalier, Roger A.; Fransson, Claes; Nymark, Tanja K.

2006-01-01T23:59:59.000Z

74

Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability  

SciTech Connect (OSTI)

Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2003-11-24T23:59:59.000Z

75

THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek  

SciTech Connect (OSTI)

We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova (SN Ic), SN 2005ek. Reaching a peak magnitude of M{sub R} = -17.3 and decaying by {approx}3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of {approx}0.3 M{sub Sun} that is dominated by oxygen ({approx}80%), while the pseudo-bolometric light curve is consistent with an explosion powered by {approx}0.03 M{sub Sun} of radioactive {sup 56}Ni. Although previous rapidly evolving events (e.g., SN 1885A, SN 1939B, SN 2002bj, SN 2010X) were hypothesized to be produced by the detonation of a helium shell on a white dwarf, oxygen-dominated ejecta are difficult to reconcile with this proposed mechanism. We find that the properties of SN 2005ek are consistent with either the edge-lit double detonation of a low-mass white dwarf or the iron-core collapse of a massive star, stripped by binary interaction. However, if we assume that the strong spectroscopic similarity of SN 2005ek to other SNe Ic is an indication of a similar progenitor channel, then a white-dwarf progenitor becomes very improbable. SN 2005ek may be one of the lowest mass stripped-envelope core-collapse explosions ever observed. We find that the rate of such rapidly declining Type I events is at least 1%-3% of the normal SN Ia rate.

Drout, M. R.; Soderberg, A. M.; Margutti, R.; Milisavljevic, D.; Sanders, N. E.; Chornock, R.; Foley, R. J.; Kirshner, R. P.; Chakraborti, S.; Challis, P.; Friedman, A.; Hicken, M.; Jensen, C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mazzali, P. A. [Astrophysics Research Institute, Liverpool John Moores University, CH41 1LD Liverpool (United Kingdom); Parrent, J. T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Filippenko, A. V.; Li, W.; Cenko, S. B.; Ganeshalingam, M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brown, P. J., E-mail: mdrout@cfa.harvard.edu [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); and others

2013-09-01T23:59:59.000Z

76

The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample  

Science Journals Connector (OSTI)

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 z z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, ?DE(z), at redshifts 1.0 z ? = 0.729 ± 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = –1.013+0.068 –0.073 (68% CL). Curvature is constrained to ?0.7% in the owCDM model and to ?2% in a model in which dark energy is allowed to vary with parameters w 0 and wa . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

N. Suzuki; D. Rubin; C. Lidman; G. Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; J. Botyanszki; M. Brodwin; N. Connolly; K. S. Dawson; A. Dey; M. Doi; M. Donahue; S. Deustua; P. Eisenhardt; E. Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; A. S. Fruchter; D. G. Gilbank; M. D. Gladders; G. Goldhaber; A. H. Gonzalez; A. Goobar; A. Gude; T. Hattori; H. Hoekstra; E. Hsiao; X. Huang; Y. Ihara; M. J. Jee; D. Johnston; N. Kashikawa; B. Koester; K. Konishi; M. Kowalski; E. V. Linder; L. Lubin; J. Melbourne; J. Meyers; T. Morokuma; F. Munshi; C. Mullis; T. Oda; N. Panagia; S. Perlmutter; M. Postman; T. Pritchard; J. Rhodes; P. Ripoche; P. Rosati; D. J. Schlegel; A. Spadafora; S. A. Stanford; V. Stanishev; D. Stern; M. Strovink; N. Takanashi; K. Tokita; M. Wagner; L. Wang; N. Yasuda; H. K. C. Yee; The Supernova Cosmology Project

2012-01-01T23:59:59.000Z

77

SN 2005at - A neglected type Ic supernova at 10 Mpc  

E-Print Network [OSTI]

We present a photometric and spectroscopic study of a reddened type Ic supernova (SN) 2005at. We report our results based on the available data of SN 2005at, including late-time observations from the Spitzer Space Telescope and the Hubble Space Telescope. In particular, late-time mid-infrared observations are something rare for type Ib/c SNe. In our study we find SN 2005at to be very similar photometrically and spectroscopically to another nearby type Ic SN 2007gr, underlining the prototypical nature of this well-followed type Ic event. The spectroscopy of both events shows similar narrow spectral line features. The radio observations of SN 2005at are consistent with fast evolution and low luminosity at radio wavelengths. The late-time Spitzer data suggest the presence of an unresolved light echo from interstellar dust and dust formation in the ejecta, both of which are unique observations for a type Ic SN. The late-time Hubble observations reveal a faint point source coincident with SN 2005at, which is very ...

Kankare, E; Ryder, S; Romero-Canizales, C; Mattila, S; Kotak, R; Laursen, P; Monard, L A G; Salvo, M; Vaisanen, P

2014-01-01T23:59:59.000Z

78

Analytical Expressions For Light-Curves Of Ordinary And Superluminous Supernovae Type Ia  

E-Print Network [OSTI]

Ordinary supernovae of type Ia (SNeIa) may be produced by the thermonuclear explosion of white dwarfs (WDs), which after their nascence in proto-planetary nebulae accrete fall-back matter and approach the Chandrasekhar mass limit. If the detonation continues into the fall-back layer and/or if the SNIa debris collide with it, they may produce a super Chandrasekhar SNIa. A few underlying physical assumptions of such model yield a very simple master formula that reproduces quite well the bolometric light-curves of both ordinary and supeluminous SNeIa. Other main properties of SNeIa, including the empirical 'brighter-slower' Philipps' relation that was used to standardize ordinary SNeIa as distance indicators and led to the discovery of the accelerating expansion of the universe are also reproduced.

Shlomo Dado; Arnon Dar

2014-02-06T23:59:59.000Z

79

Probing Shock Breakout with Serendipitous GALEX Detections of Two SNLS Type II-P Supernovae  

E-Print Network [OSTI]

We report the serendipitous detection by GALEX of fast (1 mag) UV emission from two Type II plateau (II-P) supernovae (SNe) at z=0.185 and 0.324 discovered by the Supernova Legacy Survey. Optical photometry and VLT spectroscopy 2 weeks after the GALEX detections link the onset of UV emission to the time of shock breakout. Using radiation hydrodynamics and non-LTE radiative transfer simulations, and starting from a standard red supergiant (RSG; Type II-P SN progenitor) star evolved self-consistently from the main sequence to iron core collapse, we model the shock breakout phase and the 55 hr that follow. The small scale height of our RSG atmosphere model suggests that the breakout signature is a thermal soft X-ray burst (lambda_peak ~ 90\\AA) with a duration of <~ 2000 s. Longer durations are possible but require either an extended and tenuous non-standard envelope, or an unusually dense RSG wind with \\dot{M} ~ 10^(-3) Msun yr^(-1). The GALEX observations miss the peak of the luminous (M_FUV ~ -20) UV burst but unambiguously capture the rise of the emission and a subsequent 2 day long plateau. The postbreakout, UV-bright plateau is a prediction of our model in which the shift of the peak of the spectral energy distribution (SED) from ~100 to ~1000\\AA and the ejecta expansion both counteract the decrease in bolometric luminosity from ~10^11 to ~10^9 L_sun over that period. Based on the observed detection efficiency of our study we make predictions for the breakout detection rate of the GALEX Time Domain Survey.

Suvi Gezari; Luc Dessart; Stephane Basa; D. Chris Martin; James D. Neill; S. E. Woosley; D. John Hillier; Gurvan Bazin; Karl Forster; Peter G. Friedman; Jeremy Le Du; Alain Mazure; Patrick Morrissey; Susan G. Neff; David Schiminovich; Ted K. Wyder

2008-07-31T23:59:59.000Z

80

CAN STELLAR MIXING EXPLAIN THE LACK OF TYPE Ib SUPERNOVAE IN LONG-DURATION GAMMA-RAY BURSTS?  

SciTech Connect (OSTI)

The discovery of supernovae associated with long-duration gamma-ray burst observations is primary evidence that the progenitors of these outbursts are massive stars. One of the principle mysteries in understanding these progenitors has been the fact that all of these gamma-ray-burst-associated supernovae are Type Ic supernovae with no evidence of helium in the stellar atmosphere. Many studies have focused on whether or not this helium is simply hidden from spectral analyses. In this Letter, we show results from recent stellar models using new convection algorithms based on our current understanding of stellar mixing. We demonstrate that enhanced convection may lead to severe depletion of stellar helium layers, suggesting that the helium is not observed simply because it is not in the star. We also present light curves and spectra of these compact helium-depleted stars compared to models with more conventional helium layers.

Frey, Lucille H. [HPC-3, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Young, Patrick A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85276 (United States)

2013-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar abundance of manganese: a case for the existence of near Chandrasekhar-mass Type Ia supernova progenitors  

E-Print Network [OSTI]

Context: Manganese is predominantly synthesised in Type Ia supernova (SN Ia) explosions. Owing to the entropy dependence of the Mn yield in explosive thermonuclear burning, SNe Ia involving near Chandrasekhar-mass white dwarfs (WDs) are predicted to produce Mn to Fe ratios significantly exceeding those of SN Ia explosions involving sub-Chandrasekhar mass primary WDs. Of all current supernova explosion models, only SN Ia models involving near-Chandrasekhar mass WDs produce [Mn/Fe] > 0.0. Aims: Using the specific yields for competing SN Ia scenarios, we aim to constrain the relative fractions of exploding near-Chandrasekhar mass to sub-Chandrasekhar mass primary WDs in the Galaxy. Methods: We extract the Mn yields from three-dimensional thermonuclear supernova simulations referring to different initial setups and progenitor channels. We then compute the chemical evolution of Mn in the Solar neighborhood, assuming SNe Ia are made up of different relative fractions of the considered explosion models. Results: We ...

Seitenzahl, Ivo R; Roepke, Friedrich K; Ruiter, Ashley J

2013-01-01T23:59:59.000Z

82

On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae  

Science Journals Connector (OSTI)

The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical ... fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames devel...

F.K. Röpke; W. Hillebrandt

2005-01-01T23:59:59.000Z

83

A POSSIBLE EVOLUTIONARY SCENARIO OF HIGHLY MAGNETIZED SUPER-CHANDRASEKHAR WHITE DWARFS: PROGENITORS OF PECULIAR TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses {approx}2.1-2.8 M{sub Sun }, M{sub Sun} being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.

Das, Upasana; Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Rao, A. R., E-mail: upasana@physics.iisc.ernet.in, E-mail: bm@physics.iisc.ernet.in, E-mail: arrao@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India)

2013-04-10T23:59:59.000Z

84

Off-center ignition in type Ia supernova: I. Initial evolution and implications for delayed detonation  

E-Print Network [OSTI]

The explosion of a carbon-oxygen white dwarf as a Type Ia supernova is known to be sensitive to the manner in which the burning is ignited. Studies of the pre-supernova evolution suggest asymmetric, off-center ignition, and here we explore its consequences in two- and three-dimensional simulations. Compared with centrally ignited models, one-sided ignitions initially burn less and release less energy. For the distributions of ignition points studied, ignition within two hemispheres typically leads to the unbinding of the white dwarf, while ignition within a small fraction of one hemisphere does not. We also examine the spreading of the blast over the surface of the white dwarf that occurs as the first plumes of burning erupt from the star. In particular, our studies test whether the collision of strong compressional waves can trigger a detonation on the far side of the star as has been suggested by Plewa et al. (2004). The maximum temperature reached in these collisions is sensitive to how much burning and expansion has already gone on, and to the dimensionality of the calculation. Though detonations are sometimes observed in 2D models, none ever happens in the corresponding 3D calculations. Collisions between the expansion fronts of multiple bubbles also seem, in the usual case, unable to ignite a detonation. "Gravitationally confined detonation" is therefore not a robust mechanism for the explosion. Detonation may still be possible in these models however, either following a pulsation or by spontaneous detonation if the turbulent energy is high enough.

F. K. Roepke; S. E. Woosley; W. Hillebrandt

2006-09-04T23:59:59.000Z

85

PROPERTIES OF NEWLY FORMED DUST GRAINS IN THE LUMINOUS TYPE IIn SUPERNOVA 2010jl  

SciTech Connect (OSTI)

Supernovae (SNe) have been proposed to be the main production sites of dust grains in the universe. However, our knowledge of their importance to dust production is limited by observationally poor constraints on the nature and amount of dust particles produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova 2010jl around one and a half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ?1350-1450 K at this epoch. The mass of the dust grains is derived to be ?(7.5-8.5) × 10{sup –4} M{sub ?}. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate of the typical size of the newly formed dust grains (?< 0.1 ?m, and most likely ?< 0.01 ?m). We believe the dust grains were formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ?10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density must be ?> 3 × 10{sup 7} cm{sup –3}, corresponding to a mass loss rate of ?> 0.02 M{sub ?} yr{sup –1} (for a mass loss wind velocity of ?100 km s{sup –1}). This strongly supports a scenario in which SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous-Blue-Variable-like eruptions within the last century before the explosion.

Maeda, K.; Nozawa, T.; Folatelli, G.; Moriya, T. J.; Nomoto, K.; Bersten, M.; Quimby, R. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sahu, D. K.; Anupama, G. C. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Minowa, Y.; Pyo, T.-S. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Motohara, K.; Kitagawa, Y. [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ueno, I.; Kawabata, K. S.; Yamanaka, M. [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kozasa, T. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Iye, M., E-mail: keiichi.maeda@ipmu.jp [National Astronomical Observatory, Mitaka, Tokyo (Japan)

2013-10-10T23:59:59.000Z

86

Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect (OSTI)

We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift (z=0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40percent of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z~;;=0.5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes.

Nugent, Peter E; Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam, A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2008-02-28T23:59:59.000Z

87

Utilizing Type Ia Supernovae in a Large, Fast, Imaging Survey to Constrain Dark Energy  

E-Print Network [OSTI]

We study the utility of a large sample of type Ia supernovae that might be observed in an imaging survey that rapidly scans a large fraction of the sky for constraining dark energy. We consider information from the traditional luminosity distance test as well as the spread in SNeIa fluxes at fixed redshift induced by gravitational lensing. We include a treatment of photometric redshift uncertainties in our analysis. Our primary result is that the information contained in the mean distance moduli of SNeIa and the dispersion among SNeIa distance moduli complement each other, breaking a degeneracy between the present dark energy equation of state and its time variation without the need for a high-redshift supernova sample. To address photometric redshift uncertainties, we present dark energy constraints as a function of the size of an external set of spectroscopically-observed SNeIa that may be used for redshift calibration, nspec. We find that an imaging survey can constrain the dark energy equation of state at the epoch where it is best constrained with a 1-sigma error of sigma(wpiv)~0.03-0.09$, depending upon various assumptions. In addition, the marginal improvement in the error sigma(wpiv) from an increase in the spectroscopic calibration sample drops once nspec ~ 10^3. This result is important because it is of the order of the size of calibration samples likely to be compiled in the coming decade and because, for samples of this size, the spectroscopic and imaging surveys individually place comparable constraints on the dark energy equation of state. In all cases, it is best to calibrate photometric redshifts with a set of spectroscopically-observed SNeIa with relatively more objects at high redshift than the parent sample of imaging SNeIa.

Andrew R. Zentner; Suman Bhattacharya

2008-12-01T23:59:59.000Z

88

THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914  

SciTech Connect (OSTI)

We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify this object as a SN Ia by comparing its light curve and spectrum with those of a large sample of Type Ia and core-collapse SNe. Its apparent magnitude is consistent with that expected from the {Lambda}CDM concordance cosmology. We discuss the use of spectral evidence for classification of z > 1.5 SNe Ia using HST grism simulations, finding that spectral data alone can frequently rule out SNe II, but distinguishing between SNe Ia and SNe Ib/c can require prohibitively long exposures. In such cases, a quantitative analysis of the light curve may be necessary for classification. Our photometric and spectroscopic classification methods can aid the determination of SN rates and cosmological parameters from the full high-redshift CANDELS SN sample.

Jones, David O.; Rodney, Steven A.; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Dahlen, Tomas; Casertano, Stefano; Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); McCully, Curtis; Keeton, Charles R.; Patel, Brandon [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Frederiksen, Teddy F.; Hjorth, Jens [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Strolger, Louis-Gregory [Department of Physics, Western Kentucky University, Bowling Green, KY 42101 (United States); Wiklind, Tommy G. [Joint ALMA Observatory, ESO, Santiago (Chile); Challis, Peter [Harvard/Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Graur, Or [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hayden, Brian; Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); and others

2013-05-10T23:59:59.000Z

89

Does merger-induced core-collapse produce gamma-ray bursts in type Ib & Ic supernovae?  

E-Print Network [OSTI]

Gamma-ray bursts, discovered over three decades ago, can appear to be a hundred times as luminous as the brightest supernovae. However, there has been evidence for some time now of an association of gamma-ray bursts with supernovae of type Ib and Ic. Here we interpret the overabundance of millisecond pulsars in globular clusters and the details of supernova 1987A to reveal the energy source, which powers at least some long-duration gamma-ray bursts, as core-collapse following the merger of two white dwarfs, either as stars or stellar cores. In order for the beams/jets associated with gamma-ray bursts to form in mergers within massive common envelopes (as with SN1987A), much of the intervening stellar material in the polar directions must be cleared out by the time of core-collapse, or the beams/jets themselves must clear their own path. The core-collapse produces supernovae of type Ib, Ic, or II (as with SN1987A, a SNa IIp), leaving a weakly magnetized neutron star remnant with a spin period near 2 milliseconds. There is no compelling reason to invoke any other model for gamma-ray bursts.

John Middleditch

2003-11-12T23:59:59.000Z

90

THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < z < 1.46  

SciTech Connect (OSTI)

Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson and Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) {approx}< 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type-hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia.

Meyers, J.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G. [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Aldering, G.; Faccioli, L.; Hsiao, E. [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Barrientos, L. F. [Departmento de Astronomia, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brodwin, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Deustua, S.; Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Doi, M.; Ihara, Y. [Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Gilbank, D. G. [Department of Physics and Astronomy, University Of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohaku Place, Hilo, HI 96720 (United States); Kashikawa, N., E-mail: jmeyers314@berkeley.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Collaboration: Supernova Cosmology Project; and others

2012-05-01T23:59:59.000Z

91

Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report  

SciTech Connect (OSTI)

Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the expansion of the Universe is accelerating, driven by the effects of dark energy. Understanding the nature of this mysterious, yet dominant, component of the Universe is at the forefront of research in cosmology and fundamental physics. SNe Ia will continue to play a leading role in this enterprise, providing precise cosmological distances that improve constraints on the nature of dark energy. However, for this effort to succeed, we need to more thoroughly understand relatively nearby SNe Ia, because our conclusions come only from comparisons between them and distant (high-redshift) SNe Ia. Thus, detailed studies of relatively nearby SNe Ia are the focus of this research program. Many interesting results were obtained during the course of this project; these were published in 32 refereed research papers that acknowledged the grant. A major accomplishment was the publication of supernova (SN) rates derived from about a decade of operation of the Lick Observatory Supernova Search (LOSS) with the 0.76-meter Katzman Automatic Imaging Telescope (KAIT). We have determined the most accurate rates for SNe of different types in large, nearby galaxies in the present-day Universe, and these can be compared with SN rates far away (and hence long ago in the past) to set constraints on the types of stars that explode. Another major accomplishment was the publication of the light curves (brightness vs. time) of 165 SNe Ia, along with optical spectroscopy of many of these SNe as well as other SNe Ia, providing an extensive, homogeneous database for detailed studies. We have conducted intensive investigations of a number of individual SNe Ia, including quite unusual examples that allow us to probe the entire range of SN explosions and provide unique insights into these objects and the stars before they explode. My team's studies have also led to the identification of subsamples of SNe Ia that can be used to provide the most reliable cosmological distances, and we developed ways to deal with the dust that makes SNe Ia appear fainter than they really are. Using the KAIT/LOSS sample, we produced an excellent Hubble diagram (galaxy recession speed vs. distance), accurately showing the expansion of the Universe. Even smaller scatter was achieved when spectroscopic characteristics were taken into account. Another high-quality Hubble diagram was constructed with SNe Ia from the Sloan Digital Sky Survey (SDSS). These Hubble diagrams provide useful new constraints on the nature of the dark energy that is accelerating the expansion of the Universe. As an added bonus of our research, we also studied core-collapse SNe, which differ fundamentally from SNe Ia.

Filippenko, Alexei Vladimir [Univ. California, Berkeley

2014-05-09T23:59:59.000Z

92

THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE  

SciTech Connect (OSTI)

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, {rho}{sub DE}(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat {Lambda}CDM universe, we find {Omega}{sub {Lambda}} = 0.729 {+-} 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013{sup +0.068}{sub -0.073} (68% CL). Curvature is constrained to {approx}0.7% in the owCDM model and to {approx}2% in a model in which dark energy is allowed to vary with parameters w{sub 0} and w{sub a} . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

Suzuki, N.; Rubin, D.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K. [E.O. Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lidman, C. [Australian Astronomical Observatory, Epping, NSW 1710 (Australia); Amanullah, R.; Botyanszki, J. [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Barrientos, L. F. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brodwin, M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Connolly, N. [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dey, A. [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); Doi, M. [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Deustua, S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ellingson, E. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Fadeyev, V., E-mail: nsuzuki@lbl.gov, E-mail: rubind@berkeley.edu, E-mail: clidman@aao.gov.au [Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA 94064 (United States); Collaboration: Supernova Cosmology Project; and others

2012-02-10T23:59:59.000Z

93

Testing the Distance–Duality Relation with Galaxy Clusters and Type Ia Supernovae  

Science Journals Connector (OSTI)

In this Letter, we propose a new and model-independent cosmological test for the distance-duality (DD) relation, ? = DL (z)(1 + z)–2/DA (z) = 1, where DL and DA are, respectively, the luminosity and angular diameter distances. For DL we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas DA distances are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining Sunyaev-Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully chosen to coincide with the ones of the associated galaxy cluster sample (?z DA (z) ? DL (z), we have tested the DD relation by assuming that ? is a function of the redshift parameterized by two different expressions: ?(z) = 1 + ?0 z and ?(z) = 1 + ?0 z/(1 + z), where ?0 is a constant parameter quantifying a possible departure from the strict validity of the reciprocity relation (?0 = 0). In the best scenario (linear parameterization), we obtain ?0 = –0.28+0.44 –0.44 (2?, statistical + systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is ?0 = –0.42+0.34 –0.34 (3?, statistical + systematic errors), which is clearly incompatible with the duality-distance relation.

R. F. L. Holanda; J. A. S. Lima; M. B. Ribeiro

2010-01-01T23:59:59.000Z

94

Optical Photometry of Type II-P Supernova 2004dj in NGC 2403  

E-Print Network [OSTI]

We present photometric data of the type II-P supernova (SN) 2004dj in NGC 2403. The multicolor light curves cover the SN from $\\sim$ 60 to 200 days after explosion, and are measured with a set of intermediate-band filters that have the advantage of tracing the strength variations of some spectral features. The light curves show a flat evolution in the middle of the plateau phase, then decline exponentially at the late times, with a rate of 0.10$\\pm$0.03 mag (10 days)$^{-1}$ in most of the filters. In the nebular phase, the spectral energy distribution (SED) of SN 2004dj shows a steady increase in the flux near 6600 \\AA and 8500 \\AA, which may correspond to the emission lines of H$\\alpha$ and Ca II near-IR triplet, respectively. The photometric behavior suggests that SN 2004dj is a normal SN II-P. Compared with the light curves of another typical SN II-P 1999em, we estimate the explosion date to be June 10$\\pm$21 UT, 2004 (JD 2453167$\\pm$21) for SN 2004dj. We also estimate the ejected nickel mass during the ex...

Zhang, T; Li, W; Zhou, X; Ma, J; Jiang, Z; Chen, J; Zhang, Tianmeng; Wang, Xiaofeng; Li, Weidong; Zhou, Xu; Ma, Jun; Jiang, Zhaoji; Chen, Jiansheng

2005-01-01T23:59:59.000Z

95

A BINARY PROGENITOR FOR THE TYPE IIb SUPERNOVA 2011dh IN M51  

SciTech Connect (OSTI)

We perform binary stellar evolutionary calculations following the simultaneous evolution of both stars in the system to study a potential progenitor system for the Type IIb supernova 2011dh. Pre-explosion photometry as well as light-curve modeling has provided constraints on the physical properties of the progenitor system. Here, we present a close binary system (CBS) that is compatible with such constraints. The system is formed by stars of solar composition with 16 M {sub Sun} + 10 M {sub Sun} on a circular orbit with an initial period of 125 days. The primary star ends its evolution as a yellow supergiant with a mass of Almost-Equal-To 4 M {sub Sun }, a final hydrogen content of Almost-Equal-To (3-5) Multiplication-Sign 10{sup -3} M {sub Sun }, and with an effective temperature and luminosity in agreement with the Hubble Space Telescope (HST) pre-explosion observations of SN 2011dh. These results are nearly insensitive to the adopted accretion efficiency factor {beta}. At the time of explosion, the companion star has an effective temperature of 22,000-40,000 K, depending on the value of {beta}, and lies near the zero-age main sequence. Considering the uncertainties in the HST pre-SN photometry, the secondary star is only marginally detectable in the bluest observed band. CBSs, as opposed to single stars, provide a natural frame to explain the properties of SN 2011dh.

Benvenuto, Omar G. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata (Argentina)] [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Bersten, Melina C.; Nomoto, Ken'ichi, E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: melina.bersten@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)] [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

2013-01-10T23:59:59.000Z

96

A Test of Tully-Fisher Distance Estimates Using Cepheids and Type Ia Supernovae  

E-Print Network [OSTI]

We update and extend the results of Shanks (1997, MNRAS, 290, L77) by making a direct test of Tully-Fisher distance estimates to thirteen spiral galaxies with HST Cepheid distances and to ten spiral galaxies with Type Ia supernova (SNIa) distances. The results show that the Tully-Fisher distance moduli are too short with respect to the Cepheid distances by 0.46+-0.11mag and too short with respect to the SNIa distances by 0.49+-0.18mag. Combining the HST Cepheid and the best SNIa data suggests that, overall, previous Tully-Fisher distances at v~1000 kms-1 were too short by 0.43+-0.09mag, a result which is significant at the 4.6 sigma level. These data therefore indicate that previous Tully-Fisher distances should be revised upwards by 22+-5% implying, for example, a Virgo distance of 19.0+-1.8Mpc. The value of Ho from Tully-Fisher estimates is correspondingly revised downwards from Ho=84+-10kms-1Mpc-1 to Ho=69+-8kms-1Mpc-1. There is evidence that the Tully-Fisher relation at large distances is affected by Malmquist bias. In this case, we argue that Ho<50kms-1Mpc-1 cannot be ruled out by Tully-Fisher considerations.

T. Shanks

1999-01-24T23:59:59.000Z

97

Unbiased Estimate of Dark Energy Density from Type Ia Supernova Data  

Science Journals Connector (OSTI)

Type Ia supernovae (SNe Ia) are currently the best probes of the dark energy in the universe. To constrain the nature of dark energy, we assume a flat universe and that the weak energy condition is satisfied, and we allow the density of dark energy, ?X(z), to be an arbitrary function of redshift. Using simulated data from a space-based SN pencil-beam survey, we find that by optimizing the number of parameters used to parameterize the dimensionless dark energy density, f(z) = ?X(z)/?X(z = 0), we can obtain an unbiased estimate of both f(z) and the fractional matter density of the universe, ?m. A plausible SN pencil-beam survey (with a square degree field of view and for an observational duration of 1 yr) can yield about 2000 SNe Ia with 0 ? z ? 2. Such a survey in space would yield SN peak luminosities with a combined intrinsic and observational dispersion of ?(mint) = 0.16 mag. We find that for such an idealized survey, ?m can be measured to 10% accuracy, and the dark energy density can be estimated to ~20% to z ~ 1.5, and ~20%-40% to z ~ 2, depending on the time dependence of the true dark energy density. Dark energy densities that vary more slowly can be more accurately measured. For the anticipated Supernova/Acceleration Probe (SNAP) mission, ?m can be measured to 14% accuracy, and the dark energy density can be estimated to ~20% to z ~ 1.2. Our results suggest that SNAP may gain much sensitivity to the time dependence of the dark energy density and ?m by devoting more observational time to the central pencil-beam fields to obtain more SNe Ia at z > 1.2. We use both a maximum likelihood analysis and a Monte Carlo analysis (when appropriate) to determine the errors of estimated parameters. We find that the Monte Carlo analysis gives a more accurate estimate of the dark energy density than the maximum likelihood analysis.

Yun Wang; Geoffrey Lovelace

2001-01-01T23:59:59.000Z

98

Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae  

E-Print Network [OSTI]

1.3.2 Thermonuclear Supernovae . . . . . . . . 1.4 Why WriteIa are the result of thermonuclear explosions of C/O whiteIa are the result of thermonuclear explosions of C/O white

Silverman, Jeffrey Michael

2011-01-01T23:59:59.000Z

99

Three-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae  

E-Print Network [OSTI]

We report the results of a series of three-dimensional (3-D) simulations of the deflagration phase of the gravitationally confined detonation mechanism for Type Ia supernovae. In this mechanism, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point opposite breakout on the stellar surface. We find that detonation conditions are robustly reached in our 3-D simulations for a range of initial conditions and resolutions. Detonation conditions are achieved as the result of an inwardly-directed jet that is produced by the compression of unburnt surface material when the surface flow collides with itself. A high-velocity outwardly-directed jet is also produced. The initial conditions explored in this paper lead to conditions at detonation that can be expected to produce large amounts of $^{56}$Ni and small amounts of intermediate mass elements. These particular simulations are therefore relevant only to high luminosity Type Ia supernovae. Recent observations of Type Ia supernovae imply a compositional structure that is qualitatively consistent with that expected from these simulations.

G C Jordan IV; R T Fisher; D M Townsley; A C Calder; C Graziani; S Asida; D Q Lamb; J W Truran

2007-03-21T23:59:59.000Z

100

Silicon carbide grains of type C provide evidence for the production of the unstable isotope $^{32}$Si in supernovae  

E-Print Network [OSTI]

Carbon-rich grains are observed to condense in the ejecta of recent core-collapse supernovae, within a year after the explosion. Silicon carbide grains of type X are C-rich grains with isotpic signatures of explosive supernova nucleosynthesis have been found in primitive meteorites. Much rarer silicon carbide grains of type C are a special sub-group of SiC grains from supernovae. They show peculiar abundance signatures for Si and S, isotopically heavy Si and isotopically light S, which appear to to be in disagreement with model predictions. We propose that C grains are formed mostly from C-rich stellar material exposed to lower SN shock temperatures than the more common type X grains. In this scenario, extreme $^{32}$S enrichments observed in C grains may be explained by the presence of short-lived $^{32}$Si ($\\tau$$_{1/2}$ = 153 years) in the ejecta, produced by neutron capture processes starting from the stable Si isotopes. No mixing from deeper Si-rich material and/or fractionation of Si from S due to mole...

Pignatari, M; Bertolli, M G; Trappitsch, R; Hoppe, P; Rauscher, T; Fryer, C; Herwig, F; Hirschi, R; Timmes, F X; Thielemann, F -K

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Supernovae of the Same Brightness, Cut From Vastly Different...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that the progenitor system of a Type 1a supernova, called PTF 11kx, contains a red giant star. They also show that the system previously underwent at least one much...

102

Supernovae of the Same Brightness, Cut From Vastly Different Cosmic Cloth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supernovae of the Supernovae of the Same Brightness, Cut From Vastly Different Cosmic Cloth Supernovae of the Same Brightness, Cut From Vastly Different Cosmic Cloth Berkeley Lab researchers make historic observation of rare Type 1a Supernova August 23, 2012 | Tags: Astrophysics Linda Vu, lvu@lbl.gov, +1 510 495 2402 ptf11kx.png The supernova PTF 11kx can be seen as the blue dot on the galaxy. The image was taken when the supernova was near maximum brightness by the Faulkes Telescope North. The system is located approximately 600 million light years away in the constellation Lynx. Image Credit: BJ Fulton (Las Cumbres Observatory Global Telescope Network) Exploding stars called Type 1a supernova are ideal for measuring cosmic distance because they are bright enough to spot across the Universe and

103

Study of the Detonation Phase in the Gravitationally Confined Detonation Model of Type Ia Supernovae  

Science Journals Connector (OSTI)

We study the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia) through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single-point, off-center flame ignition in carbon-oxygen white dwarfs (WDs). The simulations are unique in terms of the degree to which nonidealized physics is used to treat the reactive flow, including weak reaction rates and a time-dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high-density core of the WD; and an efficient method for nucleosynthesis postprocessing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here a self-regulating process comprised of neutronization and stellar expansion results in final 56Ni masses of ~1.1 M ?. But, more energetic models result in larger total NSE and stable Fe-peak yields. The total yield of intermediate mass elements is ~0.1 M ? and the explosion energies are all around 1.5 ? 1051 erg. The explosion models are briefly compared to the inferred properties of recent SN Ia observations. The potential for surface detonation models to produce lower-luminosity (lower 56Ni mass) SNe is discussed.

Casey A. Meakin; Ivo Seitenzahl; Dean Townsley; George C. Jordan IV; James Truran; Don Lamb

2009-01-01T23:59:59.000Z

104

PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. I. DETONATION IGNITION  

SciTech Connect (OSTI)

Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). Although several scenarios have been proposed and explored by means of one, two, and three-dimensional simulations, the key point still is the understanding of the conditions under which a stable detonation can form in a destabilized WD. One of the possibilities that have been invoked is that an inefficient deflagration leads to the pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock around a carbon-oxygen rich core. The accretion shock confines the core and transforms kinetic energy from the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work we explore the robustness of the detonation ignition for different PRD models characterized by the amount of mass burned during the deflagration phase, M {sub defl}. The evolution of the WD up to the formation of the accretion shock has been followed with a three-dimensional hydrodynamical code with nuclear reactions turned off. We found that detonation conditions are achieved for a wide range of M {sub defl}. However, if the nuclear energy released during the deflagration phase is close to the WD binding energy ({approx}0.46 x 10{sup 51} erg {yields} M {sub defl} {approx} 0.30 M {sub sun}) the accretion shock cannot heat and confine the core efficiently and detonation conditions are not robustly achieved.

Bravo, Eduardo; GarcIa-Senz, Domingo [Department de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)], E-mail: eduardo.bravo@upc.edu, E-mail: domingo.garcia@upc.edu

2009-04-20T23:59:59.000Z

105

Initiation of the Detonation in the Gravitationally Confined Detonation Model of Type Ia Supernovae  

Science Journals Connector (OSTI)

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Ivo R. Seitenzahl; Casey A. Meakin; Don Q. Lamb; James W. Truran

2009-01-01T23:59:59.000Z

106

THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE  

SciTech Connect (OSTI)

We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

2012-11-01T23:59:59.000Z

107

A Three-Dimensional Picture of the Delayed-Detonation Model of Type Ia Supernovae  

E-Print Network [OSTI]

Deflagration models poorly explain the observed diversity of SNIa. Current multidimensional simulations of SNIa predict a significant amount of, so far unobserved, carbon and oxygen moving at low velocities. It has been proposed that these drawbacks can be resolved if there is a sudden jump to a detonation (delayed detonation), but this kind of models has been explored mainly in one dimension. Here we present new three-dimensional delayed detonation models in which the deflagraton-to-detonation transition (DDT) takes place in conditions like those favored by one-dimensional models. We have used a SPH code adapted to SNIa with algorithms devised to handle subsonic as well as supersonic combustion fronts. The starting point was a C-O white dwarf of 1.38 solar masses. When the average density on the flame surface reached 2-3x10^7 g/cm^3 a detonation was launched. The detonation wave processed more than 0.3 solar masses of carbon and oxygen, emptying the central regions of the ejecta of unburned fuel and raising its kinetic energy close to the fiducial 10^51 ergs expected from a healthy Type Ia supernova. The final amount of 56Ni synthesized also was in the correct range. However, the mass of carbon and oxygen ejected is still too high. The three-dimensional delayed detonation models explored here show an improvement over pure deflagration models, but they still fail to coincide with basic observational constraints. However, there are many aspects of the model that are still poorly known (geometry of flame ignition, mechanism of DDT, properties of detonation waves traversing a mixture of fuel and ashes). Therefore, it will be worth pursuing its exploration to see if a good SNIa model based on the three-dimensional delayed detonation scenario can be obtained.

Eduardo Bravo; Domingo Garcia-Senz

2007-12-04T23:59:59.000Z

108

Initiation of the detonation in the gravitationally confined detonation model of type Ia supernovae.  

SciTech Connect (OSTI)

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Seitenzahl, I. R.; Meakin, C. A.; Lamb, D. Q.; Truran, J. W. (Physics); (Univ. of Chicago); (Max-Planck-Inst. for Astrophysics); (Univ. of Arizona)

2009-07-20T23:59:59.000Z

109

Study of the detonation phase in the gravitationally confined detonation model of type Ia supernovae.  

SciTech Connect (OSTI)

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zeldovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Meakin, C. A.; Seitenzahl, I.; Jordan, G. C.; Truran,, J.; Lamb, D.; Physics; Univ. of Chicago; Univ. of Arizona

2009-07-20T23:59:59.000Z

110

NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS  

SciTech Connect (OSTI)

For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off-set, above the bulk of {sup 56}Ni distribution, while species produced by the detonation are distributed more spherically.

Maeda, K. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Roepke, F.K.; Fink, M.; Hillebrandt, W.; Travaglio, C. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany); Thielemann, F.-K., E-mail: keiichi.maeda@ipmu.j [Department Physik, Universitaet Basel, CH-4056 Basel (Switzerland)

2010-03-20T23:59:59.000Z

111

INITIATION OF THE DETONATION IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Seitenzahl, Ivo R. [Department of Physics, University of Chicago, Chicago, IL 60637 (United States); Meakin, Casey A.; Truran, James W. [Joint Institute for Nuclear Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Lamb, Don Q. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States)

2009-07-20T23:59:59.000Z

112

RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA  

SciTech Connect (OSTI)

We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Chevalier, Roger A.; Irwin, Christopher M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya Street 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States); Chakraborti, Sayan [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India); Immler, Stefan, E-mail: Poonam.Chandra@rmc.ca [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-08-20T23:59:59.000Z

113

IS WX CEN A POSSIBLE TYPE Ia SUPERNOVA PROGENITOR WITH WIND-DRIVEN MASS TRANSFER?  

SciTech Connect (OSTI)

WX Cen is one of a few compact binary supersoft X-ray sources (CBSS) in the Galaxy that is a possible Type Ia supernova (SN Ia) progenitor. The supersoft X-ray radiation is explained as hydrostatic nuclear burning on the surface of the white dwarf component that is accreting hydrogen from a stellar companion at a high rate. If the mass donor in this system has a low mass, as has been suggested in the literature, one would expect a high wind-driven mass transfer rate. In that case, the orbital period of the system should increase. To test this theoretical prediction, we have monitored the system photometrically since 2010. By using four newly determined eclipse timings together with those collected from the literature, we discovered that the orbital period is decreasing at a rate of dP/dt = -5.15 Multiplication-Sign 10{sup -7} days yr{sup -1}. The long-term decrease in the orbital period is contrary to the prediction that the system is powered by wind-driven accretion. It therefore seems plausible that the mass donor could be more massive than the white dwarf, and that the mass transfer is driven by the thermal instability of the donor star. This finding suggests that WX Cen is a key object to check the physical mechanisms of mass accretion in CBSS. The corresponding timescale of the period change is about P/P-dot {approx} 0.81 x 10{sup 6} yr, indicating that WX Cen may evolve into an SNe Ia within one million years in the Galaxy.

Qian, S.-B.; Shi, G.; Zhu, L.-Y.; Liu, L.; Zhao, E.-G.; Li, L.-J. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernandez Lajus, E.; Di Sisto, R. P., E-mail: qsb@ynao.ac.cn [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina)

2013-08-01T23:59:59.000Z

114

SN 2003du: Signatures of the Circumstellar Environment in a Normal Type Ia Supernova?  

E-Print Network [OSTI]

We present observations of the Type Ia supernova 2003du and report the detectionof an unusual, high-velocity component in the Ca II infrared triplet, similar tofeatures previously observed in SN 2000cx and SN 2001el. This feature exhibits a large expansion velocity (~18,000 km/s) which is nearly constant between -7 and +2 days relative to maximum light, and disappears shortly thereafter. Otherthan this feature, the spectral evolution and light curve resemble those of a normal SN Ia. We find that the Ca II feature can plausibly be caused by a dense shell formed when circumstellar material of solar abundance is overrun by the rapidly expanding outermost layers of the SN ejecta. Model calculations show that the optical and infrared spectra are remarkably unaffected by the circumstellar interaction. In particular, no hydrogen lines are detectable in either absorption or emission. The only qualitatively different features are the strong, high-velocity feature in the Ca II IR-triplet, and a somewhat weaker O I feature near 7,300 AA. The morphology and time evolution of these features provide an estimate for the amount of accumulated matter and an indication of the mixing in the dense shell. We apply these diagnostic tools to SN 2003du and infer that about 2 x 10^{-2} M_sun of solar abundance material may have accumulated in a circumstellar shell prior to the observations. Furthermore, the early light curve data imply that the circumstellar material was originally very close to the progenitor system, perhaps from an accretion disk, Roche lobe or common envelope.

C. L. Gerardy; P. Hoeflich; R. A. Fesen; G. H. Marion; K. Nomoto; R. Quimby; B. E. Schaefer; L. Wang; J. C. Wheeler

2003-09-23T23:59:59.000Z

115

On the Thermonuclear Runaway in Type Ia Supernovae: How to Run Away?  

Science Journals Connector (OSTI)

Type Ia supernovae (SNe Ia) are thought to be thermonuclear explosions of massive white dwarfs (WDs). We present the first study of multidimensional effects during the final hours prior to the thermonuclear runaway that leads to the explosion. The calculations utilize an implicit, two-dimensional hydrodynamic code. Mixing and the ignition process are studied in detail. We find that the initial chemical structure of the WD is changed, but the material is not fully homogenized. In particular, the exploding WD sustains a central region with a low C/O ratio. This implies that the explosive nuclear burning will begin in a partially carbon-depleted environment. The thermonuclear runaway happens in a well-defined region close to the center. It is induced by compressional heat when matter is brought inward by convective flows. We find no evidence for multiple spot or strong off-center ignition. Convective velocities in the WD are on the order of 100 km s-1, which is well above the effective burning speeds in SNe Ia previously expected right after the runaway. In our calculations, the ignition occurs near the center. Then, for ? 0.5-1 s, the speed of the burning front will neither be determined by the laminar speed nor the Rayleigh-Taylor instabilities but by convective flows produced prior to the runaway. The consequences are discussed for our understanding of the detailed physics of the flame propagation, the deflagration to detonation transition, and the nucleosynthesis in the central layers. Our results strongly suggest the preconditioning of the progenitor as a key factor for our understanding of the diversity in SNe Ia.

P. Höflich; J. Stein

2002-01-01T23:59:59.000Z

116

CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

We present multi-band optical photometry of 94 spectroscopically confirmed Type Ia supernovae (SNe Ia) in the redshift range 0.0055-0.073, obtained between 2006 and 2011. There are a total of 5522 light-curve points. We show that our natural-system SN photometry has a precision of {approx}< 0.03 mag in BVr'i', {approx}< 0.06 mag in u', and {approx}< 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard-system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of {approx}0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al. This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SNe Ia is now sufficiently large to remove most of the statistical sampling error from the dark-energy error budget. But pursuing the dark-energy systematic errors by determining highly accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SNe Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.

Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S.; Groner, Ted; Hartman, Joel [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Rest, Armin [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Cramer, Claire E. [NIST (National Institute of Standards and Technology), Gaithersburg, MD 20899 (United States); Wood-Vasey, W. Michael [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Currie, Thayne [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); De Kleer, Kathy [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Esquerdo, Gil; Everett, Mark, E-mail: mhicken@cfa.harvard.edu [Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719 (United States); and others

2012-06-01T23:59:59.000Z

117

On the Thermonuclear Runaway in Type Ia Supernovae: How to run away?  

E-Print Network [OSTI]

Type Ia Supernovae are thought to be thermonuclear explosions of massive white dwarfs (WD). We present the first study of multi-dimensional effects during the final hours prior to the thermonuclear runaway which leads to the explosion. The calculations utilize an implicit, 2-D hydro code.Mixing and the ignition process are studied in detail. We find that the initial chemical structure of the WD is changed but the material is not fully homogenized. The exploding WD sustains a central region with a low C/O ratio. This implies that the explosive nuclear burning will begin in a partially C-depleted environment. The thermonuclear runaway happens in a well defined region close to the center. It is induced by compressional heat when matter is brought inwards by convective flows. We find no evidence for multiple spot or strong off-center ignition. Convective velocities are of the order of 100 km/sec which is well above the effective burning speeds in SNe Ia previously expected right after the runaway. For about 0.5 to 1 sec, the speed of the burning front will neither be determined by the laminar speed nor the Rayleigh-Taylor instabilities but by convective flows produced prior to the runaway. The consequences are discussed for our under- standing of the detailed physics of the flame propagation, the deflagration detonation transition, and the nucleosynthesis in the central layers. Our results strongly suggest the pre-conditioning of the progenitor as a key-factor for our understanding of the diversity in SNeIa.

P. Hoeflich; J. Stein

2001-12-07T23:59:59.000Z

118

Chasing the phantom: A closer look at type Ia supernovae and the dark energy equation of state  

Science Journals Connector (OSTI)

Some recent observations provide >2? evidence for phantom dark energy—a value of the dark energy equation of state less than the cosmological-constant value of ?1. We focus on constraining the equation of state by combining current data from the most mature geometrical probes of dark energy: type Ia supernovae (SNe Ia) from the Supernova Legacy Survey (SNLS3), the Supernova Cosmology Project (Union2.1), and the Pan-STARRS1 survey (PS1); cosmic microwave background measurements from Planck and WMAP9; and a combination of measurements of baryon acoustic oscillations. The combined data are consistent with w=?1 for the Union2.1 sample, though they present moderate (?1.9?) evidence for a phantom value when either the SNLS3 or PS1 sample is used instead. We study the dependence of the constraints on the redshift, stretch, color, and host galaxy stellar mass of SNe, but we find no unusual trends. In contrast, the constraints strongly depend on any external H0 prior: a higher adopted value for the direct measurement of the Hubble constant (H0?71??km/s/Mpc) leads to ?2? evidence for phantom dark energy. Given Planck data, we can therefore make the following statement at 2? confidence: either the SNLS3 and PS1 data have systematics that remain unaccounted for or the Hubble constant is below 71??km/s/Mpc; else the dark energy equation of state is indeed phantom.

Daniel L. Shafer and Dragan Huterer

2014-03-06T23:59:59.000Z

119

LATE-TIME CIRCUMSTELLAR INTERACTION IN A SPITZER SELECTED SAMPLE OF TYPE IIn SUPERNOVAE  

SciTech Connect (OSTI)

Type IIn supernovae (SNe IIn) are a rare (<10%) subclass of core-collapse SNe that exhibit relatively narrow emission lines from a dense, pre-existing circumstellar medium (CSM). In 2009, a warm Spitzer Space Telescope survey observed 30 SNe IIn discovered in 2003-2008 and detected 10 SNe at distances out to 175 Mpc with unreported late-time infrared emission, in some cases more than 5 yr post-discovery. For this single epoch of data, the warm-dust parameters suggest the presence of a radiative heating source consisting of optical and X-ray emission continuously generated by ongoing CSM interaction. Here we present multi-wavelength follow-up observations of this sample of 10 SNe IIn and the well-studied Type IIn SN 2010jl. A recent epoch of Spitzer observations reveals ongoing mid-infrared emission from nine of the SNe in this sample. We also detect three of the SNe in archival Wide-field Infrared Survey Explorer data, in addition to SNe 1987A, 2004dj, and 2008iy. For at least five of the SNe in the sample, optical and/or X-ray emission confirms the presence of radiative emission from ongoing CSM interaction. The two Spitzer nondetections are consistent with the forward shock overrunning and destroying the dust shell, a result that places upper limits on the dust-shell size. The optical and infrared observations confirm the radiative heating model and constrain a number of model parameters, including progenitor mass-loss characteristics. All of the SNe in this sample experienced an outburst on the order of tens to hundreds of years prior to the SN explosion followed by periods of less intense mass loss. Although all evidence points to massive progenitors, the variation in the data highlights the diversity in SN IIn progenitor evolution. While these observations do not identify a particular progenitor system, they demonstrate that future, coordinated, multi-wavelength campaigns can constrain theoretical mass-loss models.

Fox, Ori D.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Cenko, S. Bradley; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Skrutskie, Michael F., E-mail: ofox@berkeley.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States)

2013-07-01T23:59:59.000Z

120

TYPE IIn SUPERNOVA SN 2010jl: OPTICAL OBSERVATIONS FOR OVER 500 DAYS AFTER EXPLOSION  

SciTech Connect (OSTI)

We present extensive optical observations of a Type IIn supernova (SN IIn) 2010jl for the first 1.5 years after its discovery. The UBVRI light curves demonstrated an interesting two-stage evolution during the nebular phase, which almost flatten out after about 90 days from the optical maximum. SN 2010jl has one of the highest intrinsic H{alpha} luminosities ever recorded for an SN IIn, especially at late phase, suggesting a strong interaction of SN ejecta with the dense circumstellar material (CSM) ejected by the progenitor. This is also indicated by the remarkably strong Balmer lines persisting in the optical spectra. One interesting spectral evolution about SN 2010jl is the appearance of asymmetry of the Balmer lines. These lines can be well decomposed into a narrow component and an intermediate-width component. The intermediate-width component showed a steady increase in both strength and blueshift with time until t {approx} 400 days after maximum, but it became less blueshifted at t {approx} 500 days, when the line profile appeared relatively symmetric again. Owing to the fact that a pure reddening effect will lead to a sudden decline of the light curves and a progressive blueshift of the spectral lines, we therefore propose that the asymmetric profiles of H lines seen in SN 2010jl are unlikely due to the extinction by newly formed dust inside the ejecta, contrary to the explanation by some early studies. Based on a simple CSM-interaction model, we speculate that the progenitor of SN 2010jl may suffer a gigantic mass loss ({approx}30-50 M{sub Sun }) a few decades before explosion. Considering a slow-moving stellar wind (e.g., {approx}28 km s{sup -1}) inferred for the preexisting, dense CSM shell and the extremely high mass-loss rate (1-2 M{sub Sun} yr{sup -1}), we suggest that the progenitor of SN 2010jl might have experienced a red supergiant stage and may explode finally as a post-red supergiant star with an initial mass above 30-40 M{sub Sun }.

Zhang Tianmeng; Wu Chao; Zhai Meng; Wu Hong; Fan Zhou; Zou Hu; Zhou Xu; Ma Jun [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Wang Xiaofeng; Chen Juncheng; Chen Jia; Liu Qin; Huang Fang; Liang Jide; Zhao Xulin [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Lin Lin [Center for Astrophysics, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026 (China); Wang Min [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Dennefeld, Michel [Institut d'Astrophysique de Paris, and University Pierre et Marie Curie (Paris 6) (France); Zhang Jujia, E-mail: armengjade@gmail.com, E-mail: wang_xf@mail.tsinghua.edu.cn [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx  

SciTech Connect (OSTI)

PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H and K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} gradually increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features, and many others, were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. The late-time spectra of PTF11kx are dominated by H{alpha} emission (with widths of full width at half-maximum intensity Almost-Equal-To 2000 km s{sup -1}), strong Ca II emission features ({approx}10,000 km s{sup -1} wide), and a blue 'quasi-continuum' due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The H{alpha} emission appears to increase in strength with time for {approx}1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.

Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E.; Filippenko, Alexei V.; Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pan, Yen-Chen; Hook, Isobel M., E-mail: jsilverman@astro.as.utexas.edu [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

2013-08-01T23:59:59.000Z

122

Utilizing Type Ia Supernovae in a Large, Fast, Imaging Survey to Constrain Dark Energy  

Science Journals Connector (OSTI)

We study the utility of a large sample of Type Ia supernovae (SNe Ia) that might be observed in an imaging survey that rapidly scans a large fraction of the sky for constraining dark energy. We consider both the information contained in the traditional luminosity distance test as well as the spread in Ia SN fluxes at fixed redshift induced by gravitational lensing. As would be required from an imaging survey, we include a treatment of photometric redshift uncertainties in our analysis. Our primary result is that the information contained in the mean distance moduli of SNe Ia and the dispersion of SN Ia distance moduli complement each other, breaking a degeneracy between the present dark energy equation of state and its time variation without the need for a high-redshift (z 0.8) SN sample. Including lensing information also allows for some internal calibration of photometric redshifts. To address photometric redshift uncertainties, we present dark energy constraints as a function of the size of an external set of spectroscopically observed SNe that may be used for redshift calibration, N spec. Depending upon the details of potentially available, external SN data sets, we find that an imaging survey can constrain the dark energy equation of state at the epoch where it is best constrained w p, with a 1? error of ?(w p) ? 0.03-0.09. In addition, the marginal improvement in the error ?(w p) from an increase in the spectroscopic calibration sample drops once N spec ~ a few ? 103. This result is important because it is of the order of the size of calibration samples likely to be compiled in the coming decade and because, for samples of this size, the spectroscopic and imaging surveys individually place comparable constraints on the dark energy equation of state. In all cases, it is best to calibrate photometric redshifts with a set of spectroscopically observed SNe with relatively more objects at high redshift (z 0.5) than the parent sample of imaging SNe.

Andrew R. Zentner; Suman Bhattacharya

2009-01-01T23:59:59.000Z

123

Exploring the Properties of Dark Energy Using Type Ia Supernovae and Other Datasets  

E-Print Network [OSTI]

We reconstruct dark energy properties from two complementary supernova datasets -- the newly released Gold+HST sample and SNLS. The results obtained are consistent with standard $\\Lambda$CDM model within $2\\sigma$ error bars although the Gold+HST data favour evolving dark energy slightly more than SNLS. Using complementary data from baryon acoustic oscillations and the cosmic microwave background to constrain dark energy, we find that our results in this case are strongly dependent on the present value of the matter density $\\Omega_m$. Consequently, no firm conclusions regarding constancy or variability of dark energy density can be drawn from these data alone unless the value of $\\Omega_m$ is known to an accuracy of a few percent. However, possible variability is significantly restricted if this data is used in conjunction with supernova data.

Ujjaini Alam; Varun Sahni; Alexei A. Starobinsky

2006-12-14T23:59:59.000Z

124

The p-Process in the Carbon Deflagration Model for Type Ia Supernovae and Chronology of the Solar System Formation  

SciTech Connect (OSTI)

We study nucleosynthesis of p-nuclei in the carbon deflagration model for Type Ia supernovae (SNe Ia) by assuming that seed nuclei are produced by the s-process in accreting layers on a carbon-oxygen white dwarf during mass accretion from a binary companion. We find that about 50 % of the p-nuclides are synthesized in proportion to the solar abundance and that p-isotopes of Mo and Ru which are significantly underproduced in Type II supernovae (SNe II) are produced up to a level close to other p-nuclei. Comparing the yields of iron and p-nuclei in SNe Ia we find that SNe Ia can contribute to the galactic evolution of the p-nuclei. Next, we consider nucleochronology of the solar system formation by using four radioactive nuclides and apply the result of the p-process nucleosynthesis to simple galactic chemical evolution models. We find that when assumed three phases of interstellar medium are mixed by the interdiffusion with the timescale of about 40 Myr 53Mn/55Mn value in the early solar system is consistent with a meteoritic value. In addition, we put constraints to a scenario that SNe Ia induce the core collapse of the molecular cloud, which leads to the formation of the solar system.

Kusakabe, Motohiko [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Iwamoto, Nobuyuki [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nomoto, Ken'ichi [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2006-07-12T23:59:59.000Z

125

First detection of $^{56}$Co gamma-ray lines from type Ia supernova (SN2014J) with INTEGRAL  

E-Print Network [OSTI]

We report the first ever detection of $^{56}$Co lines at 847 and 1237 keV and a continuum in the 200-400 keV band from the Type Ia supernova SN2014J in M82 with INTEGRAL observatory. The data were taken between 50th and 100th day since the SN2014J outburst. The line fluxes suggest that $0.62\\pm0.13~M\\odot$ of radioactive $^{56}$Ni were synthesized during the explosion. Line broadening gives a characteristic ejecta expansion velocity $V_e\\sim 2100\\pm 500~{\\rm km~s^{-1}}$. The flux at lower energies (200-400 keV) flux is consistent with the three-photon positronium annihilation, Compton downscattering and absorption in the $\\sim~1.4~M\\odot$ ejecta composed from equal fractions of iron-group and intermediate-mass elements and a kinetic energy $E_k\\sim 1.4~10^{51}~{\\rm erg}$. All these parameters are in broad agreement with a "canonical" model of an explosion of a Chandrasekhar-mass White Dwarf (WD), providing an unambiguous proof of the nature of Type Ia supernovae as a thermonuclear explosion of a solar mass co...

Churazov, E; Isern, J; Knödlseder, J; Jean, P; Lebrun, F; Chugai, N; Grebenev, S; Bravo, E; Sazonov, S; Renaud, M

2014-01-01T23:59:59.000Z

126

EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)  

SciTech Connect (OSTI)

On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot {approx}<10{sup -8}(w/100 km s{sup -1}) M{sub sun} yr{sup -1} from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, Derek B. [Astronomy and Astrophysics, Eberly College of Science, Pennsylvania State University, University Park, PA 16802 (United States); Quimby, Robert [IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba (Japan); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); De Bruyn, A. G. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Kamble, Atish; Wijers, Ralph A. M. J. [Center for Gravitation and Cosmology, University of Wisconsin, Milwaukee, WI 53211 (United States); Van der Horst, Alexander J. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, Chryssa [Space Science Office, VP-62, NASA-Marshall Space Flight Center, Huntsville, AL 35805 (United States); Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Gehrels, Neil [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

2012-02-10T23:59:59.000Z

127

The Joint Efficient Dark-energy Investigation (JEDI): Measuring the cosmic expansion history from type Ia supernovae  

E-Print Network [OSTI]

JEDI (Joint Efficient Dark-energy Investigation) is a candidate implementation of the NASA-DOE Joint Dark Energy Mission (JDEM). JEDI will probe dark energy in three independent methods: (1) type Ia supernovae, (2) baryon acoustic oscillations, and (3) weak gravitational lensing. In an accompanying paper, an overall summary of the JEDI mission is given. In this paper, we present further details of the supernova component of JEDI. To derive model-independent constraints on dark energy, it is important to precisely measure the cosmic expansion history, H(z), in continuous redshift bins from z \\~ 0-2 (the redshift range in which dark energy is important). SNe Ia at z > 1 are not readily accessible from the ground because the bulk of their light has shifted into the near-infrared where the sky background is overwhelming; hence a space mission is required to probe dark energy using SNe. Because of its unique near-infrared wavelength coverage (0.8-4.2 microns), JEDI has the advantage of observing SNe Ia in the rest frame J band for the entire redshift range of 0 energy are discussed, with special emphasis on the improved precision afforded by the rest frame near-infrared data.

M. M. Phillips; Peter Garnavich; Yun Wang; David Branch; Edward Baron; Arlin Crotts; J. Craig Wheeler; Edward Cheng; Mario Hamuy; for the JEDI Team

2006-06-28T23:59:59.000Z

128

Testing Models of Intrinsic Brightness Variations in Type Ia Supernovae, and their Impact on Measuring Cosmological Parameters  

E-Print Network [OSTI]

For spectroscopically confirmed type Ia supernovae we evaluate models of intrinsic brightness variations with detailed data/Monte-Carlo comparisons of the dispersion in the following quantities: Hubble-diagram scatter, color difference (B-V-c) between the true B-V color and the fitted color (c) from the SALT-II light curve model, and photometric redshift residual. The data sample includes 251 ugriz light curves from the 3-season Sloan Digital Sky Survey-II, and 191 griz light curves from the Supernova Legacy Survey 3-year data release. We find that the simplest model of a wavelength independent (coherent) scatter is not adequate, and that to describe the data the intrinsic scatter model must have wavelength-dependent variations. We use Monte Carlo simulations to examine the standard approach of adding a coherent scatter term in quadrature to the distance-modulus uncertainty in order to bring the reduced chi2 to unity when fitting a Hubble diagram. If the light curve fits include model uncertainties with the c...

Kessler, Richard; Marriner, John; Betoule, Marc; Brinkmann, Jon; Cinabro, David; El-Hage, Patrick; Frieman, Joshua; Jha, Saurabh; Mosher, Jennifer; Schneider, Donald P

2012-01-01T23:59:59.000Z

129

Supernova Cosmology Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Hubble Space Telescope Cluster Supernova Survey: The Hubble Space Telescope Cluster Supernova Survey: An Intensive HST Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters Survey Paper: Dawson et al. (The Supernova Cosmology Project) 2009, AJ, 138, 1271 [ADS] [arXiv] We present a new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 0.95, nine of which were in galaxy clusters. This strategy provides a SN sample that can be used to decouple the effects of host galaxy extinction and intrinsic color in high redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology.

130

TESTING MODELS OF INTRINSIC BRIGHTNESS VARIATIONS IN TYPE Ia SUPERNOVAE AND THEIR IMPACT ON MEASURING COSMOLOGICAL PARAMETERS  

SciTech Connect (OSTI)

For spectroscopically confirmed Type Ia supernovae we evaluate models of intrinsic brightness variations with detailed data/Monte Carlo comparisons of the dispersion in the following quantities: Hubble-diagram scatter, color difference (B - V - c) between the true B - V color and the fitted color (c) from the SALT-II light curve model, and photometric redshift residual. The data sample includes 251 ugriz light curves from the three-season Sloan Digital Sky Survey-II and 191 griz light curves from the Supernova Legacy Survey 3 year data release. We find that the simplest model of a wavelength-independent (coherent) scatter is not adequate, and that to describe the data the intrinsic-scatter model must have wavelength-dependent variations resulting in a {approx}0.02 mag scatter in B - V - c. Relatively weak constraints are obtained on the nature of intrinsic scatter because a variety of different models can reasonably describe this photometric data sample. We use Monte Carlo simulations to examine the standard approach of adding a coherent-scatter term in quadrature to the distance-modulus uncertainty in order to bring the reduced {chi}{sup 2} to unity when fitting a Hubble diagram. If the light curve fits include model uncertainties with the correct wavelength dependence of the scatter, we find that this approach is valid and that the bias on the dark energy equation-of-state parameter w is much smaller ({approx}0.001) than current systematic uncertainties. However, incorrect model uncertainties can lead to a significant bias on the distance moduli, with up to {approx}0.05 mag redshift-dependent variation. This bias is roughly reduced in half after applying a Malmquist bias correction. For the recent SNLS3 cosmology results, we estimate that this effect introduces an additional systematic uncertainty on w of {approx}0.02, well below the total uncertainty. This uncertainty depends on the choice of viable scatter models and the choice of supernova (SN) samples, and thus this small w-uncertainty is not guaranteed in future cosmology results. For example, the w-uncertainty for SDSS+SNLS (dropping the nearby SNe) increases to {approx}0.04.

Kessler, Richard; Frieman, Joshua A. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)] [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Guy, Julien; Betoule, Marc; El-Hage, Patrick [Laboratoire de Physique Nucleaire et des Hautes Energies, UPMC Univ. Paris 6, UPD Univ. Paris 7, CNRS IN2P3, 4 place Jussieu, F-75005 Paris (France)] [Laboratoire de Physique Nucleaire et des Hautes Energies, UPMC Univ. Paris 6, UPD Univ. Paris 7, CNRS IN2P3, 4 place Jussieu, F-75005 Paris (France); Marriner, John [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)] [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States)] [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Cinabro, David [Department of Physics, Wayne State University, Detroit, MI 48202 (United States)] [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Jha, Saurabh [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)] [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Mosher, Jennifer [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States)] [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: kessler@kicp.uchicago.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

2013-02-10T23:59:59.000Z

131

Verifying the Cosmological Utility of Type Ia Supernovae:Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect (OSTI)

We analyze the mean rest-frame ultraviolet (UV) spectrum ofType Ia Supernovae(SNe) and its dispersion using high signal-to-noiseKeck-I/LRIS-B spectroscopyfor a sample of 36 events at intermediateredshift (z=0.5) discoveredby the Canada-France-Hawaii TelescopeSupernova Legacy Survey (SNLS). Weintroduce a new method for removinghost galaxy contamination in our spectra,exploiting the comprehensivephotometric coverage of the SNLS SNe and theirhost galaxies, therebyproviding the first quantitative view of the UV spectralproperties of alarge sample of distant SNe Ia. Although the mean SN Ia spectrumhas notevolved significantly over the past 40 percent of cosmic history,preciseevolutionary constraints are limited by the absence of acomparable sample ofhigh quality local spectra. The mean UV spectrum ofour z 0.5 SNe Ia and itsdispersion is tabulated for use in futureapplications. Within the high-redshiftsample, we discover significant UVspectral variations and exclude dust extinctionas the primary cause byexamining trends with the optical SN color. Although progenitormetallicity may drive some of these trends, the variations we see aremuchlarger than predicted in recent models and do not follow expectedpatterns.An interesting new result is a variation seen in the wavelengthof selected UVfeatures with phase. We also demonstrate systematicdifferences in the SN Iaspectral features with SN lightcurve width inboth the UV and the optical. Weshow that these intrinsic variations couldrepresent a statistical limitation in thefuture use of high-redshift SNeIa for precision cosmology. We conclude thatfurther detailed studies areneeded, both locally and at moderate redshift wherethe rest-frame UV canbe studied precisely, in order that future missions canconfidently beplanned to fully exploit SNe Ia as cosmological probes.

Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam,A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.G.; Conley,A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2007-11-02T23:59:59.000Z

132

Physics of supernovae  

SciTech Connect (OSTI)

Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

Woosley, S.E.; Weaver, T.A.

1985-12-13T23:59:59.000Z

133

Stellar Evolution/Supernova Research Data Archives from the SciDAC Computational Astrophysics Consortium  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Theoretical high-energy astrophysics studies the most violent explosions in the universe - supernovae (the massive explosions of dying stars) and gamma ray bursts (mysterious blasts of intense radiation). The evolution of massive stars and their explosion as supernovae and/or gamma ray bursts describes how the "heavy" elements needed for life, such as oxygen and iron, are forged (nucleosynthesis) and ejected to later form new stars and planets. The Computational Astrophysics Consortium's project includes a Science Application Partnership on Adaptive Algorithms that develops software involved. The principal science topics are - in order of priority - 1) models for Type Ia supernovae, 2) radiation transport, spectrum formation, and nucleosynthesis in model supernovae of all types; 3) the observational implications of these results for experiments in which DOE has an interest, especially the Joint Dark Energy Mission, Supernova/Acceleration Probe (SNAP) satellite observatory, the Large Synoptic Survey Telescope (LSST), and ground based supernova searches; 4) core collapse supernovae; 5) gamma-ray bursts; 6) hypernovae from Population III stars; and 7) x-ray bursts. Models of these phenomena share a common need for nuclear reactions and radiation transport coupled to multi-dimensional fluid flow. The team has developed and used supernovae simulation codes to study Type 1A and core-collapse supernovae. (Taken from http://www.scidac.gov/physics/grb.html) The Stellar Evolution Data Archives contains more than 225 Pre-SN models that can be freely accessed.

Woosley, Stan (University of California, Santa Cruz)

134

Type Ia Supernovae with Bi-Modal Explosions Are Common -- Possible Smoking Gun for Direct Collisions of White-Dwarfs  

E-Print Network [OSTI]

We discover clear doubly-peaked line profiles in 3 out of ~20 type Ia supernovae (SNe Ia) with high-quality nebular-phase spectra. The profiles are consistently present in three well-separated Co/Fe emission features. The two peaks are respectively blue-shifted and red-shifted relative to the host galaxies and are separated by ~5000 km/s. The doubly-peaked profiles directly reflect a bi-modal velocity distribution of the radioactive Ni56 in the ejecta that powers the emission of these SNe. Due to their random orientations, only a fraction of SNe with intrinsically bi-modal velocity distributions will appear as doubly-peaked spectra. Therefore SNe with intrinsic bi-modality are likely common, especially among the SNe in the low-luminosity (~40% of all SNe Ia) part on the Philips relation \\Delta m15(B) >~ 1.3. Bi-modality is naturally expected from direct collisions of white dwarfs (WDs) due to the detonation of both WDs and is demonstrated in a 3D 0.64 M_Sun-0.64 M_Sun WD collision simulation.

Dong, Subo; Kushnir, Doron; Prieto, Jose L

2014-01-01T23:59:59.000Z

135

One-dimensional delayed-detonation models of Type Ia supernovae: Confrontation to observations at bolometric maximum  

E-Print Network [OSTI]

The delayed-detonation explosion mechanism applied to a Chandrasekhar-mass white dwarf offers a very attractive model to explain the inferred characteristics of Type Ia supernovae (SNe Ia). The resulting ejecta are chemically stratified, have the same mass and roughly the same asymptotic kinetic energy, but exhibit a range in 56Ni mass. We investigate the contemporaneous photometric and spectroscopic properties of a sequence of delayed-detonation models, characterized by 56Ni masses between 0.18 and 0.81 Msun. Starting at 1d after explosion, we perform the full non-LTE, time-dependent radiative transfer with the code CMFGEN, with an accurate treatment of line blanketing, and compare our results to SNe Ia at bolometric maximum. Despite the 1D treatment, our approach delivers an excellent agreement to observations. We recover the range of SN Ia luminosities, colours, and spectral characteristics from the near-UV to 1 micron, for standard as well as low-luminosity 91bg-like SNe Ia. Our models predict an increase...

Blondin, Stéphane; Hillier, D John; Khokhlov, Alexei M

2012-01-01T23:59:59.000Z

136

Constraining the dark energy and smoothness parameter with type Ia supernovae and gamma-ray bursts  

Science Journals Connector (OSTI)

The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneities through a Zeldovich-Kantowski-Dyer-Roeder approach which is phenomenologically characterized by a smoothness parameter ?, we rediscuss the constraints on the cosmic parameters based on type Ia supernovae (SNe Ia) and gamma-ray bursts (GRBs) data. The present analysis is restricted to a flat ?CDM model with the reasonable assumption that ? does not clump. A ?2 analysis using 557 SNe Ia data from the Union2 compilation data (R. Amanullah et al., Astrophys. J. 716, 712 (2010).) constrains the pair of parameters (?m, ?) to ?m=0.27-0.03+0.08 (2?) and ??0.25. A similar analysis based only on 59 Hymnium GRBs (H. Wei, J. Cosmol. Astropart. Phys. 08 (2010) 020.) constrains the matter density parameter to be ?m=0.35-0.24+0.62 (2?) while all values for the smoothness parameter are allowed. By performing a joint analysis, it is found that ?m=0.27-0.03+0.06 and ??0.52. As a general result, although considering that current GRB data alone cannot constrain the smoothness ? parameter, our analysis provides an interesting cosmological probe for dark energy even in the presence of inhomogeneities.

V. C. Busti; R. C. Santos; J. A. S. Lima

2012-05-07T23:59:59.000Z

137

Infrared and optical spectroscopy of Type Ia supernovae in the nebular phase  

Science Journals Connector (OSTI)

......we derive support the basic thermonuclear explosion scenario for Type...of a white dwarf due to the thermonuclear fusion to 56Ni of ~0.5-1 Mo of...Woosley & Weaver 1994b). The thermonuclear explosion mechanism is challenged......

E. J. C. Bowers; W. P. S. Meikle; T. R. Geballe; N. A. Walton; P. A. Pinto; V. S. Dhillon; S. B. Howell; M. K. Harrop-Allin

1997-10-01T23:59:59.000Z

138

Spectropolarimetric diagnostics of thermonuclear supernova explosions  

E-Print Network [OSTI]

Even at extragalactic distances, the shape of supernova ejecta can be effectively diagnosed by spectropolarimetry. We present here results for 17 Type Ia supernovae that allow a statistical study of the correlation among the geometric structures and other observable parameters of Type Ia supernovae. These observations suggest that their ejecta typically consist of a smooth, central iron rich core and an outer layer with chemical asymmetries. The degree of this peripheral asphericity is correlated with the light-curve decline rate of Type Ia supernovae. These observations lend strong support to delayed-detonation models of Type Ia supernovae.

Lifan Wang; Dietrich Baade; Ferdinando Patat

2006-11-29T23:59:59.000Z

139

Thermonuclear Supernovae  

E-Print Network [OSTI]

The application of Type Ia supernovae (SNe Ia) as distance indicators in cosmology calls for a sound understanding of these objects. Recent years have seen a brisk development of astrophysical models which explain SNe Ia as thermonuclear explosions of white dwarf stars. While the evolution of the progenitor is still uncertain, the explosion mechanism certainly involves the propagation of a thermonuclear flame through the white dwarf star. Three-dimensional hydrodynamical simulations allowed to study a wide variety of possibilities involving subsonic flame propagation (deflagrations), flames accelerated by turbulence, and supersonic detonations. These possibilities lead to a variety of scenarios. I review the currently discussed approaches and present some recent results from simulations of the turbulent deflagration model and the delayed detonation model.

F. K. Roepke

2008-04-14T23:59:59.000Z

140

Expectations for the Hard X-ray Continuum and Gamma-ray Line Fluxes from the Type Ia supernova SN 2014J in M82  

E-Print Network [OSTI]

The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the $^{56}$Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior "X-ray" the bulk debris field in direct fashion, and do not depend upon the oftimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of $\\sim$3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last $\\sim$thirty years. In support of these observational ...

The, Lih-Sin

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

HELIUM-IGNITED VIOLENT MERGERS AS A UNIFIED MODEL FOR NORMAL AND RAPIDLY DECLINING TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

The progenitors of Type Ia supernovae (SNe Ia) are still unknown, despite significant progress during the past several years in theory and observations. Violent mergers of two carbon-oxygen (CO) white dwarfs (WDs) are a candidate scenario suggested to be responsible for at least a significant fraction of normal SNe Ia. Here, we simulate the merger of two CO WDs using a moving-mesh code that allows for the inclusion of thin helium (He) shells (0.01 M{sub Sun }) on top of the WDs at an unprecedented numerical resolution. The accretion of He onto the primary WD leads to the formation of a detonation in its He shell. This detonation propagates around the CO WD and sends a converging shock wave into its core, known to robustly trigger a second detonation, as in the well-known double-detonation scenario for He-accreting CO WDs. However, in contrast to that scenario where a massive He shell is required to form a detonation through thermal instability, here the He detonation is ignited dynamically. Accordingly the required He-shell mass is significantly smaller, and hence its burning products are unlikely to affect the optical display of the explosion. We show that this scenario, which works for CO primary WDs with CO- as well as He-WD companions, has the potential to explain the different brightness distributions, delay times, and relative rates of normal and fast declining SNe Ia. Finally, we discuss extensions to our unified merger model needed to obtain a comprehensive picture of the full observed diversity of SNe Ia.

Pakmor, R.; Springel, V. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Kromer, M. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Taubenberger, S. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

2013-06-10T23:59:59.000Z

142

SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION  

SciTech Connect (OSTI)

We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first {approx}120 days shows the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the New Technology Telescope and a Subaru optical spectrum 16 days post-discovery both imply a good match with the well-studied subluminous SN 2005cs. The plateau-phase luminosity of SN 2009js and its plateau duration are more similar to the intermediate luminosity IIP SN 2008in. Thus, SN 2009js shares characteristics with both subluminous and intermediate luminosity supernovae (SNe). Its radioactive tail luminosity lies between SN 2005cs and SN 2008in, whereas its quasi-bolometric luminosity decline from peak to plateau (quantified by a newly defined parameter {Delta}logL, which measures adiabatic cooling following shock breakout) is much smaller than both the others'. We estimate the ejected mass of {sup 56}Ni to be low ({approx}0.007 M{sub Sun }). The SN explosion energy appears to have been small, similar to that of SN 2005cs. SN 2009js is the first subluminous SN IIP to be studied in the mid-infrared. It was serendipitously caught by Spitzer at very early times. In addition, it was detected by WISE 105 days later with a significant 4.6 {mu}m flux excess above the photosphere. The infrared excess luminosity relative to the photosphere is clearly smaller than that of SN 2004dj, which has been extensively studied in the mid-infrared. The excess may be tentatively assigned to heated dust with mass {approx}3 Multiplication-Sign 10{sup -5} M{sub Sun }, or to CO fundamental emission as a precursor to dust formation.

Gandhi, P. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yamanaka, M.; Itoh, R. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Tanaka, M. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Nozawa, T.; Maeda, K.; Moriya, T. J. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Kawabata, K. S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Saviane, I. [European Southern Observatory, Alonso de Cordova 3107, Santiago 19 (Chile); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Sasada, M. [Department of Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

2013-04-20T23:59:59.000Z

143

THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA  

SciTech Connect (OSTI)

A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W. [Astronomy Department, University of Chicago, Chicago, IL 60637 (United States); Meyer, B. S. [Physics and Astronomy Department, Clemson University, Clemson, SC 29634 (United States)

2013-07-01T23:59:59.000Z

144

The Nuclear Equation of State and Supernovae James M. Lattimer  

E-Print Network [OSTI]

type of supernova is powered by thermonuclear energy. This type of event involves the end product will be devoted to them. We will point out, however, that because thermonuclear supernovae occur from a quite

Lattimer, James M.

145

A Massive Stellar Burst Before the Supernova  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

massive stars shed huge amounts of material in a "penultimate outburst" before final detonation as supernovae. A focused search for Type IIn SN precursor bursts, conducted by Eran...

146

The late emission of thermonuclear supernovae  

E-Print Network [OSTI]

The subject of late-time emission of Type Ia supernovae and its implications for the understanding of the explosions of C+O WDs is reviewed.

Pilar Ruiz-Lapuente

1996-04-16T23:59:59.000Z

147

Theoretical models for supernovae  

SciTech Connect (OSTI)

The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.

Woosley, S.E.; Weaver, T.A.

1981-09-21T23:59:59.000Z

148

Hubble diagrams of soft and hard radiation sources in the graviton background: to an apparent contradiction between supernova 1a and gamma-ray burst observations  

E-Print Network [OSTI]

In the sea of super-strong interacting gravitons, non-forehead collisions with gravitons deflect photons, and this deflection may differ for soft and hard radiations. As a result, the Hubble diagram would not be a universal function and it will have a different view for such sources as supernovae in visible light and gamma-ray bursts. Observations of these two kinds are compared here with the limit cases of the Hubble diagram.

Michael A. Ivanov

2007-01-10T23:59:59.000Z

149

Projected rotational velocities of WD1614+136 and WD1353+409 - implications for the rate of galactic Type Ia supernovae  

E-Print Network [OSTI]

The white dwarf stars WD1614+136 and WD1353+409 are not sufficiently massive to have formed through single star evolution. However, observations to date have not yet found any evidence for binarity. It has therefore been suggested that these stars are the result of a merger. In this paper we place an upper limit of approximately 50kms on the projected rotational velocities of both stars. This suggests that, if these stars are the results of a merger, efficient angular momentum loss with accompanying mass loss must have occurred. If the same process occurs following the merging of more massive white dwarf stars, the predicted rate of Type Ia supernovae due to merging white dwarfs may have been greatly over-estimated. Further observations to determine binarity in WD1614+136 and WD1353+409 are therefore encouraged.

P. F. L. Maxted; T. R. Marsh

1998-03-17T23:59:59.000Z

150

The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry  

SciTech Connect (OSTI)

We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo

2007-01-08T23:59:59.000Z

151

Long-Lasting X-Ray Emission from Type IIb Supernova 2011dh and Mass-Loss History of The Yellow Supergiant Progenitor  

E-Print Network [OSTI]

Type IIb Supernova (SN) 2011dh, with conclusive detection of an unprecedented Yellow Supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosion. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ~500 days after the explosion on Chandra archival data, providing a solidly derived mass loss rate of an YSG progenitor for the first time. We find that the circumstellar media (CSM) should be dense, more than that expected from a Wolf-Rayet (WR) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a WR progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact WR star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass loss rate is 3 x ...

Maeda, Keiichi; Bamba, Aya; Terada, Yukikatsu; Fukazawa, Yasushi

2014-01-01T23:59:59.000Z

152

PTF11iqb: Cool supergiant mass loss that bridges the gap between Type IIn and normal supernovae  

E-Print Network [OSTI]

PTF11iqb was initially classified as a TypeIIn event caught very early after explosion. It showed narrow Wolf-Rayet (WR) spectral features on day 2, but the narrow emission weakened quickly and the spectrum morphed to resemble those of Types II-L and II-P. At late times, Halpha emission exhibited a complex, multipeaked profile reminiscent of SN1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN~1998S, although with weaker interaction with circumstellar material (CSM) at early times, and stronger CSM interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for weak CSM interaction added to the light curve of a normal SN~II-P. This plateau requires that the progenitor had an extended H envelope like a red supergia...

Smith, Nathan; Cenko, S Bradley; Kasliwal, Mansi M; Silverman, Jeffrey M; Filippenko, Alexei V; Gal-Yam, Avishay; Clubb, Kelsey I; Graham, Melissa L; Leonard, Douglas C; Horst, J Chuck; Williams, G Grant; Andrews, Jennifer E; Kulkarni, Shrinivas R; Nugent, Peter; Sullivan, Mark; Maguire, Kate; Xu, Dong; Ben-Ami, Sagi

2015-01-01T23:59:59.000Z

153

Hot Coal for Christmas: Dust Formation in the Swept-Up Shell Around The Peculiar Type Ib Supernova 2006jc  

E-Print Network [OSTI]

We present evidence for the formation of dust grains in an unusual Type Ib SN based on late-time spectra of SN 2006jc. The progenitor suffered a giant outburst qualitatively similar to those seen in LBVs just 2 years prior to the SN, and we speculate that the dust formation we observe is an indirect consequence of that event. The key evidence for dust formation seen in our optical spectra is (1) the appearance of a strong continuum emission source at red wavelengths, and (2) fading of the redshifted sides of narrow HeI emission lines. These two observed characteristics provide the strongest case yet for dust formation in any Type Ib/c SN. Both developments occurred simultaneously between 51 and 75 days after peak brightness, which is quick compared to other dusty SNe. The high temperature of the dust implies carbon and not silicates, and we describe how infrared photometry may test this conjecture. Geometric considerations indicate dust formation occurring in the dense gas swept-up by the forward shock, and n...

Smith, Nathan; Filippenko, Alexei V

2007-01-01T23:59:59.000Z

154

An Analytical Expression for the Hubble diagram of supernovae and gamma-ray bursts  

E-Print Network [OSTI]

A recent paper by Harmut Traunm\\"uller shows that the most adequate equation to interpret the observations on magnitude and redshift from 892 type 1a supernovae would be mu = 5 log[(1+z) ln(1+z)] + const. We discuss this result which is exacly the one we have obtained few years ago when postulating a relation between the speed of light and the expansion of the universe. We also compare our analytical result to the conclusion of Marosi who studied 280 supernovae and gamma-ray bursts in the range 0.1014 < z < 8.1. The difference between his results and ours is at worst of 0.3 %.

Jean-Marie Vigoureux; Bernard Vigoureux; Michel Langlois

2014-11-12T23:59:59.000Z

155

An Analytical Expression for the Hubble diagram of supernovae and gamma-ray bursts  

E-Print Network [OSTI]

A recent paper by Harmut Traunm\\"uller shows that the most adequate equation to interpret the observations on magnitude and redshift from 892 type 1a supernovae would be mu = 5 log[(1+z) ln(1+z)] + const. We discuss this result which is exacly the one we have obtained few years ago when postulating a relation between the speed of light and the expansion of the universe. We also compare our analytical result to the conclusion of Marosi who studied 280 supernovae and gamma-ray bursts in the range 0.1014 < z < 8.1. The difference between his results and ours is at worst of 0.3 %.

Vigoureux, Jean-Marie; Langlois, Michel

2014-01-01T23:59:59.000Z

156

Reducing Zero-point Systematics in Dark Energy Supernova Experiments  

SciTech Connect (OSTI)

We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission cali- bration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.

Faccioli, Lorenzo; Kim, Alex G; Miquel, Ramon; Bernstein, Gary; Bonissent, Alain; Brown, Matthew; Carithers, William; Christiansen, Jodi; Connolly, Natalia; Deustua, Susana; Gerdes, David; Gladney, Larry; Kushner, Gary; Linder, Eric; McKee, Shawn; Mostek, Nick; Shukla, Hemant; Stebbins, Albert; Stoughton, Chris; Tucker, David

2011-04-01T23:59:59.000Z

157

Type Ia Supernova Discoveries at z>1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution  

E-Print Network [OSTI]

We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest-redshift SNe Ia known, all at z>1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these and 170 previous SNe Ia are provided. A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z=0.46 +/- 0.13. The data are consistent with the cosmic concordance model of Omega_M ~ 0.3, Omega_Lambda~0.7 (chi^2_dof=1.06), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat Universe with a cosmological constant. When combined with external flat-Universe constraints we find w=-1.02 + 0.13 - 0.19 (and $dark energy, P = w\\rho c^2. Joint constraints on both the recent equation of state of dark energy, $w_0$, and its time evolution, dw/dz, are a factor of ~8 more precise than its first estimate and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w_0 = -1.0, dw/dz = 0), and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the Universe.

Adam G. Riess; Louis-Gregory Strolger; John Tonry; Stefano Casertano; Henry C. Ferguson; Bahram Mobasher; Peter Challis; Alexei V. Filippenko; Saurabh Jha; Weidong Li; Ryan Chornock; Robert P. Kirshner; Bruno Leibundgut; Mark Dickinson; Mario Livio; Mauro Giavalisco; Charles C. Steidel; Narciso Benitez; Zlatan Tsvetanov

2004-02-23T23:59:59.000Z

158

New Hubble Space Telescope Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of Dark Energy  

E-Print Network [OSTI]

We have discovered 21 new Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to trace the history of cosmic expansion over the last 10 billion years. These objects, which include 13 spectroscopically confirmed SNe Ia at z > 1, were discovered during 14 epochs of reimaging of the GOODS fields North and South over two years with the Advanced Camera for Surveys on HST. Together with a recalibration of our previous HST-discovered SNe Ia, the full sample of 23 SNe Ia at z > 1 provides the highest-redshift sample known. Combined with previous SN Ia datasets, we measured H(z) at discrete, uncorrelated epochs, reducing the uncertainty of H(z>1) from 50% to under 20%, strengthening the evidence for a cosmic jerk--the transition from deceleration in the past to acceleration in the present. The unique leverage of the HST high-redshift SNe Ia provides the first meaningful constraint on the dark energy equation-of-state parameter at z >1. The result remains consistent with a cosmological constant (w(z)=-1), and rules out rapidly evolving dark energy (dw/dz >>1). The defining property of dark energy, its negative pressure, appears to be present at z>1, in the epoch preceding acceleration, with ~98% confidence in our primary fit. Moreover, the z>1 sample-averaged spectral energy distribution is consistent with that of the typical SN Ia over the last 10 Gyr, indicating that any spectral evolution of the properties of SNe Ia with redshift is still below our detection threshold.

Adam G. Riess; Louis-Gregory Strolger; Stefano Casertano; Henry C. Ferguson; Bahram Mobasher; Ben Gold; Peter J. Challis; Alexei V. Filippenko; Saurabh Jha; Weidong Li; John Tonry; Ryan Foley; Robert P. Kirshner; Mark Dickinson; Emily MacDonald; Daniel Eisenstein; Mario Livio; Josh Younger; Chun Xu; Tomas Dahlen; Daniel Stern

2006-11-17T23:59:59.000Z

159

Investigations of supernovae and supernova remnants in the era of SKA  

E-Print Network [OSTI]

Two main physical mechanisms are used to explain supernova explosions: thermonuclear explosion of a white dwarf(Type Ia) and core collapse of a massive star (Type II and Type Ib/Ic). Type Ia supernovae serve as distance indicators that led to the discovery of the accelerating expansion of the Universe. The exact nature of their progenitor systems however remain unclear. Radio emission from the interaction between the explosion shock front and its surrounding CSM or ISM provides an important probe into the progenitor star's last evolutionary stage. No radio emission has yet been detected from Type Ia supernovae by current telescopes. The SKA will hopefully detect radio emission from Type Ia supernovae due to its much better sensitivity and resolution. There is a 'supernovae rate problem' for the core collapse supernovae because the optically dim ones are missed due to being intrinsically faint and/or due to dust obscuration. A number of dust-enshrouded optically hidden supernovae should be discovered via SKA1-...

Wang, Lingzhi; Zhu, Hui; Tian, Wenwu; Wang, Xiaofeng

2015-01-01T23:59:59.000Z

160

RELATIVISTIC SHOCK BREAKOUTS-A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

The light from a shock breakout of stellar explosions, which carries a wealth of information, strongly depends on the shock velocity at the time of the breakout. The emission from Newtonian breakouts, typical in regular core-collapse supernovae (SNe), has been explored extensively. However, a large variety of explosions result in mildly or ultrarelativistic breakouts, where the observed signature is unknown. Here we calculate the luminosity and spectrum produced by relativistic breakouts. In order to do so, we improve the analytic description of relativistic radiation-mediated shocks and follow the system from the breakout itself, through the planar phase and into the spherical phase. We limit our calculation to cases where the post-breakout acceleration of the gas ends during the planar phase (i.e., the final gas Lorentz factor {approx}< 30). We find that spherical relativistic breakouts produce a flash of gamma rays with energy, E{sub bo}, temperature, T{sub bo}, and duration, t{sup obs} b{sub o}, that provide the breakout radius ( Almost-Equal-To 5 R{sub Sun }(t{sup obs}{sub bo}/10 s)(T{sub bo}/50 keV){sup 2}) and the Lorentz factor ( Almost-Equal-To T{sub bo}/50 keV). They also always satisfy a relativistic breakout relation (t{sup obs}{sub bo}/20 s) {approx} (E{sub bo}/10{sup 46} erg){sup 1/2}(T{sub bo}/50 keV){sup -2.68}. The breakout flare is typically followed, on longer timescales, by X-rays that carry a comparable energy. We apply our model to a variety of explosions, including Type Ia and .Ia SNe, accretion-induced collapse, energetic SNe, and gamma-ray bursts (GRBs). We find that all these events produce detectable gamma-ray signals, some of which may have already been seen. Some particular examples are: (1) relativistic shock breakouts provide a natural explanation to the energy, temperature, and timescales of low-luminosity GRBs. Indeed, all observed low-luminosity GRBs satisfy the relativistic breakout relation. (2) Nearby broad-line Type Ib/c (like SN 2002ap) may produce a detectable {gamma}-ray signal. (3) Galactic Type Ia SNe may produce detectable {gamma}-ray flares. We conclude that relativistic shock breakouts provide a generic process for the production of gamma-ray flares.

Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2012-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Supernova: Carbon detonation redux  

Science Journals Connector (OSTI)

... A DECADE ago carbon detonation was all the rage among supernova theorists. The idea was that the characteristic burst ... wind.

J. Craig Wheeler

1983-03-17T23:59:59.000Z

162

Nuclear astrophysics of supernovae  

SciTech Connect (OSTI)

In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ < /rho//sub 0/, and then /rho/ > /rho//sub 0/ and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs.

Cooperstein, J.

1988-01-01T23:59:59.000Z

163

PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA  

SciTech Connect (OSTI)

We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at redshift z = 1.388. The light curve peaked at z{sub P1} = 21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with M{sub u} = -22.3 mag. Our extensive optical and near-infrared observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of {approx}12 days to the extraordinary peak luminosity of 4.1 Multiplication-Sign 10{sup 44} erg s{sup -1} (M{sub bol} = -22.8 mag) and subsequently faded rapidly. Equally important, the spectral energy distribution is unusually red for an SLSN, with a color temperature of {approx}6800 K near maximum light, in contrast to previous hydrogen-poor SLSNe, which are bright in the ultraviolet (UV). The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of {approx}11, 000 km s{sup -1} and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius ({approx}> 5 Multiplication-Sign 10{sup 15} cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (1) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (2) models powered by the spindown energy of a rapidly rotating magnetar predict significantly hotter and faster ejecta; and (3) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of {approx}15 M{sub Sun} yr{sup -1}, and is fairly massive ({approx}2 Multiplication-Sign 10{sup 10} M{sub Sun }), with a stellar population age of {approx}10{sup 8} yr, also in contrast to the young dwarf hosts of known hydrogen-poor SLSNe. PS1-10afx is distinct from known examples of SLSNe in its spectra, colors, light-curve shape, and host galaxy properties, suggesting that it resulted from a different channel than other hydrogen-poor SLSNe.

Chornock, R.; Berger, E.; Milisavljevic, D.; Lunnan, R.; Foley, R. J.; Soderberg, A. M.; Challis, P.; Czekala, I.; Drout, M.; Fong, W.; Kirshner, R. P.; McLeod, B.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN (United Kingdom); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Leibler, C., E-mail: rchornock@cfa.harvard.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95060 (United States); and others

2013-04-20T23:59:59.000Z

164

Earth Matter Effects in Detection of Supernova Neutrinos  

E-Print Network [OSTI]

We calculated the matter effect, including both the Earth and supernova, on the detection of neutrinos from type II supernovae at the proposed Daya Bay reactor neutrino experiment. It is found that apart from the dependence on the flip probability P_H inside the supernova and the mass hierarchy of neutrinos, the amount of the Earth matter effect depends on the direction of the incoming supernova neutrinos, and reaches the biggest value when the incident angle of neutrinos is around 93^\\circ. In the reaction channel \\bar{\

X. -H. Guo; Bing-Lin Young

2006-05-11T23:59:59.000Z

165

Supernova Simulations and Strategies for the Dark Energy Survey  

Science Journals Connector (OSTI)

We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg2 search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 z

J. P. Bernstein; R. Kessler; S. Kuhlmann; R. Biswas; E. Kovacs; G. Aldering; I. Crane; C. B. D'Andrea; D. A. Finley; J. A. Frieman; T. Hufford; M. J. Jarvis; A. G. Kim; J. Marriner; P. Mukherjee; R. C. Nichol; P. Nugent; D. Parkinson; R. R. R. Reis; M. Sako; H. Spinka; M. Sullivan

2012-01-01T23:59:59.000Z

166

Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies  

E-Print Network [OSTI]

We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10^8 and 10^9 solar masses with supernova rates of 30, 300, and 3000 per Myr. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, however, we find the loss of enriched material to be much less efficient when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density "chimneys" swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

P. Chris Fragile; Stephen D. Murray; Douglas N. C. Lin

2004-08-24T23:59:59.000Z

167

Resource Letter: OTS-1: Observations and theory of supernovae  

Science Journals Connector (OSTI)

This Resource Letter provides a guide to the literature on the observations of supernovae and the theory of their explosion mechanisms. Journal articles and books are cited for the following topics: observations of the spectra spectropolarimetry and light curves of supernovae of various types theory of thermonuclear explosions core collapse and radioactive decay applications to cosmology and possible connections to gamma-ray bursts.

J. Craig Wheeler

2003-01-01T23:59:59.000Z

168

Deflagrations and Detonations in Thermonuclear Supernovae  

E-Print Network [OSTI]

We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast to the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

Vadim N. Gamezo; Alexei M. Khokhlov; Elaine S. Oran

2004-06-03T23:59:59.000Z

169

Oxygen emission in remnants of thermonuclear supernovae as a probe for their progenitor system  

E-Print Network [OSTI]

Recent progress in numerical simulations of thermonuclear supernova explosions brings up a unique opportunity in studying the progenitors of Type Ia supernovae. Coupling state-of-the-art explosion models with detailed hydrodynamical simulations of the supernova remnant evolution and the most up-to-date atomic data for X-ray emission calculations makes it possible to create realistic synthetic X-ray spectra for the supernova remnant phase. Comparing such spectra with high quality observations of supernova remnants could allow to constrain the explosion mechanism and the progenitor of the supernova. The present study focuses in particular on the oxygen emission line properties in young supernova remnants, since different explosion scenarios predict a different amount and distribution of this element. Analysis of the soft X-ray spectra from supernova remnants in the Large Magellanic Cloud and confrontation with remnant models for different explosion scenarios suggests that SNR 0509-67.5 could originate from a de...

Kosenko, D; Kromer, M; Blinnikov, S I; Pakmor, R; Kaastra, J S

2014-01-01T23:59:59.000Z

170

Four Papers by the Supernova Cosmology Project  

E-Print Network [OSTI]

Study Institute Thermonuclear Supernovae Conference,STUDY INSTITUTE THERMONUCLEAR SUPERNOVAE Aiguablava, SPAIN20-30, 1995 To appear-in Thermonuclear Supernovae (NATO ASI)

Perlmutter, S.; Deustua, S.; Gabi, S.; Goldhaber, G.

2008-01-01T23:59:59.000Z

171

The Presence of Inducible Cytochrome P450 Types 1A1 and 1A2 in the BeWo Cell Line  

E-Print Network [OSTI]

The activity and inducibility of cytochrome P450 systems (CYP1A1:1A2) of the human placenta were assessed in a representative human trophoblast-like cell line, BeWo. The activity of CYP1A1 and CYP1A2 in microsome preparations ...

Avery, Michael; Meek, C. E.; Audus, Kenneth L.

2003-01-01T23:59:59.000Z

172

Supernova Remnants And GLAST  

SciTech Connect (OSTI)

It has long been speculated that supernova remnants represent a major source of cosmic rays in the Galaxy. Observations over the past decade have ceremoniously unveiled direct evidence of particle acceleration in SNRs to energies approaching the knee of the cosmic ray spectrum. Nonthermal X-ray emission from shell-type SNRs reveals multi-TeV electrons, and the dynamical properties of several SNRs point to efficient acceleration of ions. Observations of TeV gamma-ray emission have confirmed the presence of energetic particles in several remnants as well, but there remains considerable debate as to whether this emission originates with high energy electrons or ions. Equally uncertain are the exact conditions that lead to efficient particle acceleration. Based on the catalog of EGRET sources, we know that there is a large population of Galactic gamma-ray sources whose distribution is similar to that of SNRs.With the increased resolution and sensitivity of GLAST, the gamma-ray SNRs from this population will be identified. Their detailed emission structure, along with their spectra, will provide the link between their environments and their spectra in other wavebands to constrain emission models and to potentially identify direct evidence of ion acceleration in SNRs. Here I summarize recent observational and theoretical work in the area of cosmic ray acceleration by SNRs, and discuss the contributions GLAST will bring to our understanding of this problem.

Slane, Patrick; /Harvard-Smithsonian Ctr. Astrophys.

2011-11-29T23:59:59.000Z

173

Hydrogen issue in Core Collapse Supernovae  

E-Print Network [OSTI]

We discuss results of analyzing a time series of selected photospheric-optical spectra of core collapse supernovae (CCSNe). This is accomplished by means of the parameterized supernovae synthetic spectrum (SSp) code ``SYNOW''. Special attention is addressed to traces of hydrogen at early phases, especially for the stripped-envelope SNe (i.e. SNe Ib-c). A thin low mass hydrogen layer extending to very high ejection velocities above the helium shell, is found to be the most likely scenario for Type Ib SNe.

A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut

2006-11-06T23:59:59.000Z

174

Visual Observability of the Cassiopeia A Supernova  

E-Print Network [OSTI]

It is generally believed that the explosion which gave birth to the Cassiopeia A supernova remmant resulted from core collapse of a hydrogen-deficient star. A progenitor that has lost all its hydrogen envelope and part of its helium envelope would lead to an explosion with the optical properties of a Type Ic supernova. There is evidence, if not general agreement, that Flamsteed observed the Cas A supernova as a sixth magnitude object in August, 1680. If an explosion with a typical SNIc light curve at the position and distance of Cas A attained maximum luminosity during the winter of 1679-1680, it would at that time have been poorly situated for visual observation, as its upper culmination would have taken place during daylight, while in August, between 170-200 days after peak luminosity, it would have been a sixth magnitude star.

J. A. Morgan

2007-10-11T23:59:59.000Z

175

SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY  

SciTech Connect (OSTI)

We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg{sup 2} search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Aldering, G.; Kim, A. G.; Nugent, P. [E. O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); D'Andrea, C. B.; Nichol, R. C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Finley, D. A.; Marriner, J.; Reis, R. R. R. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Mukherjee, P.; Parkinson, D. [Department of Physics and Astronomy, Pevensey 2 Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); and others

2012-07-10T23:59:59.000Z

176

Thermonuclear supernova explosions and their remnants: the case of Tycho  

E-Print Network [OSTI]

We propose to use the thermal X-ray emission from young supernova remnants (SNRs) originated in Type Ia supernovae (SNe) to extract relevant information concerning the explosion mechanism. We focus on the differences between numerical 1D and 3D explosion calculations, and the impact that these differences could have on young SNRs. We use the remnant of the Tycho supernova (SN 1572) as a test case to compare with our predictions, discussing the observational features that allow to accept or discard a given model.

Carles Badenes; Eduardo Bravo; Kazimierz J. Borkowski

2003-09-03T23:59:59.000Z

177

Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets  

SciTech Connect (OSTI)

This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

Chad Pope; Larry L. Taylor; Soon Sam Kim

2007-02-01T23:59:59.000Z

178

Supernova Caught in the Act  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supernova Caught in Supernova Caught in the Act Supernova Caught in the Act Earliest-ever Detection Made Possible by Computing, Networks August 25, 2011 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov ptf11kly.jpg Before and after images of supernova PTF 11kly as it appeared in the nearby M101 galaxy. Click to enlarge. (Images: Peter Nugent) A supernova discovered yesterday is closer to Earth-approximately 21 million light-years away-than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible by a specialized survey telescope and state-of-the-art computational tools. The discovery of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many

179

Probing thermonuclear supernova explosions with neutrinos  

E-Print Network [OSTI]

Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $\\beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.

A. Odrzywolek; T. Plewa

2011-03-27T23:59:59.000Z

180

The Hot Gas Content of Low-Luminosity Early-Type Galaxies and the Implications Regarding Supernova Heating and AGN Feedback  

E-Print Network [OSTI]

We have analyzed Chandra observations of 18 low-luminosity early-type galaxies with L_B gas with temperatures between 0.2 and 0.8 keV comprises 5-70% of the total 0.5-2.0 keV emission from these galaxies. We find that the total X-ray luminosity from LMXBs (resolved plus the power-law component of the unresolved emission) scales roughly linearly with the K-band luminosity of the galaxies with a normalization comparable to that found in more luminous early-type galaxies. All of the galaxies in our sample are gas poor with gas masses much less than that expected from the accumulation of stellar mass loss over the life time of the galaxies. The average ratio of gas mass to stellar mass in our sample is M_{gas}/M_*=0.001, compared to more luminous early-type galaxies which typically have M_{gas}/M_*=0.01. The time required to accumulate the observed gas mass from stellar mass loss in these galaxies is typically 3 x 10e8 yr. Since the cooling time of the gas is longer than the replenishment time, the gas cannot be condensing out of the hot phase and forming stars, implying that the gas is most likely being expelled from these galaxies in a wind (abridged).

Laurence P. David; Christine Jones; William Forman; Iris Monica Vargas; Paul Nulsen

2006-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Supernova Science Center  

SciTech Connect (OSTI)

The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

S. E. Woosley

2008-05-05T23:59:59.000Z

182

Supernova Simulations from the T-6 Group at Los Alamos National Laboratory (LANL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

LANL's primary effort to numerically model supernova explosions is based in the Theoretical Astrophysics Group (T-6). Both thermonuclear supernovae and core- collapse supernovae are studied, with special emphasis placed on multi-dimensional simulations. Both types of supernova require a wide range of input physics, which is provided by research efforts throughout the lab. In particular this research benefits from other LANL efforts studying massive star evolution, equations of state and aspects of neutrino physics. [From http://laastro.lanl.gov/science/computation.html

Woosley, Stanford

183

Snapping Supernovae at z>1.7  

E-Print Network [OSTI]

redshift supernovae — both thermonuclear and core collapse —between core-collapse and thermonuclear supernovae (Iben &such SNe — both thermonuclear and core collapse — will be

Aldering, Greg

2009-01-01T23:59:59.000Z

184

Supernovae, an accelerating universe and the cosmological constant  

Science Journals Connector (OSTI)

...attributes the hydrogen-free type Ia supernovae to the thermonuclear detonation of white dwarf stars and the type II (as well...explode if a binary companion adds to its mass. When a thermonuclear burning wave destroys such a star, by burning approximately...

Robert P. Kirshner

1999-01-01T23:59:59.000Z

185

A Newly Recognized Very Young Supernova Remnant in M83  

E-Print Network [OSTI]

As part of a spectroscopic survey of supernova remnant candidates in M83 using the Gemini-South telescope and GMOS, we have discovered one object whose spectrum shows very broad lines at H$\\alpha$, [O~I] 6300,6363, and [O~III] 4959,5007, similar to those from other objects classified as `late time supernovae.' Although six historical supernovae have been observed in M83 since 1923, none were seen at the location of this object. Hubble Space Telescope Wide Field Camera 3 images show a nearly unresolved emission source, while Chandra and ATCA data reveal a bright X-ray source and nonthermal radio source at the position. Objects in other galaxies showing similar spectra are only decades post-supernova, which raises the possibility that the supernova that created this object occurred during the last century but was missed. Using photometry of nearby stars from the HST data, we suggest the precursor was at least 17 $\\rm M_{sun}$, and the presence of broad H$\\alpha$ in the spectrum makes a type II supernova likely....

Blair, William P; Long, Knox S; Whitmore, Bradley C; Kim, Hwihyun; Soria, Roberto; Kuntz, K D; Plucinsky, Paul P; Dopita, Michael A; Stockdale, Christopher

2015-01-01T23:59:59.000Z

186

Supernova Neutrinos Detection On Earth  

E-Print Network [OSTI]

In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

2009-05-12T23:59:59.000Z

187

Type Ia Supernovae Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

principles is difficult because simulation results are quite sensitive to how the thermonuclear runaway is ignited (e.g., at the center or slightly off center on one side); to...

188

Stellar core collapse and supernova  

SciTech Connect (OSTI)

Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab.

Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

1985-04-01T23:59:59.000Z

189

The Supernovae Associated with Gamma-Ray Bursts  

E-Print Network [OSTI]

Supernovae (SNe) were long suspected as possible progenitors of gamma-ray bursts (GRBs). The arguments relied on circumstantial evidence. Several recent GRBs, notably GRB 030329, have provided direct, spectroscopic evidence that SNe and GRBs are related. The SNe associated with GRBs are all of Type Ic, implying a compact progenitor, which has implications for GRB models. Other peculiar Type Ic SNe may help to expand understanding of the mechanisms involved.

Thomas Matheson

2004-10-27T23:59:59.000Z

190

Pair-Production Supernovae: Theory and Observation  

E-Print Network [OSTI]

I review the physical properties of pair-production supernovae (PPSNe) as well as the prospects for them to be constrained observationally. In very massive (140-260 solar mass) stars, much of the pressure support comes from the radiation field, meaning that they are loosely bound, with an adiabatic coefficient that is close to the minimum stable value. Near the end of C/O burning, the central temperature increases to the point that photons begin to be converted into electron-positron pairs, softening gamma below this critical value. The result is a runaway collapse, followed by explosive burning that completely obliterates the star. While these explosions can be up to 100 times more energetic that core collapse and Type Ia supernovae, their peak luminosities are only slightly greater. However, due both to copious Ni-56 production and hydrogen recombination, they are brighter much longer, and remain observable for ~ 1 year. Since metal enrichment is a local process, PPSNe should occur in pockets of metal-free gas over a broad range of redshifts, greatly enhancing their detectability, and distributing their nucleosyntehtic products about the Milky Way. This means that measurements of the abundances of metal-free stars should be thought of as directly constraining these objects. It also means that ongoing supernova searches, already provide weak constraints for PPSN models. A survey with the NIRCam instrument on JWST, on the other hand, would be able to extend these limits to z ~ 10. Observing a 0.3 deg^2 patch of sky for one week per year for three consecutive years, such a program would either detect or rule out the existence of these remarkable objects.

Evan Scannapieco

2006-09-07T23:59:59.000Z

191

Dimming of supernovae and gamma ray busts by Compton Scattering and its cosmological implications  

E-Print Network [OSTI]

Free electrons deplete photons from type Ia supernovae through the (inverse) Compton scattering. This Compton dimming increases with redshift and reaches 0.004 mag at $z=1$ and 0.01 mag at $z=2$. Although far from sufficient to invalidate the existence of dark energy, it can bias constraint on dark energy at a level non-negligible for future supernova surveys. This effect is correctable and should be incorporated in supernova analysis. The Compton dimming has similar impact on cosmology based on gamma ray bursts as standard candles.

Pengjie Zhang

2008-02-18T23:59:59.000Z

192

The supernova that destroyed a galaxy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The supernova that destroyed a galaxy The supernova that destroyed a galaxy The supernova that destroyed a galaxy The research may solve the long-standing puzzle of how supermassive black holes were formed in the centers of some galaxies less then a billion years after the Big Bang. August 5, 2013 Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) The Los Alamos simulation is the most realistic cosmological supernova simulation ever performed of this process. New supercomputer simulations by Los Alamos scientists and collaborators capture in unprecedented detail extremely powerful supernovae explosions in the early universe and their effect on the nascent galaxies that gave birth

193

Perspectives of Core-Collapse Supernovae beyond SN 1987A  

E-Print Network [OSTI]

The observation of neutrinos from Supernova 1987A has confirmed the theoretical conjecture that these particles play a crucial role during the collapse of the core of a massive star. Only one per cent of the energy they carry away from the newly formed neutron star may account for all the kinetic and electromagnetic energy responsible for the spectacular display of the supernova explosion. However, the neutrinos emitted from the collapsed stellar core at the center of the explosion couple so weakly to the surrounding matter that convective processes behind the supernova shock and/or inside the nascent neutron star might be required to increase the efficiency of the energy transfer to the stellar mantle and envelope. The conditions for a successful explosion by the neutrino-heating mechanism and the possible importance of convection in and around the neutron star are shortly discussed. Neutrino-driven explosions turn out to be very sensitive to the parameters describing the neutrino emission of the proto-neutron star and to the details of the dynamical processes in the collapsed stellar core. Therefore uniform explosions with a well defined energy seem unlikely and type-II supernova explosions do not offer promising perspectives for being useful as standard candles.

H. -Th. Janka; W. Keil

1997-09-02T23:59:59.000Z

194

Extending the supernova Hubble diagram to z~1.5 with the Euclid space mission  

E-Print Network [OSTI]

We forecast dark energy constraints that could be obtained from a new large sample of Type Ia supernovae where those at high redshift are acquired with the Euclid space mission. We simulate a three-prong SN survey: a zsurveys are assumed to be conducted from the ground, while the high-z is a joint ground- and space-based survey. This latter survey, the "Dark Energy Supernova Infra-Red Experiment" (DESIRE), is designed to fit within 6 months of Euclid observing time, with a dedicated observing program. We simulate the SN events as they would be observed in rolling-search mode by the various instruments, and derive the quality of expected cosmological constraints. We account for known systematic uncertainties, in particular calibration uncertainties including their contribution through the training of the supernova model used to fit the supernovae li...

Astier, P; Brescia, M; Cappellaro, E; Carlberg, R G; Cavuoti, S; Della Valle, M; Gangler, E; Goobar, A; Guy, J; Hardin, D; Hook, I M; Kessler, R; Kim, A; Linder, E; Longo, G; Maguire, K; Mannucci, F; Mattila, S; Nichol, R; Pain, R; Regnault, N; Spiro, S; Sullivan, M; Tao, C; Turatto, M; Wang, X F; Wood-Vasey, W M

2014-01-01T23:59:59.000Z

195

Galaxy peculiar velocities from large-scale supernova surveys as a dark energy probe  

SciTech Connect (OSTI)

Upcoming imaging surveys such as the Large Synoptic Survey Telescope will repeatedly scan large areas of sky and have the potential to yield million-supernova catalogs. Type Ia supernovae are excellent standard candles and will provide distance measures that suffice to detect mean pairwise velocities of their host galaxies. We show that when combining these distance measures with photometric redshifts for either the supernovae or their host galaxies, the mean pairwise velocities of the host galaxies will provide a dark energy probe which is competitive with other widely discussed methods. Adding information from this test to type Ia supernova photometric luminosity distances from the same experiment, plus the cosmic microwave background power spectrum from the Planck satellite, improves the Dark Energy Task Force figure of merit by a factor of 1.8. Pairwise velocity measurements require no additional observational effort beyond that required to perform the traditional supernova luminosity distance test, but may provide complementary constraints on dark energy parameters and the nature of gravity. Incorporating additional spectroscopic redshift follow-up observations could provide important dark energy constraints from pairwise velocities alone. Mean pairwise velocities are much less sensitive to systematic redshift errors than the luminosity distance test or weak lensing techniques, and also are only mildly affected by systematic evolution of supernova luminosity.

Bhattacharya, Suman; Kosowsky, Arthur; Newman, Jeffrey A.; Zentner, Andrew R. [T-2, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

2011-02-15T23:59:59.000Z

196

Excited-state OH Masers and Supernova Remnants  

E-Print Network [OSTI]

The collisionally pumped, ground-state 1720 MHz maser line of OH is widely recognized as a tracer for shocked regions and observed in star forming regions and supernova remnants. Whereas some lines of excited states of OH have been detected and studied in star forming regions, the subject of excited-state OH in supernova remnants -- where high collision rates are to be expected -- is only recently being addressed. Modeling of collisional excitation of OH demonstrates that 1720, 4765 and 6049 MHz masers can occur under similar conditions in regions of shocked gas. In particular, the 6049 and 4765 MHz masers become more significant at increased OH column densities where the 1720 MHz masers begin to be quenched. In supernova remnants, the detection of excited-state OH line maser emission could therefore serve as a probe of regions of higher column densities. Using the Very Large Array, we searched for excited-state OH in the 4.7, 7.8, 8.2 and 23.8 GHz lines in four well studied supernova remnants with strong 1720 MHz maser emission (SgrAEast, W28, W44 and IC443). No detections were made, at typical detection limits of around 10 mJy/beam. The search for the 6 GHz lines were done using Effelsberg since the VLA receivers did not cover those frequencies, and are reported on in an accompanying letter (Fish, Sjouwerman & Pihlstrom 2007). We also cross-correlated the positions of known supernova remnants with the positions of 1612 MHz maser emission obtained from blind surveys. No probable associations were found, perhaps except in the SgrAEast region. The lack of detections of excited-state OH indicates that the OH column densities suffice for 1720 MHz inversion but not for inversion of excited-state transitions, consistent with the expected results for C-type shocks.

Ylva M. Pihlström; Vincent L. Fish; Loránt O. Sjouwerman; Laura K. Zschaechner; Philip B. Lockett; Moshe Elitzur

2007-12-29T23:59:59.000Z

197

The supernova that destroyed a galaxy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August » August » The supernova that destroyed a galaxy The supernova that destroyed a galaxy The research may solve the long-standing puzzle of how supermassive black holes were formed in the centers of some galaxies less then a billion years after the Big Bang. August 5, 2013 Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) Supernova of a 55,000 solar-mass star in a primitive galaxy (explosion in a low-density region) The Los Alamos simulation is the most realistic cosmological supernova simulation ever performed of this process. New supercomputer simulations by Los Alamos scientists and collaborators capture in unprecedented detail extremely powerful supernovae explosions in the early universe and their effect on the nascent galaxies that gave birth

198

Massive Stars and their Supernovae  

E-Print Network [OSTI]

Massive stars and their supernovae are prominent sources of radioactive isotopes, the observations of which thus can help to improve our astrophysical models of those. Our understanding of stellar evolution and the final explosive endpoints such as supernovae or hypernovae or gamma-ray bursts relies on the combination of magneto-hydrodynamics, energy generation due to nuclear reactions accompanying composition changes, radiation transport, and thermodynamic properties (such as the equation of state of stellar matter). Nuclear energy production includes all nuclear reactions triggered during stellar evolution and explosive end stages, also among unstable isotopes produced on the way. Radiation transport covers atomic physics (e.g. opacities) for photon transport, but also nuclear physics and neutrino nucleon/nucleus interactions in late phases and core collapse. Here we want to focus on the astrophysical aspects, i.e. a description of the evolution of massive stars and their endpoints, with a special emphasis ...

Thielemann, Friedrich-Karl; Liebendörfer, Matthias; Diehl, Roland; 10.1007/978-3-642-12698-7_4

2010-01-01T23:59:59.000Z

199

Dark energy, gravitation and supernovae  

E-Print Network [OSTI]

The discovery of the acceleration of the rate of expansion of the Universe fosters new explorations of the behavior of gravitation theories in the cosmological context. Either the GR framework is valid but a cosmic component with a negative equation of state is dominating the energy--matter contents or the Universe is better described at large by a theory that departs from GR. In this review we address theoretical alternatives that have been explored through supernovae.

Pilar Ruiz-Lapuente

2007-04-09T23:59:59.000Z

200

Supernova Recognition using Support Vector Machines  

E-Print Network [OSTI]

tion Using Support Vector Machines and Neural Networks.using Support Vector Machines Raquel A. Romano Cecilia R.nding supernovae do not employ machine learning techniques.

Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries  

Science Journals Connector (OSTI)

Helium that accretes onto a carbon/oxygen white dwarf in double white dwarf AM Canum Venaticorum (AM CVn) binaries undergoes unstable thermonuclear flashes when the orbital period is in the 3.5-25 minute range. At the shortest orbital periods (and highest accretion rates, > 10-7 M? yr-1), the flashes are weak and likely lead to the helium equivalent of classical nova outbursts. However, as the orbit widens and drops, the mass required for the unstable ignition increases, leading to progressively more violent flashes up to a final flash with helium shell mass ?0.02-0.1 M?. The high pressures of these last flashes allow the burning to produce the radioactive elements 48Cr, 52Fe, and 56Ni that power a faint (MV = -15 to -18) and rapidly rising (few days) thermonuclear supernova. Current galactic AM CVn space densities imply one such explosion every 5,000-15,000 years in 1011 M? of old stars (?2%-6% of the Type Ia rate in E/SO galaxies). These ".Ia" supernovae (one-tenth as bright for one-tenth the time as a Type Ia supernovae) are excellent targets for deep (e.g., V = 24) searches with nightly cadences, potentially yielding an all-sky rate of 1000 per year.

Lars Bildsten; Ken J. Shen; Nevin N. Weinberg; Gijs Nelemans

2007-01-01T23:59:59.000Z

202

Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries  

E-Print Network [OSTI]

Helium that accretes onto a Carbon/Oxygen white dwarf in the double white dwarf AM Canum Venaticorum (AM CVn) binaries undergoes unstable thermonuclear flashes when the orbital period is in the 3.5-25 minute range. At the shortest orbital periods (and highest accretion rates, Mdot > 10^-7 Msol/yr), the flashes are weak and likely lead to the Helium equivalent of classical nova outbursts. However, as the orbit widens and Mdot drops, the mass required for the unstable ignition increases, leading to progressively more violent flashes up to a final flash with Helium shell mass ~ 0.02-0.1 Msol. The high pressures of these last flashes allow the burning to produce the radioactive elements 48Cr, 52Fe, and 56Ni that power a faint (M_V in the range of -15 to -18) and rapidly rising (few days) thermonuclear supernova. Current galactic AM CVn space densities imply one such explosion every 5,000-15,000 years in 10^11 Msol of old stars (~ 2-6% of the Type Ia rate in E/SO galaxies). These ".Ia" supernovae (one-tenth as bright for one-tenth the time as a Type Ia supernovae) are excellent targets for deep (e.g. V=24) searches with nightly cadences, potentially yielding an all-sky rate of 1,000 per year.

Lars Bildsten; Ken J. Shen; Nevin N. Weinberg; Gijs Nelemans

2007-05-06T23:59:59.000Z

203

Principal components of dark energy with Supernova Legacy Survey supernovae: The effects of systematic errors  

Science Journals Connector (OSTI)

We study the effects of systematic errors in Type Ia supernova (SN Ia) measurements on dark energy (DE) constraints using current data from the Supernova Legacy Survey. We consider how SN systematic errors affect constraints from combined SN Ia, baryon acoustic oscillations, and cosmic microwave background data, given that SNe Ia still provide the strongest constraints on DE but are arguably subject to more significant systematics than the latter two probes. We focus our attention on the temporal evolution of DE described in terms of principal components (PCs) of the equation of state, though we examine a few of the more common, simpler parametrizations as well. We find that the SN Ia systematics degrade the total generalized figure of merit, which characterizes constraints in multidimensional DE parameter space, by a factor of 3 to 4. Nevertheless, overall constraints obtained on roughly five PCs are very good even with current data and systematics. We further show that current constraints are robust to allowing for the finite detection significance of the baryon acoustic oscillations feature in galaxy surveys.

Eduardo J. Ruiz; Daniel L. Shafer; Dragan Huterer; Alexander Conley

2012-11-06T23:59:59.000Z

204

Extended supernova shock breakout signals from inflated stellar envelopes  

E-Print Network [OSTI]

Stars close to the Eddington luminosity can have large low-density inflated envelopes. We show that the rise times of shock breakout signals from supernovae can be extended significantly if supernova progenitors have an inflated stellar envelope. If the shock breakout occurs in such inflated envelopes, the shock breakout signals diffuse in them, and their rise time can be significantly extended. Then, the rise times of the shock breakout signals are dominated by the diffusion time in the inflated envelope rather than the light-crossing time of the progenitors. We show that our inflated Wolf-Rayet star models whose radii are of the order of the solar radius can have shock breakout signals which are longer than ~100 sec. The existence of inflated envelopes in Wolf-Rayet supernova progenitors may be related to the mysterious long shock breakout signal observed in Type Ib SN 2008D. Extended shock breakout signals may provide evidence for the existence of inflated stellar envelopes and can be used to constrain the...

Moriya, Takashi J; Langer, Norbert

2015-01-01T23:59:59.000Z

205

Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications  

E-Print Network [OSTI]

and Bounds on qo. in Thermonuclear Supernovae (eds P. Ruiz-novae as clocks. in Thermonuclear Supernovae (eds P. Ruiz-distance indicators. in Thermonuclear Supernovae (eds P.

Perlmutter, S.

2010-01-01T23:59:59.000Z

206

E-Print Network 3.0 - atypical thermonuclear supernovae Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermonuclear supernovae Search Powered by Explorit Topic List Advanced Search Sample search results for: atypical thermonuclear supernovae Page: << < 1 2 3 4 5 > >> 1 Supernova...

207

Supernova observations for neutrino mixing parameters  

SciTech Connect (OSTI)

The neutrino spectra from a future galactic core collapse supernova could reveal information on the neutrino mixing pattern, especially on {theta}{sub 13} and the mass hierarchy. I briefly outline our current understanding of neutrino flavor conversions inside a supernova, and point out possible signatures of various neutrino mixing scenarios that the neutrino detectors should look for. Supernova neutrinos provide a probe for {theta}{sub 13} and mass hierarchy that is complementary to, and sometimes even better than, the current and proposed terrestrial neutrino oscillation experiments.

Dighe, Amol [Department of Theoretical Physics, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

2011-10-06T23:59:59.000Z

208

Late-time supernova light curves: the effect of internal conversion and Auger electrons  

Science Journals Connector (OSTI)

......of both core collapse and thermonuclear supernovae. We point out...the light curves of both thermonuclear (Type Ia) and, at least...expansion so that nuclear fusion ceases and radioactive decay...1 SNe Ia To date, the thermonuclear SNe with data coverage beyond......

I. R. Seitenzahl; S. Taubenberger; S. A. Sim

2009-11-21T23:59:59.000Z

209

Comparison of Field Galaxy and Supernovae Host Galaxy Properties Rachael Merritt  

E-Print Network [OSTI]

of the thermonuclear and core collapse hosts, this project confirms that field properties fall between supernova host properties. #12;2 Introduction: In 2011, Joel Williams compared properties of thermonuclear (type I) and core Smith and Matthew Taylor, Williams' sample consisted of 34 thermonuclear and 75 core collapse hosts

Cinabro, David

210

Measuring dark energy spatial inhomogeneity with supernova data  

E-Print Network [OSTI]

The gravitational lensing distortion of distant sources by the large-scale distribution of matter in the Universe has been extensively studied. In contrast, very little is known about the effects due to the large-scale distribution of dark energy. We discuss the use of Type Ia supernovae as probes of the spatial inhomogeneity and anisotropy of dark energy. We show that a shallow, almost all-sky survey can limit rms dark energy fluctuations at the horizon scale down to a fractional energy density of ~10^-4

Asantha Cooray; Daniel E. Holz; Robert Caldwell

2008-12-01T23:59:59.000Z

211

Measuring dark energy spatial inhomogeneity with supernova data  

SciTech Connect (OSTI)

The gravitational lensing distortion of distant sources by the matter in the Universe has been extensively studied. In contrast, very little is known about the effects due to the large-scale distribution of dark energy. We discuss the use of Type Ia supernovae as probes of the spatial inhomogeneity and anisotropy of dark energy. We show that a shallow, almost all-sky survey can limit rms dark energy fluctuations at the horizon scale down to ? 10{sup ?3} of the energy density.

Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Holz, Daniel E. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Caldwell, Robert, E-mail: acooray@uci.edu, E-mail: abc@lanl.gov, E-mail: robert.r.caldwell@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

2010-11-01T23:59:59.000Z

212

Supernova Remnant Progenitor Masses in M31  

E-Print Network [OSTI]

Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped ...

Jennings, Zachary G; Murphy, Jeremiah W; Dalcanton, Julianne J; Gilbert, Karoline M; Dolphin, Andrew E; Fouesneau, Morgan; Weisz, Daniel R

2012-01-01T23:59:59.000Z

213

String Landscape and Supernovae Ia  

E-Print Network [OSTI]

We present a model for the triggering of Supernovae Ia (SN Ia) by a phase transition to exact supersymmetry (susy) in the core of a white dwarf star. The model, which accomodates the data on SN Ia and avoids the problems of the standard astrophysical accretion based picture, is based on string landscape ideas and assumes that the decay of the false broken susy vacuum is enhanced at high density. In a slowly expanding susy bubble, the conversion of pairs of fermions to pairs of degenerate scalars releases a significant amount of energy which induces fusion in the surrounding normal matter shell. After cooling, the absence of degeneracy pressure causes the susy bubble to collapse to a black hole of about 0.1 solar mass or to some other stable susy object.

L. Clavelli

2011-10-09T23:59:59.000Z

214

Supercomputing and the search for supernovae  

ScienceCinema (OSTI)

Berkeley Lab's Peter Nugent discusses "Supercomputing and the search for supernovae" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Nugent, Peter

2014-06-23T23:59:59.000Z

215

Supernovae and cosmology with future European facilities  

Science Journals Connector (OSTI)

...high-redshift SN samples into the NIR. (i) Dark Energy Survey and VISTA The Dark Energy Survey (DES, see http://www.darkenergysurvey...Supernova simulations and strategies for the Dark Energy Survey. Astrophys. J. 753, 152. 10.1088...

2013-01-01T23:59:59.000Z

216

How to See a Recently Discovered Supernova  

ScienceCinema (OSTI)

Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth ? approximately 21 million light-years away ? than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release: http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/

Nugent, Peter

2013-05-29T23:59:59.000Z

217

Supercomputing and the search for supernovae  

SciTech Connect (OSTI)

Berkeley Lab's Peter Nugent discusses "Supercomputing and the search for supernovae" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Nugent, Peter

2013-10-31T23:59:59.000Z

218

UV Light Curves of Thermonuclear Supernovae  

E-Print Network [OSTI]

Ultraviolet light curves are calculated for several thermonuclear supernova models using a multifrequency radiation hydrodynamic code. It is found that Chandrasekhar-mass models produce very similar light curves both for detonation and deflagration. Sub-Chandrasekhar-mass models essentially differ from ``normal'' Chandrasekhar ones regarding behaviour of their UV fluxes. Differences in absolute brightness and in shape of light curves of thermonuclear supernovae could be detectable up to 300 Mpc with modern UV space telescopes.

S. I. Blinnikov; E. I. Sorokina

2000-03-17T23:59:59.000Z

219

The variation of the fine structure constant: testing the dipole model with thermonuclear supernovae  

E-Print Network [OSTI]

The large-number hypothesis conjectures that fundamental constants may vary. Accordingly, the spacetime variation of fundamental constants has been an active subject of research for decades. Recently, using data obtained with large telescopes a phenomenological model in which the fine structure constant might vary spatially has been proposed. We test whether this hypothetical spatial variation of {\\alpha}, which follows a dipole law, is compatible with the data of distant thermonuclear supernovae. Unlike previous works, in our calculations we consider not only the variation of the luminosity distance when a varying {\\alpha} is adopted, but we also take into account the variation of the peak luminosity of Type Ia supernovae resulting from a variation of {\\alpha}. This is done using an empirical relation for the peak bolometric magnitude of thermonuclear supernovae that correctly reproduces the results of detailed numerical simulations. We find that there is no significant difference between the several phenome...

Kraiselburd, Lucila; Negrelli, Carolina; Berro, Enrique García

2014-01-01T23:59:59.000Z

220

White dwarf mergers,White dwarf mergers, thermonuclear supernovae,thermonuclear supernovae,  

E-Print Network [OSTI]

White dwarf mergers,White dwarf mergers, thermonuclear supernovae,thermonuclear supernovae fusion is ignited. Degenerate, hence runaway. #12;CO white dwarf accretes, either from companion, or from disk after merger. As it approaches maximum mass, C fusion is ignited. Degenerate, hence runaway. SN Ia

Hinton, Jim

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Synoptic Sky Surveys and the Diffuse Supernova Neutrino Background: Removing Astrophysical Uncertainties and Revealing Invisible Supernovae  

E-Print Network [OSTI]

The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (+/-40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated +/-5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.

Amy Lien; Brian D. Fields; John F. Beacom

2010-01-20T23:59:59.000Z

222

Solution Structure of Ptu1, a Toxin from the Assassin Bug Peirates turpis That Blocks the Voltage-Sensitive Calcium Channel N-Type  

Science Journals Connector (OSTI)

Ptu1 is a toxin from the assassin bug Peirates turpis which has been demonstrated to bind reversibly the N-type calcium channels and to have lower affinity than the ?-conotoxin MVIIA. We have determined the solution structure of Ptu1 by use of ...

Cédric Bernard; Gerardo Corzo; Amor Mosbah; Terumi Nakajima; Hervé Darbon

2001-10-02T23:59:59.000Z

223

Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics  

E-Print Network [OSTI]

We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.

Tomasz Plewa

2006-11-24T23:59:59.000Z

224

Berkeley Supernova Ia Program – V. Late-time spectra of Type Ia Supernovae  

Science Journals Connector (OSTI)

......normal-velocity objects, the red points HV objects and the black...A. Diamond-Stanic, E. Gates, K. Hiner, M. Kandrashoff...2004) 128:387. Hicken M. , Wood-Vasey W. M., Blondin S...al. ApJ (2009) 699:L139. Wood-Vasey W. M. , et al. ApJ......

Jeffrey M. Silverman; Mohan Ganeshalingam; Alexei V. Filippenko

2013-01-01T23:59:59.000Z

225

Tidally-induced thermonuclear Supernovae  

E-Print Network [OSTI]

We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2\\times 10^5$ M$_\\odot$ swallow a typical 0.6 M$_\\odot$ dwarf before their tidal forces can overwhelm the star's self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{\\rm Edd} \\simeq 10^{41} {\\rm erg/s} M_{\\rm bh}/1000 M$_\\odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

S. Rosswog; E. Ramirez-Ruiz; W. R. Hix

2008-11-13T23:59:59.000Z

226

Supernova remnants in the Magellanic Clouds. III  

SciTech Connect (OSTI)

As part of a continuing study of supernova remnants in the Magellanic Clouds, narrow-band optical images were obtained of seven SNR candidates in the LMC selected on the basis of radio and/or X-ray observations. Four of the candidates are confirmed as new SNRs. The object 0536-692 appears to be a superbubble resulting from one or more supernovae and the stellar winds from the large OB stellar association, NGC 2044, within its interior. The latest results bring the total number of SNRs with optical identifications in the Large Magellanic Cloud to 32. 16 references.

Mathewson, D.S.; Ford, V.L.; Tuohy, I.R.; Mills, B.Y.; Turtle, A.J.; Helfand, D.J.

1985-06-01T23:59:59.000Z

227

The Detectability of Pair-Production Supernovae at z < 6  

E-Print Network [OSTI]

Nonrotating, zero metallicity stars with initial masses 140 production supernovae (PPSNe), in which an electron-positron pair-production instability triggers explosive nuclear burning. Interest in such stars has been rekindled by recent theoretical studies that suggest primordial molecular clouds preferentially form stars with these masses. Since metal enrichment is a local process, the resulting PPSNe could occur over a broad range of redshifts, in pockets of metal-free gas. Using the implicit hydrodynamics code KEPLER, we have calculated a set of PPSN light curves that addresses the theoretical uncertainties and allows us to assess observational strategies for finding these objects at intermediate redshifts. The peak luminosities of typical PPSNe are only slightly greater than those of Type Ia, but they remain bright much longer (~ 1 year) and have hydrogen lines. Ongoing supernova searches may soon be able to limit the contribution of these very massive stars to < 1% of the total star formation rate density out to z=2 which already provides useful constraints for theoretical models. The planned Joint Dark Energy Mission satellite will be able to extend these limits out to z=6.

Evan Scannapieco; Piero Madau; Stan Woosley; Alexander Heger; Andrea Ferrara

2005-07-08T23:59:59.000Z

228

ELECTRON-CAPTURE SUPERNOVAE AS ORIGIN OF {sup 48}Ca  

SciTech Connect (OSTI)

We report that electron-capture supernovae (ECSNe), arising from collapsing oxygen-neon-magnesium cores, are a possible source of {sup 48}Ca, whose origin has remained a longstanding puzzle. Our two-dimensional, self-consistent explosion model of an ECSN predicts ejection of neutron-rich matter with electron fractions Y{sub e} Almost-Equal-To 0.40-0.42 and relatively low entropies, s Almost-Equal-To 13-15 k{sub B} per nucleon (k{sub B} is the Boltzmann constant). Post-processing nucleosynthesis calculations result in appreciable production of {sup 48}Ca in such neutron-rich and low-entropy matter during the quasi-nuclear equilibrium and subsequent freezeout phases. The amount of ejected {sup 48}Ca can account for that in the solar inventory when we consider possible uncertainties in the entropies. ECSNe could thus be a site of {sup 48}Ca production in addition to a hypothetical, rare class of high-density Type Ia supernovae.

Wanajo, Shinya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Janka, Hans-Thomas; Mueller, Bernhard, E-mail: shinya.wanajo@nao.ac.jp [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

2013-04-20T23:59:59.000Z

229

General Relativistic Instability Supernova of a Supermassive Population III Star  

E-Print Network [OSTI]

The formation of supermassive Population III stars with masses $\\gtrsim$ 10,000 Msun in primeval galaxies in strong UV backgrounds at $z \\sim$ 15 may be the most viable pathway to the formation of supermassive black holes by $z \\sim$ 7. Most of these stars are expected to live for short times and then directly collapse to black holes, with little or no mass loss over their lives. But we have now discovered that non-rotating primordial stars with masses close to 55,000 Msun can instead die as highly energetic thermonuclear supernovae powered by explosive helium burning, releasing up to 10$ ^{55}$ erg, or about 10,000 times the energy of a Type Ia supernova. The explosion is triggered by the general relativistic contribution of thermal photons to gravity in the core of the star, which causes the core to contract and explosively burn. The energy release completely unbinds the star, leaving no compact remnant, and about half of the mass of the star is ejected into the early cosmos in the form of heavy elements. T...

Chen, Ke-Jung; Woosley, Stan; Almgren, Ann; Whalen, Daniel; Johnson, Jarrett

2014-01-01T23:59:59.000Z

230

K-corrections and spectral templates of Type Ia supernovae  

E-Print Network [OSTI]

discovery that the cosmic expansion is now accelerating; this acceleration is believed to be driven by dark energy,

Hsiao, E. Y.

2008-01-01T23:59:59.000Z

231

Type Ia Supernova Spectral Line Ratios as Luminosity Indicators  

E-Print Network [OSTI]

crucial role in the discovery of the dark energy, v i a theled to the discovery of the "dark energy" (Riess et al.

Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

2005-01-01T23:59:59.000Z

232

Closest Type Ia Supernova in Decades Solves a Cosmic Mystery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

use to measure cosmic growth, a technique that in 1998 led to the discovery of dark energy - and 13 years later to a Nobel Prize, "for the discovery of the accelerating...

233

The Photometric Properties of Nearby Type Ia Supernovae  

E-Print Network [OSTI]

discovery and subsequent study of the accelerating expansion of the Universe and dark energy (discovery that the Universe is expanding at an accelerating rate, probably due to an unexplained, unidentified dark energy.

Ganeshalingam, Mohan

2012-01-01T23:59:59.000Z

234

Burning Thermals in Type Ia Supernovae A. J. Aspden1  

E-Print Network [OSTI]

. It is generally agreed that they result from the thermonuclear explosion of a white dwarf accreting matter from that a thermonuclear explosion is involved means that a realistic model requires an understanding of both the ignition

235

The Photometric Properties of Nearby Type Ia Supernovae  

E-Print Network [OSTI]

1.1.1 Thermonuclear SNe . . . . . . 1.1.2 Core-Collapseby which they explode: thermonuclear and core collapse.thesis is focused on thermonuclear SNe, I describe the two

Ganeshalingam, Mohan

2012-01-01T23:59:59.000Z

236

Multiwavelength observations of the Type IIb supernova 2009mg  

Science Journals Connector (OSTI)

......line shows the fit of the Jeffery model. The overall combined...1997, ApJ, 477, 865. Jeffery D. J. , 1999, preprint (arXiv:e-prints). Jeffery D. J. , et al, 1994...A. , Clocchiatti A., Benjamin R., Lester D. F......

S. R. Oates; A. J. Bayless; M. D. Stritzinger; T. Prichard; J. L. Prieto; S. Immler; P. J. Brown; A. A. Breeveld; M. De Pasquale; N. P. M. Kuin; M. Hamuy; S. T. Holland; F. Taddia; P. W. A. Roming

2012-08-01T23:59:59.000Z

237

Circumstellar interaction of the type Ia supernova 2002ic  

Science Journals Connector (OSTI)

......with arguments in favour of a high-energy SN Ia event in this case, raises...WD explosion with a high kinetic energy of ejecta. The SN 1.5 origin of...2002ic-like events requires an accurate energy audit, for which the direct detection......

N. N. Chugai; R. A. Chevalier; P. Lundqvist

2004-12-01T23:59:59.000Z

238

LES Simulations of Turbulent Combustion in a Type Ia Supernovae  

E-Print Network [OSTI]

to be thermonuclear explosions of white dwarfs. SNIa are important sources of energy and chemical elements deposited of the burning are all determined by the speed of thermonuclear burning [27]. The problem of turbulent combustion. The mechanism and the speed of thermonuclear burning in SNIa remain an unsolved theoretical problem. A recent

New York at Stoney Brook, State University of

239

Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulation was conducted using a specialized low Mach number hydrodynamics code for thermonuclear flames. Adaptive mesh refinement was used to focus resolution on the bubble,...

240

Merging white dwarfs and thermonuclear supernovae  

Science Journals Connector (OSTI)

...across the Universe . Thermonuclear supernovae result when...companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic...adiabatically, until carbon fusion becomes faster than...time scales and the thermonuclear runaway starts (along...

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Essential ingredients in core-collapse supernovae  

SciTech Connect (OSTI)

Carrying 10{sup 44} joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6354 (United States) [Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6354 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Lentz, Eric J.; Chertkow, M. Austin; Harris, J. Austin [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States)] [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Endeve, Eirik [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6008 (United States)] [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6008 (United States); Baird, Mark [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6003 (United States)] [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6003 (United States); Messer, O. E. Bronson [Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6354 (United States) [Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6354 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37831-6008 (United States); Mezzacappa, Anthony [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States) [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Bruenn, Stephen [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States)] [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, John [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)] [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

2014-04-15T23:59:59.000Z

242

GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS  

SciTech Connect (OSTI)

A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.

Zhang, T. X. [Physics Department, Alabama A and M University, Normal, AL 35762 (United States)

2010-12-20T23:59:59.000Z

243

Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey  

SciTech Connect (OSTI)

We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Survey in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.

Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Conley, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Hicken, M.; Krisciunas, K.; /Harvard-Smithsonian Ctr. Astrophys.

2007-01-05T23:59:59.000Z

244

A simple varying-speed-of-light hypothesis is enough for explaining high-redshift supernovae data  

E-Print Network [OSTI]

The hypothesis that the speed of light decreases by nearly 2 cm per sec and per year is discussed within the frame of a simple phenomenological model. It is shown that this hypothesis can provide an alternative explanation for the redshift-distance relationship of type Ia supernovae, which is nowadays given in terms of a new form of (dark) energy of unknown origin.

Yves-Henri Sanejouand

2005-09-20T23:59:59.000Z

245

What We Know About Dark Energy From Supernovae  

ScienceCinema (OSTI)

The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.

Alex Filippenko

2010-01-08T23:59:59.000Z

246

Merging White Dwarfs and Thermonuclear Supernovae  

E-Print Network [OSTI]

Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. I then turn to possible observational tests, in particular those that test the absence or presence of electron captures during the burning.

van Kerkwijk, Marten H

2012-01-01T23:59:59.000Z

247

Dynamical Collective Calculation of Supernova Neutrino Signals  

SciTech Connect (OSTI)

We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

Gava, Jerome; Kneller, James; Volpe, Cristina; McLaughlin, G. C. [Institut de Physique Nucleaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

2009-08-14T23:59:59.000Z

248

Nucleosynthesis in O-Ne-Mg Supernovae  

SciTech Connect (OSTI)

We have studied detailed nucleosynthesis in the shocked surface layers of an oxygen-neon-magnesium core collapse supernova with an eye to determining whether the conditions are suitable for r-process nucleosynthesis. We find no such conditions in an unmodified model, but do find overproduction of N=50 nuclei (previously seen in early neutron-rich neutrino winds) in amounts that, if ejected, would pose serious problems for Galactic chemical evolution.

Hoffman, R D; Janka, H; Muller, B

2007-12-18T23:59:59.000Z

249

E-Print Network 3.0 - aspherical core-collapse supernovae Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supernovae: New challenges and perspectives 12;Outline Introduction... Gamma-ray bursts Nucleosynthesis, etc.. Up to now only SN1987A TAMA300 Core-collapse Supernovae...

250

The circumstellar matter of supernova 2014J and the core-degenerate scenario  

E-Print Network [OSTI]

I show that the circumstellar matter (CSM) of the type Ia supernova 2014J is too massive and its momentum too large to be accounted for by any but the core-degenerate (CD) scenario for type Ia supernovae. Assuming the absorbing gas is of CSM origin, the several shells responsible of the absorption potassium lines are accounted for by a mass loss episode from a massive asymptotic giant branch star during a common envelope phase with a white dwarf companion. The time-varying potassium lines can be accounted for by ionization of neutral potassium and the Na-from-dust absorption (NaDA) model. Before explosion some of the potassium resides in the gas phase and some in dust. Weakening in absorption strength is caused by potassium-ionizing radiation of the supernova, while release of atomic potassium from dust increases the absorption. I conclude that if the absorbing gas originated from the progenitor of SN 2014J, then a common envelope phase took place about 15,000 years ago, leading to the merging of the core wit...

Soker, Noam

2015-01-01T23:59:59.000Z

251

Rates of superluminous supernovae at z 0.2  

Science Journals Connector (OSTI)

......research-article Article Rates of superluminous supernovae...ACT 2611, Australia 3 Physics Department, University...calculate the volumetric rate of superluminous supernovae...in our unfiltered band pass and may suggest an even...we measure the SLSN-I rate to be about (32 )Gpcyrh......

Robert M. Quimby; Fang Yuan; Carl Akerlof; J. Craig Wheeler

2013-01-01T23:59:59.000Z

252

Synthetic Spectrum Methods for Three-Dimensional Supernova Models  

E-Print Network [OSTI]

Current observations stimulate the production of fully three-dimensional explosion models, which in turn motivates three-dimensional spectrum synthesis for supernova atmospheres. We briefly discuss techniques adapted to address the latter problem, and consider some fundamentals of line formation in supernovae without recourse to spherical symmetry. Direct and detailed extensions of the technique are discussed, and future work is outlined.

R. C. Thomas

2003-10-21T23:59:59.000Z

253

Flavor Changing Supersymmetry Interactions in a Supernova  

E-Print Network [OSTI]

We consider for the first time R-parity violating interactions of the Minimal Standard Supersymmetric Model involving neutrinos and quarks (``flavor changing neutral currents'', FCNC's) in the infall stage of stellar collapse. Our considerations extend to other kinds of flavor changing neutrino reactions as well. We examine non-forward neutrino scattering processes on heavy nuclei and free nucleons in the supernova core. This investigation has led to four principal original discoveries/products: (1) first calculation of neutrino flavor changing cross sections for spin one half (e.g. free nucleon) and spin zero nuclear targets; (2) discovery of nuclear mass number squared (A squared) coherent amplification of neutrino-quark FCNC's; (3) analysis of FCNC-induced alteration of electron capture and weak/nuclear equilibrium in the collapsing core; and (4) generalization of the calculated cross sections (mentioned in 1) for the case of hot heavy nuclei to be used in collapse/supernova and neutrino transport simulations. The scattering processes that we consider allow electron neutrinos to change flavor during core collapse, thereby opening holes in the electron neutrino sea, which allows electron capture to proceed and results in a lower core electron fraction. A lower electron fraction implies a lower homologous core mass, a lower shock energy, and a greater nuclear photo-disintegration burden for the shock. In addition, unlike the standard supernova model, the core now could have net muon and/or tau lepton numbers. These effects could be significant even for supersymmetric couplings below current experimental bounds.

Philip S. Amanik; George M. Fuller; Benjamin Grinstein

2005-10-14T23:59:59.000Z

254

Supernova neutrinos, giant resonances, and nucleosynthesis  

SciTech Connect (OSTI)

Almost all of the 3{center dot}10{sup 53} ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. I argue that the resulting spallation reactions are an important nucleosynthesis mechanism that may be responsible for the galactic abundances of {sup 7}Li, {sup 11}B, {sup 19}F, {sup 138}La, {sup 180}Ta, and approximately a dozen other light nuclei. 18 refs., 1 fig., 1 tab.

Haxton, W.

1990-01-01T23:59:59.000Z

255

Uncorrelated Measurements of the Cosmic Expansion History and Dark Energy from Supernovae  

E-Print Network [OSTI]

We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter Omega_m can be accurately measured from other data, then the dark energy density history X(z)=rho_X(z)/rho_X(0) can trivially be derived from this expansion history H(z). In contrast to customary ``black box'' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z)^{-1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) ``gold'' sample to be consistent with the ``vanilla'' concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K-corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30-40% accuracy.

Yun Wang; Max Tegmark

2005-01-18T23:59:59.000Z

256

Near-Infrared [Fe II] and H2 Line Observations of the Supernova Remnant 3C 396: Probing the Pre-supernova Circumstellar Materials  

E-Print Network [OSTI]

We present the results of near-infrared [Fe II] and H2 line imaging and spectroscopic observations of the supernova remnant 3C 396 using the Palomar 5 m Hale telescope. We detect long, filamentary [Fe II] emission delineating the inner edge of the radio emission in the western boundary of the remnant in imaging observations, together with a bright [Fe II] emission clump close to the remnant center. There appears to be faint, diffuse [Fe II] emission between the central clump and the western filamentary emission. The spectroscopic observations determine the expansion velocity of the central clump to be ~56 km/s. This is far smaller than the expansion velocity of 3C 396 obtained from X-ray observations, implying the inhomogeneity of the ambient medium. The electron number density of the [Fe II] emission gas is < 2,000 cm-3. The H2 line emission, on the other hand, lies slightly outside the filamentary [Fe II] emission in the western boundary, and forms a rather straight filament. We suggest that the [Fe II] emission represents dense clumps in the wind material from the red supergiant phase of a Type IIL/b progenitor of 3C 396 which have been swept up by the supernova remnant shocks. The H2 emission may represent either the boundary of a wind bubble produced during the main-sequence phase of the progenitor or molecular clumps left over inside the bubble. We propose that the near-infrared [Fe II] and H2 emission observed in several supernova remnants of Type IIL/b SNe likely has the same origin.

Ho-Gyu Lee; Dae-Sik Moon; Bon-Chul Koo; Jae-Joon Lee; Keith Matthews

2008-10-05T23:59:59.000Z

257

Thermonuclear supernova simulations with stochastic ignition  

E-Print Network [OSTI]

We apply an ad hoc model for dynamical ignition in three-dimensional numerical simulations of thermonuclear supernovae assuming pure deflagrations. The model makes use of the statistical description of temperature fluctuations in the pre-supernova core proposed by Wunsch & Woosley (2004). Randomness in time is implemented by means of a Poisson process. We are able to vary the explosion energy and nucleosynthesis depending on the free parameter of the model which controls the rapidity of the ignition process. However, beyond a certain threshold, the strength of the explosion saturates and the outcome appears to be robust with respect to number of ignitions. In the most energetic explosions, we find about 0.75 solar masses of iron group elements. Other than in simulations with simultaneous multi-spot ignition, the amount of unburned carbon and oxygen at radial velocities of a few 1000 km/s tends to be reduced for an ever increasing number of ignition events and, accordingly, more pronounced layering results.

W. Schmidt; J. C. Niemeyer

2005-10-14T23:59:59.000Z

258

A multi-wavelength investigation of a radio-loud supernova interacting with Helium-dominated circumstellar material  

E-Print Network [OSTI]

We present the discovery, classification, and extensive panchromatic follow-up observations of PTF11qcj, a type Ibn supernova discovered by the Palomar Transient Factory. Our observations with the Karl G. Jansky Very Large Array show that this event is the first radio-loud member of the rare Ibn class: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated supernova 1998bw (L5GHz ~ 10^{29} erg/s/Hz). PTF11qcj is also detected in X-rays with the Chandra observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the supernova interaction with a Helium-rich circumstellar material. The radio observations suggest a progenitor mass-loss rate of ~ 10^{-4} Msun/yr x (v_w/1000 km/s), and a velocity of ~(0.3-0.5)c for the fastest moving ejecta (at about 10d after explosion). However, these estimates are derived assuming the simplest model of supernova ejecta interacting with a smooth circumstellar material, and could be improved via modeling ac...

Corsi, A; Gal-Yam, A; Frail, D A; Kulkarni, S R; Fox, D B; Kasliwal, M M; Sullivan, M; Horesh, A; Carpenter, J; Maguire, K; Arcavi, I; Cenko, S B; Cao, Y; Mooley, K; Pan, Y -C; Sesar, B; Sternberg, A; Xu, D; Bersier, D; James, P; Bloom, J S; Nugent, P E

2013-01-01T23:59:59.000Z

259

Realistic Earth matter effects and a method to acquire information about small ?_{13} in the detection of supernova neutrinos  

E-Print Network [OSTI]

In this paper, we first calculate the realistic Earth matter effects in the detection of type II supernova neutrinos at the Daya Bay reactor neutrino experiment which is currently under construction. It is found that the Earth matter effects depend on the neutrino incident angle $\\theta$, the neutrino mass hierarchy $\\Delta m_{31}^{2}$, the crossing probability at the high resonance region inside the supernova, $P_{H}$, the neutrino temperature, $T_{\\alpha}$, and the pinching parameter in the neutrino spectrum, $\\eta_{\\alpha}$. We also take into account the collective effects due to neutrino-neutrino interactions inside the supernova. With the expression for the dependence of $P_H$ on the neutrino mixing angle $\\theta_{13}$, we obtain the relations between $\\theta_{13}$ and the event numbers for various reaction channels of supernova neutrinos. Using these relations, we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$. Such a sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment which has a sensitivity of the order of $\\theta_{13}\\sim 3^\\circ$. Furthermore, we apply this method to other neutrino experiments, i.e. Super-K, SNO, KamLAND, LVD, MinBooNE, Borexino, and Double-Chooz. We also study the energy spectra of the differential event numbers, ${\\rm d}N/{\\rm d}E$.

Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

2009-04-14T23:59:59.000Z

260

EFFECTS OF RESISTIVITY ON MAGNETIZED CORE-COLLAPSE SUPERNOVAE  

SciTech Connect (OSTI)

We studied the role of turbulent resistivity in the core-collapse of a strongly magnetized massive star, carrying out two-dimensional resistive-MHD simulations. Three cases with different initial strengths of magnetic field and rotation are investigated: (1) a strongly magnetized rotating core, (2) a moderately magnetized rotating core, and (3) a very strongly magnetized non-rotating core. In each case, one ideal-MHD model and two resistive-MHD models are computed. As a result of these computations, each model shows an eruption of matter assisted by magnetic acceleration (and also by centrifugal acceleration in the rotating cases). We found that resistivity attenuates the explosion in cases 1 and 2, while it enhances the explosion in case 3. We also found that in the rotating cases, the main mechanisms for the amplification of a magnetic field in the post-bounce phase are an outward advection of the magnetic field and a twisting of poloidal magnetic field lines by differential rotation, which are somewhat dampened down with the presence of resistivity. Although magnetorotational instability seems to occur in the rotating models, it plays only a minor role in magnetic field amplification. Another impact of resistivity is that on the aspect ratio. In the rotating cases, a large aspect ratio of the ejected matter, >2.5, attained in an ideal-MHD model is reduced to some extent in a resistive model. These results indicate that resistivity possibly plays an important role in the dynamics of strongly magnetized supernovae.

Sawai, H.; Suzuki, H. [Tokyo University of Science, Chiba 278-8510 (Japan)] [Tokyo University of Science, Chiba 278-8510 (Japan); Yamada, S. [Waseda University, Shinjuku, Tokyo 169-8555 (Japan)] [Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kotake, K. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

2013-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOUBLE-DETONATION SUB-CHANDRASEKHAR SUPERNOVAE: SYNTHETIC OBSERVABLES FOR MINIMUM HELIUM SHELL MASS MODELS  

SciTech Connect (OSTI)

In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and {gamma}-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

Kromer, M.; Sim, S. A.; Fink, M.; Roepke, F. K.; Seitenzahl, I. R.; Hillebrandt, W., E-mail: mkromer@mpa-garching.mpg.d [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany)

2010-08-20T23:59:59.000Z

262

The First Direct Supernova/GRB Connection: GRB 030329/SN 2003dh  

E-Print Network [OSTI]

Observations of gamma-ray burst (GRB) afterglows have yielded tantalizing hints that supernovae (SNe) and GRBs are related. The case had been circumstantial, though, relying on irregularities in the light curve or the colors of the afterglow. I will present observations of the optical afterglow of GRB 030329. The early spectra show a power-law continuum, consistent with other GRB afterglows. After approximately one week, broad peaks in the spectrum developed that were remarkably similar to those seen in the spectra of the peculiar Type Ic SN 1998bw. This is the first direct, spectroscopic confirmation that at least some GRBs arise from SNe.

Thomas Matheson

2003-09-29T23:59:59.000Z

263

The Progenitor of Supernova 2004dj in a Star Cluster  

E-Print Network [OSTI]

The progenitor of type II-plateau supernova (SN) 2004dj is identified with a supergiant in a compact star cluster known as "Sandage Star 96" (S96) in the nearby spiral galaxy NGC 2403, which was fortuitously imaged as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey from Feb 1995 to Dec 2003 prior to SN 2004dj. The superior photometry of BATC images for S96, taken with 14 intermediate-band filters covering 3000-10000\\AA, unambiguously establishes the star cluster nature of S96 with an age of $\\sim 20$Myr, a reddening of $\\hbox{E}(B-V)\\sim 0.35$ mag and a total mass of $\\sim 96,000$M$_{\\odot}$. The compact star cluster nature of S96 is also consistent with the lack of light variations in the past decade. The SN progenitor is estimated to have a main-sequence mass of $\\sim$12M$_{\\odot}$. The comparison of our intermediate-band data of S96 with the post-outburst photometry obtained as the SN has significantly dimmed, may hopefully conclusively establish the nature of the progenitor.

Wang, X; Zhang, T; Ma, J; Zhou, X; Li, W; Lou, Y Q; Li, Z; Wang, Xiaofeng; Yang, Yanbin; Zhang, Tianmeng; Ma, Jun; Zhou, Xu; Li, Weidong; Lou, Yu-Qing; Li, Zongwei

2005-01-01T23:59:59.000Z

264

Neutrino signatures of the supernova - gamma ray burst relationship  

E-Print Network [OSTI]

We calculate the TeV-PeV neutrino fluxes of gamma-ray bursts associated with supernovae, based on the observed association between GRB 030329 and supernova SN 2003dh. The neutrino spectral flux distributions can test for possible delays between the supernova and the gamma-ray burst events down to much shorter timescales than what can be resolved with photons. As an illustrative example, we calculate the probability of neutrino induced muon and electron cascade events in a km scale under-ice detector at the South Pole, from the GRB 030329. Our calculations demonstrate that km scale neutrino telescopes are expected to detect signals that will allow to constrain supernova-GRB models.

Soebur Razzaque; Peter Meszaros; Eli Waxman

2003-08-13T23:59:59.000Z

265

A Critique of Core--Collapse Supernova Theory Circa 1997  

E-Print Network [OSTI]

There has been a new infusion of ideas in the study of the mechanism and early character of core--collapse supernovae. However, despite recent conceptual and computational progress, fundamental questions remain. Some are summarize herein.

Adam Burrows

1997-03-02T23:59:59.000Z

266

A Critique of Core-Collapse Supernova Theory Circa 1997  

E-Print Network [OSTI]

There has been a new infusion of ideas in the study of the mechanism and early character of core--collapse supernovae. However, despite recent conceptual and computational progress, fundamental questions remain. Some are summarize herein.

Burrows, A

1998-01-01T23:59:59.000Z

267

SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three-year Data with Other Probes  

Science Journals Connector (OSTI)

We present observational constraints on the nature of dark energy using the Supernova Legacy Survey three-year sample (SNLS3) of Guy et al. and Conley et al. We use the 472 Type Ia supernovae (SNe Ia) in this sample, accounting for recently discovered correlations between SN Ia luminosity and host galaxy properties, and include the effects of all identified systematic uncertainties directly in the cosmological fits. Combining the SNLS3 data with the full WMAP7 power spectrum, the Sloan Digital Sky Survey luminous red galaxy power spectrum, and a prior on the Hubble constant H 0 from SHOES, in a flat universe we find ? m = 0.269 ± 0.015 and w = –1.061+0.069 – 0.068 (where the uncertainties include all statistical and SN Ia systematic errors)—a 6.5% measure of the dark energy equation-of-state parameter w. The statistical and systematic uncertainties are approximately equal, with the systematic uncertainties dominated by the photometric calibration of the SN Ia fluxes—without these calibration effects, systematics contribute only a ~2% error in w. When relaxing the assumption of flatness, we find ? m = 0.271 ± 0.015, ? k = –0.002 ± 0.006, and w = –1.069+0.091 – 0.092. Parameterizing the time evolution of w as w(a) = w 0 + wa (1a) gives w 0 = –0.905 ± 0.196, wa = –0.984+1.094 – 1.097 in a flat universe. All of our results are consistent with a flat, w = –1 universe. The size of the SNLS3 sample allows various tests to be performed with the SNe segregated according to their light curve and host galaxy properties. We find that the cosmological constraints derived from these different subsamples are consistent. There is evidence that the coefficient, ?, relating SN Ia luminosity and color, varies with host parameters at >4? significance (in addition to the known SN luminosity-host relation); however, this has only a small effect on the cosmological results and is currently a subdominant systematic.

M. Sullivan; J. Guy; A. Conley; N. Regnault; P. Astier; C. Balland; S. Basa; R. G. Carlberg; D. Fouchez; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; N. Palanque-Delabrouille; K. M. Perrett; C. J. Pritchet; J. Rich; V. Ruhlmann-Kleider; D. Balam; S. Baumont; R. S. Ellis; S. Fabbro; H. K. Fakhouri; N. Fourmanoit; S. González-Gaitán; M. L. Graham; M. J. Hudson; E. Hsiao; T. Kronborg; C. Lidman; A. M. Mourao; J. D. Neill; S. Perlmutter; P. Ripoche; N. Suzuki; E. S. Walker

2011-01-01T23:59:59.000Z

268

Supernova bangs as a tool to study big bang  

SciTech Connect (OSTI)

Supernovae and gamma-ray bursts are the most powerful explosions in observed Universe. This educational review tells about supernovae and their applications in cosmology. It is explained how to understand the production of light in the most luminous events with minimum required energy of explosion. These most luminous phenomena can serve as primary cosmological distance indicators. Comparing the observed distance dependence on red shift with theoretical models one can extract information on evolution of the Universe from Big Bang until our epoch.

Blinnikov, S. I., E-mail: Sergei.Blinnikov@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2012-09-15T23:59:59.000Z

269

Gamma Ray Bursts with (and without) Supernova Fireworks  

Science Journals Connector (OSTI)

We review the observational status of the Supernova/Gamma?Ray Burst connection. Observations of long duration Gamma?ray bursts suggest that they are associated with bright SNe?Ic. However recent observations of GRB 060614 puzzle this scenario pointing out the existence of long?duration Gamma?ray Burst not accompanied by a bright supernova. Current estimates of the SN and GRB rates yield a ratio GRB/SNe?Ibc in the range ?0.4%–3%.

Massimo Della Valle

2008-01-01T23:59:59.000Z

270

Global Anisotropies in Supernova Explosions and Pulsar Recoil  

E-Print Network [OSTI]

We show by two-dimensional and first three-dimensional simulations of neutrino-driven supernova explosions that low (l=1,2) modes can dominate the flow pattern in the convective postshock region on timescales of hundreds of milliseconds after core bounce. This can lead to large global anisotropy of the supernova explosion and pulsar kicks in excess of 500 km/s.

L. Scheck; T. Plewa; K. Kifonidis; H. -Th. Janka; E. Müller

2004-05-17T23:59:59.000Z

271

Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies  

E-Print Network [OSTI]

surveys (e.g. The Dark Energy Survey 4 or the Large Synopticsurveys such as the Dark Energy Survey, Hyper-Suprime Cam,dark energy but face sev- eral hurdles for their continued success in future large surveys.

Meyers, Joshua Evan

2012-01-01T23:59:59.000Z

272

'Insights of the Decade' Enabled by NERSC - NERSC Center News...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Supernova Cosmology Project's Type 1a supernova data, which led to the discovery of dark energy in 1998.) As the CMB community started incorporating supercomputers into their...

273

A Super-Solar Metallicity for the Progenitor of Kepler's Supernova  

E-Print Network [OSTI]

We have performed deep X-ray observations of the remnant of Kepler's supernova (SN 1604) as a Key Project of the Suzaku Observatory. Our main goal is to detect secondary Fe-peak elements in the SN ejecta to gain insights into the Type Ia supernova explosion mechanism and the nature of the progenitor. Here we report our initial results. We made a conclusive detection of X-ray emission lines from highly ionized Mn, Cr, and Ni as well as Fe. The observed Mn-to-Cr line flux ratio is ~0.60, ~30% larger than that measured in Tycho's remnant. We estimate a Mn-to-Cr mass ratio of ~0.77, which is strongly suggestive of a large neutron excess in the progenitor star before the onset of the thermonuclear runaway. The observed Ni-to-Fe line flux ratio (~0.03) corresponds to a mass ratio of ~0.06, which is generally consistent with the products of explosive Si-burning regime in Type Ia explosion models, and rules out contamination from the products of neutron-rich nuclear statistical equilibrium in the shocked ejecta. Toge...

Park, Sangwook; Mori, Koji; Kaida, Ryohei; Bravo, Eduardo; Schenck, Andrew; Eriksen, Kristoffer A; Hughes, John P; Slane, Patrick O; Burrows, David N; Lee, Jae-Joon

2013-01-01T23:59:59.000Z

274

EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE  

SciTech Connect (OSTI)

We provide progenitor models for electron capture supernovae (ECSNe) with detailed evolutionary calculation. We include minor electron capture nuclei using a large nuclear reaction network with updated reaction rates. For electron capture, the Coulomb correction of rates is treated and the contribution from neutron-rich isotopes is taken into account in each nuclear statistical equilibrium (NSE) composition. We calculate the evolution of the most massive super asymptotic giant branch stars and show that these stars undergo off-center carbon burning and form ONe cores at the center. These cores become heavier up to the critical mass of 1.367 M{sub Sun} and keep contracting even after the initiation of O+Ne deflagration. Inclusion of minor electron capture nuclei causes convective URCA cooling during the contraction phase, but the effect on the progenitor evolution is small. On the other hand, electron capture by neutron-rich isotopes in the NSE region has a more significant effect. We discuss the uniqueness of the critical core mass for ECSNe and the effect of wind mass loss on the plausibility of our models for ECSN progenitors.

Takahashi, Koh; Umeda, Hideyuki [Department of Astronomy, University of Tokyo, Tokyo 113-0033 (Japan); Yoshida, Takashi, E-mail: ktakahashi@astron.s.u-tokyo.ac.jp, E-mail: umeda@astron.s.u-tokyo.ac.jp, E-mail: yoshida@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2013-07-01T23:59:59.000Z

275

Supernovae Driven Turbulence In The Interstellar Medium  

E-Print Network [OSTI]

I model the multi-phase interstellar medium (ISM) randomly heated and shocked by supernovae, with gravity, differential rotation and other parameters we understand to be typical of the solar neighbourhood. The simulations are 3D extending horizontally 1 x 1 kpc squared and vertically 2 kpc, symmetric about the galactic mid-plane. They routinely span gas number densities 1/10000 to 100 per cubic cm, temperatures 100 to 100 MK, speeds up to 10000 km/s and Mach number up to 25. Radiative cooling is applied from two widely adopted parameterizations, and compared directly to assess the sensitivity of the results to cooling. There is strong evidence to describe the ISM as comprising well defined cold, warm and hot regions, which are statistically close to thermal and total pressure equilibrium. This result is not sensitive to the choice of parameters considered here. The distribution of the gas density within each can be robustly modelled as lognormal. Appropriate distinction is required between the properties of t...

Gent, Frederick

2014-01-01T23:59:59.000Z

276

Supernova Explosions and Neutron Star Formation  

E-Print Network [OSTI]

The current picture of the collapse and explosion of massive stars and the formation of neutron stars is reviewed. According to the favored scenario, however by no means proven and undisputed, neutrinos deposit the energy of the explosion in the stellar medium which surrounds the nascent neutron star. Observations, in particular of Supernova~1987A, suggest that mixing processes play an important role in the expanding star, and multi-dimensional simulations show that these are linked to convective instabilities in the immediate vicinity of the neutron star. Convectively enhanced energy transport inside the neutron star can have important consequences for the neutrino emission and thus the neutrino-heating mechanism. This also holds for a suppression of the neutrino interactions at nuclear densities. Multi-dimensional hydrodynamics, general relativity, and a better understanding of the neutrino interactions in neutron star matter may be crucial to resolve the problem that state-of-the-art spherical models do not yield explosions even with a very accurate treatment of neutrino transport by solving the Boltzmann equation.

H. -Th. Janka; K. Kifonidis; M. Rampp

2001-03-01T23:59:59.000Z

277

Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope  

E-Print Network [OSTI]

scenarios both involve the thermonuclear disruption of whitelead to new channels for thermonuclear SNe. For example,thermonuclear SNe inside a dense

2006-01-01T23:59:59.000Z

278

Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae  

Science Journals Connector (OSTI)

......Astier et al. ; Riess et al. ; Wood-Vasey et al. ; Hicken et al...with one CCD in each of the red and blue arms of the spectrograph...AJ 112 2408. 45 Hicken M. , Wood-Vasey W. M., Blondin S...A. 1994 AJ 108 2233. 118 Wood-Vasey W. M. 2007 ApJ 666......

Jeffrey M. Silverman; Ryan J. Foley; Alexei V. Filippenko; Mohan Ganeshalingam; Aaron J. Barth; Ryan Chornock; Christopher V. Griffith; Jason J. Kong; Nicholas Lee; Douglas C. Leonard; Thomas Matheson; Emily G. Miller; Thea N. Steele; Brian J. Barris; Joshua S. Bloom; Bethany E. Cobb; Alison L. Coil; Louis-Benoit Desroches; Elinor L. Gates; Luis C. Ho; Saurabh W. Jha; Michael T. Kandrashoff; Weidong Li; Kaisey S. Mandel; Maryam Modjaz; Matthew R. Moore; Robin E. Mostardi; Marina S. Papenkova; Sung Park; Daniel A. Perley; Dovi Poznanski; Cassie A. Reuter; James Scala; Franklin J. D. Serduke; Joseph C. Shields; Brandon J. Swift; John L. Tonry; Schuyler D. Van Dyk; Xiaofeng Wang; Diane S. Wong

2012-09-21T23:59:59.000Z

279

Progress Report on the Berkeley/Anglo-Australian Observatory High-redshift Supernova Search  

DOE R&D Accomplishments [OSTI]

There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring {Omega}. It is the latter that I want to discuss in this paper.

Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R. A.; Couch, W.; Boyle, B.

1990-11-00T23:59:59.000Z

280

Neutrino oscillation signatures of oxygen-neon-magnesium supernovae  

E-Print Network [OSTI]

We discuss the flavor conversion of neutrinos from core collapse supernovae that have oxygen-neon-magnesium (ONeMg) cores. Using the numerically calculated evolution of the star up to 650 ms post bounce, we find that, for the normal mass hierarchy, the electron neutrino flux in a detector shows signatures of two typical features of an ONeMg-core supernova: a sharp step in the density profile at the base of the He shell and a faster shock wave propagation compared to iron core supernovae. Before the shock hits the density step (t ~ 150 ms), the survival probability of electron neutrinos is about 0.68, in contrast to values of 0.32 or less for an iron core supernova. The passage of the shock through the step and its subsequent propagation cause a decrease of the survival probability and a decrease of the amplitude of oscillations in the Earth, reflecting the transition to a more adiabatic propagation inside the star. These changes affect the lower energy neutrinos first; they are faster and more sizable for larger theta_13. They are unique of ONeMg-core supernovae, and give the possibility to test the speed of the shock wave. The time modulation of the Earth effect and its negative sign at the neutronization peak are the most robust signatures in a detector.

C. Lunardini; B. Mueller; H. -Th. Janka

2007-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Understanding Supernova Neutrino Physics using Low-Energy Beta-Beams  

E-Print Network [OSTI]

We show that fitting linear combinations of low-energy beta-beam spectra to supernova-neutrino energy-distributions reconstructs the response of a nuclear target to a supernova flux in a very accurate way. This allows one to make direct predictions about the supernova-neutrino signal in a terrestrial neutrino detector.

N. Jachowicz; G. C. McLaughlin

2005-11-24T23:59:59.000Z

282

THE LOS ALAMOS SUPERNOVA LIGHT-CURVE PROJECT: COMPUTATIONAL METHODS  

SciTech Connect (OSTI)

We have entered the era of explosive transient astronomy, in which current and upcoming real-time surveys such as the Large Synoptic Survey Telescope, the Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System will detect supernovae in unprecedented numbers. Future telescopes such as the James Webb Space Telescope may discover supernovae from the earliest stars in the universe and reveal their masses. The observational signatures of these astrophysical transients are the key to unveiling their central engines, the environments in which they occur, and to what precision they will pinpoint cosmic acceleration and the nature of dark energy. We present a new method for modeling supernova light curves and spectra with the radiation hydrodynamics code RAGE coupled with detailed monochromatic opacities in the SPECTRUM code. We include a suite of tests that demonstrate how the improved physics and opacities are indispensable to modeling shock breakout and light curves when radiation and matter are tightly coupled.

Frey, Lucille H. [Department of Computer Science, University of New Mexico, Albuquerque, NM 87131 (United States); Even, Wesley; Hungerford, Aimee L. [XTD-6, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Whalen, Daniel J. [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fontes, Christopher J. [XCP-5, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colgan, James [T-1, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-02-15T23:59:59.000Z

283

Supernova Bounds on the Dark Photon Using its Electromagnetic Decay  

E-Print Network [OSTI]

The hypothetical massive dark photon ($\\gamma'$) which has kinetic mixing with the SM photon can decay electromagnetically to $e^+e^-$ pairs if its mass $m$ exceeds $2m_e$ and otherwise into three SM photons. These decays yield cosmological and supernovae associated signatures. We briefly discuss these signatures, particularly in connection with the supernova SN1987A and delineate the extra constraints that may then arise on the mass and mixing parameter of the dark photon. In particular, we find that for dark photon mass $m_{\\gamma'}$ in the 5-20 MeV range, arguments based on supernova 1987A observations lead to a bound on $\\epsilon$ which is about 300 times stronger than the presently existing bounds based on energy loss arguments.

Kazanas, Demos; Nussinov, Shmuel; Teplitz, Vic; Zhang, Yongchao

2014-01-01T23:59:59.000Z

284

THE EXTREME HOSTS OF EXTREME SUPERNOVAE  

SciTech Connect (OSTI)

We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of 17 luminous supernovae (LSNe, having peak M{sub V} < -21) and compare them to a sample of 26, 000 galaxies from a cross-match between the SDSS DR4 spectral catalog and GALEX interim release 1.1. We place the LSN hosts on the galaxy NUV - r versus M{sub r} color-magnitude diagram (CMD) with the larger sample to illustrate how extreme they are. The LSN hosts appear to favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low-luminosity end. From the UV-optical photometry, we estimate the star formation history of the LSN hosts. The hosts have moderately low star formation rates (SFRs) and low stellar masses (M{sub *}) resulting in high specific star formation rates (sSFR). Compared with the larger sample, the LSN hosts occupy low-density regions of a diagram plotting sSFR versus M{sub *} in the area having higher sSFR and lower M{sub *}. This preference for low M{sub *}, high sSFR hosts implies that the LSNe are produced by an effect having to do with their local environment. The correlation of mass with metallicity suggests that perhaps wind-driven mass loss is the factor that prevents LSNe from arising in higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe (>100 M{sub sun}), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.

Neill, James D.; Quimby, Robert; Ofek, Eran; Wyder, Ted K.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Sullivan, Mark [University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, Faculty of Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Nugent, Peter [Lawrence Berkeley National Laboratory, MS 50F-1650, 1 Cyclotron Road, Berkeley, CA 94720-8139 (United States); Seibert, Mark [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Overzier, Roderik [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Neff, Susan G. [Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Bianchi, Luciana [Center for Astrophysical Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Donas, Jose [Laboratoire d'Astrophysique de Marseille, BP 8, Traverse du Siphon, 13376 Marseille Cedex 12 (France); Heckman, Timothy M. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States)

2011-01-20T23:59:59.000Z

285

Supernova Remnants, Cosmic Rays, and GLAST  

SciTech Connect (OSTI)

The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

Reynolds, Steve (North Carolina State University) [North Carolina State University

2006-02-13T23:59:59.000Z

286

ASTRO-H White Paper - Young Supernova Remnants  

E-Print Network [OSTI]

Thanks to the unprecedented spectral resolution and sensitivity of the Soft X-ray Spectrometer (SXS) to soft thermal X-ray emission, ASTRO-H will open a new discovery window for understanding young, ejecta-dominated, supernova remnants (SNRs). In particular we study how ASTRO-H observations will address, comprehensively, three key topics in SNR research: (1) using abundance measurements to unveil SNR progenitors, (2) using spatial and velocity distribution of the ejecta to understand supernova explosion mechanisms, (3) revealing the link between the thermal plasma state of SNRs and the efficiency of their particle acceleration.

Hughes, J P; Bamba, A; Katsuda, S; Leutenegger, M; Long, K S; Maeda, Y; Mori, K; Nakajima, H; Sawada, M; Tanaka, T; Uchida, H; Yamaguchi, H; Aharonian, F; Funk, S; Hiraga, J; Ishida, M; Koyama, K; Matsumoto, H; Nobukawa, M; Ozaki, M; Tamagawa, T; Tsunemi, H; Tomida, H; Uchiyama, Y; Uno, S

2014-01-01T23:59:59.000Z

287

Fitting oscillating string gas cosmology to supernova data  

E-Print Network [OSTI]

In string gas cosmology, extra dimensions are stabilised by a gas of strings. In the matter-dominated era, competition between matter pushing the extra dimensions to expand and the string gas pulling them back can lead to oscillations of the extra dimensions and acceleration in the visible dimensions. We fit this model to supernova data, taking into account the Big Bang Nucleosynthesis constraint on the energy density of the string gas. The fit to the Union set of supernova data is acceptable, but the fit to the ESSENCE data is poor.

Francesc Ferrer; Tuomas Multamaki; Syksy Rasanen

2008-12-22T23:59:59.000Z

288

Fitting oscillating string gas cosmology to supernova data  

Science Journals Connector (OSTI)

In string gas cosmology, extra dimensions are stabilised by a gas of strings. In the matter-dominated era, competition between matter pushing the extra dimensions to expand and the string gas pulling them back can lead to oscillations of the extra dimensions and acceleration in the visible dimensions. We fit this model to supernova data, taking into account the Big Bang Nucleosynthesis constraint on the energy density of the string gas. The fit to the Union set of supernova data is acceptable, but the fit to the ESSENCE data is poor.

Francesc Ferrer; Tuomas Multamäki; Syksy Räsänen

2009-01-01T23:59:59.000Z

289

MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS  

SciTech Connect (OSTI)

Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant (>10 pc) cloud core, simultaneously enriching it and triggering its collapse. Here, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500{sup 3} effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances {approx}10{sup 18} cm and mix effectively with large regions of star-forming molecular gas. In fact, the {approx}2 M{sub Sun} of high-metallicity ejecta from a single core-collapse supernova is likely to mix with {approx}2 Multiplication-Sign 10{sup 4} M{sub Sun} of molecular gas material as it is collapsing. Thus, all stars forming late ( Almost-Equal-To 5 Myr) in the evolution of an H II region may be contaminated by supernova ejecta at the level {approx}10{sup -4}. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system and is potentially consistent with the observed variability in stellar elemental abundances. Supernova contamination of forming planetary systems may be a common, universal process.

Pan Liubin; Desch, Steven J.; Scannapieco, Evan; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)

2012-09-01T23:59:59.000Z

290

THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy  

SciTech Connect (OSTI)

In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

Burns, Christopher R.; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA, 91101 (United States); Stritzinger, Maximilian; Phillips, M. M.; Boldt, Luis; Campillay, Abdo; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Kattner, ShiAnne [Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Contreras, Carlos [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Victoria 3122 (Australia); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

2011-01-15T23:59:59.000Z

291

Isomer residual ratio of odd-odd isotope {sup 180}Ta in supernova nucleosynthsis  

SciTech Connect (OSTI)

The nucleosynthesis of {sup 180}Ta has remained an unsolved problem and as its origin many nucleosynthesis mechanisms have been proposed. This isotope has the unique feature that the naturally occurring abundance of {sup 180}Ta is actually a meta-stable isomer (half-life of >=10{sup 15} yr), while the ground state is a 1{sup +} unstable state which beta-decays with a half-life of only 8.15 hr. We have made a new time-dependent calculation of {sup 180}Ta meta-stable isomer residual ratio after supernova neutrino-induced reactions. This residual isomer ratio is crucial for understanding the production and survival of this naturally occurring rare isotope. We have constructed a new model under temperature evolution after type II supernova explosion. We include the explicit linking between the isomer and all known excited states and found that the residual ratio is insensitive to astrophysical parameters such as neutrino energy spectrum, explosion energy, decay time constant. We find that the explicit time evolution of the synthesis of {sup 180}Ta avoids the overproduction relative to {sup 138}La for a neutrino process neutrino temperature of 4 MeV.

Hayakawa, Takehito [Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Kajino, Toshitaka [National Astronomical Observatory, Osawa, Mitaka, Tokyo 181-8588 (Japan); Chiba, Satoshi [Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-11 (Japan); Mathews, Grant [Enter for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

2010-06-01T23:59:59.000Z

292

Chimeric Tumor Suppressor 1, a p53-derived Chimeric Tumor Suppressor Gene, Kills p53 Mutant and p53 Wild-type Glioma Cells in Synergy with Irradiation and CD95 Ligand  

Science Journals Connector (OSTI)

...rodent brain . Cell Biology: A Laboratory Handbook, 2nd ed. 154-157, OSA San Diego 1998...expression in human malignant glioma cells but does not enhance CD95L-induced apoptosis...adenovirus encoding wild-type p53 (Ad-p53) does not consistently induce apoptosis in the...

Ulrike Naumann; Sebastian Kügler; Hartwig Wolburg; Wolfgang Wick; Gesa Rascher; Jörg B. Schulz; Emmanuel Conseiller; Mathias Bähr; and Michael Weller

2001-08-01T23:59:59.000Z

293

Treating Unresolvable Flame Physics in Simulations of Thermonuclear Supernovae  

Science Journals Connector (OSTI)

Due to the small width of the subsonic burning front (flame) in thermonuclear supernovae, micrometers to centimeters, and the influence of turbulence, which adds structure to this front on a broad range of scales, it won't be possible in the foreseeable ... Keywords: Computational astrophysics, combustion, turbulence

Dean M. Townsley

2009-03-01T23:59:59.000Z

294

INJECTION OF SUPERNOVA DUST IN NEARBY PROTOPLANETARY DISKS  

SciTech Connect (OSTI)

The early solar system contained a number of short-lived radionuclides (SLRs) such as {sup 26}Al with half-lives <15 Myr. The one-time presence of {sup 60}Fe strongly suggests that the source of these radionuclides was a nearby supernova. In this paper, we investigate the 'aerogel' model, which hypothesizes that the solar system's SLRs were injected directly into the solar system's protoplanetary disk from a supernova within the same star-forming region. Previous work has shown that disks generally survive the impact of supernova ejecta, but also that little gaseous ejecta can be injected into the disk. The aerogel model hypothesizes that radionuclides in the ejecta condensed into micron-sized dust grains that were injected directly into the solar nebula disk. Here, we discuss the density structure of supernova ejecta and the observational support for dust condensation in the ejecta. We argue that supernova ejecta are clumpy and describe a model to quantify this clumpiness. We also argue that infrared observations may be underestimating the fraction of material that condenses into dust. Building on calculations of how supernova ejecta interact with protoplanetary disks, we calculate the efficiency with which dust grains in the ejecta are injected into a disk. We find that about 70% of material in grains roughly 0.4 {mu}m in diameter can be injected into disks. If ejecta are clumpy, the solar nebula was struck by a clump with higher-than-average {sup 26}Al and {sup 60}Fe, and these elements condensed efficiently into large grains, then the abundances of SLRs in the early solar system can be explained, even if the disk lies 2 pc from the supernova explosion. The probability that all these factors are met is low, perhaps {approx}10{sup -3}-10{sup -2}, and receiving as much {sup 26}Al and {sup 60}Fe as the solar system did may be a rare event. Still, the aerogel model remains a viable explanation for the origins of the radionuclides in the early solar system, and may be the most plausible one.

Ouellette, N. [Department of Physics, Arizona State University, P.O. Box 871504, Tempe, AZ 85287-1504 (United States); Desch, S. J.; Hester, J. J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)

2010-03-10T23:59:59.000Z

295

OGLE-2013-SN-079: a lonely supernova consistent with a helium shell detonation  

E-Print Network [OSTI]

We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z=0.07 implies an absolute magnitude in the rest-frame I-band of M$_{I}\\sim-17.6$ mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths detonation of a helium shell around a low-mass CO white dwarf and "double-detonation" models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

Inserra, C; Wyrzykowski, L; Smartt, S J; Fraser, M; Nicholl, M; Shen, K J; Jerkstrand, A; Gal-Yam, A; Howell, D A; Maguire, K; Mazzali, P; Valenti, S; Taubenberger, S; Benitez-Herrera, S; Bersier, D; Blagorodnova, N; Campbell, H; Chen, T -W; Elias-Rosa, N; Hillebrandt, W; Kostrzewa-Rutkowska, Z; Kozlowski, S; Kromer, M; Lyman, J D; Polshaw, J; Ropke, F K; Ruiter, A J; Smith, K; Spiro, S; Sullivan, M; Yaron, O; Young, D; Yuan, F

2014-01-01T23:59:59.000Z

296

Importance of supernovae at z>1.5 to probe dark energy  

Science Journals Connector (OSTI)

The accelerating expansion of the universe suggests that an unknown component with strongly negative pressure, called dark energy, currently dominates the dynamics of the universe. Such a component makes up ?70% of the energy density of the universe yet has not been predicted by the standard model of particle physics. The best method for exploring the nature of this dark energy is to map the recent expansion history, at which type Ia supernovae have proved adept. We examine here the depth of survey necessary to provide a precise and qualitatively complete description of dark energy. A realistic analysis of parameter degeneracies, allowance for natural time variation of the dark energy equation of state, and systematic errors in astrophysical observations all demonstrate the importance of a survey covering the full range 0dark energy.

Eric V. Linder and Dragan Huterer

2003-04-21T23:59:59.000Z

297

SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR  

SciTech Connect (OSTI)

We have obtained limited photometric and spectroscopic data for supernova (SN) 2008bk in NGC 7793, primarily at {approx}> 150 days after explosion. We find that it is a Type II-Plateau (II-P) SN that most closely resembles the low-luminosity SN 1999br in NGC 4900. Given the overall similarity between the observed light curves and colors of SNe 2008bk and 1999br, we infer that the total visual extinction to SN 2008bk (A{sub V} = 0.065 mag) must be almost entirely due to the Galactic foreground, similar to what has been assumed for SN 1999br. We confirm the identification of the putative red supergiant (RSG) progenitor star of the SN in high-quality g'r'i' images we had obtained in 2007 at the Gemini-South 8 m telescope. Little ambiguity exists in this progenitor identification, qualifying it as the best example to date, next to the identification of the star Sk -69 Degree-Sign 202 as the progenitor of SN 1987A. From a combination of photometry of the Gemini images with that of archival, pre-SN, Very Large Telescope JHK{sub s} images, we derive an accurate observed spectral energy distribution (SED) for the progenitor. We find from nebular strong-intensity emission-line indices for several H II regions near the SN that the metallicity in the environment is likely subsolar (Z Almost-Equal-To 0.6 Z{sub Sun }). The observed SED of the star agrees quite well with synthetic SEDs obtained from model RSG atmospheres with effective temperature T{sub eff} = 3600 {+-} 50 K. We find, therefore, that the star had a bolometric luminosity with respect to the Sun of log (L{sub bol}/L{sub Sun} ) = 4.57 {+-} 0.06 and radius R{sub *} = 496 {+-} 34 R{sub Sun} at {approx}6 months prior to explosion. Comparing the progenitor's properties with theoretical massive-star evolutionary models, we conclude that the RSG progenitor had an initial mass in the range of 8-8.5 M{sub Sun }. This mass is consistent with, albeit at the low end of, the inferred range of initial masses for SN II-P progenitors. It is also consistent with the estimated upper limit on the initial mass of the progenitor of SN 1999br, and it agrees with the low initial masses found for the RSG progenitors of other low-luminosity SNe II-P.

Van Dyk, Schuyler D.; Elias-Rosa, Nancy [Spitzer Science Center/Caltech, Mailcode 220-6, Pasadena, CA 91125 (United States); Davidge, Tim J., E-mail: vandyk@ipac.caltech.edu, E-mail: tim.davidge@nrc.ca [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, B.C., V9E 2E7 (Canada); and others

2012-01-15T23:59:59.000Z

298

Distance measurements from supernovae and dark energy constraints  

Science Journals Connector (OSTI)

Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the “Constitution” set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z)??X(z)/?X(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at ?95% confidence level at 0?z?0.8; they are consistent with a cosmological constant at ?68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z?0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z?1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

Yun Wang

2009-12-21T23:59:59.000Z

299

SUPERNOVAE AND AGN DRIVEN GALACTIC OUTFLOWS  

SciTech Connect (OSTI)

We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v{sub *}{approx}( E-dot / 2 M-dot ){sup 1/2} describes the effect of starburst activity, with E-dot and M-dot as energy and mass injection rate in a central region of radius R; (2) v {sub .} {approx} (GM {sub .}/2R){sup 1/2} for the effect of a central black hole of mass M {sub .} on gas at distance R; and (3) v{sub s}=(GM{sub h} / 2Cr{sub s}){sup 1/2}, which is closely related to the circular speed (v{sub c} ) for an NFW halo, where r{sub s} is the halo scale radius and C is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v {sup 2} {sub *} + 6({Gamma} - 1)v {sub .} {sup 2} - 4v {sup 2} {sub s}){sup 1/2}, where {Gamma} is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 10{sup 11.5} M {sub Sun} {<=} M{sub h} {<=} 10{sup 12.5} M {sub Sun} galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is {approx}400-1000 km s{sup -1}, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds {approx}> 1000 km s{sup -1}. We also find that the ratio [2v {sup 2} {sub *} - (1 - {Gamma})v {sub .} {sup 2}]/v {sup 2} {sub c} dictates the amount of gas lost through winds. Used in conjunction with an appropriate relation between M {sub .} and M{sub h} and an appropriate opacity of dust grains in infrared (K band), this ratio has the attractive property of being minimum at a certain halo mass scale (M{sub h} {approx} 10{sup 12}-10{sup 12.5} M {sub Sun }) that signifies the crossover of AGN domination in outflow properties from starburst activity at lower masses. We find that stellar mass for massive galaxies scales as M {sub *}{proportional_to}M {sup 0.26} {sub h}, and for low-mass galaxies, M {sub *}{proportional_to}M {sup 5/3} {sub h}.

Sharma, Mahavir; Nath, Biman B., E-mail: mahavir@rri.res.in, E-mail: biman@rri.res.in [Raman Research Institute, Sadashiva Nagar, Bangalore 560080 (India)

2013-01-20T23:59:59.000Z

300

3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration  

SciTech Connect (OSTI)

We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

2008-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs  

E-Print Network [OSTI]

In the "double-detonation sub-Chandrasekhar" model for type Ia supernovae, a carbon-oxygen (C + O) white dwarf accumulates sufficient amounts of helium such that a detonation ignites in that layer before the Chandrasekhar mass is reached. This detonation is thought to trigger a secondary detonation in the C + O core. By means of one- and two-dimensional hydrodynamic simulations, we investigate the robustness of this explosion mechanism for generic 1-M_sun models and analyze its observable predictions. Also a resolution dependence in numerical simulations is analyzed. The propagation of thermonuclear detonation fronts, both in helium and in the carbon-oxygen mixture, is computed by means of both a level-set function and a simplified description for nuclear reactions. The decision whether a secondary detonation is triggered in the white dwarf's core or not is made based on criteria given in the literature. In a parameter study involving different initial flame geometries for He-shell masses of 0.2 and 0.1 M_sun, we find that a secondary detonation ignition is a very robust process. Converging shock waves originating from the detonation in the He shell generate the conditions for a detonation near the center of the white dwarf in most of the cases considered. Finally, we follow the complete evolution of three selected models with 0.2 M_sun of He through the C/O-detonation phase and obtain nickel-masses of about 0.40 to 0.45 M_sun. Although we have not done a complete scan of the possible parameter space, our results show that sub-Chandrasekhar models are not good candidates for normal or sub-luminous type Ia supernovae. The chemical composition of the ejecta features significant amounts of nickel in the outer layers at high expansion velocities, which is inconsistent with near-maximum spectra. (abbreviated)

M. Fink; W. Hillebrandt; F. K. Roepke

2007-10-29T23:59:59.000Z

302

SIMULATIONS OF ACCRETION POWERED SUPERNOVAE IN THE PROGENITORS OF GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

Observational evidence suggests a link between long-duration gamma-ray bursts (LGRBs) and Type Ic supernovae. Here, we propose a potential mechanism for Type Ic supernovae in LGRB progenitors powered solely by accretion energy. We present spherically symmetric hydrodynamic simulations of the long-term accretion of a rotating gamma-ray burst progenitor star, a 'collapsar', onto the central compact object, which we take to be a black hole. The simulations were carried out with the adaptive mesh refinement code FLASH in one spatial dimension and with rotation, an explicit shear viscosity, and convection in the mixing length theory approximation. Once the accretion flow becomes rotationally supported outside of the black hole, an accretion shock forms and traverses the stellar envelope. Energy is carried from the central geometrically thick accretion disk to the stellar envelope by convection. Energy losses through neutrino emission and nuclear photodisintegration are calculated but do not seem important following the rapid early drop of the accretion rate following circularization. We find that the shock velocity, energy, and unbound mass are sensitive to convective efficiency, effective viscosity, and initial stellar angular momentum. Our simulations show that given the appropriate combinations of stellar and physical parameters, explosions with energies {approx}5 Multiplication-Sign 10{sup 50} erg, velocities {approx}3000 km s{sup -1}, and unbound material masses {approx}> 6 M{sub Sun} are possible in a rapidly rotating 16 M{sub Sun} main-sequence progenitor star. Further work is needed to constrain the values of these parameters, to identify the likely outcomes in more plausible and massive LRGB progenitors, and to explore nucleosynthetic implications.

Lindner, Christopher C.; Milosavljevic, Milos; Kumar, Pawan [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Shen, Rongfeng [Department of Astronomy, and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4 (Canada)

2012-05-10T23:59:59.000Z

303

A SUPER-SOLAR METALLICITY FOR THE PROGENITOR OF KEPLER'S SUPERNOVA  

SciTech Connect (OSTI)

We have performed deep X-ray observations of the remnant of Kepler's supernova (SN 1604) as a Key Project of the Suzaku Observatory. Our main goal is to detect secondary Fe-peak elements in the supernova (SN) ejecta to gain insights into the Type Ia SN explosion mechanism and the nature of the progenitor. Here, we report our initial results. We made a conclusive detection of X-ray emission lines from highly ionized Mn, Cr, and Ni as well as Fe. The observed Mn-to-Cr line flux ratio is {approx}0.60, {approx}30% larger than that measured in Tycho's remnant. We estimate an Mn-to-Cr mass ratio of {approx}0.77, which is strongly suggestive of a large neutron excess in the progenitor star before the onset of the thermonuclear runaway. The observed Ni-to-Fe line flux ratio ({approx}0.03) corresponds to a mass ratio of {approx}0.06, which is generally consistent with the products of the explosive Si-burning regime in Type Ia explosion models, and rules out contamination from the products of neutron-rich nuclear statistical equilibrium in the shocked ejecta. Together with the previously suggested luminous nature of the explosion, these mass ratios provide strong evidence for a super-solar metallicity in the SN progenitor ({approx}3 Z{sub Sun }). Kepler's SN was likely the thermonuclear explosion of a white dwarf formed in the recent past that must have exploded through a relatively prompt channel.

Park, Sangwook; Schenck, Andrew [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260 (United States); Mori, Koji; Kaida, Ryohei [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan); Bravo, Eduardo [Department Fisica i Enginyeria Nuclear, Univ. Politecnica de Catalunya, Carrer Pere Serra 1-15, E-08173 Sant Cugat del Valles (Spain); Eriksen, Kristoffer A. [XDT-6, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burrows, David N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Lee, Jae-Joon, E-mail: s.park@uta.edu, E-mail: badenes@pitt.edu [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

2013-04-10T23:59:59.000Z

304

How to See the Supernova Berkeley Lab Just Discovered | Department of  

Broader source: Energy.gov (indexed) [DOE]

How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered September 1, 2011 - 10:12am Addthis Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth - approximately 21 million light-years away - than any other of its kind in a generation. Linda Vu Skywatchers -- grab your binoculars and telescopes, and head for some clear dark skies. A new supernova has been discovered near the Big Dipper. Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley caught the supernova just hours after its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The researchers note

305

How to See the Supernova Berkeley Lab Just Discovered | Department of  

Broader source: Energy.gov (indexed) [DOE]

How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered How to See the Supernova Berkeley Lab Just Discovered September 1, 2011 - 10:12am Addthis Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth - approximately 21 million light-years away - than any other of its kind in a generation. Linda Vu Skywatchers -- grab your binoculars and telescopes, and head for some clear dark skies. A new supernova has been discovered near the Big Dipper. Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley caught the supernova just hours after its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The researchers note

306

Early spectra of the supernova 1987F  

Science Journals Connector (OSTI)

......8-1.4 Mo) and energy by incinerating a white...amount of recombination energy and thus has a low hydro...would produce enough energy, but appear to have...undergoing mass-loss as an alternative explanation. Goodrich...interpreted as an 'YJ Car type superoutburst of......

Gary Wegner; Steven R. Swanson

1996-01-01T23:59:59.000Z

307

The onset of the bipolar flavor conversion of supernova neutrinos  

E-Print Network [OSTI]

The study of supernova neutrinos result an interesting non-linear phenomenon, consisting of three phases: synchronized oscillation phase, bipolar flavor conversion phase and the phase of spectral split. In the collective oscillation of supernova neutrino the self energy is not a constant but varies adiabatically, which is responsible to have such different phases. In this article the transition point from synchronized oscillation to bipolar phase is studied numerically as well as analytically. The numerical results yielding different graphs depending on different values of possible small but non-vanishing mixing angles show the onset of the bipolar phase from the synchronized phase varies as the mixing angle. But the analytical study in terms of a spinning top model results a unique onset condition, which is independent of the choice of mixing angle. Such discrepancy between numerical results and analytical results is explained properly.

Bhattacharyya, Indranath

2014-01-01T23:59:59.000Z

308

Emission angle distribution and flavor transformation of supernova neutrinos  

E-Print Network [OSTI]

Using moment equations we analyze collective flavor transformation of supernova neutrinos. We study the convergence of moment equations and find that numerical results using a few moment converge quite fast. We study effects of emission angle distribution of neutrinos on neutrino sphere. We study scaling law of the amplitude of neutrino self-interaction Hamiltonian and find that it depends on model of emission angle distribution of neutrinos. Dependence of neutrino oscillation on different models of emission angle distribution is studied.

Wei Liao

2009-06-28T23:59:59.000Z

309

X-ray studies of supernova remnants: A different view of supernova explosions  

Science Journals Connector (OSTI)

...be found in refs. 17–19. Type Ia SNe and Their SNRs Open Issues in Type Ia SNe. Type Ia SNe are believed to be the thermonuclear explosion of a C + O white dwarf (WD) that is destabilized when its mass becomes close to the Chandrasekhar limit by accretion...

Carles Badenes

2010-01-01T23:59:59.000Z

310

E-Print Network 3.0 - automated supernova search Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and analysis Summary: : Search Contact information Astrophysics Grand Challenge: Dark Energy The Nearby Supernova Factory... the four components (Search, Workflow Status...

311

Search for Correlations Between Batse Gamma-Ray Bursts and Supernovae  

Science Journals Connector (OSTI)

We report on our statistical research of space-time correlated supernovae and CGRO-BATSE gamma-ray bursts (GRBs). There exists a significantly higher...

Ji?í Polcar; Martin Topinka; Graziella Pizzichini…

2005-01-01T23:59:59.000Z

312

High Energy Neutrinos from Gamma-Ray Bursts with Precursor Supernovae  

E-Print Network [OSTI]

The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell, and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

Soebur Razzaque; Peter Meszaros; Eli Waxman

2002-12-24T23:59:59.000Z

313

Ion Heating in Collisionless Shocks in Supernovae and the Heliosphere  

E-Print Network [OSTI]

Collisionless shocks play a role in many astrophysical phenomena, from coronal mass ejections (CMEs) in the heliosphere to supernova remnants. Their role in heating and accelerating particles is well accepted yet the exact mechanism for ion heating is not well understood. Two systems, CMEs and supernova remnants, were examined to determine the heating of heavy ions as they pass through collisionless shocks thus providing a seed population for cosmic ray acceleration processes. Three parameters are examined, the plasma beta, the Mach number of the shock and the magnetic angle of the shock. CMEs heat heavy ions preferentially. This is in contrast to the supernova data which shows less than mass proportional heating. In addition to these studies, heating in astrophysical systems involves neutral atoms. A Monte Carlo model simulated neutral particles as they pass through the shock. Neutrals can create a precursor to the shock additionally heating the plasma. This work uses in situ data from the heliosphere to study astronomical systems because of common shock properties is a unique way to study magnetic components of shocks remotely.

K. E. Korreck

2005-06-14T23:59:59.000Z

314

Cutting-edge issues of core-collapse supernova theory  

SciTech Connect (OSTI)

Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables.

Kotake, Kei [Department of Applied Physics, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 (Japan); Nakamura, Ko [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo, 169-8555 (Japan); Kuroda, Takami [Department Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Takiwaki, Tomoya [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan)

2014-05-02T23:59:59.000Z

315

THE CARNEGIE SUPERNOVA PROJECT: FIRST NEAR-INFRARED HUBBLE DIAGRAM TO z approx 0.7  

SciTech Connect (OSTI)

The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the universe. The CSP differs from other projects to date in its goal of providing an I-band rest-frame Hubble diagram. Here, we present the first results from near-infrared observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (R{sub V} = 1.8) than that in the Milky Way (where R{sub V} = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia, independent of the decline rate. Understanding and disentangling these effects is critical for minimizing the systematic uncertainties in future SN Ia cosmology studies.

Freedman, Wendy L.; Burns, Christopher R.; Wyatt, Pamela; Persson, S. E.; Madore, Barry F.; Kelson, Daniel D.; Murphy, D. C.; Sturch, Laura [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Phillips, M. M.; Contreras, Carlos; Folatelli, Gaston; Gonzalez, E. Sergio; Morrell, Nidia; Roth, Miguel; Stritzinger, Maximilian [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Hamuy, Mario [Universidad de Chile, Departmento de Astronomia, Casilla 36-D, Santiago (Chile); Hsiao, Eric [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC V8W 3P6 (Canada); Suntzeff, Nick B. [Physics Department, Texas A and M University, College Station, TX 77843 (United States); Astier, P.; Balland, C. [LPNHE, CNRS-IN2P3 and Universites Paris VI and VII, 4 place Jussieu, 75252 Paris Cedex 05 (France)

2009-10-20T23:59:59.000Z

316

Non-spherical Core Collapse Supernovae I. Neutrino-Driven Convection, Rayleigh-Taylor Instabilities, and the Formation and Propagation of Metal Clumps  

E-Print Network [OSTI]

Two-dimensional simulations of a Type II and a Type Ib-like supernova explosion are presented that encompass shock revival by neutrino heating, neutrino-driven convection, explosive nucleosynthesis, the growth of Rayleigh-Taylor instabilities, and the propagation of newly formed metal clumps through the exploding star. In both cases we find very high Ni56 velocities of 17000 km/s shortly after shock-revival, and a complete fragmentation of the progenitor's metal core within the first few minutes after core bounce, due to the growth of Rayleigh-Taylor instabilities at the Si/O and (C+O)/He composition interfaces. This leads to the formation of high-velocity, metal-rich clumps which eventually decouple from the flow and move ballistically through the ejecta. Maximum final metal velocities of 3500-5500 km/s and 1200 km/s are obtained for the Type Ib model and the Type II model, respectively. The low maximum metal velocities in the Type II model, which are significantly smaller than those observed in SN 1987A, are due to the massive hydrogen envelope of the progenitor. The envelope forces the supernova shock to decelerate strongly, leaving behind a reverse shock below the He/H interface, which interacts with the clumps and slows them down significantly. This reverse shock is absent in the Type Ib-like model. The latter is in fairly good agreement with observations of Type Ib supernovae. In addition, in this case the pattern of clump formation in the ejecta is correlated with the convective pattern prevailing during the shock-revival phase. This might be used to deduce observational constraints for the dynamics during this early phase of the evolution, and the role of neutrino heating in initiating the explosion.

K. Kifonidis; T. Plewa; H. -Th. Janka; E. Mueller

2003-02-12T23:59:59.000Z

317

NONTHERMAL RADIATION FROM SUPERNOVA REMNANTS: EFFECTS OF MAGNETIC FIELD AMPLIFICATION AND PARTICLE ESCAPE  

SciTech Connect (OSTI)

We explore nonlinear effects of wave-particle interactions on the diffusive shock acceleration (DSA) process in Type Ia-like supernova remnant (SNR) blast waves by implementing phenomenological models for magnetic field amplification (MFA), Alfvénic drift, and particle escape in time-dependent numerical simulations of nonlinear DSA. For typical SNR parameters, the cosmic-ray (CR) protons can be accelerated to PeV energies only if the region of amplified field ahead of the shock is extensive enough to contain the diffusion lengths of the particles of interest. Even with the help of Alfvénic drift, it remains somewhat challenging to construct a nonlinear DSA model for SNRs in which of the order of 10% of the supernova explosion energy is converted into CR energy and the magnetic field is amplified by a factor of 10 or so in the shock precursor, while, at the same time, the energy spectrum of PeV protons is steeper than E {sup –2}. To explore the influence of these physical effects on observed SNR emission, we also compute the resulting radio-to-gamma-ray spectra. Nonthermal emission spectra, especially in X-ray and gamma-ray bands, depend on the time-dependent evolution of the CR injection process, MFA, and particle escape, as well as the shock dynamic evolution. This result comes from the fact that the high-energy end of the CR spectrum is composed of particles that are injected in the very early stages of the blast wave evolution. Thus, it is crucial to better understand the plasma wave-particle interactions associated with collisionless shocks in detailed modeling of nonthermal radiation from SNRs.

Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, Paul P., E-mail: kang@uju.es.pusan.ac.kr, E-mail: twj@msi.umn.edu, E-mail: pedmon@cfa.harvard.edu [Research Computing, Harvard University, Cambridge, MA 02138 (United States)

2013-11-01T23:59:59.000Z

318

Incompatibility of a comoving Ly-alpha forest with supernova-Ia luminosity distances  

E-Print Network [OSTI]

Recently Perlmutter et al. suggested a positive value of Einstein's cosmological constant Lambda on the basis of luminosity distances from type-Ia supernovae. However, Lambda world models had earlier been proposed by Hoell & Priester and Liebscher et al. on the basis of quasar absorption-line data. Employing more general repulsive fluids ("dark energy") encompassing the Lambda component we quantitatively compare both approaches with each other. Fitting the SN-data by a minimum-component model consisting of dark energy + dust yields a closed universe with a large amount of dust exceeding the baryonic content constrained by big-bang nucleosynthesis. The nature of the dark energy is hardly constrained. Only when enforcing a flat universe there is a clear tendency to a dark-energy Lambda fluid and the `canonical' value Omega_M = 0.3 for dust. Conversely, fitting the quasar-data by a minimum-component model yields a sharply defined, slightly closed model with a low dust density ruling out significant pressureless dark matter. The dark-energy component obtains an equation-of-state P = -0.96 epsilon close to that of a Lambda-fluid. Omega_M = 0.3 or a precisely flat spatial geometry are inconsistent with minimum-component models. It is found that quasar and supernova data sets cannot be reconciled with each other via (repulsive ideal fluid+dust+radiation)-world models. Compatibility could be reached by drastic expansion of the parameter space with at least two exotic fluids added to dust and radiation as world constituents. If considering such solutions as far-fetched one has to conclude that the quasar absorption line and the SN-Ia constraints are incompatible.

Jens Thomas; Hartmut Schulz

2001-03-18T23:59:59.000Z

319

Blood Types  

E-Print Network [OSTI]

Broadcast Transcript: According to the Japanese, you can tell a lot about a person by their blood type: Type A is the farmer, calm and responsible; Type B is the hunter, independent and creative; Type AB is humanistic, ...

Hacker, Randi; Tsutsui, William

2007-03-14T23:59:59.000Z

320

IS THE SUPERNOVA OF A.D. 185 RECORDED IN ANCIENT ROMAN LITERATURE?  

E-Print Network [OSTI]

443 IS THE SUPERNOVA OF A.D. 185 RECORDED IN ANCIENT ROMAN LITERATURE? By Richard Stothers* Records. R. Stephenson, "A Revised Catalogue of Pre-Telescopic Galactic No- vae and Supernovae," Quarterly.11). The Roman poet Claudian (Panegyricus de quarto con- The-ancient Chinese astronomers, un- like their Western

Fridlind, Ann

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cosmic Rays from Supernovae Proven to Hit Earth | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cosmic Rays from Supernovae Proven to Hit Earth Cosmic Rays from Supernovae Proven to Hit Earth Cosmic Rays from Supernovae Proven to Hit Earth March 5, 2013 - 4:40pm Addthis When stars explode, the supernovas send off shock waves like the one shown in this artist's rendition, which accelerate protons to cosmic-ray energies through a process known as Fermi acceleration. Andy Freeberg SLAC National Accelerator Laboratory Did you know? Protons make up 90 percent of the cosmic rays that hit Earth's atmosphere, triggering showers of particles that reach the ground and creating radiation for air travelers. The energies of these protons as they leave the supernovae are far beyond what the most powerful particle colliders on Earth can produce. Cosmic rays, energetic particles that pelt Earth, are born in the violent

322

Neutrino-induced nucleosynthesis in core-collapse supernovae  

SciTech Connect (OSTI)

Almost all of the 3{center dot}10{sup 53} ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. The resulting spallation reactions are an important nuleosynthesis mechanism that may be responsible for the galactic abundances of {sup 7}Li, {sup 11}B, {sup 19}F, {sup 138}La, {sup 180}Ta, and number of other nuclei. 10 refs., 1 fig., 1 tab.

Hartmann, D.H. (Lawrence Livermore National Lab., CA (USA)); Haxton, W.C. (Washington Univ., Seattle, WA (USA). Dept. of Physics); Hoffman, R.D. (California Univ., Santa Cruz, CA (USA). Board of Studies in Astronomy and Astrophysics); Woosley, S.E. (Lawrence Livermore National Lab., CA (USA) California Univ., Santa Cruz, CA (USA). Board of Studies in Astronomy and Astrophysics)

1990-01-01T23:59:59.000Z

323

Thermonuclear Supernovae: Simulations of the Deflagration Stage and Their Implications  

E-Print Network [OSTI]

Large-scale three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in a gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics is dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear deflagration releases enough energy to produce a healthy explosion. The turbulent flame, however, leaves large amounts of unburnt and partially burnt material near the star center, whereas observations imply these materials only in outer layers. This disagreement could be resolved if the deflagration triggers a detonation.

V. N. Gamezo; A. M. Khokhlov; E. S. Oran; A. Y. Chtchelkanova; R. O. Rosenberg

2002-12-03T23:59:59.000Z

324

DES13S2cmm: The First Superluminous Supernova from the Dark Energy Survey  

E-Print Network [OSTI]

We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find M_U_peak = -21.05 +0.10 -0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low metallicity (sub-solar), low stellar-mass host galaxy (log(M/M_sun) = 9.3 +/- 0.3); consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the b...

Papadopoulos, A; Sullivan, M; Nichol, R C; Barbary, K; Biswas, R; Brown, P J; Covarrubias, R A; Finley, D A; Fischer, J A; Foley, R F; Goldstein, D; Gupta, R R; Kessler, R; Kovacs, E; Kuhlmann, S E; Lidman, C; March, M; Nugent, P E; Sako, M; Smith, R C; Spinka, H; Wester, W; Abbott, T M C; Abdalla, F; Allam, S S; Banerji, M; Bernstein, J P; Bernstein, R A; Carnero, A; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Eifler, T; Evrard, A E; Flaugher, B; Frieman, J A; Gerdes, D; Gruen, D; Honscheid, K; James, D; Kuehn, K; Kuropatkin, N; Lahav, O; Maia, M A G; Makler, M; Marshall, J L; Merritt, K W; Miller, C J; Miquel, R; Ogando, R; Plazas, A A; Roe, N A; Romer, A K; Rykoff, E; Sanchez, E; Santiago, B X; Scarpine, V; Schubnell, M; Sevilla, I; Santos, M Soares-; Suchyta, E; Swanson, M; Tarle, G; Thaler, J; Tucker, D L; Wechsler, R H; Zuntz, J

2015-01-01T23:59:59.000Z

325

Radioactive Decay Energy Deposition in Supernovae and the Exponential/Quasi-Exponential Behavior of Late-Time Supernova Light Curves  

E-Print Network [OSTI]

The radioactive decay energy (RDE) deposition in supernovae from the decay chain Ni56-Co56-Fe56 usually directly powers the UV/optical/IR (UVOIR) bolometric luminosity of supernovae in their quasi-steady state phase until very late times. The result for this phase is exponential/quasi-exponential UVOIR bolometric light curves and often exponential/quasi-exponential broad band light curves. A presentation is given of a simple, approximate, analytic treatment of RDE deposition that provides a straightforward understanding of the exponential/quasi-exponential behavior of the UVOIR bolometric luminosity and a partial understanding of the exponential/quasi-exponential behavior of the broad band light curves. The treatment reduces to using a normalized deposition function N_{Ni}^{*}(t) as an analysis tool. The one free parameter of N_{Ni}^{*}(t) is a fiducial time t_{0} which governs time-varying gamma-ray optical depth behavior of a supernova. The N_{Ni}^{*}(t) function is used to analyze the preliminary UVOIR bolometric light curve of SN Ic 1998bw (the possible cause of gamma-ray burst GRB980425). The SN 1998bw t_{0} is found to be 134.42 days and a prediction is made for the evolution of the SN 1998bw RDE deposition curve and quasi-steady state UVOIR bolometric light curve out to day 1000 after the explosion. A very crude estimate of the SN 1998bw mass obtained from the light curve analysis is 4.26 M_{Sun}. As further examples of the simple analytic treatment, the RDE deposition and luminosity evolution of SN Ia 1992A and SN II 1987A have also been examined. The simple analytic treatment of RDE deposition has actually existed for 20 years at least without, apparently, being discussed at length. The main value of this paper is the explicit, detailed, general presentation of this analytic treatment.

David J. Jeffery

1999-07-01T23:59:59.000Z

326

U1A Complex  

ScienceCinema (OSTI)

Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

None

2015-01-09T23:59:59.000Z

327

U1A Complex  

SciTech Connect (OSTI)

Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

None

2014-10-28T23:59:59.000Z

328

Exploring the Outer Solar System with the ESSENCE Supernova Survey  

SciTech Connect (OSTI)

We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21{sup o} < {beta} < -5{sup o}), reaching limiting magnitudes per observation of I {approx} 23.1 and R {approx} 23.7. We examine several of the newly detected objects in detail, including 2003 UC{sub 414}, which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS{sub 422} and 2007 TA{sub 418} have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the 'extended' or 'detached' scattered disk, 2004 VN{sub 112}, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only {approx}2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system.

Becker, A.C.; /Washington U., Seattle, Astron. Dept.; Arraki, K.; /Washington U., Seattle, Astron. Dept.; Kaib, N.A.; /Washington U., Seattle, Astron. Dept.; Wood-Vasey, W.M.; /Harvard-Smithsonian Ctr. Astrophys.; Aguilera, C.; /Cerro-Tololo InterAmerican Obs.; Blackman, J.W.; /Australian Natl. U., Canberra; Blondin, S.; /Harvard-Smithsonian Ctr. Astrophys.; Challis, P.; /Harvard-Smithsonian Ctr. Astrophys.; Clocchiatti, A.; /Rio de Janeiro, Pont. U. Catol.; Covarrubias, R.; /Kyushu Sangyo U.; Damke, G.; /Cerro-Tololo InterAmerican Obs.; Davis, T.M.; /Bohr Inst. /Queensland U.; Filippenko, A.V.; /UC, Berkeley; Foley, R.J.; /UC, Berkeley; Garg, A.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Garnavich, P.M.; /Notre Dame U.; Hicken, M.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Jha, S.; /Harvard U. /SLAC; Kirshner, R.P.; /Harvard-Smithsonian Ctr. Astrophys.; Krisciunas, K.; /Notre Dame U. /Texas A-M; Leibundgut, B.; /Munich, Tech. U. /UC, Berkeley /NOAO, Tucson /Washington U., Seattle, Astron. Dept. /Fermilab /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Chile U., Santiago /Ohio State U. /Cerro-Tololo InterAmerican Obs. /Harvard U. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Australian Natl. U., Canberra /Australian Natl. U., Canberra /Cerro-Tololo InterAmerican Obs. /Munich, Tech. U. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Cerro-Tololo InterAmerican Obs. /Texas A-M /Cerro-Tololo InterAmerican Obs.

2011-11-10T23:59:59.000Z

329

Empirical Solar Abundance Scaling Laws of Supernova {gamma} Process Isotopes  

SciTech Connect (OSTI)

Analyzing the solar system abundances, we have found two empirical abundance scaling laws concerning the p- and s-nuclei with the same atomic number. They are evidence that the 27 p-nuclei are synthesized by the supernova {gamma}-process. The scalings lead to a novel concept of 'universality of {gamma}-process' that the s/p and p/p ratios of nuclei produced by individual {gamma}-processes are almost constant, respectively. We have calculated the ratios of materials produced by the {gamma}-process based on core-collapse supernova explosion models under various astrophysical conditions and found that the scalings hold for individual {gamma}-processes independent of the conditions assumed. The results further suggest an extended universality that the s/p ratios in the {gamma}-process layers are not only constant but also centered on a specific value of 3. With this specific value and the scaling of the s/p ratios, we estimate that the ratios of the s-process abundance contributions from the AGB stars to the massive stars are almost 6.7 for the s-nuclei of A>90 in the solar system.

Hayakawa, Takehito [Kansai Photon Science Institute, Japan Atomic Energy Agency, Kazoo, Kyoto 619-0215 (Japan); Iwamoto, Nobuyuki [Nuclear Data Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kajino, Toshitaka [National Astronomical Observatory, Osawa, Mitaka, Tokyo 181-8588 (Japan); Shizum, Toshiyuki [Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Umeda, Hideyuki; Nomoto, Ken'Ichi [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2008-11-11T23:59:59.000Z

330

Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves  

E-Print Network [OSTI]

Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities >~ 200 km/s for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are incre...

Slavin, Jonathan D; Jones, Anthony P

2015-01-01T23:59:59.000Z

331

Collective three-flavor oscillations of supernova neutrinos  

SciTech Connect (OSTI)

Neutrinos and antineutrinos emitted from a core collapse supernova interact among themselves, giving rise to collective flavor conversion effects that are significant near the neutrinosphere. We develop a formalism to analyze these collective effects in the complete three-flavor framework. It naturally generalizes the spin-precession analogy to three flavors and is capable of analytically describing phenomena like vacuum/Mikheyev-Smirnov-Wolfenstein (MSW) oscillations, synchronized oscillations, bipolar oscillations, and spectral split. Using the formalism, we demonstrate that the flavor conversions may be 'factorized' into two-flavor oscillations with hierarchical frequencies. We explicitly show how the three-flavor solution may be constructed by combining two-flavor solutions. For a typical supernova density profile, we identify an approximate separation of regions where distinctly different flavor conversion mechanisms operate, and demonstrate the interplay between collective and MSW effects. We pictorialize our results in terms of the 'e{sub 3}-e{sub 8} triangle' diagram, which is a tool that can be used to visualize three-neutrino flavor conversions in general, and offers insights into the analysis of the collective effects in particular.

Dasgupta, Basudeb; Dighe, Amol [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

2008-06-01T23:59:59.000Z

332

FORMATION OF C{sub n} MOLECULES IN OXYGEN-RICH INTERIORS OF TYPE II SUPERNOVAE  

SciTech Connect (OSTI)

Two reaction-rate-based kinetic models for condensation of carbon dust via the growth of precursor linear carbon chains are currently under debate: the first involves the formation of C{sub 2} molecules via radiative association of free C atoms, and the second forms C{sub 2} molecules by the endoergic reaction CO + C {yields} C{sub 2} + O. Both are followed by C captures until the linear chain eventually makes an isomeric transition to ringed carbon on which rapid growth of graphite may occur. These two approaches give vastly different results. Because of the high importance of condensable carbon for current problems in astronomy, we study these competing claims with an intentionally limited reaction rate network which clearly shows that initiation by C + C {yields} C{sub 2} + {gamma} is the dominant pathway to carbon rings. We propose an explanation for why the second pathway is not nearly as effective as its proponents calculated it to be.

Yu Tianhong; Meyer, Bradley S.; Clayton, Donald D. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

2013-05-20T23:59:59.000Z

333

A STUDY OF PROPERTIES OF TYPE IA SUPERNOVA AND THE CALIBRATION OF MULTIBAND PHOTOMETRY  

E-Print Network [OSTI]

should be transformed to a standard scale for uniformity and should be corrected for precision in measurements. The sources of systematic errors are correctly identified and remedied using S-corrections and extinction corrections. The study found a larger...

Bastola, Deepak 1988-

2012-04-27T23:59:59.000Z

334

The Evolution of Low Mass Helium Stars towards Supernova Type I Explosion  

E-Print Network [OSTI]

We explore the hypothesis, that helium stars in a certain mass range can evolve to a carbon core explosion similar to what is widely accepted as an explanation for the SN I phenomenon. This should happen when their carbon-oxygen core grows thanks to the helium shell burning above the core. We found that in the mass range of about 1.7-2.2 Msun, indeed this can happen. The main new insight we believe we gained is the crucial importance of an "early" off-center ignition of carbon, which at a later stage prevents the carbon which forms below the helium burning shell and ignites, from burning the carbon all the way to the center. When helium is almost depleted in the convective envelope by the helium burning shell at its bottom, the now super-Chandrasekhar mass carbon-oxygen core contracts, and the residual degenerate carbon at the center is ignited, resulting in a runaway similar to the classical SN I scenario. Since the structure and behavior of the carbon-oxygen core of the helium stars of our interest is very similar to that of a mass accreting carbon-oxygen star, we also thoroughly examined the behavior of carbon-oxygen stars. We discovered that the models which ignite carbon off-center (in the mass range of about 1.05-1.18 Msun, depending on the carbon mass fraction) present an interesting SN I progenitor scenario of their own, since whereas in the standard scenario runaway always takes place at the same density of about 2E9 gr/cm3, in our case, due to the small amount of carbon ignited, we get a whole range of densities from 1E9 up to 6E9 gr/cm3.

Roni Waldman; Zalman Barkat

2006-11-21T23:59:59.000Z

335

Infrared and optical spectroscopy of Type Ia supernovae in the nebular phase  

Science Journals Connector (OSTI)

......details of the spectral synthesis code. First, the similar atomic...nebular spectral synthesis code. We shall use this analysis...7e5 1e6 8e4 8.8e4 Ns+/ NS2+ 0.5 0.5 0.5 0.5 8...comprehensive spectral synthesis codes such as EDDINGTON (Eastman......

E. J. C. Bowers; W. P. S. Meikle; T. R. Geballe; N. A. Walton; P. A. Pinto; V. S. Dhillon; S. B. Howell; M. K. Harrop-Allin

1997-10-01T23:59:59.000Z

336

ESC observations of SN 2005cf – I. Photometric evolution of a normal Type Ia supernova  

Science Journals Connector (OSTI)

......Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen...efficiency, the reflectivity of the mirrors, the atmospheric transmission and...transmission profile, M(lambda) is the mirror reflectivity function and L(lambda......

A. Pastorello; S. Taubenberger; N. Elias-Rosa; P. A. Mazzali; G. Pignata; E. Cappellaro; G. Garavini; S. Nobili; G. C. Anupama; D. D. R. Bayliss; S. Benetti; F. Bufano; N. K. Chakradhari; R. Kotak; A. Goobar; H. Navasardyan; F. Patat; D. K. Sahu; M. Salvo; B. P. Schmidt; V. Stanishev; M. Turatto; W. Hillebrandt

2007-04-11T23:59:59.000Z

337

Supernova SN1987A Bound on Neutrino Spectra for R-Process Nucleosynthesis  

E-Print Network [OSTI]

The neutrino driven wind during a core collapse supernova is an attractive site for r-process nucleosynthesis. The electron fraction $Y_e$ in the wind depends on observable neutrino energies and luminosities. The mean antineutrino energy is limited by supernova SN1987A data while lepton number conservation constrains the ratio of antineutrino to neutrino luminosities. If $Y_e$, in the wind, is to be suitable for rapid neutron capture nucleosynthesis, then the mean electron neutrino energy may be significantly lower then that predicted in present supernova simulations, or there may be new neutrino physics such as oscillations to sterile neutrinos.

C. J. Horowitz

2001-08-07T23:59:59.000Z

338

New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells  

Science Journals Connector (OSTI)

A new class of core-collapse supernovae (SNe) has been discovered in recent years by optical/infrared surveys; these SNe suggest the presence of one or more extremely dense (?105-11??cm-3) shells of circumstellar material (CSM) on 102-4??AU scales. We consider the collisions of the SN ejecta with these massive CSM shells as potential cosmic-ray (CR) accelerators. If ?10% of the SN energy goes into CRs, multi-TeV neutrinos and/or GeV-TeV gamma rays almost simultaneous with the optical/infrared light curves are detectable for SNe at ?20–30??Mpc. A new type of coordinated multimessenger search for such transients of duration ?1–10 months is required; these may give important clues to the physical origin of such SNe and to CR acceleration mechanisms.

Kohta Murase; Todd A. Thompson; Brian C. Lacki; John F. Beacom

2011-08-12T23:59:59.000Z

339

A Blue Point Source at the Location of Supernova 2011dh  

E-Print Network [OSTI]

We present Hubble Space Telescope (HST) observations of the field of the Type IIb supernova (SN) 2011dh in M51 performed at ~1161 rest-frame days after explosion using the Wide Field Camera 3 and near-UV filters F225W and F336W. A star-like object is detected in both bands and the photometry indicates it has negative (F225W - F336W) color. The observed object is compatible with the companion of the now-vanished yellow supergiant progenitor predicted in interacting binary models. We consider it unlikely that the SN is undergoing strong interaction and thus estimate that it makes a small contribution to the observed flux. The possibilties of having detected an unresolved light echo or an unrelated object are briefly discussed and judged unlikely. Adopting a possible range of extinction by dust, we constrain parameters of the proposed binary system. In particular, the efficiency of mass accretion onto the binary companion must be below 50%, if no significant extinction is produced by newly formed dust. Further m...

Folatelli, Gastón; Benvenuto, Omar G; Van Dyk, Schuyler D; Kuncarayakti, Hanindyo; Maeda, Keiichi; Nozawa, Takaya; Nomoto, Ken'ichi; Hamuy, Mario; Quimby, Robert M

2014-01-01T23:59:59.000Z

340

Thermonuclear Supernovae: Probing Magnetic Fields by Late-Time IR Line Profiles  

E-Print Network [OSTI]

We study the imprint of magnetic fields B on late-time IR line profiles and light curves of Type Ia Supernovae. As a benchmark, we use the explosion of a Chandrasekhar mass M_{Ch White Dwarf (WD) and, specifically, a delayed detonation model. We assume WDs with initial magnetic surface fields between 1 and 1E9G. We discuss large-scale dipole and small-scale magnetic fields. We find that the [Fe II] line at 1.644 mu can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. Subsequently, positron transport and magnetic field effects become important. By day 500, the profile becomes sensitive to the morphology of B and directional dependent for dipole fields. Small or no directional dependence of the spectra is found for small-scale B. After about 200 days, persistent broad-line, flat-topped or stumpy profiles require high density burning which is the signature of a WD close to M_Ch. Narrow peaked profiles are a signature of chemical mixing or sub-...

Penney, R

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Probing the anisotropic expansion from supernovae and GRBs in a model-independent way  

E-Print Network [OSTI]

In this paper, we study the anisotropic expansion of the universe using type Ia supernovae Union 2.1 sample and 116 long gamma-ray bursts. The luminosity distance is expanded with model-independent cosmographic parameters as a function of $z/(1+z)$ directly. Thus the results are independent of cosmology model. We find a dipolar anisotropy in the direction ($l=309.2^\\circ \\pm 15.8^\\circ$, $b=-8.6^\\circ \\pm 10.5^\\circ$) in galactic coordinates with a significant evidence $97.29\\%$ (more than $2~\\sigma$). The magnitude is $(1.37\\pm 0.57) \\times 10^{-3}$ for the dipole, and $(2.6\\pm 2.1)\\times 10^{-4}$ for the monopole, respectively. This dipolar anisotropy is more significant at low redshift from the redshift tomography analysis. We also test whether this preferred direction is caused by bulk flow motion or dark energy dipolar scalar perturbation. We find that the direction and the amplitude of the bulk flow in our results are approximately consistent with the bulk flow surveys. Therefore, bulk flow motion may b...

Wang, J S

2014-01-01T23:59:59.000Z

342

Failed-detonation Supernovae: Subluminous Low-velocity Ia Supernovae and their Kicked Remnant White Dwarfs with Iron-rich Cores  

Science Journals Connector (OSTI)

Type Ia supernovae (SNe Ia) originate from the thermonuclear explosions of carbon-oxygen (C-O) white dwarfs (WDs). The single-degenerate scenario is a well-explored model of SNe Ia where unstable thermonuclear burning initiates in an accreting, Chandrasekhar-mass WD and forms an advancing flame. By several proposed physical processes, the rising, burning material triggers a detonation, which subsequently consumes and unbinds the WD. However, if a detonation is not triggered and the deflagration is too weak to unbind the star, a completely different scenario unfolds. We explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe. We show that failed-detonation SNe expel a few 0.1 M ? of burned and partially burned material and that a fraction of the material falls back onto the WD, polluting the remnant WD with intermediate-mass and iron-group elements that likely segregate to the core forming a WD whose core is iron rich. The remaining material is asymmetrically ejected at velocities comparable to the escape velocity from the WD, and in response, the WD is kicked to velocities of a few hundred km s–1. These kicks may unbind the binary and eject a runaway/hypervelocity WD. Although the energy and ejected mass of the failed-detonation SN are a fraction of typical thermonuclear SNe, they are likely to appear as subluminous low-velocity SNe Ia. Such failed detonations might therefore explain or are related to the observed branch of peculiar SNe Ia, such as the family of low-velocity subluminous SNe (SN 2002cx/SN 2008ha-like SNe).

George C. Jordan, IV; Hagai B. Perets; Robert T. Fisher; Daniel R. van Rossum

2012-01-01T23:59:59.000Z

343

FAILED-DETONATION SUPERNOVAE: SUBLUMINOUS LOW-VELOCITY Ia SUPERNOVAE AND THEIR KICKED REMNANT WHITE DWARFS WITH IRON-RICH CORES  

SciTech Connect (OSTI)

Type Ia supernovae (SNe Ia) originate from the thermonuclear explosions of carbon-oxygen (C-O) white dwarfs (WDs). The single-degenerate scenario is a well-explored model of SNe Ia where unstable thermonuclear burning initiates in an accreting, Chandrasekhar-mass WD and forms an advancing flame. By several proposed physical processes, the rising, burning material triggers a detonation, which subsequently consumes and unbinds the WD. However, if a detonation is not triggered and the deflagration is too weak to unbind the star, a completely different scenario unfolds. We explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe. We show that failed-detonation SNe expel a few 0.1 M{sub Sun} of burned and partially burned material and that a fraction of the material falls back onto the WD, polluting the remnant WD with intermediate-mass and iron-group elements that likely segregate to the core forming a WD whose core is iron rich. The remaining material is asymmetrically ejected at velocities comparable to the escape velocity from the WD, and in response, the WD is kicked to velocities of a few hundred km s{sup -1}. These kicks may unbind the binary and eject a runaway/hypervelocity WD. Although the energy and ejected mass of the failed-detonation SN are a fraction of typical thermonuclear SNe, they are likely to appear as subluminous low-velocity SNe Ia. Such failed detonations might therefore explain or are related to the observed branch of peculiar SNe Ia, such as the family of low-velocity subluminous SNe (SN 2002cx/SN 2008ha-like SNe).

Jordan, George C. IV; Van Rossum, Daniel R. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States); Perets, Hagai B. [Physics Department, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Fisher, Robert T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States)

2012-12-20T23:59:59.000Z

344

Cosmological Parameters From Supernovae Associated With Gamma-ray Bursts  

E-Print Network [OSTI]

We report estimates of the cosmological parameters $\\Omega_m$ and $\\Omega_{\\Lambda}$ obtained using supernovae (SNe) associated with gamma-ray bursts (GRBs) at redshifts up to 0.606. Eight high-fidelity GRB-SNe with well-sampled light curves across the peak are used. We correct their peak magnitudes for a luminosity-decline rate relation to turn them into accurate standard candles with dispersion $\\sigma = 0.18$ mag. We also estimate the peculiar velocity of the host galaxy of SN 1998bw, using constrained cosmological simulations. In a flat universe, the resulting Hubble diagram leads to best-fit cosmological parameters of $(\\Omega_m, \\Omega_{\\Lambda}) = (0.52^{+0.34}_{-0.31},0.48^{+0.31}_{-0.34})$. This exploratory study suggests that GRB-SNe can potentially be used as standardizable candles to high redshifts to measure distances in the universe and constrain cosmological parameters.

Li, Xue; Wojtak, Rados?aw

2014-01-01T23:59:59.000Z

345

No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase  

SciTech Connect (OSTI)

We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle {theta}{sub 13} is not very small.

Chakraborty, Sovan; Mirizzi, Alessandro; Saviano, Ninetta; Tomas, Ricard [II Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Fischer, Tobias [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universitaet Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

2011-10-07T23:59:59.000Z

346

Influence of light nuclei on neutrino-driven supernova outflows  

E-Print Network [OSTI]

We study the composition of the outer layers of a protoneutron star and show that light nuclei are present in substantial amounts. The composition is dominated by nucleons, deuterons, tritons and alpha particles; 3He is present in smaller amounts. This composition can be studied in laboratory experiments with new neutron-rich radioactive beams that can reproduce similar densities and temperatures. After including the corresponding neutrino interactions, we demonstrate that light nuclei have a small impact on the average energy of the emitted electron neutrinos, but are significant for the average energy of antineutrinos. During the early post-explosion phase, the average energy of electron antineutrinos is slightly increased, while at later times during the protoneutron star cooling it is reduced by about 1 MeV. The consequences of these changes for nucleosynthesis in neutrino-driven supernova outflows are discussed.

A. Arcones; G. Martinez-Pinedo; E. O'Connor; A. Schwenk; H. -Th. Janka; C. J. Horowitz; K. Langanke

2008-05-25T23:59:59.000Z

347

Core Collapse Supernovae --- Theory between Achievements and New Challenges  

E-Print Network [OSTI]

Multi-dimensional hydrodynamic simulations of the post-bounce evolution of collapsed stellar iron cores have demonstrated that convective overturn between the stalled shock and the neutrinosphere can have an important effect on the neutrino-driven explosion mechanism. Whether a model yields a successful explosion or not, however, still depends on the power of neutrino energy deposition behind the stalled shock. The neutrino interaction with the stellar gas in the ``hot bubble'' also determines the duration of the shock stagnation phase, the explosion energy, and the composition of the neutrino-heated supernova ejecta. More accurate models require a more precise calculation of the neutrino luminosities and spectra and of the angular distributions of the neutrinos in the heating region. Therefore it is necessary to improve the numerical treatment of the neutrino transport, to develop a better understanding of the neutrino opacities of the dense nuclear medium, and to take into account convective processes {\\it inside} the newly formed neutron star.

H. -Th. Janka

1998-10-05T23:59:59.000Z

348

MHD Simulations of Core Collapse Supernovae with Cosmos++  

E-Print Network [OSTI]

We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core--collapse supernovae. We have initialized a non--rotating 15 solar mass progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post--collapse environment is expected to be only ~ 200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. (2003) and Obergaulinger et al. (2009).

Akiyama, Shizuka

2010-01-01T23:59:59.000Z

349

GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light  

E-Print Network [OSTI]

Training Network “Gamma-Ray Bursts: An Enigma and a Tool”,Journal GRB 020410: A Gamma-Ray Burst Afterglow DiscoveredSubject headings: gamma rays: bursts – supernova: general

2004-01-01T23:59:59.000Z

350

Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis  

SciTech Connect (OSTI)

Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

Woosley, Stan

2014-08-29T23:59:59.000Z

351

Photo-heating and supernova feedback amplify each other's effect on the cosmic star formation rate  

E-Print Network [OSTI]

Photo-heating associated with reionisation and kinetic feedback from core-collapse supernovae have previously been shown to suppress the high-redshift cosmic star formation rate. Here we investigate the interplay between photo-heating and supernova feedback using a set of cosmological, smoothed particle hydrodynamics simulations. We show that photo-heating and supernova feedback mutually amplify each other's ability to suppress the star formation rate. Our results demonstrate the importance of the simultaneous, non-independent inclusion of these two processes in models of galaxy formation to estimate the strength of the total negative feedback they exert. They may therefore be of particular relevance to semi-analytic models in which the effects of photo-heating and supernova feedback are implicitly assumed to act independently of each other.

Andreas H. Pawlik; Joop Schaye

2008-12-15T23:59:59.000Z

352

Type Fusion  

Science Journals Connector (OSTI)

Fusion is an indispensable tool in the arsenal ... Less well-known, but equally valuable is type fusion, which states conditions for fusing an application ... algebra. We provide a novel proof of type fusion base...

Ralf Hinze

2011-01-01T23:59:59.000Z

353

Lightcurves of thermonuclear supernovae as a probe of the explosion mechanism and their use in cosmology  

E-Print Network [OSTI]

Thermonuclear supernovae are valuable for cosmology but their physics is not yet fully understood. Modeling the development and propagation of nuclear flame is complicated by numerous instabilities. The predictions of supernova light curves still involve some simplifying assumptions, but one can use the comparison of the computed fluxes with observations to constrain the explosion mechanism. In spite of great progress in recent years, a number of issues remains unsolved both in flame physics and light curve modeling.

S. Blinnikov; E. Sorokina

2002-12-30T23:59:59.000Z

354

Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey  

Science Journals Connector (OSTI)

We present constraints on the dark energy equation-of-state parameter, w = P/(?c2), using 60 SNe Ia from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (?M, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05 (stat 1 ?) ± 0.13 (sys) and ?M = 0.274 (stat 1 ?) with a best-fit ?2/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07 (stat 1 ?) ± 0.13 (sys), ?M = 0.267 (stat 1 ?) with a best-fit ?2/dof of 0.91. The current global SN Ia data alone rule out empty (?M = 0), matter-only ?M = 0.3, and ?M = 1 universes at >4.5 ?. The current SN Ia data are fully consistent with a cosmological constant.

W. M. Wood-Vasey; G. Miknaitis; C. W. Stubbs; S. Jha; A. G. Riess; P. M. Garnavich; R. P. Kirshner; C. Aguilera; A. C. Becker; J. W. Blackman; S. Blondin; P. Challis; A. Clocchiatti; A. Conley; R. Covarrubias; T. M. Davis; A. V. Filippenko; R. J. Foley; A. Garg; M. Hicken; K. Krisciunas; B. Leibundgut; W. Li; T. Matheson; A. Miceli; G. Narayan; G. Pignata; J. L. Prieto; A. Rest; M. E. Salvo; B. P. Schmidt; R. C. Smith; J. Sollerman; J. Spyromilio; J. L. Tonry; N. B. Suntzeff; A. Zenteno

2007-01-01T23:59:59.000Z

355

Signatures of Delayed Detonation, Asymmetry, and Electron Capture in the Mid-Infrared Spectra of Supernovae 2003hv and 2005df  

E-Print Network [OSTI]

We present the first mid-infrared (5.2-15.2 micron) spectra of Type Ia supernovae (SNe 2003hv and 2005df). The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a Type Ia supernova. The observed emission line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure. The SN 2005df Ar lines also exhibit a two-pronged emission profile implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co III] which matches the blueshift of [Fe II] lines in nearly coeval NIR spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive 56Ni give ~0.5 Msun, for SN 2003hv, but only ~0.13-0.22 Msun for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The chemically stratified ejecta structure observed in SN 2005df matches the predictions of delayed-detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.

Christopher L. Gerardy; W. P. S. Meikle; Rubina Kotak; Peter Hoeflich; Duncan Farrah; Alexei V. Filippenko; Ryan J. Foley; Peter Lundqvist; Seppo Mattila; Monica Pozzo; Jesper Sollerman; Schuyler D. Van Dyk; J. Craig Wheeler

2007-02-05T23:59:59.000Z

356

THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95  

SciTech Connect (OSTI)

We report on the direct detection and characterization of the probable red supergiant (RSG) progenitor of the intermediate-luminosity Type II-Plateau (II-P) supernova (SN) 2012aw in the nearby (10.0 Mpc) spiral galaxy Messier 95 (M95; NGC 3351). We have identified the star in both Hubble Space Telescope images of the host galaxy, obtained 17-18 yr prior to the explosion, and near-infrared ground-based images, obtained 6-12 yr prior to the SN. The luminous supergiant showed evidence for substantial circumstellar dust, manifested as excess line-of-sight extinction. The effective total-to-selective ratio of extinction to the star was R'{sub V} Almost-Equal-To 4.35, which is significantly different from that of diffuse interstellar dust (i.e., R{sub V} = 3.1), and the total extinction to the star was therefore, on average, A{sub V} Almost-Equal-To 3.1 mag. We find that the observed spectral energy distribution for the progenitor star is consistent with an effective temperature of 3600 K (spectral type M3), and that the star therefore had a bolometric magnitude of -8.29. Through comparison with recent theoretical massive-star evolutionary tracks we can infer that the RSG progenitor had an initial mass 15 {approx}< M{sub ini}(M{sub Sun }) < 20. Interpolating by eye between the available tracks, we surmise that the star had initial mass {approx}17-18 M{sub Sun }. The circumstellar dust around the progenitor must have been destroyed in the explosion, as the visual extinction to the SN is found to be low (A{sub V} = 0.24 mag with R{sub V} = 3.1).

Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Mailcode 220-6, Pasadena, CA 91125 (United States); Cenko, S. Bradley; Filippenko, Alexei V., E-mail: vandyk@ipac.caltech.edu, E-mail: cenko@berkeley.edu, E-mail: afilippenko@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); and others

2012-09-10T23:59:59.000Z

357

PROBING INTERSTELLAR DUST WITH INFRARED ECHOES FROM THE Cas A SUPERNOVA  

SciTech Connect (OSTI)

We present the analysis of an Infrared Spectrograph 5-38 {mu}m spectrum and Multiband Imaging Photometer for Spitzer photometric measurements of an infrared echo near the Cassiopeia A (Cas A) supernova (SN) remnant observed with the Spitzer Space Telescope. We have modeled the recorded echo accounting for polycyclic aromatic hydrocarbons (PAHs), quantum-heated carbon and silicate grains, as well as thermal carbon and silicate particles. Using the fact that optical light-echo spectroscopy has established that Cas A originated from a Type IIb SN explosion showing an optical spectrum remarkably similar to the prototypical Type IIb SN 1993J, we use the latter to construct template data input for our simulations. We are then able to reproduce the recorded infrared echo spectrum by combining the emission of dust heated by the UV burst produced at the shock breakout after the core-collapse and dust heated by optical light emitted near the visual maximum of the SN light curve, where the UV burst and optical light curve characteristics are based on SN 1993J. We find a mean density of {approx}680 H cm{sup -3} for the echo region, with a size of a few light years across. We also find evidence of dust processing in the form of a lack of small PAHs with less than {approx}300 carbon atoms, consistent with a scenario of PAHs destruction by the UV burst via photodissociation at the estimated distance of the echo region from Cas A. Furthermore, our simulations suggest that the weak 11 {mu}m features of our recorded infrared echo spectrum are consistent with a strong dehydrogenated state of the PAHs. This exploratory study highlights the potential of investigating dust processing in the interstellar medium through infrared echoes.

Vogt, Frederic P. A. [Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Besel, Marc-Andre; Krause, Oliver; Dullemond, Cornelis P., E-mail: fvogt@mso.anu.edu.au [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany)

2012-05-10T23:59:59.000Z

358

NEAR-INFRARED SPECTROSCOPY OF INFRARED-EXCESS STELLAR OBJECTS IN THE YOUNG SUPERNOVA REMNANT G54.1+0.3  

SciTech Connect (OSTI)

We present the results of broadband near-infrared spectroscopic observations of the recently discovered mysterious stellar objects in the young supernova remnant G54.1+0.3. These objects, which show significant mid-infrared-excess emission, are embedded in a diffuse loop structure of {approx}1' in radius. Their near-infrared spectra reveal characteristics of late O- or early B-type stars with numerous H and He I absorption lines, and we classify their spectral types to be between O9 and B2 based on an empirical relation derived here between the equivalent widths of the H lines and stellar photospheric temperatures. The spectral types, combined with the results of spectral energy distribution fits, constrain the distance to the objects to be 6.0 {+-} 0.4 kpc. The photometric spectral types of the objects are consistent with those from the spectroscopic analyses, and the extinction distributions indicate a local enhancement of matter in the western part of the loop. If these objects originate via triggered formation by the progenitor star of G54.1+0.3, then their formations likely began during the later evolutionary stages of the progenitor, although a rather earlier formation may still be possible. If the objects and the progenitor belong to the same cluster of stars, then our results constrain the progenitor mass of G54.1+0.3 to be between 18 and {approx}35 M{sub Sun} and suggest that G54.1+0.3 was either a Type IIP supernova or, with a relatively lower possibility, Type Ib/c from a binary system.

Kim, Hyun-Jeong; Koo, Bon-Chul [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Moon, Dae-Sik, E-mail: hjkim@astro.snu.ac.kr, E-mail: koo@astro.snu.ac.kr, E-mail: moon@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

2013-09-01T23:59:59.000Z

359

A Comparative Analysis of the Supernova Legacy Survey Sample with {\\Lambda}CDM and the $R_{\\rm h}=ct$ Universe  

E-Print Network [OSTI]

The use of Type~Ia SNe has thus far produced the most reliable measurement of the expansion history of the Universe, suggesting that $\\Lambda$CDM offers the best explanation for the redshift--luminosity distribution observed in these events. But the analysis of other kinds of source, such as cosmic chronometers, gamma ray bursts, and high-$z$ quasars, conflicts with this conclusion, indicating instead that the constant expansion rate implied by the $R_{\\rm h}=ct$ Universe is a better fit to the data. The central difficulty with the use of Type~Ia SNe as standard candles is that one must optimize three or four nuisance parameters characterizing supernova luminosities simultaneously with the parameters of an expansion model. Hence in comparing competing models, one must reduce the data independently for each. We carry~out such a comparison of $\\Lambda$CDM and the $R_{\\rm h}=ct$ Universe, using the Supernova Legacy Survey (SNLS) sample of 252 SN~events, and show that each model fits its individually reduced data...

Wei, Jun-Jie; Melia, Fulvio; Maier, Robert S

2015-01-01T23:59:59.000Z

360

BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE  

SciTech Connect (OSTI)

We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM{sup 2} = 1 by the appearance of nonaxisymmetric rotational instabilities.

O'Connor, Evan; Ott, Christian D., E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

UBVRI Hubble Diagrams of Gamma-ray Burst Supernovae  

E-Print Network [OSTI]

In this paper we demonstrate, in principle, how gamma-ray burst supernovae (GRB-SNe) can be used to measure the Hubble constant, H_0. Using two statistical data-fitting procedures, a linear-least squares (LLS) method and a Monte-Carlo (MC) method, we first present a statistically significant luminosity--decline relationship of GRB-SNe in filters UBVRI, and then provide constraints on H_0. Using SN 1998bw, and a fiducial distance to its host galaxy of 37 Mpc, we constrain H_0 to the range 61--69 km/s/Mpc. In our analysis, we adopt conservative errors of 20% in the SN magnitudes. The subsequent errors in H_0 derived from the MC method are of order 2--4 km/s/Mpc, and roughly ten times larger using the LLS method. Interestingly, the weakest luminosity--decline relation is seen in the B-band; however the B-band (and V-band) data provide one of the tightest constraints on H_0 of all the filters. Finally, as GRB-SNe arise from massive star progenitors, whose lifetimes are of order several million years, they are lik...

Cano, Zach

2014-01-01T23:59:59.000Z

362

INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS  

SciTech Connect (OSTI)

We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Bruenn, Stephen W., E-mail: elentz@utk.edu [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

2012-11-20T23:59:59.000Z

363

Interplay of Neutrino Opacities in Core-collapse Supernova Simulations  

SciTech Connect (OSTI)

We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of including, and improving, the calculation of neutrino opacities on the development of supernova simulations by removing, or replacing, each opacity individually, or removing opacities in groups. We find that during core collapse improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei based on the hybrid model, relative to the simpler independent-particle approximation (IPA) for a mean nucleus, plays the most important role of all tested neutrino opacities. Low-energy neutrinos emitted by nuclear EC preferentially escape during collapse leading to larger deleptonization of the collapsing core, without the energy downscattering via non-isoenergetic scattering (NIS) on electrons required for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from NIS on electrons. For the accretion phase NIS on free nucleons and pair emission by $e^+e^-$-annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear electron capture, $e^+e^-$-annihilation pair emission, and non-isoenergetic scattering on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

Lentz, Eric J [ORNL; Mezzacappa, Anthony [ORNL; Messer, Bronson [ORNL; Hix, William Raphael [ORNL; Bruenn, S. W. [Florida Atlantic University

2012-01-01T23:59:59.000Z

364

Supernovae without host galaxy? - Hypervelocity stars in foreign galaxies  

E-Print Network [OSTI]

Harvesting the SAI supernova catalog, we search for SNe that apparently do not occur within a distinct host galaxy but lie a great distance apart from their assigned host galaxy. Assuming two possible explanations for this host-lessness of a fraction of reported SNe, namely (i) a host galaxy which is too faint to be detected within the limits of currently available surveys or (ii) a hypervelocity star (HVS) as progenitor of the SN,we want to distinguish between these two cases. To do so, we use deep imaging to test explanation (i). If within our detection limit of 27 mag/arcsec^2, the central surface brightness of the faintest known LSB galaxy so far, no galaxy could be identified, we discard this explanation and regard the SN, after several other checks, to have had a hypervelocity star progenitor. Analyzing a selected subsample of five host-less SNe we find one, SN 2006bx in UGC5434, to be put in the hypervelocity progenitor category with a high probability, exhibiting a projected velocity of > 800 km/s. SN...

Zinn, Peter-Christian; Bomans, Dominik J

2011-01-01T23:59:59.000Z

365

Detecting extra-galactic supernova neutrinos in the Antarctic ice  

E-Print Network [OSTI]

Building on the technological success of the IceCube neutrino telescope, we outline a prospective low-energy extension that utilizes the clear ice of the South Pole. Aiming at a 10 Mton effective volume and a 10 MeV threshold, the detector would provide sufficient sensitivity to detect neutrino bursts from core-collapse supernovae (SNe) in nearby galaxies. The detector geometry and required density of instrumentation are discussed along with the requirements to control the various sources of background, such as solar neutrinos. In particular, the suppression of spallation events induced by atmospheric muons poses a challenge that will need to be addressed. Assuming this background can be controlled, we find that the resulting detector will be able to detect SNe from beyond 10 Mpc, delivering between 10 and 41 regular core-collapse SN detections per decade. It would further allow to study more speculative phenomena, such as optically dark (failed) SNe, where the collapse proceeds directly to a black hole, at a detection rate similar to that of regular SNe. We find that the biggest technological challenge lies in the required number of large area photo-sensors, with simultaneous strict limits on the allowed noise rates. If both can be realized, the detector concept we present will reach the required sensitivity with a comparatively small construction effort and hence offers a route to future routine observations of SNe with neutrinos.

Sebastian Böser; Marek Kowalski; Lukas Schulte; Nora Linn Strotjohann; Markus Voge

2014-07-28T23:59:59.000Z

366

Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods  

E-Print Network [OSTI]

Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to explode by the delayed, neutrino-driven mechanism. Independent groups implemented fundamentally different numerical methods to tackle the Boltzmann neutrino transport equation. Here we present a direct and detailed comparison of such neutrino radiation-hydrodynamical simulations for two codes, Agile-Boltztran of the Oak Ridge-Basel group and Vertex of the Garching group. The former solves the Boltzmann equation directly by an implicit, general relativistic discrete angle method on the adaptive grid of a conservative implicit hydrodynamics code with second-order TVD advection. In contrast, the latter couples a variable Eddington factor technique with an explicit, moving-grid, conservative high-order Riemann solver with important relativistic effects treated by an effective gravitational potential. The presented study is meant to test both neutrino radiation-hydrodynamics implementations and to provide a data basis for comparisons and verifications of supernova codes to be developed in the future. Results are discussed for simulations of the core collapse and post-bounce evolution of a 13 solar mass star with Newtonian gravity and a 15 solar mass star with relativistic gravity.

M. Liebendoerfer; M. Rampp; H. -Th. Janka; A. Mezzacappa

2003-10-22T23:59:59.000Z

367

Neutrino-driven convection versus advection in core collapse supernovae  

E-Print Network [OSTI]

A toy model is analyzed in order to evaluate the linear stability of the gain region immediately behind a stalled accretion shock, after core bounce. This model demonstrates that a negative entropy gradient is not sufficient to warrant linear instability. The stability criterion is governed by the ratio \\chi of the advection time through the gain region divided by the local timescale of buoyancy. The gain region is linearly stable if \\chi3, perturbations are unstable in a limited range of horizontal wavelengths centered around twice the vertical size H of the gain region. The threshold horizontal wavenumbers k_{min} and k_{max} follow simple scaling laws such that Hk_{min}\\propto 1/{\\chi} and Hk_{max}\\propto \\chi. The convective stability of the l=1 mode in spherical accretion is discussed, in relation with the asymmetric explosion of core collapse supernovae. The advective stabilization of long wavelength perturbations weakens the possible influence of convection alone on a global l=1 mode.

T. Foglizzo; L. Scheck; H. -Th. Janka

2005-07-27T23:59:59.000Z

368

Two-Dimensional Simulations of Pulsational Pair-Instability Supernovae  

E-Print Network [OSTI]

Massive stars that end their lives with helium cores in the range of 35 to 65 Msun are known to produce repeated thermonuclear outbursts due to a recurring pair-instability. In some of these events, solar masses of material are ejected in repeated outbursts of several times 10$^{50}$ erg each. Collisions between these shells can sometimes produce very luminous transients that are visible from the edge of the observable universe. Previous 1D studies of these events produce thin, high-density shells as one ejection plows into another. Here, in the first multidimensional simulations of these collisions, we show that the development of a Rayleigh-Taylor instability truncates the growth of the high density spike and drives mixing between the shells. The progenitor is a 110 Msun solar-metallicity star that was shown in earlier work to produce a superluminous supernova. The light curve of this more realistic model has a peak luminosity and duration that are similar to those of 1D models but a structure that is smoot...

Chen, Ke-Jung; Heger, Alexander; Almgren, Ann; Whalen, Daniel

2014-01-01T23:59:59.000Z

369

Non-LTE modeling of supernova-fallback disks  

E-Print Network [OSTI]

We present a first detailed spectrum synthesis calculation of a supernova-fallback disk composed of iron. We assume a geometrically thin disk with a radial structure described by the classical alpha-disk model. The disk is represented by concentric rings radiating as plane-parallel slabs. The vertical structure and emission spectrum of each ring is computed in a fully self-consistent manner by solving the structure equations simultaneously with the radiation transfer equations under non-LTE conditions. We describe the properties of a specific disk model and discuss various effects on the emergent UV/optical spectrum. We find that strong iron-line blanketing causes broad absorption features over the whole spectral range. Limb darkening changes the spectral distribution up to a factor of four depending on the inclination angle. Consequently, such differences also occur between a blackbody spectrum and our model. The overall spectral shape is independent of the exact chemical composition as long as iron is the dominant species. A pure iron composition cannot be distinguished from silicon-burning ash. Non-LTE effects are small and restricted to few spectral features.

K. Werner; T. Nagel; T. Rauch

2006-08-24T23:59:59.000Z

370

Rejuvenating the shells of supernova remnants by pulsar winds  

E-Print Network [OSTI]

We reconsider the rejuvenation mechanism as proposed by Shull, Fesen, & Saken (1989). These authors suggest that an active pulsar can catch up with, and rejuvenate the shell of the associated supernova remnant. The morphology of the SNRs G5.4-1.2 and CTB80 seem to confirm this rejuvenation mechanism. The spindown energy is deposited by the pulsar as a relativistic pulsar wind, and has a sufficient power to explain the observed radio emission observed in these remnants. Shull et al. (1989) did {\\it not} explain the observed lengthscales of the rejuvenated parts of the SNR shell. therefore one needs to consider the diffusive transport of the injected electrons by the pulsar wind. We propose to apply a diffusion mechanism as introduced by Jokipii (1987), which makes a distinction between diffusion along the magnetic field lines and perpendicular to the magnetic field lines, parameterised by the gyro factor $\\eta$. We show that one has to assume a high value for the gyro factor, $\\eta\\simeq 10^3-10^4$, i.e. diffusion of the electrons along the magnetic field line is much faster then perpendicular to the magnetic field line, in order for the rejuvenation mechanism to work on the observed lengthscales.

Eric van der Swaluw; Abraham Achterberg; Yves A. Gallant

2001-12-17T23:59:59.000Z

371

The IceCube data acquisition system for galactic core collapse supernova searches  

Science Journals Connector (OSTI)

The IceCube Neutrino Observatory was designed to detect highly energetic neutrinos. The detector was built as a lattice of 5160 photomultiplier tubes monitoring one cubic kilometer of clear Antarctic ice. Due to low photomultiplier dark noise rates in the cold and radio-pure ice IceCube is also able to detect bursts of O(10MeV) neutrinos expected to be emitted from core collapse supernovae. The detector will provide the world’s highest statistical precision for the lightcurves of galactic supernovae by observing an induced collective rise in all photomultiplier rates [1]. This paper presents the supernova data acquisition system the search algorithms for galactic supernovae as well as the recently implemented HitSpooling DAQ extension. HitSpooling will overcome the current limitation of transmitting photomultiplier rates in intervals of 1.6384 ms by storing all recorded time-stamped hits for supernova candidate triggers. From the corresponding event-based information the average neutrino energy can be estimated and the background induced by detector noise and atmospheric muons can be reduced.

2014-01-01T23:59:59.000Z

372

SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS  

SciTech Connect (OSTI)

We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others

2013-06-20T23:59:59.000Z

373

HINTS FOR NEUTRINO-PROCESS BORON IN PRESOLAR SILICON CARBIDE GRAINS FROM SUPERNOVAE  

SciTech Connect (OSTI)

We have studied more than 1000 presolar silicon carbide (SiC) grains from the Murchison CM2 chondrite for C- and Si-isotopic compositions. Twelve SiC X grains, characterized by strong enrichments in {sup 28}Si and believed to originate from Type II Supernovae (SNeII), were also measured for Li- and B-isotopic compositions. None of these grains show resolvable isotope anomalies in Li or B. For the seven X grains without Li and B contributions from nearby or attached SiC grains of distinct origins we find on average {sup 7}Li/{sup 6}Li = 11.83 {+-} 0.29 (solar system: 12.06) and {sup 11}B/{sup 10}B = 4.68 {+-} 0.31 (solar system: 4.03). The average {sup 7}Li/{sup 6}Li is compatible with the solar system ratio and the lithium in the X grains is likely largely dominated by contaminating Li of laboratory or meteoritic origin. Also, most of the boron in X grains appears to be contamination but the small {sup 11}B excess of {approx}16%, significant at the 2{sigma} level, can be considered a hint for the presence of boron produced by the neutrino process in the parent SNeII. Despite this finding, a quantitative comparison of the B isotope and abundance data of X grains with model predictions reveals deficiencies in our current understanding of the details of B production in SNeII as well as on B chemistry and condensation in SNII ejecta.

Fujiya, Wataru [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hoppe, Peter; Ott, Ulrich, E-mail: fujiya@eps.s.u-tokyo.ac.jp [Max Planck Institute for Chemistry, J.-J.-Becher-Weg 27, 55128 Mainz (Germany)

2011-03-20T23:59:59.000Z

374

Melanin Types  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Melanin Types Melanin Types Name: Irfan Location: N/A Country: N/A Date: N/A Question: What are different types of melanins? And what are the functions of these types? Replies: Hi Irfan! Melanin is a dark compound or better a photoprotective pigment. Its major role in the skin is to absorb the ultraviolet (UV) light that comes from the sun so the skin is not damaged. Sun exposure usually produces a tan at the skin that represents an increase of melanin pigment in the skin. Melanin is important also in other areas of the body, as the eye and the brain., but it is not completely understood what the melanin pigment does in these areas. Melanin forms a special cell called melanocyte. This cell is found in the skin, in the hair follicle, and in the iris and retina of the eye.

375

Tidally-induced thermonuclear Supernovae Stephan Rosswog1, Enrico Ramirez-Ruiz2, W. Raphael Hix3  

E-Print Network [OSTI]

Tidally-induced thermonuclear Supernovae Stephan Rosswog1, Enrico Ramirez-Ruiz2, W. Raphael Hix3 1 in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate

Rosswog, Stephan

376

SUPERNOVA REMNANT KES 17: AN EFFICIENT COSMIC RAY ACCELERATOR INSIDE A MOLECULAR CLOUD  

SciTech Connect (OSTI)

The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and ?-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.

Gelfand, Joseph D. [NYU Abu Dhabi, P.O. Box 903, New York, NY 10276 (United States); Castro, Daniel [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-241, Cambridge, MA 02139 (United States); Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Temim, Tea [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hughes, John P. [Department of Physics and Astronomy Rutgers University 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rakowski, Cara, E-mail: jg168@cosmo.nyu.edu, E-mail: cara.rakowski@gmail.com [United States Patent and Trademark Office, 600 Dulany Street, Alexandria, VA (United States)

2013-11-10T23:59:59.000Z

377

Explosion Mechanism of Core-Collapse Supernovae --- a View Ten Years after SN 1987A  

E-Print Network [OSTI]

The observation of neutrinos from Supernova~1987A has confirmed the theoretical conjecture that these particles play a crucial role during the collapse of the core of a massive star. Only one per cent of the energy they carry away from the newly formed neutron star may account for all the kinetic and electromagnetic energy responsible for the spectacular display of the supernova explosion. However, the neutrinos emitted from the collapsed stellar core at the center of the explosion couple so weakly to the surrounding matter that convective processes behind the supernova shock and/or inside the nascent neutron star might be required to increase the efficiency of the energy transfer to the stellar mantle and envelope. The conditions for a successful explosion by the neutrino-heating mechanism and the possible importance of convection in and around the neutron star are shortly reviewed.

H. -Th. Janka

1997-09-02T23:59:59.000Z

378

ON THE EXISTENCE OF 'RADIO THERMALLY ACTIVE' GALACTIC SUPERNOVA REMNANTS  

SciTech Connect (OSTI)

In this paper, we investigate the possibility of significant production of thermal bremsstrahlung radiation at radio continuum frequencies that could be linked to some Galactic supernova remnants (SNRs). The main targets for this investigation are SNRs expanding in high-density environments. There are several indicators of radio thermal bremsstrahlung radiation from SNRs, such as a flattening at higher frequencies and thermal absorption at lower frequencies intrinsic to an SNR. In this work, we discuss the radio continuum properties of three SNRs that are the best candidates for testing our hypothesis of significant thermal emission. In the case of SNRs IC 443 and 3C 391, thermal absorption has been previously detected. For IC 443, the contribution of thermal emission at 1 GHz, from our model fit is 3%-57%. It is similar to the estimate obtained from the thermal absorption properties (10%-40% at 1 GHz). In the case of the 3C 391 the conclusions are not so clear. The results from our model fit (thermal emission contribution of 10%-25% at 1 GHz) and results obtained from the low-frequency absorption (thermal contribution of 0.15%-7% at 1 GHz) do not overlap. For the SNR 3C 396 we suggest that if previously detected thermal absorption could be intrinsic to the SNR then the thermal emission (<47% at 1 GHz from our model fit) could be significant enough to shape the radio continuum spectrum at high frequencies. Polarization observations for these SNRs can constrain the strength of a thermal component. Reliable observations at low frequencies (<100 MHz) are needed as well as more data at high radio frequencies (>1 GHz), in order to make stronger conclusions about the existence of 'radio thermally active' SNRs.

Onic, D.; Urosevic, D.; Arbutina, B. [Department of Astronomy, Faculty of Mathematics, University of Belgrade (Serbia); Leahy, D. [Department of Physics and Astronomy, University of Calgary (Canada)

2012-09-01T23:59:59.000Z

379

DIMENSIONAL DEPENDENCE OF THE HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE  

SciTech Connect (OSTI)

A major goal over the last decade has been understanding which multidimensional effects are crucial in facilitating core-collapse supernova (CCSN) explosions. Unfortunately, much of this work has necessarily assumed axisymmetry. In this work, we present analyses of simplified two-dimensional (2D) and three-dimensional (3D) CCSN models with the goal of comparing the hydrodynamics in setups that differ only in dimension. Not surprisingly, we find many differences between 2D and 3D models. While some differences are subtle and perhaps not crucial, others are dramatic and make interpreting 2D models problematic. In particular, axisymmetric models produce excess power at the largest spatial scales, power that has been deemed critical in previous explosion models. Nevertheless, our 3D models, which have an order of magnitude less power than 2D models on large scales, explode earlier. Since explosions occur earlier in 3D than in 2D, the vigorous large-scale sloshing is either not critical in any dimension or the explosion mechanism operates differently in 2D and 3D. On the other hand, we find that the average parcel of matter in the gain region has been exposed to net heating for up to 30% longer in 3D than in 2D, an effect we attribute to the differing characters of turbulence in 2D and 3D. We suggest that this effect plays a prominent role in producing earlier explosions in 3D. Finally, we discuss a simple model for the runaway growth of buoyant bubbles that is able to quantitatively account for the growth of the shock radius and predicts a critical luminosity relation.

Dolence, Joshua C.; Burrows, Adam; Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Nordhaus, Jason, E-mail: jdolence@astro.princeton.edu, E-mail: burrows@astro.princeton.edu, E-mail: jmurphy@astro.princeton.edu, E-mail: nordhaus@astro.rit.edu [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

2013-03-10T23:59:59.000Z

380

Supernova Neutrino Spectra and Applications to Flavor Oscillations  

E-Print Network [OSTI]

We study the flavor-dependent neutrino spectra formation in the core of a supernova (SN) by means of Monte Carlo simulations. A high-statistics neutrino signal from a galactic SN may contain information that severely constrains the parameter space for neutrino oscillations. Therefore, reliable predictions for flavor-dependent fluxes and spectra are urgently needed. In all traditional hydrodynamic simulations the nu_mu,tau and nu_mu,tau-bar interactions commonly included are rather schematic. With our Monte Carlo simulations we find that the most relevant sources for nu_mu,tau and nu_mu,tau-bar are traditionally not included. In comparing our numerical results for all flavors we find the standard hierarchy of mean energies nu_e < nu_e-bar < nu_mu,tau, with, however, very similar values for nu_mu,tau and nu_e-bar. The luminosities of nu_mu,tau and nu_mu,tau-bar can differ by up to a factor of 2 from L_nue-bar and L_nue, the latter two are very similar. The Garching Group obtains similar results from their self-consistent simulation with the full set of interactions. These results are almost orthogonal to the previous standard picture of exactly equal luminosities of all flavors and differences in mean energies of up to a factor of 2. Existing concepts for identifying oscillation effects in a SN neutrino signal need to be revised. We present two methods for detecting the earth-matter effect that are rather independent of predictions from SN simulations.

Mathias Th. Keil

2003-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Supernova matter at subnuclear densities as a resonant Fermi gas: Enhancement of neutrino rates  

E-Print Network [OSTI]

At low energies nucleon-nucleon interactions are resonant and therefore supernova matter at subnuclear densities has many similarities to atomic gases with interactions dominated by a Feshbach resonance. We calculate the rates of neutrino processes involving nucleon-nucleon collisions and show that these are enhanced in mixtures of neutrons and protons at subnuclear densities due to the large scattering lengths. As a result, the rate for neutrino pair bremsstrahlung and absorption is significantly larger below 10^{13} g cm^{-3} compared to rates used in supernova simulations.

A. Bartl; C. J. Pethick; A. Schwenk

2014-09-03T23:59:59.000Z

382

Optimization of the design of OMNIS, the observatory of multiflavor neutrinos from supernovae  

E-Print Network [OSTI]

A Monte Carlo code has been developed to simulate the operation of the planned detectors in OMNIS, a supernova neutrino observatory. OMNIS will detect neutrinos originating from a core collapse supernova by the detection of spalled neutrons from Pb- or Fe-nuclei. This might be accomplished using Gd-loaded liquid scintillator. Results for the optimum configuration for such modules with respect to both neutron detection efficiency and cost efficiency are presented. Careful consideration has been given to the expected levels of radioactive backgrounds and their effects. The results show that the amount of data to be processed by a software trigger can be reduced to the 30%.

J. J. Zach; A. StJ. Murphy; D. Marriott; R. N. Boyd

2002-05-17T23:59:59.000Z

383

Probing neutrino oscillations from supernovae shock waves via the IceCube detector  

Science Journals Connector (OSTI)

The time dependent neutrino oscillation signals due to the passage of a shock wave through the supernovae are analyzed for the case of three active neutrinos and also for the case that there are two additional sterile neutrinos. It is shown that, even without flavor identification and energy measurement, detailed information about the masses and mixing angles of the neutrinos may be obtained with a detector with excellent time resolution such as IceCube. Such a signal would also give important information about the nature of the shock wave within the supernovae.

Sandhya Choubey; N. P. Harries; G. G. Ross

2006-09-25T23:59:59.000Z

384

Bison Wind Farm 1A | Open Energy Information  

Open Energy Info (EERE)

Farm 1A Farm 1A Jump to: navigation, search Name Bison Wind Farm 1A Facility Bison Wind 1A Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Minnesota Power Developer Minnesota Windpower Energy Purchaser Minnesota Windpower Location Northwest of New Salem ND Coordinates 46.9815°, -101.507421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9815,"lon":-101.507421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Multi-Frequency Study of Supernova Remnants in the Large Magellanic Cloud. The case of LMC SNR J0530-7007  

E-Print Network [OSTI]

Context: The Supernova Remnants (SNRs) known in the Large Magellanic Cloud (LMC) show a variety of morphological structures in the different wavelength bands. This variety is the product of the conditions in the surrounding medium with which the remnant interacts and the inherent circumstances of the supernova event itself. Aims: This paper performs a multi-frequency study of the LMC SNR J0530-7007 by combining Australia Telescope Compact Array (ATCA), Molonglo Observatory Synthesis Telescope (MOST), R\\"ontgensatellit (ROSAT) and Magellanic Clouds Emission Line Survey (MCELS) observations. Methods: We analysed radio-continuum, X-ray and optical data and present a multi-wavelength morphological study of LMC SNR J0530-7007. Results We find that this object has a shell-type morphology with a size of 215"x180" (52 pc x 44 pc); a radio spectral index (alpha=-0.85+-0.13); with [Sii]/Halpha > 0.4 in the optical; and the presence of non-thermal radio and X-ray emission. Conclusions: We confirmed this object as a bona...

De Horta, A Y; Bozzetto, L M; Maggi, P; Haberl, F; Crawford, E J; Sasaki, M; Urosevi?, D; Pietsch, W; Gruendl, R; Dickel, J; Tothill, N F H; Chu, Y -H; Payne, J L; Collier, J D

2012-01-01T23:59:59.000Z

386

Petascale Simulation of Magnetorotational Core-Collapse Supernovae...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutron stars, pulsars, stellar-mass black holes, and, possibly, certain types of gamma-ray bursts. CCSNe produce many elements throughout the universe, especially those heavier...

387

Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)  

SciTech Connect (OSTI)

We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

2008-05-06T23:59:59.000Z

388

Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants  

SciTech Connect (OSTI)

I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

Vink, Jacco [Astronomical Institute Utrecht, Utrecht University, P.O. Box 80000, 3508TA Utrecht (Netherlands)

2009-05-11T23:59:59.000Z

389

Shock break-out: how a GRB revealed the beginnings of a supernova  

E-Print Network [OSTI]

In February 2006, Swift caught a GRB in the act of turning into a supernova, and made the first ever direct observations of the break-out and early expansion of a supernova shock wave. GRB 060218 began with an exceptionally long burst of non-thermal gamma-rays, lasting over 2000 s, as a jet erupted through the surface of the star. While this was in progress, an optically-thick thermal component from the shock wave of the supernova explosion grew to prominence, and we were able to track the mildly relativistic expansion of this shell as the blackbody peak moved from the X-rays into the UV and optical bands. The initial radius of the shock implied that it was a blue supergiant which had exploded, but the lack of Hydrogen emission lines in the supernova spectrum indicated a more compact star. The most likely scenario is that the shock ploughed into the massive stellar wind of a Wolf-Rayet progenitor, with the shock breaking out and becoming visible to us once it reached the radius where the wind became optically-thin. I present the Swift observations of this landmark event, and discuss the new questions and answers it leaves us with.

A. J. Blustin

2007-01-29T23:59:59.000Z

390

Neutrino-neutrino interactions in a supernova and their effect on neutrino flavor conversions  

SciTech Connect (OSTI)

The neutrino-neutrino interactions inside a supernova core give rise to nonlinear collective effects that significantly influence the neutrino flavor conversions inside the star. I shall describe these interactions, the new oscillation phenomena they generate, and their effect on the neutrino fluxes arriving at the earth.

Dighe, Amol [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

2011-11-23T23:59:59.000Z

391

Supernova explosions, 511 keV photons, gamma ray bursts and mirror matter  

E-Print Network [OSTI]

There are three astroparticle physics puzzles which fire the imagination: the origin of the ``Great Positron Producer'' in the galactic bulge, the nature of the gamma-ray bursts central engine and the mechanism of supernova explosions. We show that the mirror matter model has the potential to solve all three of these puzzles in one beautifully simple strike.

R. Foot; Z. K. Silagadze

2004-04-27T23:59:59.000Z

392

Rapid formation of large dust grains in the luminous supernova SN 2010jl  

E-Print Network [OSTI]

The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1-0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae the first few years after explosion. Observations of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40-240 days) formation of dust in its dense circumstellar medium. The wavelength dependent extinction of this dust reveals the presence of very large (> 1 micron) grains, which are resistant to destructive processes. At later times (500-900 days), the near-IR thermal emission shows an accelerated growth in dust mass, marking the transition of the supernova from a circumstellar- to an ejecta-...

Gall, Christa; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

2014-01-01T23:59:59.000Z

393

Type: Renewal  

Broader source: Energy.gov (indexed) [DOE]

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

394

Bacteria Types  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bacteria Types Bacteria Types Name: Evelyn Location: N/A Country: N/A Date: N/A Question: What is the significance of S. marcescens,M.luteus, S.epidermidis, and E. Coli? Which of these are gram-positive and gram-negative, and where can these be found? Also, what problems can they cause? When we culture these bacteria, we used four methods: plates, broth, slants, and pour plates. The media was made of TSB, TSA, NAP, and NAD. What is significant about these culturing methods? Replies: I could give you the answer to that question but it is more informative, and fun, to find out yourself. Start with the NCBI library online (http://www.ncbi.nlm.nih.gov/) and do a query with the species name, and 'virulence' if you want to know what they're doing to us. Have a look at the taxonomy devision to see how they are related. To find out if they're gram-pos or neg you should do a gram stain if you can. Otherwise you'll find that information in any bacteriology determination guide. Your question about the media is not specific enough so I can't answer it.

395

RADIO DETECTION OF A CANDIDATE NEUTRON STAR ASSOCIATED WITH GALACTIC CENTER SUPERNOVA REMNANT SAGITTARIUS A EAST  

SciTech Connect (OSTI)

We report the Very Large Array (VLA) detection of the radio counterpart of the X-ray object referred to as the 'Cannonball', which has been proposed to be the remnant neutron star resulting from the creation of the Galactic center supernova remnant, Sagittarius A East. The radio object was detected both in our new VLA image from observations in 2012 at 5.5 GHz and in archival VLA images from observations in 1987 at 4.75 GHz and in the period from 1990 to 2002 at 8.31 GHz. The radio morphology of this object is characterized as a compact, partially resolved point source located at the northern tip of a radio 'tongue' similar to the X-ray structure observed by Chandra. Behind the Cannonball, a radio counterpart to the X-ray plume is observed. This object consists of a broad radio plume with a size of 30''×15'', followed by a linear tail having a length of 30''. The compact head and broad plume sources appear to have relatively flat spectra (??{sup ?}) with mean values of ? = –0.44 ± 0.08 and –0.10 ± 0.02, respectively, and the linear tail shows a steep spectrum with the mean value of –1.94 ± 0.05. The total radio luminosity integrated from these components is ?8 × 10{sup 33} erg s{sup –1}, while the emission from the head and tongue amounts for only ?1.5 × 10{sup 31} erg s{sup –1}. Based on the images obtained from the two epochs' observations at 5 GHz, we infer the proper motion of the object: ?{sub ?} = 0.001 ± 0.003 arcsec yr{sup –1} and ?{sub ?} = 0.013 ± 0.003 arcsec yr{sup –1}. With an implied velocity of 500 km s{sup –1}, a plausible model can be constructed in which a runaway neutron star surrounded by a pulsar wind nebula was created in the event that produced Sgr A East. The inferred age of this object, assuming that its origin coincides with the center of Sgr A East, is approximately 9000 yr.

Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Morris, Mark R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Goss, W. M., E-mail: jzhao@cfa.harvard.edu, E-mail: morris@astro.ucla.edu, E-mail: mgoss@aoc.nrao.edu [NRAO, P.O. Box O, Socorro, NM 87801 (United States)

2013-11-10T23:59:59.000Z

396

Constraints on holographic dark energy from the latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations  

Science Journals Connector (OSTI)

The holographic dark energy model is proposed by Li as an attempt for probing the nature of dark energy within the framework of quantum gravity. The main characteristic of holographic dark energy is governed by a numerical parameter c in the model. The parameter c can only be determined by observations. Thus, in order to characterize the evolving feature of dark energy and to predict the fate of the Universe, it is of extraordinary importance to constrain the parameter c by using the currently available observational data. In this paper, we derive constraints on the holographic dark energy model from the latest observational data including the gold sample of 182 type Ia supernovae (SNIa), the shift parameter of the cosmic microwave background (CMB) given by the three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). The joint analysis gives the fit results in 1-?: c=0.91-0.18+0.26 and ?m0=0.29±0.03. That is to say, though the possibility of c1 cannot be excluded in one-sigma error range, which is somewhat different from the result derived from previous investigations using earlier data. So, according to the new data, the evidence for the quintom feature in the holographic dark energy model is not as strong as before.

Xin Zhang and Feng-Quan Wu

2007-07-06T23:59:59.000Z

397

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

398

A review of "1604-2004: Supernovae as Cosmological Lighthouses." by Massimo Turatto, Stefano Benetti, Luca Zampieri, William Shea, eds.  

E-Print Network [OSTI]

in the history of early modern science. Massimo Turatto, Stefano Benetti, Luca Zampieri, William Shea, eds. 1604- 2004: Supernovae as Cosmological Lighthouses. Astronomical Society of the Pacific Conference Series, Vol. 342. San Francisco: ASP, 2005. 512 pp... in the history of early modern science. Massimo Turatto, Stefano Benetti, Luca Zampieri, William Shea, eds. 1604- 2004: Supernovae as Cosmological Lighthouses. Astronomical Society of the Pacific Conference Series, Vol. 342. San Francisco: ASP, 2005. 512 pp...

Giostra, Alessandro

2006-01-01T23:59:59.000Z

399

A 3D numerical model for Kepler's supernova remnant  

Science Journals Connector (OSTI)

......synthetic X-ray maps from the numerical...considering an AGB mass-loss rate...Mo-yr1, a wind terminal velocity of 10-km-s1...of the AGB wind mass-loss rate, terminal velocity and ISM density...out of the wind bubble considerably...X-ray emission maps, taking into......

J. C. Toledo-Roy; A. Esquivel; P. F. Velázquez; E. M. Reynoso

2014-01-01T23:59:59.000Z

400

Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize  

SciTech Connect (OSTI)

The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

Perlmutter, Saul

2012-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "type 1a supernovae" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

G0.570-0.018: A Young Supernova Remnant? INTEGRAL and VLA Observations  

Science Journals Connector (OSTI)

We report INTEGRAL IBIS ?-ray and VLA radio observations of G0.570-0.018, a diffuse X-ray source recently discovered by ASCA and Chandra in the Galactic center region. Based on its spectrum and morphology, G0.570-0.018 has been proposed to be a very young supernova remnant. In this scenario, the presence of ?-ray lines coming from the short-lived radioactive nucleus 44Ti and synchrotron radio continuum emission are expected. The first could provide information on nucleosynthesis environments in the interior of exploding stars, and the latter could probe the interaction between the supernova blast wave and the circumstellar/interstellar matter. We have not detected 44Ti lines or any conspicuous radio feature associated with this source down to the achieved sensitivities. From the derived upper limits we set constraints on the nature of G0.570-0.018.

M. Renaud; S. Paron; R. Terrier; F. Lebrun; G. Dubner; E. Giacani; A. M. Bykov

2006-01-01T23:59:59.000Z

402

The 40Ca(alpha,gamma)44Ti reaction in the energy regime of supernova nucleosynthesis  

E-Print Network [OSTI]

The 44Ti(t1/2 = 59 y) nuclide, an important signature of supernova nucleosynthesis, has recently been observed as live radioactivity by gamma-ray astronomy from the Cas A remnant. We investigate in the laboratory the major 44Ti production reaction, 40Ca(alpha,gamma)44Ti (E_cm = 0.6-1.2 MeV/u), by direct off- line counting of 44Ti nuclei. The yield, significantly higher than inferred from previous experiments, is analyzed in terms of a statistical model using microscopic nuclear inputs. The associated stellar rate has important astrophysical consequences, increasing the calculated supernova 44Ti yield by a factor ~2 over previous estimates and bringing it closer to Cas A observations.

H. Nassar; M. Paul; I. Ahmad; Y. Ben-Dov; J. Caggiano; S. Ghelberg; S. Goriely; J. P. Greene; M. Hass; A. Heger; A. Heinz; D. J. Henderson; R. V. F. Janssens; C. L. Jiang; Y. Kashiv; B. S. Nara Singh; A. Ofan; R. C. Pardo; T. Pennington; K. E. Rehm; G. Savard; R. Scott; R. Vondrasek

2006-01-11T23:59:59.000Z

403

Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize  

ScienceCinema (OSTI)

The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department?s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics ?for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.? DOE?s Office of Science has supported Dr. Perlmutter?s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

Perlmutter, Saul

2012-01-13T23:59:59.000Z

404

Multifrequency study of SNR J0533-7202, a new supernova remnant in the LMC  

E-Print Network [OSTI]

We present a detailed study of Australia Telescope Compact Array (ATCA) observations of a newly discovered Large Magellanic Cloud (LMC) supernova remnant (SNR), SNR J0533-7202. This object follows a horseshoe morphology, with a size 37 pc x 28 pc (1-pc uncertainty in each direction). It exhibits a radio spectrum with the intrinsic synchrotron spectral index of alpha= -0.47+-0.06 between 73 and 6 cm. We report detections of regions showing moderately high fractional polarisation at 6 cm, with a peak value of 36+-6% and a mean fractional polarisation of 12+-7%. We also estimate an average rotation measure across the remnant of -591 rad m^-2. The current lack of deep X-ray observation precludes any conclusion about high-energy emission from the remnant. The association with an old stellar population favours a thermonuclear supernova origin of the remnant.

Bozzetto, L M; Crawford, E J; Sasaki, M; Maggi, P; Haberl, F; Uroševi?, D; Payne, J L; De Horta, A Y; Stupar, M; Gruendl, R; Dickel, J

2013-01-01T23:59:59.000Z

405

IONIZED ABSORBERS AS EVIDENCE FOR SUPERNOVA-DRIVEN COOLING OF THE LOWER GALACTIC CORONA  

SciTech Connect (OSTI)

We show that the ultraviolet absorption features, newly discovered in Hubble Space Telescope spectra, are consistent with being formed in a layer that extends a few kpc above the disk of the Milky Way. In this interface between the disk and the Galactic corona, high-metallicity gas ejected from the disk by supernova feedback can mix efficiently with the virial-temperature coronal material. The mixing process triggers the cooling of the lower corona down to temperatures encompassing the characteristic range of the observed absorption features, producing a net supernova-driven gas accretion onto the disk at a rate of a few M{sub Sun} yr{sup -1}. We speculate that this mechanism explains how the hot mode of cosmological accretion feeds star formation in galactic disks.

Fraternali, Filippo; Marasco, Antonino [Department of Physics and Astronomy, University of Bologna, via Berti Pichat 6/2, I-40127 Bologna (Italy); Marinacci, Federico [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Binney, James, E-mail: filippo.fraternali@unibo.it [Rudolf Peierls Centre for Theoretical Physics, Keble Road, OX1 3NP Oxford (United Kingdom)

2013-02-20T23:59:59.000Z

406

Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric hydrodynamic simulations  

E-Print Network [OSTI]

We investigate the behavior and consequences of the reverse shock that terminates the supersonic expansion of the baryonic wind which is driven by neutrino heating off the surface of (non-magnetized) new-born neutron stars in supernova cores. To this end we perform long-time hydrodynamic simulations in spherical symmetry. In agreement with previous relativistic wind studies, we find that the neutrino-driven outflow accelerates to supersonic velocities and in case of a compact, about 1.4 solar mass (gravitational mass) neutron star with a radius of about 10 km, the wind reaches entropies of about 100 k_B per nucleon. The wind, however, is strongly influenced by the environment of the supernova core. It is decelerated and shock-heated abruptly by a termination shock that forms when the supersonic outflow collides with the slower preceding supernova ejecta. The radial position of this reverse shock varies with time and depends on the strength of the neutrino wind and the different conditions in progenitor stars with different masses and structure. Its basic properties and behavior can be understood by simple analytic considerations. We demonstrate that the entropy of matter going through the reverse shock can increase to a multiple of the asymptotic wind value. Seconds after the onset of the explosion it therefore can exceed 400 k_B per nucleon. The temperature of the shocked wind has typically dropped to about or less than 10^9 K, and density and temperature in the shock-decelerated matter continue to decrease only very slowly. Such conditions might strongly affect the important phases of supernova nucleosynthesis in a time and progenitor dependent way. (abridged)

A. Arcones; H. -Th. Janka; L. Scheck

2006-12-20T23:59:59.000Z

407

Nuclear matter equation of state from relativistic heavy ions to supernovae  

SciTech Connect (OSTI)

In this presentation the relationship between relativistic nucleus-nucleus collisions and the nuclear equation of state is discussed. The connection between observables measured in the experiments and thermodynamic variables used to describe the system is made. Through this connection a semi-empirical nuclear equation of state is extracted from the data. The resulting equation of state is discussed in terms of nuclear matter calculations, neutron star stability and supernova collapse. 22 refs., 7 figs.

Harris, J.W.

1986-06-01T23:59:59.000Z

408

Science magazine names Supernova Cosmology Project "Breakthrough of the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 17, 1998 December 17, 1998 Go to Berkeley Lab Home Page Contacts: Saul Perlmutter, (510) 486-5203, s_perlmutter@lbl.gov Pau