Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Opening of the Cheniere Energy Sabine Pass LNG Regasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheniere Energy Sabine Pass LNG Regasification Facility Opening of the Cheniere Energy Sabine Pass LNG Regasification Facility April 21, 2008 - 10:49am Addthis Remarks As Prepared...

2

Price Liquefied Sabine Pass, LA Natural Gas Exports Price ...  

U.S. Energy Information Administration (EIA)

Price Liquefied Sabine Pass, LA Natural Gas Exports Price to Brazil (Dollars per Thousand Cubic Feet)

3

EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Sabine Pass Liquefaction Project, Cameron County, LA 45: Sabine Pass Liquefaction Project, Cameron County, LA EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA Summary DOE participated as a cooperating agency with the Federal Energy Regulatory Commission (FERC) in preparing an EA for the Sabine Pass Liquefaction Project to analyze the potential environmental impacts associated with applications submitted by Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P., to FERC and to DOE's Office of Fossil Energy (FE) seeking authorization to site, construct, and operate liquefaction and export facilities at the existing Sabine Pass LNG Terminal in Cameron Parish, Louisiana. DOE adopted FERC's EA and issued a finding of no significant impact on August 7, 2012. Additional information is available at DOE/FE's Docket 10-111-LNG and

4

EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Sabine Pass Liquefaction Project, Cameron County, LA 45: Sabine Pass Liquefaction Project, Cameron County, LA EA-1845: Sabine Pass Liquefaction Project, Cameron County, LA Summary DOE participated as a cooperating agency with the Federal Energy Regulatory Commission (FERC) in preparing an EA for the Sabine Pass Liquefaction Project to analyze the potential environmental impacts associated with applications submitted by Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P., to FERC and to DOE's Office of Fossil Energy (FE) seeking authorization to site, construct, and operate liquefaction and export facilities at the existing Sabine Pass LNG Terminal in Cameron Parish, Louisiana. DOE adopted FERC's EA and issued a finding of no significant impact on August 7, 2012. Additional information is available at DOE/FE's Docket 10-111-LNG and

5

Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Japan Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

6

Sabine Pass, LA Exports to Portugal Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Portugal Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

7

Sabine Pass, LA Liquefied Natural Gas Exports to India (Million...  

Annual Energy Outlook 2012 (EIA)

India (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to India (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,477 3,072 - No...

8

Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Spain Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

9

Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

United kingdom Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

10

Sabine Pass, LA Liquefied Natural Gas Exports to Chile (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Chile (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to Chile (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,910 - No Data...

11

Sabine Pass, LA Liquefied Natural Gas Imports From Peru (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

12

Sabine Pass, LA Exports to Brazil Liquefied Natural Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Brazil Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Brazil Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

13

Sabine Pass, LA Liquefied Natural Gas Exports to China (Million...  

Annual Energy Outlook 2012 (EIA)

China (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,354 2,848 - No...

14

Sabine Pass, LA Exports to Korea Liquefied Natural Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Korea Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Korea Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

15

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

16

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

from Nigeria (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

17

Sabine Pass, LA Liquefied Natural Gas Imports From Yemen (Million...  

Annual Energy Outlook 2012 (EIA)

Yemen (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,115 3,122 3,106...

18

Sabine Pass, LA Liquefied Natural Gas Imports From Norway (Million...  

Annual Energy Outlook 2012 (EIA)

Norway (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,556 2012...

19

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

20

Sabine Pass, LA Natural Gas LNG Imports (Price) From Peru (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Sabine Pass, LA Natural Gas LNG Imports (Price) From Peru (Dollars per Thousand Cubic Feet) Sabine Pass, LA Natural Gas LNG Imports (Price) From Peru (Dollars per Thousand Cubic...

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

22

DOE/EA-1649: Sabine Pass LNG Export Project Environmental Assessment (February 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sabine Sabine Pass LNG, L.P. Docket Nos. CP04-47-001 CP05-396-001 SABINE PASS LNG EXPORT PROJECT Environmental Assessment Cooperating Agency: U.S. Department of Energy DOE/EA - 1649 DOE Docket No. FE-08-77-LNG FEBRUARY 2009 20090223-4000 FERC PDF (Unofficial) 02/23/2009 ENVIRONMENTAL ASSESSMENT SABINE PASS LNG EXPORT PROJECT TABLE OF CONTENTS Page 1.0 PROPOSED ACTION ..................................................................................................................... 1 1.1 Introduction......................................................................................................................... 1 1.2 Proposed facilities............................................................................................................... 2 1.3 Project Purpose

23

Price of Sabine Pass, LA Natural Gas LNG Imports from Nigeria...  

Gasoline and Diesel Fuel Update (EIA)

from Nigeria (Dollars per Thousand Cubic Feet) Price of Sabine Pass, LA Natural Gas LNG Imports from Nigeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

24

Price of Sabine Pass, LA Natural Gas LNG Imports (Dollars per...  

Annual Energy Outlook 2012 (EIA)

(Dollars per Thousand Cubic Feet) Price of Sabine Pass, LA Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

25

,"Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

26

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011...

27

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

28

U.S. Liquefied Natural Gas Exports to Spain  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

29

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

30

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

31

U.S. Liquefied Natural Gas Exports to Japan  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

32

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

33

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

34

U.S. Natural Gas Exports to Portugal  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

35

U.S. Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

36

U.S. Natural Gas Exports to Chile  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

37

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

38

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

39

U.S. Liquefied Natural Gas Exports to India  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

40

U.S. Natural Gas Exports to Russia  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Natural Gas Exports to Mexico  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

42

U.S. Liquefied Natural Gas Exports to Spain  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

43

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

44

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

45

U.S. Natural Gas Exports to Chile  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

46

U.S. Liquefied Natural Gas Exports to United Kingdom  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

47

U.S. Natural Gas Exports to China  

Annual Energy Outlook 2012 (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

48

U.S. Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

49

U.S. Natural Gas Exports to China  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

50

U.S. Liquefied Natural Gas Exports to India  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

51

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

52

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

53

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

54

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

55

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

56

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

57

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

58

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

59

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

60

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine...

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

62

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

63

U.S. Natural Gas Exports to Chile  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

64

U.S. Liquefied Natural Gas Exports to Spain  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

65

Sabine Pass, LA Liquefied Natural Gas Exports Price to Chile...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's --...

66

Price Liquefied Sabine Pass, LA Natural Gas Exports Price to...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.50 11.00 --...

67

Sabine Pass, LA Exports to Brazil Liquefied Natural Gas ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 0: 0: 2010's: 3,279: 8,468: 0-

68

Sabine Pass, LA Liquefied Natural Gas Exports Price to China...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.25...

69

Sabine Pass, LA Liquefied Natural Gas Exports to South Korea  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Exports by Point of Exit (Volumes in Million Cubic Ft., Prices in Dollars per Thousand Cubic Ft.)

70

Price Liquefied Sabine Pass, LA Natural Gas Exports Price to...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.36...

71

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

72

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

73

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

74

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

75

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

76

U.S. Liquefied Natural Gas Exports to Spain  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

77

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

78

U.S. Natural Gas Exports to Chile  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

79

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

80

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sabine River Compact (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sabine River Compact (Multiple States) Sabine River Compact (Multiple States) Sabine River Compact (Multiple States) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Texas Program Type Siting and Permitting Provider Sabine River Compact Commission The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the

82

Aerial Photography At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And...

83

Geothermometry At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...

84

Geodetic Survey At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

85

U.S. LNG Imports from United Arab Emirates  

Annual Energy Outlook 2012 (EIA)

Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba...

86

Sugar Land, TX -  

NLE Websites -- All DOE Office Websites (Extended Search)

Petroleum Engineering Alumnus Recognized by Secretary of Energy for Work at National Lab Sugar Land, TX - The National Energy Technology Laboratory is proud to announce that...

87

Sugar Land, TX -  

NLE Websites -- All DOE Office Websites (Extended Search)

Alumnus Recognized by Secretary of Energy for Work at National Lab Sugar Land, TX - The National Energy Technology Laboratory is proud to announce that U.S. Air Force Academy...

88

WBU-13-0013- In the Matter of Sabine Lauer  

Energy.gov (U.S. Department of Energy (DOE))

On September 19, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying Ms. Sabine Lauers Appeal of the NNSAs dismissal of her whistleblower complaint for lack of jurisdiction....

89

Category:Amarillo, TX | Open Energy Information  

Open Energy Info (EERE)

Amarillo, TX Amarillo, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Amarillo, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Amarillo TX CPS Energy.png SVFullServiceRestauran... 62 KB SVHospital Amarillo TX CPS Energy.png SVHospital Amarillo TX... 66 KB SVLargeHotel Amarillo TX CPS Energy.png SVLargeHotel Amarillo ... 61 KB SVLargeOffice Amarillo TX CPS Energy.png SVLargeOffice Amarillo... 59 KB SVMediumOffice Amarillo TX CPS Energy.png SVMediumOffice Amarill... 62 KB SVMidriseApartment Amarillo TX CPS Energy.png SVMidriseApartment Ama... 61 KB SVOutPatient Amarillo TX CPS Energy.png SVOutPatient Amarillo ... 60 KB SVPrimarySchool Amarillo TX CPS Energy.png SVPrimarySchool Amaril... 61 KB SVQuickServiceRestaurant Amarillo TX CPS Energy.png

90

Eagle Pass, TX Natural Gas Exports to Mexico  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Exports by Point of Exit (Volumes in Million Cubic Ft., Prices in Dollars per Thousand Cubic Ft.)

91

U.S. Price of Liquefied Natural Gas Imports by Point of Entry  

Annual Energy Outlook 2012 (EIA)

TX 14.85 2013-2013 Sabine Pass, LA 2011-2012 From Oman -- -- -- -- -- -- 2001-2013 From Peru 2010-2011 Cameron, LA 2011-2011 Freeport, TX 2011-2011 From Qatar 3.57 -- -- -- -- --...

92

Category:Houston, TX | Open Energy Information  

Open Energy Info (EERE)

TX TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houston, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houston TX Entergy Texas Inc..png SVFullServiceRestauran... 73 KB SVHospital Houston TX Entergy Texas Inc..png SVHospital Houston TX ... 74 KB SVLargeHotel Houston TX Entergy Texas Inc..png SVLargeHotel Houston T... 74 KB SVLargeOffice Houston TX Entergy Texas Inc..png SVLargeOffice Houston ... 74 KB SVMediumOffice Houston TX Entergy Texas Inc..png SVMediumOffice Houston... 78 KB SVMidriseApartment Houston TX Entergy Texas Inc..png SVMidriseApartment Hou... 77 KB SVOutPatient Houston TX Entergy Texas Inc..png SVOutPatient Houston T... 75 KB SVPrimarySchool Houston TX Entergy Texas Inc..png

93

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

94

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

95

Hybrid: Passing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Button Passing button highlighted Braking Button Stopped Button subbanner graphic: gray bar Button Passing button highlighted Braking Button Stopped Button subbanner graphic: gray bar PASSING During heavy accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel the vehicle. Additional power from the battery is used to power the electric motor as needed. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is passing another vehicle. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the battery to the electric engine to the front wheels. Main stage: See through car with battery, engine, and electric motor visible. The car is passing another vehicle. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the battery to the electric engine to the front wheels.

96

Modeling-Computer Simulations At U.S. West Region (Sabin, Et...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At U.S. West Region (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

97

D&TX  

Office of Legacy Management (LM)

*. *. ( ARGONNE RATIONAL 1-Ci3ORATORY . 1 D&TX 7. my 19, 1349 70 t. Z. ROse at L, Em &=i*p~~4 DVur;uM hLl%L ?bvs -Lcs . FReti c. c. Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un !! 1 0 * the >rt &Fz=z d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS~~~ of Science a2 31~52-37 fo2 T&imcyyg c.=A+=< he-< - ,,a uas c:cgetes ALL 12, 1SL9. Z 0 sor;~~,-~-lioi! c.jme s 'm&-go& ~WC& c ",& d*cg&A c&.6 be ciS',&Ctti 03 2.q ZLS CC the 5iiUdi; 0~ eqt&-p*t ~-3 niq b the &-CT iq95, - < less Se&,-0~22 3 wels off tze b.ckm5n' ,e ueze t& 233 &,/zip fe pe*-se a?& coL&cs El5 less t&3 c. 5z/z fo- pcxabi beta-g+iis couxezs.

98

60-day waste compatibility safety issue and final results for 244-TX DCRT, grab samples TX-95-1, TX-95-2, and TX-95-3  

Science Conference Proceedings (OSTI)

Three grab samples (TX-95-1, TX-95-2, and TX-95-3) were taken from tank 241- TX-244 riser 8 on November 7, 1995 and received by the 222-S Laboratory on that same day. Samples TX-95-1 and TX-95-2 were designated as supernate liquids, and sample TX-95-3 was designated as a supernate/sludge. These samples were analyzed to support the waste compatibility safety program. Accuracy and precision criteria were met for all analyses. No notifications were required based on sample results. This document provides the analysis to support the waste compatibility safety program.

Esch, R.A.

1996-01-01T23:59:59.000Z

99

LiDAR At Twenty-Nine Palms Area (Sabin, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Nine Palms Area (Sabin, Et Al., 2010) Nine Palms Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Twenty-Nine Palms Geothermal Area (Sabin, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown Notes As previously mentioned, a deep slim hole is scheduled to be drilled in the Camp Wilson area of MCAGCC in June, 2010. The location of this hole is entirely driven by favorable structures as interpreted from LiDAR data and results of the Seabee TGH drilling program completed in early 2009. Details of the MCAGCC work are available in another section of this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A.

100

Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open  

Open Energy Info (EERE)

Sabin, Et Al., 2010) Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A.

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) Exploration Activity Details Location Salton Sea Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes NAF El Centro work started as a consulting project in 2003. An overlapping TGH and geophysical target prompted GPO to follow up with drilling that was initiated in 2008. Technical problems with both holes has prompted GPO to drill one more deep, slim hole on this anomaly in the summer of 2010. The details of GPO's plans and prior work at NAFEC are available elsewhere in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A.

102

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal 2012-2013 Sabine Pass, LA 2012-2012 To Russia 0 0 0 0 0 0 2007-2013 To South Korea 0 0 0 0 0 0 2009-2013 Freeport, TX 2011-2011 Sabine Pass, LA 2011-2011 To Spain 0 0 0...

103

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

Sabine Pass, LA 2012-2012 To Russia 0.00 0.00 0.00 0.00 0.00 0.00 2007-2013 To South Korea 0.00 0.00 0.00 0.00 0.00 0.00 2009-2013 Freeport, TX 2011-2011 Sabine Pass, LA...

104

Discounting Transit Passes  

E-Print Network (OSTI)

Transportation District (RTD) ECO Pass Programs Every deep-pass program offered by the RTD yielded more revenue per

Nuworsoo, Cornelius

2005-01-01T23:59:59.000Z

105

Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al.,  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geodetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes NAFR straddles the boundary of the Walker Lane belt and the Basin and Range extensional province. Neotectonic motions are inferred from GPS and seismic observations. GPS velocities indicate that the strain field changes from the east-west extension typical of the Basin and Range to the northwest-southeast-directed transtension characteristic of the Walker Lane belt across the region.

106

Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes We re-examined most of the area using newer orthophotography, SPOT, and Thematic Mapper images, and identified several areas of possible late Quaternary surface faulting (Figure 3). References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Nevada_Test_And_Training_Range_Area_(Sabin,_Et_Al.,_2004)&oldid=386843

107

Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Naval Air Station Area (Sabin, Et Al., 2010) Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) Exploration Activity Details Location Fallon Naval Air Station Area Exploration Technique Development Wells Activity Date Usefulness not indicated DOE-funding Unknown Notes As was mentioned previously, the Navy signed a development contract with Ormat in 2005 to produce power from a potential resource on the SE corner of the main side portion of NAS Fallon. Additionally the GPO began additional exploration activities on the Bombing Range 16 in collaboration with the Great Basin Center for Geothermal Energy. The introduction of $9.1M of Recovery Act funds in early 2009 led to a broadening as well as an

108

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Twenty-Nine Palms Geothermal Area (Sabin, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes The first and only Seabee drilling project was the installation of five TGHs at the Camp Wilson region of the MCAGCC Marine base near Twenty-Nine Palms, CA. While the program was a success and GPO identified an anomaly where a deep, slim hole is to be drilled in June, 2010, the Seabee rig was sent oversees soon after drilling was completed. If/when another rig

109

Science Video presentations from Berkeley Lab's "Sit Down with Sabin" Series  

DOE Data Explorer (OSTI)

In the summer of 2011, Lawrence Berkeley National Laboratory hosted a series of public lectures titled "Sit Down with Sabin." Sabin Russell, former San Francisco Chronicle reported turned Berkeley Lab science writer, interviewed Lab scientists to find the "back story" behind today's most innovative science. Titles of the videoed interviews include: Hunting Dark Energy (David Schlegel), The Future of Batteries (Venkat Srinivasan), The Carbon Cycle Like You've Never Seen It (Margaret Torn), Efficiency for Sale: Who's Buying? (Merrian Fuller), Customizing Plants for Biofuels (Henrik Scheller).

Schlegel, David; Srinivasan, Venkat; Torn, Margaret; Fuller, Merrian; Scheller, Henrik

110

Penitas, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico...

111

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico...

112

Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Exports to Mexico...

113

Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Exports...

114

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico...

115

Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico...

116

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico...

117

Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million...

118

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports...

119

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic...

120

AOCS Official Method Tx 1a-66  

Science Conference Proceedings (OSTI)

Hydroxyl Value of Epoxidized Oils AOCS Official Method Tx 1a-66 Methods Downloads Methods Downloads DEFINITION The hydroxyl value is defined as the mg of potassium hydroxide equivalent to the hydroxyl content of 1

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

TX-100 manufacturing final project report.  

DOE Green Energy (OSTI)

This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

2007-11-01T23:59:59.000Z

122

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

123

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

124

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

125

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

126

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

127

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

128

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

129

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

130

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

131

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

132

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

133

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

134

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

135

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

136

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

137

Slim Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Hawthorne Area (Sabin, Et Al., 2010) Slim Holes At Hawthorne Area (Sabin, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes GPO drilled two deep, slim geophysical test holes on the western margin of the Hawthorne Army Depot in 2008/2009. These two holes, HWAD 2a and HWAD 3, were drilled on the perceived structural trend of this valley and immediately south and east, respectively, of the El Capitan well. The "El Cap" is a 1,000' well completed by an unsuccessful developer in 1980. The El Cap and several other wells in this region south of Walker Lake have long been admired and even discussed by industry and the military but no sustained exploration or development activities work have ever been

138

Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004)  

Open Energy Info (EERE)

2004) 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater data are limited to a portion of NAFR; data are more plentiful beyond the range boundaries. Geothermometry yields calculated groundwater temperatures generally ranging from 30 to 105degrees C, with a rough correlation between the SiO2-chalcedony and the Na-K-Na (Mg-corrected) geothermometers. References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The

139

Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Chocolate Mountains Area Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A. Tiedeman, W. C. Huang (2010) Navy's Geothermal Program Office: Overview

140

Category:El Paso, TX | Open Energy Information  

Open Energy Info (EERE)

El Paso, TX El Paso, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "El Paso, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant El Paso TX CPS Energy.png SVFullServiceRestauran... 60 KB SVHospital El Paso TX CPS Energy.png SVHospital El Paso TX ... 65 KB SVLargeHotel El Paso TX CPS Energy.png SVLargeHotel El Paso T... 60 KB SVLargeOffice El Paso TX CPS Energy.png SVLargeOffice El Paso ... 59 KB SVMediumOffice El Paso TX CPS Energy.png SVMediumOffice El Paso... 62 KB SVMidriseApartment El Paso TX CPS Energy.png SVMidriseApartment El ... 60 KB SVOutPatient El Paso TX CPS Energy.png SVOutPatient El Paso T... 60 KB SVPrimarySchool El Paso TX CPS Energy.png SVPrimarySchool El Pas... 61 KB SVQuickServiceRestaurant El Paso TX CPS Energy.png

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Response Robot Evaluation Exercise Disaster City, TX DAY 1 ...  

Science Conference Proceedings (OSTI)

Page 1. Response Robot Evaluation Exercise Disaster City, TX and Meeting of the ASTM International Committee on Homeland ...

2012-12-25T23:59:59.000Z

142

DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09  

Office of Legacy Management (LM)

Sutton Steele and Steele Co - TX 09 Sutton Steele and Steele Co - TX 09 FUSRAP Considered Sites Site: SUTTON, STEELE & STEELE CO. (TX.09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sutton, Steele & Steele, Inc. TX.09-1 Location: Dallas , Texas TX.09-1 Evaluation Year: 1993 TX.09-2 Site Operations: Conducted operations to separate Uranium shot by means of air float tables and conducted research to air classify C-Liner and C-Special materials. TX.09-1 TX.09-3 TX.09-4 TX.09-5 Site Disposition: Eliminated - Potential for contamination considered remote TX.09-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium TX.09-4 TX.09-5 Radiological Survey(s): Health and Safety Monitoring TX.09-4 TX.09-5 Site Status: Eliminated from consideration under FUSRAP

143

CleanTX Foundation | Open Energy Information  

Open Energy Info (EERE)

CleanTX Foundation CleanTX Foundation Address 3925 W Braker Lane Place Austin, Texas Zip 78759 Region Texas Area Notes Promotes entrepreneurship in the field of clean technology, by providing educational forums, content, awareness and networking opportunities Website http://cleantx.org/ Coordinates 30.396989°, -97.735768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.396989,"lon":-97.735768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

U.S. Liquefied Natural Gas Imports by Point of Entry  

Gasoline and Diesel Fuel Update (EIA)

TX 2,709 2013-2013 Sabine Pass, LA 2011-2012 From Oman 0 0 0 0 0 0 2000-2013 From Peru 2010-2011 Cameron, LA 2011-2011 Freeport, TX 2011-2011 From Qatar 3,663 0 0 0 0 0...

145

U.S. LNG Imports from Other Countries  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

146

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

147

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

148

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

149

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

150

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

151

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

152

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

153

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

154

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

155

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

156

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

157

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

158

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

159

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

160

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

162

,"Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","172014" ,"Next...

163

,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

164

,"El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","12122013"...

165

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

Gasoline and Diesel Fuel Update (EIA)

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

166

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

21 15 12 8 9 12 1997-2013 21 15 12 8 9 12 1997-2013 To Brazil 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 6 9 8 5 8 7 2007-2013 Sweetgrass, MT 6 9 8 5 8 7 2012-2013 To Chile 0 0 0 0 0 0 2011-2013 Sabine Pass, LA 2011-2011 To China 0 0 0 0 0 0 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan 0 0 0 0 0 0 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 15 6 3 3 2 4 1997-2013 Nogales, AZ 10 6 3 3 2 4 2012-2013 Otay Mesa, CA 5 2011-2013 To Portugal 2012-2012 Sabine Pass, LA 2012-2012 To Russia 0 0 0 0 0 0 2007-2013 To South Korea 0 0 0 0 0 0 2009-2013 Freeport, TX

167

Northern Pass WLT Filing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 12, 2013 Electronic filing September 12, 2013 Electronic filing Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20), U.S. Department of Energy, 1000 Independence Avenue, SW. Washington, DC 20585 Fax: (202) 586-8008 Christopher.Lawrence@hq.doe.gov Re: Petition by The Weeks Lancaster Trust to intervene in the matter of the Northern Pass Transmission LLC Application for a Presidential Permit (OE Docket No. PP-371) Dear Mr. Lawrence, Following is the petition by The Weeks Lancaster Trust LLC to intervene and comment in the matter of Northern Pass Transmission LLC's Application for a Presidential Permit (PP-371). In accordance with the Notice of Application for this proceeding (75FR 69990), we are also sending a hard copy to the address above. Please contact us by

168

Full Hybrid: Passing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Braking button Stopped button highlighted Braking button Stopped button PASSING PART 1 During heavy accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel the vehicle. Go to next… stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible while passing another vehicle. There are purple arrows flowing from the generator to the electric motor to the power split device to the front wheels. There are red arrows flowing from the gasoline engine to the generator to the power split device to the front wheels. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible while passing another vehicle. There are purple arrows flowing from the generator to the electric motor to the power split device to the front wheels. There are red arrows flowing from the gasoline engine to the generator to the power split device to the front wheels.

169

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

viewing this page, please call (202) 586-8800 Gasoline Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Gasoline Price Pass-through January 2003 by Michael...

170

PASS Form 22933  

NLE Websites -- All DOE Office Websites (Extended Search)

Private: The information contained on this form is considered private and for administrative use only. Do not copy or distribute. Private: The information contained on this form is considered private and for administrative use only. Do not copy or distribute. PASS Form Information Form: 22933 Title of Experiment: "Comparing Chlorpyrifos Levels in Commercial vs. Organic Parsley" Principal Investigator: Lucinda Hemmick Institution: Longwood Sr. High School Primary Field of Research: Environmental Sciences Type of Proposal: Rapid Access On-site Access: Experiment will be performed on-site, in person by the PI's experimenters. The PI (and approved experimenters) may also request remote computer access for operating equipment, data collection and retrieving data. Research Abstract of this experiment. This section will be used for funding agency reporting purposes. This information and the proposal title may become public information.:

171

EDF Industrial Power Services (TX), LLC | Open Energy Information  

Open Energy Info (EERE)

Power Services (TX), LLC Power Services (TX), LLC Jump to: navigation, search Name EDF Industrial Power Services (TX), LLC Place Texas Utility Id 56315 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0394/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=EDF_Industrial_Power_Services_(TX),_LLC&oldid=410609" Categories: EIA Utility Companies and Aliases

172

Freeport, TX Exports to India Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to India Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

173

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601...

174

Freeport, TX Liquefied Natural Gas Exports to South Korea (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157...

175

Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

176

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

177

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

178

Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

179

Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

180

Freeport, TX Liquefied Natural Gas Imports from Yemen (Million...  

Annual Energy Outlook 2012 (EIA)

from Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108...

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Freeport, TX Liquefied Natural Gas Imports From Peru (Million...  

Annual Energy Outlook 2012 (EIA)

From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262...

182

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt...  

Gasoline and Diesel Fuel Update (EIA)

Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 -...

183

Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...  

Gasoline and Diesel Fuel Update (EIA)

Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

184

By-pass valve  

Science Conference Proceedings (OSTI)

An improved by-pass valve (1) for use in an automobile exhaust system (Es) comprises an air inlet (7) connected to an air pump (Ap), first and second air outlets (15,23) respectively connected to first and second portions (P1,p2) of a catalytic converter (Cc) and a third outlet (33) through which air is dumped to atmosphere. Air is directed from the inlet to the first outlet when engine temperature is less than a predetermined value and from the inlet to the second outlet when engine temperature reaches the predetermined value. A first and normally closed valve (81) is intermediate the air inlet and the first and second outlets and a second and normally open valve (83) is intermediate the air inlet and the third outlet. The first valve is opened and the second valve closed when engine vacuum exceeds a predetermined level so air flows to either the first or second outlet. The second valve is reopened whenever the outlet to which air is directed is blocked so air is dumped to atmosphere. To accomplish this, the first valve is mounted on the first section (111) of a split shaft (109) and the second valve is mounted on a second shaft section (113). The sections are movable in unison to open the first valve, but the second section is movable relative to the first section when a blockage occurs to reopen the second valve.

Williamson, R.E.

1981-01-06T23:59:59.000Z

185

DOE - Office of Legacy Management -- Pantex Sewage Reservoir - TX 03  

Office of Legacy Management (LM)

Pantex Sewage Reservoir - TX 03 Pantex Sewage Reservoir - TX 03 FUSRAP Considered Sites Site: Pantex Sewage Reservoir (TX.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

186

Investigations on the sediment chronology and trace metal accumulation in Sabine-Neches estuary, Beaumont, Texas  

E-Print Network (OSTI)

The accumulation rates of sediments and trace metals (Co, Cr, Cu, Ni, Pb, Zn) were measured along with the concentrations of Al, Fe, Mn and organic carbon in four sediment cores from Sabine-Neches estuary, near Beaumont, Texas. A reliable geochronology of sediments and reconstruction of the history of trace metal inputs into this shallow estuarine environment was possible because the 239,240pu profiles closely tracked the bomb fallout history into the environment. The sedimentation rate was estimated to be about 4-5 mm/yr. Due to the very low and variable activities of excess 21OPb in the sediments, the 21OPb dating method did not prove to be very useful in the study area. One difficulty had to do with the large variability of grain size parameters in the sediments. The amount of fines varied from 90% within a single core. The activities of excess 21OPb and the concentrations of Al, Fe, organic carbon, and trace metals varied as a function of the amount of fine particles. 21OPb at the bottom of the sediment cores was in secular equilibrium with 226Ra, 23OTh, and 234U in some cores, while in others, this was not the case. The reasons for disagreement between 21OPb and 226Ra concentrations at depth were investigated. The mixing rates of surface sediments were low and was about 0.16-0.40 cm2yr-1. Down core variations of aluminum normalized enrichment factors for trace metals demonstrated that, since 1860, the sediments of this estuary have remained relatively "pristine" with respect to trace metal concentrations. While the concentrations of Pb and Zn in some sections of the sediment column were slightly enriched, Co, Cr, Cu, and Ni were depleted in all sediment cores analyzed. No significant enrichment of light rare earth elements was observed. Enrichment might have been expected from inputs of cracking catalysts used in refineries. Therefore REEs could not be used as non-steady tracers. The lack of strong enrichment of trace metals, light rare earth elements, and low inventories of radioisotopes could be a result of the short residence time of the estuarine water, long removal residence times of trace metals and radioactive elements in the water column, low salinity conditions, and possibly, complexation of these metals with dissolved organic matter.

Ravichandran, Mahalingam

1994-01-01T23:59:59.000Z

187

McAllen, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico...

188

McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico...

189

Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2...

190

TEXAS TECH UNIVERSITY Lubbock, TX 79409-1108  

E-Print Network (OSTI)

TEXAS TECH UNIVERSITY Box 41108 Lubbock, TX 79409-1108 Name (as shown on your income tax return by the appropriate ownership type that applies to you or your business. I L *Texas Limited Partnership: SSN & Social Security Number (SSN) T *Texas Corporation Owners Name

Westfall, Peter H.

191

Double-contained receiver tank 244-TX, grab samples, 244TX-97-3 analytical results for the final report  

Science Conference Proceedings (OSTI)

This document is the final report for the double-contained receiver tank (DCRT) 244-TX grab samples. Three grabs samples were collected from riser 8 on May 29, 1997. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The analytical results are presented in a table.

Esch, R.A.

1997-08-13T23:59:59.000Z

192

Passing  

NLE Websites -- All DOE Office Websites (Extended Search)

prayer for them in every stitch," she says. -Pat Remick Knitting instructions for a wool cap liner: Use knitting worsted weight yarn. Synthetic yarn is more easily washed but...

193

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. Total 11.36 12.84 13.38 12.89 13.25 13.53 1997-2013 To Brazil -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 14.55 14.55 14.60 15.01 14.01 13.94 2007-2013 Sweetgrass, MT 14.55 14.55 14.60 15.01 14.01 13.94 2012-2013 To Chile -- -- -- -- -- -- 2011-2013 Sabine Pass, LA 2011-2011 To China -- -- -- -- -- -- 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan -- -- -- -- -- -- 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 10.13 10.36 10.40 9.91 9.77 12.81 1992-2013 Nogales, AZ 10.43 10.36 10.40 9.91 9.77 12.81 2012-2013

194

EA-1845-FEA-2011.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECTS In Reply Refer To: OEPDG2EGas 2 Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P. Sabine Pass Liquefaction Project Docket No. CP11-72-000 TO THE PARTY ADDRESSED:...

195

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Pass-through Gasoline Price Pass-through January 2003 by Michael Burdette and John Zyren* The single most visible energy statistic to American consumers is the retail price of gasoline. While the average consumer probably has a general notion that gasoline prices are related to those for crude oil, he or she likely has little idea that gasoline, like most other goods, is priced at many different levels in the marketing chain, and that changes ripple through the system as prices rise and fall. When substantial price changes occur, especially upward, there are often allegations of impropriety, even price gouging, on the part of petroleum refiners and/or marketers. In order to understand the movement of gasoline prices over time, it is necessary to examine the relationship between prices at retail and various wholesale levels.

196

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sabine Pass Liquefaction, LLC Regarding Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Sabine Pass LNG Terminal to Non-Free Trade Agreement...

197

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Sabine Pass Liquefaction, LLC Regarding Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Sabine Pass LNG Terminal to Non-Free Trade Agreement...

198

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Sabine Pass Liquefaction, LLC Regarding Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Sabine Pass LNG Terminal to Non-Free Trade Agreement...

199

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sabine Pass Liquefaction, LLC Regarding Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Sabine Pass LNG Terminal to Non-Free Trade Agreement...

200

Lessons Learned from Continuous Commissioning of the Robert E. Johnson State Office Building, Austin, TX  

E-Print Network (OSTI)

The Robert E. Johnson State Office building is a 5-story, 303,389 square foot office building built in 2000 located in downtown Austin, TX. The original building design included a number of energy conservation measures that were incorporated into the final construction. During the investigation of the building, four energy conservation measures were identified, three of which deal with conventional HVAC systems. The fourth is related to the currently unutilized daylighting system which was one of the energy conservation measures of the original building design. Utilizing this system would lead to approximately 18.5% annual lighting energy savings or 5.6% annual whole building energy savings based on a DOE-2 simulation analysis. Three main lessons were learned from the experience with the Robert E. Johnson building: The traditional design-construction-operation team must include the energy conservation analysis team The entire building process should be reorganized to assure that complete information is provided and passed on from the energy conservation analysis team High performance buildings should be continuously monitored and analyzed

Bynum, J.; Claridge, D. E.

2008-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GRR/Section 8-TX-b - ERCOT Interconnection | Open Energy Information  

Open Energy Info (EERE)

8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection Process.pdf Click to View Fullscreen Regulations & Policies PUCT Substantive Rule 25.198 Triggers None specified Click "Edit With Form" above to add content 8-TX-b - ERCOT Interconnection Process.pdf 8-TX-b - ERCOT Interconnection Process.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the responsibility for

202

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

203

GRR/Section 3-TX-g - Lease of Relinquishment Act Lands | Open Energy  

Open Energy Info (EERE)

3-TX-g - Lease of Relinquishment Act Lands 3-TX-g - Lease of Relinquishment Act Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-g - Lease of Relinquishment Act Lands 03-TX-g - Lease of Relinquishment Act Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-g - Lease of Relinquishment Act Lands.pdf 03-TX-g - Lease of Relinquishment Act Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a geothermal lease on Relinquishment Act Lands in Texas. The Texas General Land Office (GLO) of Texas handles the leasing process on Relinquishment Act Lands through Title

204

Staubli TX-90XL robot qualification at the LLIHE.  

SciTech Connect

The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

Covert, Timothy Todd

2010-10-01T23:59:59.000Z

205

,"McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

206

Modal testing of the TX-100 wind turbine blade.  

DOE Green Energy (OSTI)

This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine blades. The TX-100 blade design is unique in that it features a passive braking, force-shedding mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics. A specific aim of this test is to characterize the coupling between bending and torsional dynamics. The results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and mode shapes of the individual blades. The results of this report are expected to be used for model validation--the frequencies and mode shapes from the experimental analysis can be compared with those of a finite-element analysis. Damping values are included in the results of these tests to potentially improve the fidelity of numerical simulations, although numerical finite element models typically have no means of predicting structural damping characteristics. Thereafter, an additional objective of the test is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.

Reese, Sarah; Griffith, Daniel Todd; Casias, Miguel; Simmermacher, Todd William; Smith, Gregory A.

2006-05-01T23:59:59.000Z

207

QMP: LQCD Message Passing API  

Science Conference Proceedings (OSTI)

Recent changes are: (1) There is no longer a logical node number, only a node number which does not change as the logical machine is define. Thus there are two styles of messaging: messages are sent to a node by node number, or messages are sent to a relative (logical) node. (2) Methods related to node numbers have been changed (some dropped, some added). This note presents: (1) the requirements for message passing within Lattice QCD applications; (2) a draft message API for both C and C++; and (3) implementation design ideas. The API is intended to be sufficiently flexible to be used by all Lattice QCD applications, and execute efficiently on all existing and anticipated platforms, so that there is no need to directly call non-portable message passing routines. Because of the highly regular grid communications with LQCD, MPI calls (which are more general) impose some additional overhead that is predicted to be non-negligible for large machines. Depending upon demand, a subset of MPI could be implemented above this new API so that legacy codes which use MPI could function on the new architectures which implement (only) the new API. Further, the new API has been implemented atop MPI so that new applications using this new API can still be run on older machines for which only MPI is available. Interspersed with the API description are some descriptions for how the API could be implemented for myrinet clusters and the QCDOC machine. These are meant to more fully illustrate the functionality, and are not intended as the final design. At the time of writing, the following implementations exist: (1) QMP-GM -- Uses GM; (2) QMP-MPI -- Uses MPI; tested above MPICH-GM, MPICH-SM (shared memory), and MPICH-P4 (sockets).

Jie Chen; Robert Edwards; William Watson

2003-03-01T23:59:59.000Z

208

GRR/Section 13-TX-a - State Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 13-TX-a - State Land Use Assessment GRR/Section 13-TX-a - State Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-TX-a - State Land Use Assessment 13-TX-a - State Land Use Assessment.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Open Beaches Act Dune Protection Act Beach Dune Rules Triggers None specified Click "Edit With Form" above to add content 13-TX-a - State Land Use Assessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas General Land Office (GLO) is in charge of making sure construction on the Texas coast that affects the beach and dunes is

209

GRR/Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land | Open  

Open Energy Info (EERE)

TX-e - Lease of Texas Parks & Wildlife Department Land TX-e - Lease of Texas Parks & Wildlife Department Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Texas Parks & Wildlife Department (TPWD) land in Texas. The Texas General Land Office manages

210

GRR/Section 3-TX-d - Lease of Permanent School Fund Land | Open Energy  

Open Energy Info (EERE)

3-TX-d - Lease of Permanent School Fund Land 3-TX-d - Lease of Permanent School Fund Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-d - Lease of Permanent School Fund Land 03-TX-d - Lease of Public School Fund Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-d - Lease of Public School Fund Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Public School Fund (PSF) lands in Texas. The Texas General Land Office (GLO) oversees the leasing process for PSF lands through Title 31 of the Texas Administrative Code

211

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

212

GRR/Section 3-TX-f - Lease of Land Trade Lands | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-TX-f - Lease of Land Trade Lands GRR/Section 3-TX-f - Lease of Land Trade Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-f - Lease of Land Trade Lands 03-TX-f - Lease of Land Trade Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-f - Lease of Land Trade Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Land Trade Lands in Texas. The Texas General Land Office (GLO) administers leases on Land Trade Lands through Title 31 of the Texas Administrative Code Section 155.42.

213

CX-100 and TX-100 blade field tests.  

SciTech Connect

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

214

Northern Pass Transmission Line Project Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September...

215

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 6.23 7.69 8.40 9.53 10.54 12.82 1985-2012 To Brazil -- -- -- 7.50 11.40 11.19 2007-2012 Freeport, TX -- -- -- -- 12.74 11.19 2007-2012 Sabine Pass, LA -- -- -- 7.50 11.00 -- 2007-2012 To Canada 12.07 -- -- -- -- 13.29 2007-2012 Buffalo, NY 12.07 -- -- -- 2006-2010 Sweetgrass, MT -- 13.29 2011-2012 To Chile -- -- -- -- 13.91 -- 2007-2012 Sabine Pass, LA -- -- -- -- 13.91 -- 2007-2012 To China -- -- -- -- 12.25 -- 2007-2012 Kenai, AK -- -- -- -- 10.61 -- 2007-2012 Sabine Pass, LA -- -- -- -- 12.25 -- 2007-2012 To India -- -- -- 7.56 8.23 11.10 2007-2012 Freeport, TX -- -- -- 7.56 8.66 11.10 2007-2012 Sabine Pass, LA -- -- -- -- 7.85 -- 2007-2012

216

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 48,485 39,217 33,355 64,793 70,001 28,298 1985-2012 To Brazil 0 0 0 3,279 11,049 8,142 2007-2012 Freeport, TX 0 0 0 0 2,581 8,142 2007-2012 Sabine Pass, LA 0 0 0 3,279 8,468 0 2007-2012 To Canada 2 0 0 0 0 2 2007-2012 Buffalo, NY 2 0 0 0 2006-2010 Sweetgrass, MT 0 2 2011-2012 To Chile 0 0 0 0 2,910 0 2007-2012 Sabine Pass, LA 0 0 0 0 2,910 0 2007-2012 To China 0 0 0 0 6,201 0 2007-2012 Kenai, AK 0 0 0 0 1,127 0 2007-2012 Sabine Pass, LA 0 0 0 0 6,201 0 2007-2012 To India 0 0 0 2,873 12,542 3,004 2007-2012 Freeport, TX 0 0 0 2,873 5,993 3,004 2007-2012 Sabine Pass, LA 0 0 0 0 6,549 0 2007-2012 To Japan 2,822 2,741 5,037 2010-2012

217

Multifrequency, single pass free electron laser  

DOE Patents (OSTI)

A method for simultaneous amplification of laser beams with a sequence of frequencies in a single pass, using a relativistic beam of electrons grouped in a sequence of energies corresponding to the sequence of laser beam frequencies. The method allows electrons to pass from one potential well or "bucket" to another adjacent bucket, thus increasing efficiency of trapping and energy conversion.

Szoke, Abraham (Fremont, CA); Prosnitz, Donald (Walnut Creek, CA)

1985-01-01T23:59:59.000Z

218

Value-passing CCS with noisy channels  

Science Conference Proceedings (OSTI)

Value-passing CCS, a full version of Milner's CCS, is a process algebra in which actions consist of sending and receiving values through noiseless communication channels. The full calculus is a succinct yet expressive language for the specification and ... Keywords: Barbed congruence, Bisimilarity, Noisy channel, Probabilistic modal logic, Value-passing CCS

Shuqin Huang; Yongzhi Cao; Hanpin Wang; Wanling Qu

2012-05-01T23:59:59.000Z

219

Patterson Pass Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Pass Wind Farm Pass Wind Farm Jump to: navigation, search Name Patterson Pass Wind Farm Facility Patterson Pass Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner International Wind Companies Developer International Wind Companies Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

ORNL measurements at Hanford Waste Tank TX-118  

Science Conference Proceedings (OSTI)

A program of measurements and calculations to develop a method of measuring the fissionable material content of the large waste storage tanks at the Hanford, Washington, site is described in this report. These tanks contain radioactive waste from the processing of irradiated fuel elements from the plutonium-producing nuclear reactors at the Hanford site. Time correlation and noise analysis techniques, similar to those developed for and used in the Nuclear Weapons Identification System at the Y-12 Plant in Oak Ridge, Tennessee, will be used at the Hanford site. Both ``passive`` techniques to detect the neutrons emitted spontaneously from the waste in the tank and ``active`` techniques using AmBe and {sup 252}Cf neutron sources to induce fissions will be used. This work is divided into three major tasks: (1) development of high-sensitivity neutron detectors that can selectively count only neutrons in the high {gamma} radiation fields in the tanks, (2) Monte Carlo neutron transport calculations using both the KENO and MCNP codes to plan and analyze the measurements, and (3) the measurement of time-correlated neutrons by time and frequency analysis to distinguish spontaneous fission from sources inside the tanks. This report describes the development of the detector and its testing in radiation fields at the Radiation Calibration Facility at Oak Ridge National Laboratory and in tank TX-118 at the 200 W area at Westinghouse Hanford Company.

Koehler, P.E.; Mihalczo, J.T.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GRR/Section 3-TX-c - Highway Right of Way Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-c - Highway Right of Way Lease 3-TX-c - Highway Right of Way Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-c - Highway Right of Way Lease 03TXCEncroachmentIssues.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Texas Department of Transportation Regulations & Policies 43 TAC 21.600 43 TAC 21.603 43 TAC 21.606 Triggers None specified Click "Edit With Form" above to add content 03TXCEncroachmentIssues.pdf 03TXCEncroachmentIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure for obtaining a state highway asset lease in Texas. The Texas Department of Transportation (TxDOT) may lease any highway asset.

222

GRR/Section 11-TX-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-TX-a - State Cultural Considerations Overview GRR/Section 11-TX-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-a - State Cultural Considerations Overview 11TXAStateCulturalConsiderationsOverview.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies NRC Ch. 191: Antiquities Code CCP Ch. 49: Inquests Upon Dead Bodies Triggers None specified Click "Edit With Form" above to add content 11TXAStateCulturalConsiderationsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered?

223

GRR/Section 11-TX-c - Cultural Resource Discovery Process | Open Energy  

Open Energy Info (EERE)

-TX-c - Cultural Resource Discovery Process -TX-c - Cultural Resource Discovery Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-c - Cultural Resource Discovery Process 11TXCCulturalResourceDiscoveryProcess.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies Sec. 191: Antiquities Code Triggers None specified Click "Edit With Form" above to add content 11TXCCulturalResourceDiscoveryProcess.pdf 11TXCCulturalResourceDiscoveryProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-c.1 - Is the Project Located on State or Local Public Land? Before breaking ground at a project location on state or local public land,

224

EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Federal Loan Guarantee to Support Construction of the TX 12: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas Overview The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas. TXE is a subsidiary of Eastman Chemical Company (Eastman) and proposes to develop the Facility on a 417-acre parcel of land. The Facility would

225

GRR/Section 19-TX-b - New Water Right Process For Surface Water...  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of...

226

Mexico FL GA SC AL MS LA TX AR TN TN  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hurricanes on the Natural Gas Industry in the Gulf of Mexico Region Mexico FL GA SC AL MS LA TX AR TN TN Katrina - Cumulative wind > 39 mph Katrina - Cumulative wind > 73 mph...

227

McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

228

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY  

SciTech Connect

WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

Horton, Duane G.

2007-03-26T23:59:59.000Z

229

False Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

False Pass Geothermal Area False Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: False Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.93,"lon":-163.24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Astor Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Astor Pass Geothermal Area Astor Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Astor Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.352110729808,"lon":-118.48461985588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

232

GRR/Section 11-TX-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

1-TX-b - Human Remains Process 1-TX-b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-b - Human Remains Process 11TXBHumanRemainsProcess.pdf Click to View Fullscreen Regulations & Policies CCP Art. 49 Triggers None specified Click "Edit With Form" above to add content 11TXBHumanRemainsProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure a developer must follow when human remains are discovered on or near the project site. Local law enforcement must conduct an investigation into the death of the person, and is the

233

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

234

GRR/Section 7-TX-b - REC Generator | Open Energy Information  

Open Energy Info (EERE)

TX-b - REC Generator TX-b - REC Generator < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-b - REC Generator 07TXBRECGeneratorCertification.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies Goal for Renewable Energy, PUCT Substantive Rule 25.173 Triggers None specified Click "Edit With Form" above to add content 07TXBRECGeneratorCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the application and approval process for participating in the Renewable Energy Credit program in Texas.

235

GRR/Section 19-TX-c - Surface Water Permit | Open Energy Information  

Open Energy Info (EERE)

19-TX-c - Surface Water Permit 19-TX-c - Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-c - Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 295 30 TAC 297 Triggers None specified Click "Edit With Form" above to add content 19TXCSurfaceWaterPermit.pdf 19TXCSurfaceWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water permits. Under, Tex. Water Code § 11, surface water permits

236

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

237

GRR/Section 14-TX-b - Texas NPDES Permitting Process | Open Energy  

Open Energy Info (EERE)

14-TX-b - Texas NPDES Permitting Process 14-TX-b - Texas NPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-b - Texas NPDES Permitting Process 14TXBTexasNPDESPermittingProcess (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies Tex. Water Code § 26.131(b) 16 TAC 3.8 Memorandum of Understanding between the RRC and the TCEQ 16 TAC 3.30 Triggers None specified Click "Edit With Form" above to add content 14TXBTexasNPDESPermittingProcess (4).pdf 14TXBTexasNPDESPermittingProcess (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

238

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

239

GRR/Section 8-TX-a - Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-TX-a - Transmission Siting GRR/Section 8-TX-a - Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-a - Transmission Siting 08TXATransmissionSiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive 25.83: Transmission Construction Reports PUCT Substantive Rule 25.101: Certification Criteria Triggers None specified Click "Edit With Form" above to add content 08TXATransmissionSiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Transmission siting is handled by the Public Utility Commission of Texas

240

GRR/Section 6-TX-a - Extra-Legal Vehicle Permitting Process | Open Energy  

Open Energy Info (EERE)

6-TX-a - Extra-Legal Vehicle Permitting Process 6-TX-a - Extra-Legal Vehicle Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-a - Extra-Legal Vehicle Permitting Process 06TXAExtraLegalVehiclePermittingProcess.pdf Click to View Fullscreen Contact Agencies Texas Department of Motor Vehicles Texas Department of Transportation Regulations & Policies Tex. Transportation Code § 621 Tex. Transportation Code § 622 Tex. Transportation Code § 623 43 TAC 219 Triggers None specified Click "Edit With Form" above to add content 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GRR/Section 19-TX-d - Transfer of Surface Water Right | Open Energy  

Open Energy Info (EERE)

19-TX-d - Transfer of Surface Water Right 19-TX-d - Transfer of Surface Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-d - Transfer of Surface Water Right 19TXDTransferOfWaterRight.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 297.81 30 TAC 297.82 30 TAC 297.83 Triggers None specified Click "Edit With Form" above to add content 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Texas water law allows surface water rights to be transferred from one party to another. (Tex. Water Code § 11)

242

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

243

GRR/Section 3-TX-a - State Geothermal Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-a - State Geothermal Lease 3-TX-a - State Geothermal Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-a - State Geothermal Lease 03TXAStateGeothermalLease.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Texas Natural Resources Code 31 TAC 9.22 31 TAC 13.33 31 TAC 13.62 31 TAC 155.42 Triggers None specified Click "Edit With Form" above to add content 03TXAStateGeothermalLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a state geothermal lease from the state of Texas. The Texas General Land Office manages

244

GRR/Section 19-TX-a - Water Access and Water Issues Overview | Open Energy  

Open Energy Info (EERE)

9-TX-a - Water Access and Water Issues Overview 9-TX-a - Water Access and Water Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-a - Water Access and Water Issues Overview 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Flowchart Narrative In the late 1960's Texas transitioned its water law system, switching

245

GRR/Section 12-TX-a - Flora and Fauna Considerations | Open Energy  

Open Energy Info (EERE)

TX-a - Flora and Fauna Considerations TX-a - Flora and Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-TX-a - Flora and Fauna Considerations 12TXAFloraAndFaunaConsiderations.pdf Click to View Fullscreen Contact Agencies Texas Parks and Wildlife Department Regulations & Policies Texas Parks and Wildlife Code § 68 31 TAC 65.175 31 TAC 65.176 31 TAC 65.173 Triggers None specified Click "Edit With Form" above to add content 12TXAFloraAndFaunaConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, no person may capture, trap, take, or kill, or attempt to

246

GRR/Section 14-TX-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-TX-a - Nonpoint Source Pollution GRR/Section 14-TX-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-a - Nonpoint Source Pollution 14TXANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Clean Water Act CWA §319(b) Triggers None specified Click "Edit With Form" above to add content 14TXANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas Nonpoint Source Management Program (Management Program) is required under the Clean Water Act(CWA), specifically CWA §319(b). The

247

GRR/Section 6-TX-b - Construction Storm Water Permitting Process | Open  

Open Energy Info (EERE)

6-TX-b - Construction Storm Water Permitting Process 6-TX-b - Construction Storm Water Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-b - Construction Storm Water Permitting Process 06TXBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality EPA Regulations & Policies TPDES Construction General Permit (TXR150000) 30 Texas Administrative Code 205 General Permits for Waste Discharges Texas Water Code 26.040 General Permits Clean Water Act Triggers None specified Click "Edit With Form" above to add content 06TXBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

248

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

249

GRR/Section 14-TX-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-TX-d - Section 401 Water Quality Certification 4-TX-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-d - Section 401 Water Quality Certification 14TXDSection401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Regulations & Policies 16 TAC 3.93 - RRC Water Quality Certification 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content 14TXDSection401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

250

GRR/Section 3-TX-b - Land Access | Open Energy Information  

Open Energy Info (EERE)

3-TX-b - Land Access 3-TX-b - Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-b - Land Access 03TXBLandAccess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Regulations & Policies Tex. Nat. Rec. Code Sec. 51.291(a) Tex. Nat. Rec. Code Sec. 33.111 Triggers None specified Click "Edit With Form" above to add content 03TXBLandAccess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of gaining access to certain types of land in Texas apart from the geothermal resource lease process.

251

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

252

Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report  

Science Conference Proceedings (OSTI)

This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

Spatz, R.

2000-08-01T23:59:59.000Z

253

GRR/Section 7-TX-a - Energy Facility Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-TX-a - Energy Facility Registration GRR/Section 7-TX-a - Energy Facility Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-a - Energy Facility Registration 07TXAEnergyFacilitySiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUC Substantive Rule 25.109: Registration of Power Generation Companies and Self-Generators Triggers None specified Click "Edit With Form" above to add content 07TXAEnergyFacilitySiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the necessary process for registering as an

254

GRR/Section 7-TX-c - Certificate of Convenience and Necessity | Open Energy  

Open Energy Info (EERE)

GRR/Section 7-TX-c - Certificate of Convenience and Necessity GRR/Section 7-TX-c - Certificate of Convenience and Necessity < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-c - Certificate of Convenience and Necessity 07TXCCertificateOfConvenienceAndNecessity.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 22 PUCT Substantive Rule 25.5 PUCT Substantive Rule 25.83 PUCT Substantive Rule 25.101 Public Utility Regulatory Act Triggers None specified Click "Edit With Form" above to add content 07TXCCertificateOfConvenienceAndNecessity.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

255

EIS-0463: Presidential Permit Application for Northern Pass Transmissi...  

NLE Websites -- All DOE Office Websites (Extended Search)

63: Presidential Permit Application for Northern Pass Transmission, New Hampshire EIS-0463: Presidential Permit Application for Northern Pass Transmission, New Hampshire Summary...

256

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

257

Amended Notice of Intent for the Northern Pass Transmission Line...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amended Notice of Intent for the Northern Pass Transmission Line Project Published in the Federal Register Amended Notice of Intent for the Northern Pass Transmission Line Project...

258

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

259

Diesel Fuel Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Diesel Fuel Price Pass-through Diesel Fuel Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Diesel Fuel Price Pass-through Printer-Friendly PDF Diesel Fuel Price Pass-through by Michael Burdette and John Zyren* Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. Beginning with gasoline, we looked at the two ends of the pricing structure in the U.S. market: daily spot prices, which capture sales of large quantities of product between refiners, importers/exporters, and traders; and weekly retail prices, measured at local gasoline outlets nationwide. In the course of this analysis, EIA has found that the relationships between spot and retail prices are consistent and predictable, to the extent that changes in spot prices can be used to forecast subsequent changes in retail prices for the appropriate regions. This article represents the extension of this type of analysis and modeling into the diesel fuel markets.

260

Message passing with parallel queue traversal  

SciTech Connect

In message passing implementations, associative matching structures are used to permit list entries to be searched in parallel fashion, thereby avoiding the delay of linear list traversal. List management capabilities are provided to support list entry turnover semantics and priority ordering semantics.

Underwood, Keith D. (Albuquerque, NM); Brightwell, Ronald B. (Albuquerque, NM); Hemmert, K. Scott (Albuquerque, NM)

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas AgriLife Research and Extension Center 17360 Coit Road, Dallas, TX 75252  

E-Print Network (OSTI)

Texas AgriLife Research and Extension Center 17360 Coit Road, Dallas, TX 75252 Fall Integrated Pest Management Seminar Melody Lee Texas Department of Agriculture -- Dallas Dr. Dotty Woodson Texas AgriLife Extension Service--Dallas Dr. Young-Ki Jo Texas AgriLife Extension Service -- College Station Dr. James Mc

Wilkins, Neal

262

File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Jump to: navigation, search File File history File usage Metadata File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 16 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:17, 12 June 2013 Thumbnail for version as of 14:17, 12 June 2013 1,275 × 1,650 (16 KB) Apalazzo (Talk | contribs)

263

File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information  

Open Energy Info (EERE)

TX.pdf TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 442 KB, MIME type: application/pdf) Description Texas Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Texas External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:21, 27 December 2010 Thumbnail for version as of 16:21, 27 December 2010 1,650 × 1,275 (442 KB) MapBot (Talk | contribs) Automated bot upload

264

File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 46 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:50, 26 July 2013 Thumbnail for version as of 12:50, 26 July 2013 1,275 × 1,650 (46 KB) Apalazzo (Talk | contribs)

265

GRR/Section 15-TX-a - Air Permit - Permit to Construct | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-TX-a - Air Permit - Permit to Construct GRR/Section 15-TX-a - Air Permit - Permit to Construct < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-TX-a - Air Permit - Permit to Construct 15TXAAirPermitPermitToConstruct (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Title 30 of the Texas Administrative Code 30 TAC 116.114 30 TAC 39.418 30 TAC 39.604 30 TAC 39.605 30 TAC 39.409 30 TAC 116.136 30 TAC 55.254 30 TAC 116.136 30 TAC 116.137 Triggers None specified Click "Edit With Form" above to add content 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf Error creating thumbnail: Page number not in range.

266

File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy  

Open Energy Info (EERE)

-TX-g - Lease of Relinquishment Act Lands.pdf -TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 82 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:49, 29 July 2013 Thumbnail for version as of 11:49, 29 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs) 14:43, 26 July 2013 Thumbnail for version as of 14:43, 26 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs)

267

Energy Usage Data Standard for US Smart Grid Passes Key ...  

Science Conference Proceedings (OSTI)

Energy Usage Data Standard for US Smart Grid Passes Key Advisory Panel Vote. From NIST Tech Beat: March 1, 2011. ...

2011-03-01T23:59:59.000Z

268

Microsoft Word - Kleindienst_NorthernPass_Intervention  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Christopher Lawrence September 11, 2013 Christopher Lawrence September 11, 2013 Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Re: Northern Pass Transmission LLC, Application for Presidential Permit OE Docket No. PP-371 Dear Mr. Lawrence: We are enclosing for filing our Motion to Intervene to the above mentioned proceeding. In accordance with the Notice of Amended Application for this proceeding (78 FR 50405), we are enclosing ten (10) copies. Please contact me by telephone at 603-204-8764 or by email at kleindienstm@gmail.com if you have questions or would like additional information. Thank you in advance for your attention to this matter. Respectfully Submitted,

269

Microsoft Word - Northern Pass Amended Application - FINAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELECTRICITY ELECTRICITY DELIVERY AND ENERGY RELIABILITY NORTHERN PASS TRANSMISSION LLC DOCKET NO. PP-371 AMENDED APPLICATION JULY 1, 2013 i TABLE OF CONTENTS Page No. LIST OF EXHIBITS iii LIST OF ABBREVIATIONS iv INTRODUCTION 1 OVERVIEW OF AMENDMENTS TO APPLICATION 1 SECTION 1 - INFORMATION REGARDING THE APPLICANT 1.1 Legal Name of the Applicant 6 1.2 Legal Names of All Partners 6 1.3 Communications and Correspondence 7 1.4 Foreign Ownership and Affiliations 7 1.5 Existing Contracts with Foreign Entities for Purchase, Sale or Delivery of Electric Energy 7 1.6 Corporate Authority and Compliance with Laws 8 SECTION 2 - INFORMATION REGARDING TRANSMISSION LINES TO BE COVERED BY THE PRESIDENTIAL PERMIT 2.1 Project Overview 9 2.2 Technical Description 14 2.2.1. Number of Circuits 14 2.2.2. Operating Voltage and Frequency 14 2.2.3. Conductors 14 2.2.4. Additional Information Regarding Overhead

270

NETL: News Release - First Test Passes Muster  

NLE Websites -- All DOE Office Websites (Extended Search)

September 29, 2003 September 29, 2003 First Test Passes Muster A recent study conducted by Conversion Gas Imports (CGI), L.L.C. and Ebara International tested the largest LNG production pump ever made. The first of three critical component tests, this trial was performed at discharge pressures exceeding 2,000 pounds per square inch (psi). The successful assessment laid the foundation for a pump design that would operate at large volumes and at pressures that exceed 2,400 psi. The National Technology Energy Lab recently awarded a project to CGI to field test the critical components of a novel LNG process known as the "Bishop Process." High-pressure, high volume LNG pumps are a critical component of the Bishop Process salt cavern-based LNG receiving terminals. These pumps allow ships to be unloaded quickly and directly into salt storage caverns.

271

Design of the polarization multi-pass Thomson scattering system  

Science Conference Proceedings (OSTI)

A novel configuration of the multi-pass Thomson scattering (TS) system is proposed to improve the time resolution and accuracy of electron temperature measurements by use of a polarization control technique. This configuration can realize a perfect coaxial multi-passing at each pass, and the number of round trips is not limited by the optical configuration. To confirm the feasibility of the new method, we installed this system in the GAMMA 10 plasma system. As a result, the integrated scattering signal of the double-pass configuration is about two times larger than that of the single-pass configuration. These results are in good agreement with the design.

Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

2012-10-15T23:59:59.000Z

272

Best Management Practice: Single-Pass Cooling Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Single-Pass Cooling Equipment Single-Pass Cooling Equipment Best Management Practice: Single-Pass Cooling Equipment October 8, 2013 - 9:37am Addthis Single-pass or once-through cooling systems provide an opportunity for significant water savings. In these systems, water is circulated once through a piece of equipment and is then disposed down the drain. Types of equipment that typically use single-pass cooling include CAT scanners, degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. To remove the same heat load, single-pass systems use 40 times more water than a cooling tower operated at five cycles of concentration. To maximize water savings, single-pass cooling equipment should be either modified to

273

EA-1845: Finding of No Significant Impact  

Energy.gov (U.S. Department of Energy (DOE))

Sabine Pass Liquefaction, LLC Regarding Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Sabine Pass LNG Terminal to Non-Free Trade Agreement Nations, Cameron Parish, LA

274

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

associated with applications submitted by Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P., to FERC and to DOE's Office of Fossil Energy (FE) seeking authorization to site,...

275

Tracking particles by passing messages between images  

SciTech Connect

Methods to extract information from the tracking of mobile objects/particles have broad interest in biological and physical sciences. Techniques based on the simple criterion of proximity in time-consecutive snapshots are useful to identify the trajectories of the particles. However, they become problematic as the motility and/or the density of the particles increases because of the uncertainties on the trajectories that particles have followed during the acquisition time of the images. Here, we report efficient methods for learning parameters of the dynamics of the particles from their positions in time-consecutive images. Our algorithm belongs to the class of message-passing algorithms, also known in computer science, information theory and statistical physics under the name of Belief Propagation (BP). The algorithm is distributed, thus allowing parallel implementation suitable for computations on multiple machines without significant inter-machine overhead. We test our method on the model example of particle tracking in turbulent flows, which is particularly challenging due to the strong transport that those flows produce. Our numerical experiments show that the BP algorithm compares in quality with exact Markov Chain Monte-Carlo algorithms, yet BP is far superior in speed. We also suggest and analyze a random-distance model that provides theoretical justification for BP accuracy. Methods developed here systematically formulate the problem of particle tracking and provide fast and reliable tools for its extensive range of applications.

Chertkov, Michael [Los Alamos National Laboratory; Kroc, Lukas [Los Alamos National Laboratory; Zdeborova, Lenka [Los Alamos National Laboratory; Krakala, Florent [ESPCI; Vergassola, M [CNRS

2009-01-01T23:59:59.000Z

276

Operator pencil passing through a given operator  

E-Print Network (OSTI)

Let $\\Delta$ be a linear differential operator acting on the space of densities of a given weight $\\lo$ on a manifold $M$. One can consider a pencil of operators $\\hPi(\\Delta)=\\{\\Delta_\\l\\}$ passing through the operator $\\Delta$ such that any $\\Delta_\\l$ is a linear differential operator acting on densities of weight $\\l$. This pencil can be identified with a linear differential operator $\\hD$ acting on the algebra of densities of all weights. The existence of an invariant scalar product in the algebra of densities implies a natural decomposition of operators, i.e. pencils of self-adjoint and anti-self-adjoint operators. We study lifting maps that are on one hand equivariant with respect to divergenceless vector fields, and, on the other hand, with values in self-adjoint or anti-self-adjoint operators. In particular we analyze the relation between these two concepts, and apply it to the study of $\\diff(M)$-equivariant liftings. Finally we briefly consider the case of liftings equivariant with respect to the algebra of projective transformations and describe all regular self-adjoint and anti-self-adjoint liftings.

A. Biggs; H. M. Khudaverdian

2013-01-28T23:59:59.000Z

277

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

278

This Too Shall Pass and Be Still Empty Moon  

E-Print Network (OSTI)

This too shall pass, 6ftx2ft, oil on wood. Adriana M.Garcia. Be still empty moon, 6ft x 2ft, oil on wood.

Garcia, Adriana M.

2013-01-01T23:59:59.000Z

279

The Single Pass Multi-component Harvester  

SciTech Connect

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2004. Title of Presentation. ASAE Paper No. 04xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASAE at hq@asae.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). Abstract. In order to meet the U. S. governments goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.

Reed Hoskinson; John R. Hess

2004-08-01T23:59:59.000Z

280

Tank 241-TX-118, core 236 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-TX-118 push mode core segments collected between April 1, 1998 and April 13, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-118 Push Mode Core sampling and Analysis Plan (TSAP) (Benar, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al, 1995) and the Historical Model Evaluation Data Requirements (Historical DQO) (Sipson, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Benar, 1997). One sample exceeded the Total Alpha Activity (AT) analysis notification limit of 38.4{micro}Ci/g (based on a bulk density of 1.6), core 236 segment 1 lower half solids (S98T001524). Appropriate notifications were made. Plutonium 239/240 analysis was requested as a secondary analysis. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report.

ESCH, R.A.

1998-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information  

Open Energy Info (EERE)

f - Lease of Land Trade Lands.pdf f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:54, 26 July 2013 Thumbnail for version as of 13:54, 26 July 2013 1,275 × 1,650 (42 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 3-TX-f - Lease of Land Trade Lands

282

Communication-Sensitive Static Dataflow for Parallel Message Passing Applications  

Science Conference Proceedings (OSTI)

Message passing is a very popular style of parallel programming, used in a wide variety of applications and supported by many APIs, such as BSD sockets, MPI and PVM. Its importance has motivated significant amounts of research on optimization and debugging ... Keywords: message-passing, compiler analysis, static analysis, parallel processing, multi-core

Greg Bronevetsky

2009-03-01T23:59:59.000Z

283

Northern Pass Transmission Line Project Environmental Impact Statement:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northern Pass Transmission Line Project Environmental Impact Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September 18, 2013 Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September 18, 2013 DOE has changed the location of the September 26 public scoping meeting for the Northern Pass Transmission Line Project to Colebrook Elementary School, 27 Dumont Street, Colebrook, NH. On September 6, 2013, the U.S. Department of Energy (DOE) published in the Federal Register an amended Notice of Intent (NOI) to modify the scope of the Northern Pass Transmission Line Project Environmental Impact Statement

284

PIA - WEB iPASS System DOE PIA | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

iPASS System DOE PIA PIA - WEB iPASS System DOE PIA PIA - WEB iPASS System DOE PIA PIA - WEB iPASS System DOE PIA More Documents & Publications PIA - INL Education Programs...

285

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

286

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site  

SciTech Connect

A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

Hodges, Floyd N.; Chou, Charissa J.

2001-02-23T23:59:59.000Z

287

EIS-0463: Presidential Permit Application for Northern Pass Transmission,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Presidential Permit Application for Northern Pass 3: Presidential Permit Application for Northern Pass Transmission, New Hampshire EIS-0463: Presidential Permit Application for Northern Pass Transmission, New Hampshire Summary This EIS will evaluate the potential environmental impacts from DOE's proposed Federal action of granting a Presidential permit to Northern Pass Transmission, LLC, to construct, operate, maintain, and connect a new electric transmission line across the U.S.-Canada border in northern New Hampshire. The U.S. Forest Service, White Mountain National Forest, and the U.S. Army Corps of Engineers, New England District, are cooperating agencies in the preparation of this EIS. Public Comment Opportunities None available at this time. Documents Available for Download September 18, 2013 EIS-0463: Notice of Public Meeting Location Change

288

Porn, Pedagogy, and the Passing of an Icon  

E-Print Network (OSTI)

by A n n a E . Wa r d Porn, Pedagogy, and the Passing of anoverlaps with the field of porn studies and as a teacher,common within the field of porn studies itself. This is

Ward, Anna E.

2010-01-01T23:59:59.000Z

289

SLAC National Accelerator Laboratory - LCLS-II Passes Key Milestone...  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS-II Passes Key Milestone in DOE Approval Process By Glennda Chui November 1, 2011 The Department of Energy has approved a preliminary budget, schedule and design plans for the...

290

ComPASS Present and Future Computing Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

repositories discussed by Geddes, Ko, and Tsung. ComPASS researchers utilize ALCF resources (5M hours, becoming 80M hours in 2013), and OLCF. Here we discuss HPC...

291

Currency Choice and Exchange Rate Pass-Through  

E-Print Network (OSTI)

We show, using novel data on currency and prices for US imports, that even conditional on a price change, there is a large difference in the exchange rate pass-through of the average good priced in dollars (25 percent) ...

Gopinath, Gita

292

Low-Pass Filters to Suppress Inertial and Tidal Frequencies  

Science Conference Proceedings (OSTI)

A systematic way is given to design digital filters which allow clear separation of signals with periods of a few days from noise of higher frequency, particularly tidal and inertial. Several examples are given which pass little high-frequency ...

Rory O. R. Y. Thompson

1983-06-01T23:59:59.000Z

293

Normalized performance indices for message passing parallel programs  

Science Conference Proceedings (OSTI)

Existing tools for locating performance bottlenecks of message passing parallel programs either provide visualizations or profiles of program executions only; they do not highlight the cause of poor program performance. From the perspective ...

Sekhar R. Sarukkai; Jerry Yan; Jacob K. Gotwals

1994-07-01T23:59:59.000Z

294

Deep Discount Group Pass Programs: Innovative Transit Finance  

E-Print Network (OSTI)

Transportation District (RTD) ECO Pass Program; the City ofTransportation District (RTD) are among the longest runningFor more than two decades, RTD has offered the largest

Nuworsoo, Cornelius

2005-01-01T23:59:59.000Z

295

Using Message Passing Instead of the GOTO Construct  

E-Print Network (OSTI)

This paper advocates a programming methodology using message passing. Efficient programs are derived for fast exponentiation, merging ordered sequences, and path existence determination in a directed graph. The problems ...

Hewitt, Carl

296

Message passing evolves to meet data-hungry applications | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

you need a standard so that the same parallel programs can run on a wide range of computers. The Message Passing Interface (MPI) standard aims for that goal, but it's a moving...

297

"A transit pass in everyone's hand?" : implementing Unlimited Access Pass programs as a strategy to increase transit ridership  

E-Print Network (OSTI)

(cont.) ridership growth induced by UAP programs. The lessons learned are then applied in form of a university pass program at the MBTA in Boston, suggesting program designs, pricing alternatives and estimating impacts on ...

Hester, Ursula, 1971-

2004-01-01T23:59:59.000Z

298

EA-1845: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Sabine Pass LNG Terminal to Non-Free Trade Agreement Nationsine Pass Liquefaction Project, Cameron...

299

Waste Treatment Facility Passes Federal Inspection, Completes Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Passes Federal Inspection, Completes Final Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup April 23, 2012 - 12:00pm Addthis Media Contact Erik Simpson, 208-390-9464 Danielle Miller, 208-526-5709 The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to

300

Standards for message-passing in a distributed memory environment  

SciTech Connect

This report presents a summary of the main ideas presented at the First CRPC Work-shop on Standards for Message Passing in a Distributed Memory Environment, held April 29-30, 1992, in Williamsburg, Virginia. This workshop attracted 68 attendees including representative from major hardware and software vendors, and was the first in a series of workshops sponsored by the Center for Research on Parallel Computation. The aim of this series of workshops is to develop and implement a standard for message passing on distributed memory concurrent computers, thereby making it easier to develop efficient, portable application codes for such machines. The report discusses the main issues raised in the CRPC workshop, and describes proposed desirable features of a message passing standard for distributed memory environments.

Walker, D.W.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Validation of the G-PASS code : status report.  

DOE Green Energy (OSTI)

Validation is the process of determining whether the models in a computer code can describe the important phenomena in applications of interest. This report describes past work and proposed future work for validating the Gas Plant Analyzer and System Simulator (G-PASS) code. The G-PASS code was developed for simulating gas reactor and chemical plant system behavior during operational transients and upset events. Results are presented comparing code properties, individual component models, and integrated system behavior against results from four other computer codes. Also identified are two experiment facilities nearing completion that will provide additional data for individual component and integrated system model validation. The main goal of the validation exercise is to ready a version of G-PASS for use as a tool in evaluating vendor designs and providing guidance to vendors on design directions in nuclear-hydrogen applications.

Vilim, R. B.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

302

Application of CC at a Corporate Headquarters Facility in Dallas, TX  

E-Print Network (OSTI)

A corporate headquarters complex located in Dallas, TX consists of four buildings served by a central utility plant. The Continuous Commissioning (CC) process was applied to one building with approximately 688,000 square feet of primarily of data floor space. This building was identified as a candidate for the CC process because it consumed 58% of the 132 million kWh of electricity used by the complex in 2010 and had recently received several HVAC upgrades. CC is an ongoing process for existing buildings and central plant facilities to resolve operating problems, improve comfort, optimize energy use, and identify retrofits based on current building usage rather than original design intent [1]. The data floor optimization process consisted of three components: traditional commissioning activities, CC measure implementation, and low cost retrofits. Various M&V strategies were also utilized to quantify the resulting energy savings in a building whose energy use is dominated by data equipment load. Using six months of pre- and post- implementation HVAC equipment electrical service meter trend data, a savings of 948,700 kWh was achieved. When these savings are extrapolated to twelve months, this project is expected to reduce the 2010 HVAC electricity usage by 25% ($133,000). Once the central plant savings are included, the overall savings of this project is approximately $146,000/year.

Meline, K.; Kimla, J.

2011-01-01T23:59:59.000Z

303

File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open Energy  

Open Energy Info (EERE)

Land (1).pdf Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-d - Lease of Public School Fund Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:26, 29 July 2013 Thumbnail for version as of 11:26, 29 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) 13:47, 26 July 2013 Thumbnail for version as of 13:47, 26 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

304

Extensible message passing application development and debugging with Python  

SciTech Connect

The authors describe how they have parallelized Python, an interpreted object oriented scripting language, and used it to build an extensible message-passing C/C++ applications for the CM-5, Cray T3D, and Sun multiprocessor servers running MPI. Using a parallelized Python interpreter, it is possible to interact with large-scale parallel applications, rapidly prototype new features, and perform application specific debugging. It is even possible to write message passing programs in Python itself. The authors describe some of the tools they have developed to extend Python and applications of this approach.

Beazley, D.M. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Computer Science; Lomdahl, P.S. [Los Alamos National Lab., NM (United States). Theoretical Div.

1996-09-19T23:59:59.000Z

305

TxDOT Goes Beyond Compliance by Purchasing 100% AFVs. EPAct Fleet Information and Regulations, State& Alternative Fuel Provider Program Success Story  

DOE Green Energy (OSTI)

Fact sheet features the challenges the Texas Department of Transportation (TxDOT) faced and overcame in complying to a Texas legislation that calls for the acquisition of only alternative fuel vehicles.

Not Available

2002-01-01T23:59:59.000Z

306

CALDERN, HCTOR. Narratives of Greater Mxico: Essays on Chicano Literary History, Genre, and Borders. Austin, TX: U of Texas P, 2004. 284 pp.  

E-Print Network (OSTI)

Borders. Austin, TX: U of Texas P, 2004. 284 pp. "There areEl New Paso and Ro Grande, Texas; Mxico; San Francisco andthe and cultural migrant Texas-Mexican farmworker community

Prez, Marisol

2005-01-01T23:59:59.000Z

307

To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration  

E-Print Network (OSTI)

LBNL-60978 To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX efficient than ASHRAE 90.1- 1999. The utility data from the first year's operation match well the analysis

308

The F-buffer: a rasterization-order FIFO buffer for multi-pass rendering  

Science Conference Proceedings (OSTI)

Multi-pass rendering is a common method of virtualizing graphics hardware to overcome limited resources. Most current multi-pass rendering techniques use the RGBA framebuffer to store intermediate results between each pass. This method of storing intermediate ...

William R. Mark; Kekoa Proudfoot

2001-08-01T23:59:59.000Z

309

Comment---Cross-Brand Pass-Through: Fact or Artifact?  

Science Conference Proceedings (OSTI)

Cross-brand pass-through implies that a retailer responds to wholesale promotional support from a target brand by changing the retail prices of competitive brands. Besanko et al. (2005) model a target brand's retail price as a function of its own and ... Keywords: Dominick's, channels of distribution, econometric models, laundry detergent, packaged goods, price zones, pricing, promotion, retailing and wholesaling

Leigh McAlister

2007-11-01T23:59:59.000Z

310

Moose Pass, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pass, Alaska: Energy Resources Pass, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.4875°, -149.3688889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.4875,"lon":-149.3688889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

MHK Projects/Canoe Pass | Open Energy Information  

Open Energy Info (EERE)

Canoe Pass Canoe Pass < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.1353,"lon":-125.345,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

312

MHK Projects/Stouts Pass | Open Energy Information  

Open Energy Info (EERE)

Stouts Pass Stouts Pass < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.74,"lon":-91.2295,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

313

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

314

Application for Presidential Permit OE Docket No: PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No: PP-371 Northern No: PP-371 Northern Pass Transmission: Comments from William and Michelle Shoemaker Application for Presidential Permit OE Docket No: PP-371 Northern Pass Transmission: Comments from William and Michelle Shoemaker Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. Shoemaker_Comments.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Linda Upham Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from City of Concord - James Kennedy Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Fred Brownson

315

Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment  

E-Print Network (OSTI)

The purpose of this study was to develop and test an optimization model that will provide a deployment plan of emission reduction technologies to reduce emissions from non-road equipment. The focus of the study was on the counties of Texas that have nonattainment (NA) and near-nonattainment (NNA) status. The objective of this research was to develop methodologies that will help to deploy emission reduction technologies for non-road equipment of TxDOT to reduce emissions in a cost effective and optimal manner. Three technologies were considered for deployment in this research, (1) hydrogen enrichment (HE), (2) selective catalytic reduction (SCR) and (3) fuel additive (FA). Combinations of technologies were also considered in the study, i.e. HE with FA, and SCR with FA. Two approaches were investigated in this research. The first approach was "Method 1" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties at the first stage. In the second stage the same technologies were deployed in the NNA counties with the remaining budget, if any. The second approach was called "Method 2" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties along with deploying only FA in the NNA counties at the first stage. Then with the remaining budget, SCR and HE were deployed in the NNA counties in the second stage. In each of these methods, 2 options were considered, i.e. maximizing NOx reduction with and without fuel economy consideration in the objective function. Thus, the four options investigated each having different mixes of emission reduction technologies include Case 1A: Method 1 with fuel economy consideration; Case 1B: Method 1 without fuel economy consideration; Case 2A: Method 2 with fuel economy consideration; and Case 2B: Method 2 without fuel economy consideration and were programmed with Visual C++ and ILOG CPLEX. These four options were tested for budget amounts ranging from $500 to $1,183,000 and the results obtained show that for a given budget one option representing a mix of technologies often performed better than others. This is conceivable because for a given budget the optimization model selects an affordable option considering the cost of technologies involved while at the same time maximum emission reduction, with and without fuel economy consideration, is achieved. Thus the alternative options described in this study will assist the decision makers to decide about the deployment preference of technologies. For a given budget, the decision maker can obtain the results for total NOx reduction, combined diesel economy and total combined benefit using the four models mentioned above. Based on their requirements and priorities, they can select the desired model and subsequently obtain the required deployment plan for deploying the emission reduction technologies in the NA and NNA counties.

Bari, Muhammad Ehsanul

2009-08-01T23:59:59.000Z

316

GMH: A Message Passing Toolkit for GPU Clusters  

Science Conference Proceedings (OSTI)

Driven by the market demand for high-definition 3D graphics, commodity graphics processing units (GPUs) have evolved into highly parallel, multi-threaded, many-core processors, which are ideal for data parallel computing. Many applications have been ported to run on a single GPU with tremendous speedups using general C-style programming languages such as CUDA. However, large applications require multiple GPUs and demand explicit message passing. This paper presents a message passing toolkit, called GMH (GPU Message Handler), on NVIDIA GPUs. This toolkit utilizes a data-parallel thread group as a way to map multiple GPUs on a single host to an MPI rank, and introduces a notion of virtual GPUs as a way to bind a thread to a GPU automatically. This toolkit provides high performance MPI style point-to-point and collective communication, but more importantly, facilitates event-driven APIs to allow an application to be managed and executed by the toolkit at runtime.

Jie Chen, W. Watson, Weizhen Mao

2011-01-01T23:59:59.000Z

317

EA-1845-FONSI-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SABINE PASS LIQUEFACTION, LLC REGARDING SABINE PASS LIQUEFACTION, LLC REGARDING ORDER GRANTING LONG-TERM AUfHORIZATION TO EXPORT LIQUEFIED NATIJRAL GAS FROM SABINE PASS LNG TERMINAL TO NON-FREE TRADE AGREEMENT NATIONS AGENCY: U.S. Department of Energy, Office of Fossil Energy ACTION: Finding of No Significant Impact SUMMARY: Pursuant to section 1501.6 of the regulations of the Council on Environmental Quality (CEQ), 40 CFR 1501.6, the U.S. Department of Energy (DOE) participated as a cooperating agency with the Federal Energy Regulatory Commission (FERC) in an environmental assessment (EA) that analyzed the potential environmental impacts associated with applications submitted by Sabine Pass Liquefaction, LLC, and Sabine Pass LNG, L.P. (Sabine Pass) with FERC and the Department of Energy, Office of Fossil (FE) seeking

318

Estimating Watershed Evapotranspiration with PASS. Part I: Inferring Root-Zone Moisture Conditions Using Satellite Data  

Science Conference Proceedings (OSTI)

A model framework for parameterized subgrid-scale surface fluxes (PASS) has been modified and applied as PASS1 to use satellite data, models, and limited surface observations to infer root-zone available moisture (RAM) content with high spatial ...

J. Song; M. L. Wesely; R. L. Coulter; E. A. Brandes

2000-10-01T23:59:59.000Z

319

Price of Savine Pass, LA Natural Gas LNG Imports from Egypt ...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Savine Pass, LA Natural Gas LNG Imports from Egypt (Nominal Dollars per...

320

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Jacopo Bellazzini; Nicola Visciglia

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Bellazzini, Jacopo

2009-01-01T23:59:59.000Z

322

Deep Discount Group Pass Programs as Instruments for Increasing Transit Revenue and Ridership  

E-Print Network (OSTI)

alt_trans/new_way_history.html 1997 RTD ECO Pass DenverCBD Employee Survey 2001 RTD Boarding Statistics and SkyRide81 THE DENVER RTD ECO PASS

Nuworsoo, Cornelius Kofi

2004-01-01T23:59:59.000Z

323

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from John Doane Sr.  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

324

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Jim Cannon  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

325

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Bruce Adami  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

326

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Steve Nogueira  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

327

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Pamela Hanglin  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

328

Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Larry Rappaport  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

329

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Lindsey Coombs  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

330

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Campton Conservation Commission  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S, - Canada Border.

331

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Maureen Quinn  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

332

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Gina Neily  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

333

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Anne Moschella  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

334

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Pamela Hayes  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

335

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Ann Vennerbeck  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

336

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Serita Frey  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

337

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Robert Cote  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

338

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Erick Berglund, Jr.  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

339

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Roy Kjendal  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

340

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Susan Seitz  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Rana Klug  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

342

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Vickie Bedard  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

343

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Nicholas Karakoudas  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

344

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Lorna Rose  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

345

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Michelle Kleindienst  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

346

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Courtney Kearley  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

347

Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Linda Upham  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

348

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Taras Kucman  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

349

Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Pamela Martin  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

350

Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Elisha Gray  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

351

Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Robert Martin  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

352

Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Michael Marino  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

353

Waste treatment facility passes federal inspection, completes final  

NLE Websites -- All DOE Office Websites (Extended Search)

23, 2012 23, 2012 Media Contact: Danielle Miller, 208-526-5709 Erik Simpson, 208-390-9464 Waste treatment facility passes federal inspection, completes final milestone, begins startup The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. An exterior view of the Integrated Waste Treatment Unit A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to resolve before the 53,000-square-foot Integrated Waste Treatment Unit

354

DOE Solar Decathlon: Carnegie Mellon University: Passing the Torch  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnegie Mellon solar-powered house at Solar Decathlon 2002. Carnegie Mellon solar-powered house at Solar Decathlon 2002. Enlarge image The Carnegie Mellon house consumed only 10% of the energy used by an average house with the help of solar electric and solar thermal systems, a water-source heat pump, and a tightly constructed building envelope made of prefabricated panels. (Credit: Chris Gunn/U.S. Department of Energy) Who: Carnegie Mellon What: Solar House Where: No longer available Solar Decathlon 2002 Carnegie Mellon University: Passing the Torch Carnegie Mellon's U.S. Department of Energy Solar Decathlon 2002 team analyzed every part of its solar-powered house during the two years it spent preparing for the competition. This forethought allowed the students to strategically place as many components as possible when they dismantled

355

Development of By-Pass Blending Station System  

E-Print Network (OSTI)

A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can significantly reduce building pump power for a typical cooling system when constant water flow is maintained in the building side. When differential pressure reset is applied in the building side, more pump energy can be saved. The BBS also reduces the pump size and therefore results in lower initial system cost. A case study was also performed and demonstrated 42% of annual chilled water pump energy savings for constant building water flow, and 82% of annual chilled water pump savings for differential pressure resetting at Omaha, Nebraska.

Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

2003-01-01T23:59:59.000Z

356

2004 Initial Assessments for the T and TX TY Tank Farm Field Investigation Report (FIR): Numerical Simulations  

SciTech Connect

In support of CH2M HILL Hanford Group, Inc.s (CHG) preparation of a Field Investigative Report (FIR) for the Hanford Site Single-Shell Tank Waste Management Area (WMA) T and TX-TY, a suite of numerical simulations of flow and solute transport was executed using the STOMP code to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the T and TX-TY WMA. The scope and parametric data for these simulations were defined by a modeling data package provided by CHG. This report documents the simulation involving 2-D cross sections through the T Tank and the TX-TY Tank Farm. Eight cases were carried out for the cross sections to simulate the effects of interim barrier, water line leak, inventory distribution, and surface recharge on water flow and the transport of long-lived radionuclides (i.e., technecium-99 and uranium) and chemicals (i.e., nitrate and chromium For simulations with barriers, it is assumed that an interim barrier is in place by the year 2010. It was also assumed that, for all simulations, as part of tank farm closure, a closure barrier was in place by the year 2040. The modeling considers the estimated inventories of contaminants within the vadose zone and calculates the associated risk. It assumes that no tanks will leak in the future. Initial conditions for contaminant concentration are provided as part of inventory estimates for uranium, technetium-99, nitrate, and chromium. For moisture flow modeling, Neumann boundary conditions are prescribed at the surface with the flux equal to the recharge rate estimate. For transport modeling, a zero flux boundary is prescribed at the surface for uranium, technetium-99, nitrate, and chromium. The western and eastern boundaries are assigned no-flux boundaries for both flow and transport. The water table boundary is prescribed by water table elevations and the unconfined aquifer hydraulic gradient. No-flux boundaries are used for the lower boundary. Numerical results were obtained for compliance at the WMA boundary, 200 Areas boundary, exclusion boundary beyond the 200 Areas, and the Columbia River (DOE-RL 2000). Streamtube/analytical models were used to route computed contaminant concentrations at the water table to the downstream compliance points. When the interim barrier was applied at 2010, the soil was desaturated gradually. The difference in saturation of the soil with and without the interim barrier was the largest at 2040, the time the closure barrier was applied. After this, the difference in saturation in the two cases became smaller with time. Generally, the solutes broke though faster if there was a water line leak. A relative small five-day leak (Case 4) had little effect on the peak concentration, while a large 20-yr leak (Case 3) increased the peak concentration significantly and reduced the solute travel in the vadose zone. The distribution of the inventory, either uniform or nonuniform, has little effect on peak arrival time; the peak concentrations of the conservative solutes varied by -6.9 to 0.2% for the T tank farm and by 11 to 49.4% for the TX tank farm. The reduction of the meteoric recharge before the barrier was applied led to less soil saturation, as expected, and thus longer solute travel time in the vadose zone and smaller peak fence line concentration. The effect on soil saturation lasted for about another 50 years after the barrier was applied at 2050. However, the reduced recharge rate affected the breakthough curve till the end of the simulation. The fence line concentrations at the year 3000 were always higher for cases with reduced natural recharge than for those of the base case, which indicates that the fundamental impact of the reduced natural recharge is a smoothing of the breakthrough concentrations at the compliance points.

Zhang, Z. F.; Freedman, Vicky L.; Waichler, Scott R.

2004-09-24T23:59:59.000Z

357

Application for presidential permit OE Docket No. PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addendum to Application Addendum to Application Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Addendum to Application On October 14, 2010, Northern Pass Transmission, LLC submitted an application for a Presidential Permit to construct a 1,200 MW high voltage direct current ("HVDC") transmission line (the "Application") from the Des Cantons substation in Quebec, to Franklin, New Hampshire (the "Project"). Northern Pass Transmission, LLC Docket No. PP-371 Addendum to Application More Documents & Publications Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Lee Ann Moulder Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Linda Upham

358

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of 8,773 results. Article Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas Conditional Authorization for Sabine Pass LNG Terminal Could Bring Thousands of...

359

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual-reports Article Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas Conditional Authorization for Sabine Pass LNG Terminal Could Bring Thousands of...

360

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order Granting Application for Authorization to Export Liquified Natural Gas, Sabine Pass LNG Export Project March 26, 2009 Obama Administration Announces Additional 24,624,200...

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 17260 of 21,400 results. Download EA-1649: Final Environmental Assessment Sabine Pass LNG, Export Project http:energy.govnepadownloadsea-1649-final-environmental-assessmen...

362

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy (FE) seeking authorization to site, construct, and operate liquefaction and export facilities at the existing Sabine Pass LNG Terminal in Cameron Parish, Louisiana....

363

CX-008815: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012, seeking authorization to export previously imported liquefied natural gas (LNG) from the Sabine Pass LNG Terminal in Cameron Parish, Louisiana, to any country not...

364

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Granting Application for Authorization to Export Liquified Natural Gas, Sabine Pass LNG Export Project March 26, 2009 Obama Administration Announces Additional 24,624,200 for...

365

EA-1649: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Final Environmental Assessment EA-1649: Final Environmental Assessment Sabine Pass LNG, Export Project This EA assesses the environmental effects of the proposed modifications...

366

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10-questions-materials-chemist-elise-fox Article Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas Conditional Authorization for Sabine Pass LNG Terminal...

367

Analysis of the Pass Cavallo shipwreck assemblage, Matagorda Bay, Texas  

E-Print Network (OSTI)

A survey conducted in February of 1998 located an anomaly originally believed to be the remains of L'Aimable. L'Aimable was one of four ships utilized by Rene-Robert Cavelier, Sieur de La Salle, for his voyage to colonize the Gulf Coast in 1684. The anomaly, a wrecked vessel with a heavy iron signature, was located outside the entrance to the historic pass into Matagorda Bay, Texas. Artifacts were extracted from the wreck site to aid in the identification of the vessel, which was subsequently determined to be more recent in origin. A preliminary examination of the artifacts indicates that the shipwreck dates to the first half of the 19th century. The survey recovered over two hundred artifacts. The assemblage of artifacts includes over 80 lead shot, over 40 examples of brass firearm furniture, over 15 firearm fragments, several pieces of copper sheathing, and iron bar stock. Almost two-thirds of the material is associated with small arms. The majority of the identifiable firearms are military arms of three patterns: the British Short Land Pattern, the British India Pattern, and the 1757 Spanish musket. Historical research has determined that these arms were circulating in Texas, New Orleans, and Mexico, as early as 1815. The British Pattern arms were both purchased for the Mexican army in the 1820s, and used by the British Infantry in the Battle of New Orleans in 1815. The 1757 Spanish musket was used chiefly by Spanish expeditionary forces in North America in the late 18th century. Evidence garnered from the artifacts suggest that the firearms were shipboard cargo onboard a small, wood-hulled sailing vessel that wrecked between the years 1815 and 1845. Archival and historical research isolated nine wreck candidates for this period. Historical research and artifact analysis suggest the Hannah Elizabeth as the primary candidate for this wreck site. The Hannah Elizabeth was a small merchant schooner from New Orleans laden with a munitions cargo for Texas troops stationed at Goliad. The vessel wrecked at the entrance of the historic Pass Cavallo while evading capture from a Mexican brig-of-war in November of 1835.

Borgens, Amy Anne

2005-05-01T23:59:59.000Z

368

Press Pass - Press Release - CDF B_s  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 September 13, 2006 Media Contacts: Fermilab - Mike Perricone, mikep@fnal.gov, 630-840-3351 CERN - James Gillies, James.gillies@cern.ch, + 41 22 76 74101 For immediate release Fermilab contributions help CMS magnet reach full field at CERN Tests show CMS detector will be ready for data at European particle physics laboratory BATAVIA, Illinois - Scientists of the U.S. Department of Energy/Office of Science's Fermi National Accelerator Laboratory and collaborators of the US/CMS project have joined colleagues from around the world in announcing that the world's largest superconducting solenoid magnet has reached full field strength in tests at CERN, the European Particle Physics Laboratory. Weighing in at more than 13,000 tons, the Compact Muon Solenoid experiment's magnet is built around a 20-foot-diameter, nearly 43-foot-long superconducting solenoid - a wire coil with multiple loops, which generates a magnetic field when electricity passes through it. The CMS solenoid generates a magnetic field of 4 Tesla, some 100,000 times stronger than the Earth's magnetic field, and stores 2.5 gigajoules of energy, enough to melt nearly 20 tons of gold. Superconductivity is achieved by chilling the coil to a temperature near absolute zero, where virtually all electrical resistance vanishes. Extremely high electrical current can then be used to generate a powerful magnetic field.

369

The Impact of Tropical Cyclones on the Geomorphic Evolution of Bolivar Peninsula, TX  

E-Print Network (OSTI)

Annually, tropical cyclones do tremendous damage and are agents of long-term coastal change. To test this idea of different tropical cyclones delivering consistent coastal change, a landform with such evolution is needed. One such landform is a spit. What contributions do tropical cyclones give toward the evolution of a spit, and do tropical cyclones give the same kinds of impacts? To determine if tropical cyclones have similar impacts, shoreline and volumetric change from four storms impacting Bolivar Peninsula are considered. Being a southwest-trended spit at a length of 33.5 kilometers, storm impacts are measured in the form of one dimensional shoreline and two dimensional volumetric change. These impacts are abstracted into shoreline change and volumetric change patterns. These patterns are identified and compared for differences between each storm and similarity among all storms. Results indicate that shoreline accretionary zones vary alongshore. Results from Hurricane Ike indicate an accretionary zone ten kilometers from the distal end. Shoreline change patterns for Hurricane Rita show an unstable accretionary zone at four kilometers from the distal end. Results for Tropical Storm Fay indicate an unstable accretionary zone that begins at the distal end and continues to the middle of the spit. In terms of similarity for shoreline change, all patterns from storms demonstrated erosion near Rollover Fish Pass. One dimensional volumetric change patterns were entirely erosive for Hurricanes Rita and Ike, and Tropical Storm Fay had by small zones of accretion near the distal portion of the spit. Tropical Storm Josephine demonstrated an accretion zone between the middle and distal portion of the spit. Results from two dimensional volumetric change patterns suggest a threshold for inland penetration. Tropical Storm Fay showed a ten to twenty meter wide pattern of erosion around five kilometers from the distal end and near the proximal end of the spit, and Hurricane Rita demonstrated a twenty meter wide pattern of erosion near the distal end. Hurricane Ike had erosive penetration of up to 200 meters around fifteen kilometers from the distal end. Results suggest that certain storms reinforce the standard spit growth model, and others work against it.

Hales, Billy

2012-05-01T23:59:59.000Z

370

Sabine-Neches Waterway Channel Improvement Project  

E-Print Network (OSTI)

vessels, the amount of vessel traffic on the SNWW has also increased. Both the SNWW and U.S. crude oil of navigation on the waterway. The current channel was completed in 1960. At that time, crude oil tankers are now used routinely for crude oil imports to both Beaumont and Port Arthur. In addition to larger

US Army Corps of Engineers

371

A Study of Single Pass Ion Effects at the ALS  

SciTech Connect

We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased along the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.

Byrd, J.M.; Thomson, J.; /LBL, Berkeley; Chao, A.W.; Heifets, S.; Minty, M.G.; Seeman, J.T.; Stupakov, G.V.; Zimmermann, F.; /SLAC; Raubenheimer, T.O.; /CERN

2011-09-13T23:59:59.000Z

372

Pricing Electricity for Default Customers: Pass Through or Performance-Based Rates?  

E-Print Network (OSTI)

PWP-066 Pricing Electricity for Default Customers: Pass Through or Performance-Based Rates? Carl;1 Pricing Electricity for Default Customers: Pass Through or Performance-Based Rates? Carl Blumstein1 August 1999 Abstract California electricity consumers can choose a retail electricity service provider

California at Berkeley. University of

373

Collector efficiency of the double-pass solar air collectors with fins  

Science Conference Proceedings (OSTI)

The experimental study on a forced-convective double-pass solar air collector with fins in the second channel has been conducted. The experiments were conducted by changing the parameters that influence the thermal efficiency of the collector. The efficiency ... Keywords: collector efficiency, double-pass solar air collector, fins absorbers

A. Fudholi; M. H. Ruslan; M. Y. Othman; M. Yahya; Supranto Supranto; A. Zaharim; K. Sopian

2010-10-01T23:59:59.000Z

374

Experimental and theoretical thermal performance of double pass solar air heater with porous media  

Science Conference Proceedings (OSTI)

A theoretical model has been developed to predict the thermal performance of double pass solar air heater with porous media. It is composed of five-coupled unsteady nonlinear partial differential equations which are solved by using numerical scheme. ... Keywords: double pass solar collector, iteration, numerical, porous media, solar radiation

M. Yahya; K. Sopian; M. Y. Theeran; M. Y. Othman; M. A. Alghoul; M. Hafidz; A. Zaharim

2008-11-01T23:59:59.000Z

375

FACILITATING OPEN VOCABULARY SPOKEN TERM DETECTION USING A MULTIPLE PASS HYBRID SEARCH ALGORITHM  

E-Print Network (OSTI)

term detection involves fast search of large repositories of audio documents from query terms entered a query term has been entered by the user, a first pass search is performed to identify candidate audioFACILITATING OPEN VOCABULARY SPOKEN TERM DETECTION USING A MULTIPLE PASS HYBRID SEARCH ALGORITHM

Rose, Richard

376

Application for presidential permit OE Docket No. PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC: Federal Register Notice Volume 75, No. 220 - Nov. LLC: Federal Register Notice Volume 75, No. 220 - Nov. 16, 2010 Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Federal Register Notice Volume 75, No. 220 - Nov. 16, 2010 Application from Northern Pass Transmission LLC to construct, operate, and maintain electric transmission facilities at the U.S-Canada border.. Federal Register Notice Vol 75 No 220. Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC More Documents & Publications Application for presidential permit OE Docket No. PP-362 Champlain Hudson: Federal Register Notice Volume 75, No. 43 - Mar. 5, 2010 Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Addendum to Application Application for Presidential Permit OE Docket No. PP-371 Northern Pass

377

Memorandum of Understanding (MOU) between DOE, Northern Pass and SE Group -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of Understanding (MOU) between DOE, Northern Pass and SE Memorandum of Understanding (MOU) between DOE, Northern Pass and SE Group - August 12, 2011 Memorandum of Understanding (MOU) between DOE, Northern Pass and SE Group - August 12, 2011 August 12, 2011 - 2:20pm Addthis The Department of Energy (DOE) has selected an integrated team of professionals from three environmental consulting firms to prepare the DOE Environmental Impact Statement (EIS) addressing the Northern Pass Presidential Permit application and signed a Memorandum of Understanding with the group. Addthis Related Articles Departments of State and Energy Establish Global Partnership to Green U.S. Embassies and Consulates Memorandum of Understanding (MOU) between DOE, Northern Pass and SE Group - August 12, 2011 DOE and FWS Sign New MOU on Migratory Bird Protection

378

Survival Rates of Juvenile Salmonids Passing Through the Bonneville Dam and Spillway in 2008  

DOE Green Energy (OSTI)

This report describes a 2008 acoustic telemetry survival study conducted by the Pacific Northwest National Laboratory for the Portland District of the U.S. Army Corps of Engineers. The study estimated the survival of juvenile Chinook salmon and steelhead passing Bonneville Dam (BON) and its spillway. Of particular interest was the relative survival of smolts detected passing through end spill bays 1-3 and 16-18, which had deep flow deflectors immediately downstream of spill gates, versus survival of smolts passing middle spill bays 4-15, which had shallow flow deflectors.

Ploskey, Gene R.; Weiland, Mark A.; Faber, Derrek M.; Deng, Zhiqun; Johnson, Gary E.; Hughes, James S.; Zimmerman, Shon A.; Monter, Tyrell J.; Cushing, Aaron W.; Wilberding, Matthew C.; Durham, Robin E.; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.; McComas, Roy L.; Everett, Jason

2009-12-28T23:59:59.000Z

379

Application for presidential permit OE Docket No. PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC LLC Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC Pursuant to Executive Order (EO) No. 10485, as amended by EO 12038, and 10 C.F.R. § 205.320 et seq., Northern Pass Transmission LLC (Northern Pass or the Applicant) hereby applies to the United States Department of Energy (DOE) for a Presidential Permit authorizing the construction, connection, operation, and maintenance of facilities for the transmission of electric energy at the international border between the United States and Canada. This application does not seek authority for any export of power from the United States. The information that follows is submitted in support of the Application. APPLICATION OF NORTHERN PASS TRANSMISSION LLC FOR PRESIDENTIAL PERMIT

380

EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71: Golden Pass LNG Export and Pipeline Project, Texas and 71: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes approximately 8 miles of pipeline connecting to existing pipelines in Calcasieu Parish, Louisiana, and Jefferson County. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 16, 2013 EA-1971: FERC Notice of Intent to Prepare an Environmental Assessment

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) Exploration Activity Details Location Astor Pass Geothermal Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes More than 100 new 2m measurements at Astor Pass, Nevada resolved additional details of near-surface thermal outflow in this blind geothermal system References Christopher Kratt, Chris Sladek, Mark Coolbaugh (2010) Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army

382

Regional Comparisons, Spatial Aggregation, and Asymmetry of Price Pass-Through  

Reports and Publications (EIA)

Spot to retail price pass-through behavior of the U.S. gasoline market was investigated at the national and regional levels, using weekly wholesale and retail motor gasoline prices from January 2000 to the present.

John Zyren

2005-08-03T23:59:59.000Z

383

A Comparison of Several Single-Pass Estimators of the Standard Deviation of Wind Direction  

Science Conference Proceedings (OSTI)

Computation of the standard deviation of wind direction ?? generally requires repeated consideration of the individual measurements of wind direction. This need for multiple passes through the data sample can create a storage problem for small or ...

R. J. Yamartino

1984-09-01T23:59:59.000Z

384

Two-bit message passing decoders for LDPC codes over the binary symmetric channel  

E-Print Network (OSTI)

A class of two-bit message passing decoders for decoding column-weight-four LDPC codes over the binary symmetric channel is proposed. The thresholds for various decoders in this class are derived using density evolution. ...

Sassatelli, Lucille

385

A Decade of GroundAir Temperature Tracking at Emigrant Pass Observatory, Utah  

Science Conference Proceedings (OSTI)

Observations of air and ground temperatures collected between 1993 and 2004 from Emigrant Pass Geothermal Climate Observatory in northwestern Utah are analyzed to understand the relationship between these two quantities. The influence of surface ...

Marshall G. Bartlett; David S. Chapman; Robert N. Harris

2006-08-01T23:59:59.000Z

386

Numerical Study on Flow Pass of a Three-Dimensional Obstacle under a Strong Stratification Condition  

Science Conference Proceedings (OSTI)

A three-dimensional, nonhydrostatic, numerical turbulent model was used to study the flow pass of a three-dimensional obstacle under a strong stratification condition. The numerical results clarify the behavior of the flow at a low Froude number, ...

W. Sha; K. Nakabayashi; H. Ueda

1998-10-01T23:59:59.000Z

387

Estimating Watershed Evapotranspiration with PASS. Part II: Moisture Budgets during Drydown Periods  

Science Conference Proceedings (OSTI)

The second part of the parameterization of subgrid-scale surface fluxes model (PASS2) has been developed to estimate long-term evapotranspiration rates over extended areas at a high spatial resolution by using satellite remote sensing data and ...

J. Song; M. L. Wesely; M. A. LeMone; R. L. Grossman

2000-10-01T23:59:59.000Z

388

High-Order, High-Pass Implicit Filters for Evaluating Information within Finite Areas  

Science Conference Proceedings (OSTI)

In this study high-order, high-pass implicit filters are introduced. They represent symmetric filters in an implicit formulation. In this investigation their use within a finite region is examined. The effects of the boundary are investigated and ...

William H. Raymond

1989-12-01T23:59:59.000Z

389

Statistical variability and confidence intervals for planar dose QA pass rates  

Science Conference Proceedings (OSTI)

Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. Results: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. Conclusions: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.

Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher; Kumaraswamy, Lalith; Podgorsak, Matthew B. [Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260 (United States) and Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States) and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

2011-11-15T23:59:59.000Z

390

Statement on the Passing of Admiral James D. Watkins | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on the Passing of Admiral James D. Watkins Statement on the Passing of Admiral James D. Watkins Statement on the Passing of Admiral James D. Watkins July 30, 2012 - 2:03pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy I learned with great sadness that a predecessor of mine at the Department of Energy, Admiral James Watkins, passed away late last week. Admiral Watkins was a dedicated public servant who served this Department and his country well. In addition to serving as Secretary of Energy under President George H.W. Bush from 1989 to 1993, he was also a highly decorated officer in the United States Navy where he served for nearly four decades and rose to Chief of Naval Operations. At the Department of Energy, he helped steer the enterprise through the earliest days of the post-Cold

391

~tx410.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

THURSDAY, APRIL 2, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, SW, Washington, D.C., Ed Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN MICHAEL COHEN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG

392

~tx421.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

FRIDAY APRIL 3, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., Edward Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG JOHN PAUL DELEY, OIT

393

DYNAMIC SIMULATION OF MULTI-PASS PRESSURIZED WATER NUCLEAR POWER PLANTS BY ANALOG COMPUTER TECHNIQUES  

SciTech Connect

A kinetic model of the primary loop of a multi-pass pressurized water reactor power plant is developed to evaluate, by analog computer techniques, the transient response characteristics under conditions of steam generator load and reactor control rod perturbations. Using the 2-pass 28 Mw(t) SM-2 reactor as a typical plant, transient behavior patterns are illustrated and examined for a variety of load inputs, variations in plant constants, and analog model simplifications. (auth)

Brondel, J.O.

1961-06-01T23:59:59.000Z

394

Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators  

SciTech Connect

Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard

2012-06-01T23:59:59.000Z

395

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Stephen Buzzell and Lelah Sullivan  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

396

Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from The Weeks Lancaster Trust  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass to construct, operate and maintain electric transmission facilities at the U.S, - Canada Border.

397

Progress report for the commercialization of a one pass cotton plowdown. Technical progress report, April--June 1996  

SciTech Connect

Progress is described on the design, performance, and commercialization of a one pass cotton plowdown machine. Photos are included.

NONE

1996-07-28T23:59:59.000Z

398

Application for Presidential Permit OE Docket No. PP-371 Northern Pass Transmission: Comments from Lee Ann Moulder  

Energy.gov (U.S. Department of Energy (DOE))

Application from Northern Pass Transmission to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

399

Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols  

DOE Green Energy (OSTI)

The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}--C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X is a S, Se, or Te, will be determined. The alkali component A, which is essential for C-O and C-C bond forming reactions leading to alcohols, will be highly dispersed on the TX{sub 2} surfaces by using chemical vapor deposition (CVD) and chemical complexation/anchoring (CCA) methods. Catalysts that have been prepared during this quarter include RuS{sub 2}, NbS{sub 2}, K/MoS{sub 2}, and K/Crown either/MoS{sub 2}. Catalysts tested include KOH/MoS{sub 2} and K/Crown ether/MoS{sub 2}. 9 refs., 10 figs., 2 tabs.

Klier, K.; Herman, R.G.; Brimer, A.; Richards, M.; Kieke, M.; Bastian, R.D.

1990-09-01T23:59:59.000Z

400

Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

2008-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ELECTRON MODEL OF A DOGBONE RLA WITH MULTI-PASS ARCS  

SciTech Connect

The design of a dogbone Recirculated Linear Accelerator, RLA, with linear-field multi-pass arcs was earlier developed [1] for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to the frequency readily available at CEBAF: 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement

Beard, Kevin B. [JLAB, MUONS Inc.; Roblin, Yves R. [JLAB; Morozov, Vasiliy [JLAB; Bogacz, Slawomir Alex [JLAB; Krafft, Geoffrey A. [JLAB

2012-09-01T23:59:59.000Z

402

Application for presidential permit OE Docket No. PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter of MOU Cancellation Letter of MOU Cancellation Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Letter of MOU Cancellation March 7, 2011 Northern Pass Transmission LLC appreciates the cooperation of the Department of Energy ("DOE") in negotiating the Memorandum of Understanding ("MOU") among DOE, Northern Pass and Normandeau Associates Inc. We nevertheless have concluded that it is desirable to terminate the MOU and the role of Normandeau Associates in the environmental impact statement ("EIS") process so that the EIS can be prepared free of the public concerns that have been voiced. We therefore request DOE's agreement to terminate the MOU and the role of Normandeau Associates as DOE's EIS contractor at this early stage of the process so that the EIS

403

Application for presidential permit OE Docket No. PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application for presidential permit OE Docket No. PP-371 Northern Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Public Scoping Period Reopened: Federal Register Volume 73, No. 183 - Jun. 15, 2011 Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Public Scoping Period Reopened: Federal Register Volume 73, No. 183 - Jun. 15, 2011 The U.S. Department of Energy reopened the public scoping period for the Northern Pass Transmission Line Project Environmental Impact Statement (EIS). NP_ScopingExtension_061511.pdf More Documents & Publications EIS-0463: Extension of Scoping Period Federal Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM) EIS-0426: Notice of Extension of Comment Period

404

Application for presidential permit OE Docket No. PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application for presidential permit OE Docket No. PP-371 Northern Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Public Scoping Period Reopened: Federal Register Volume 73, No. 183 - Jun. 15, 2011 Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Public Scoping Period Reopened: Federal Register Volume 73, No. 183 - Jun. 15, 2011 The U.S. Department of Energy reopened the public scoping period for the Northern Pass Transmission Line Project Environmental Impact Statement (EIS). NP_ScopingExtension_061511.pdf More Documents & Publications EIS-0463: Extension of Scoping Period Federal Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM) EIS-0466: Re-opening of Public Scoping Period and Announcement of

405

Announcement of Change in Public Meeting Location for the Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcement of Change in Public Meeting Location for the Northern Announcement of Change in Public Meeting Location for the Northern Pass Transmission Line Project Published in the Federal Register Announcement of Change in Public Meeting Location for the Northern Pass Transmission Line Project Published in the Federal Register September 18, 2013 - 12:47pm Addthis The Department announces a change of location for the September 26, 2013 public scoping meeting for the Northern Pass Transmission Line Project to Colebrook Elementary School, 27 Dumont Street, Colebrook, NH. The meeting will be from 5 to 8 p.m. The Federal Register Notice, which is now available for downloading, includes information on how to submit comments and participate in all four additional public scoping meetings, previously announced on September 6, 2013.

406

The F-Buffer: A Rasterization-Order FIFO Buffer for Multi-Pass Rendering  

E-Print Network (OSTI)

Multi-pass rendering is a common method of virtualizing graphics hardware to overcome limited resources. Most current multi-pass rendering techniques use the RGBA framebuffer to store intermediate results between each pass. This method of storing intermediate results makes it difficult to correctly render partially-transparent surfaces, and reduces the performance of shaders that need to preserve more than one intermediate result between passes. We propose an alternative approach to storing intermediate results that solves these problems. This approach stores intermediate colors (or other values) that are generated by a rendering pass in a FIFO buffer as the values exit the fragment pipeline. On a subsequent pass, the contents of the FIFO buffer are fed into the top of the fragment pipeline. We refer to this FIFO buffer as a fragment-stream buffer (or F-buffer), because this approach has the effect of associating intermediate results with particular rasterization fragments, rather than with an (x,y) location in the framebuffer. Implementing an F-buffer requires some changes to current mainstream graphics architectures, but these changes can be minor. We describe the design space associated with implementing an F-buffer, and compare the F-buffer to recirculating pipeline designs. We implement F-buffers in the Mesa software renderer, and demonstrate our programmable-shading system running on top of this renderer. CR Categories: I.3.1 [Computer Graphics]: Hardware Architecture---Graphics processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism---Color, shading, shadowing, and texture 1

William R. Mark; Kekoa Proudfoot

2001-01-01T23:59:59.000Z

407

Survival of Juvenile Chinook Salmon Passing the Bonneville Dam Spillway in 2007  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers Portland District (CENWP) funds numerous evaluations of fish passage and survival on the Columbia River. In 2007, the CENWP asked Pacific Northwest National Laboratory to conduct an acoustic telemetry study to estimate the survival of juvenile Chinook salmon passing the spillway at Bonneville Dam. This report documents the study results which are intended to be used to improve the conditions juvenile anadromous fish experience when passing through the dams that the Corps operates on the river.

Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; McComas, Roy L.

2008-12-01T23:59:59.000Z

408

Santa Ana Windflow in the Newhall Pass as Determined by an Analysis of Tree Deformation  

Science Conference Proceedings (OSTI)

A tree deformation study was conducted in a suburban area of the Newhall Pass (located to the north of Los Angeles, California) to determine the direction and intensity of the Santa Ana windflow. Trees were used to provide the large data base ...

Donald T. Kasper

1981-11-01T23:59:59.000Z

409

Dynamics of Rotating Shallow Gravity Currents Passing through a Channel. Part I: Observation of Transverse Structure  

Science Conference Proceedings (OSTI)

A detailed dataset describing a quasi-stationary bottom gravity current, approximately 10 m thick and 10 km wide, passing through a channel-like constriction in the western Baltic Sea is presented. The data include full-depth, synoptic, and ...

Lars Umlauf; Lars Arneborg

2009-10-01T23:59:59.000Z

410

Thermally Induced Wind Passing from Plain to Basin over a Mountain Range  

Science Conference Proceedings (OSTI)

A new concept of a thermally induced local circulation is presented by numerical and observational studies. This wind system transports a low-level air mass from a plain to a basin, passing over a mountain ridge. The characteristics of the wind ...

Fujio Kimura; Tsuneo Kuwagata

1993-09-01T23:59:59.000Z

411

Brief paper: Output tracking of continuous bioreactors through recirculation and by-pass  

Science Conference Proceedings (OSTI)

In this paper, we propose to regulate the output of an auto-catalytic bioprocess (a biological process associated with a growth of a micro-organism) by means of a recirculation loop and by-pass. We give conditions on the volume of the reactor and the ... Keywords: Continuous bioreactor, Nonlinear control design, Output regulation, Recirculation loop

Jrme Harmand; Alain Rapaport; Frdric Mazenc

2006-06-01T23:59:59.000Z

412

Amended Notice of Intent for the Northern Pass Transmission Line Project Published in the Federal Register  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy announces its intent to modify the scope of the Northern Pass Transmission Line Project Environmental Impact Statement and to conduct additional public scoping meetings. The Federal Register Notice, which is now available for downloading, includes information on how to submit comments and participate in the additional public scoping meetings.

413

Passing the buck in the garbage can model of organizational choice  

Science Conference Proceedings (OSTI)

We reconstruct Cohen, March and Olsen's Garbage Can model of organizational choice as an agent-based model. In the original model, the members of an organization can postpone decision-making. We add another means for avoiding making decisions, that of ... Keywords: Buck-passing, Garbage can model, Organizational decision making, Postponing decisions

Guido Fioretti; Alessandro Lomi

2010-06-01T23:59:59.000Z

414

On-Line Measurement and Tuning of Multi-Pass Recirculation Time in the CEBAF Linacs  

E-Print Network (OSTI)

On-Line Measurement and Tuning of Multi-Pass Recirculation Time in the CEBAF Linacs Michael, USA Abstract CEBAF is a CW, recirculating electron accelerator, us- ing on-crest RF acceleration the beam to drift off-crest with respect to the accelerating fields. Figure 1: Layout of CEBAF Accelerator

415

Design and implementation of message-passing services for the Blue Gene/L supercomputer  

Science Conference Proceedings (OSTI)

The Blue Gene/L (BG/L) supercomputer, with 65,536 dual-processor compute nodes, was designed from the ground up to support efficient execution of massively parallel message-passing programs. Part of this support is an optimized implementation of ...

G. Almsi; C. Archer; J. G. Castaos; J. A. Gunnels; C. C. Erway; P. Heidelberger; X. Martorell; J. E. Moreira; K. Pinnow; J. Ratterman; B. D. Steinmacher-Burow; W. Gropp; B. Toonen

2005-03-01T23:59:59.000Z

416

Multiple pass and multiple layer friction stir welding and material enhancement processes  

DOE Patents (OSTI)

Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

Feng, Zhili (Knoxville, TN); David, Stan A. (Knoxville, TN); Frederick, David Alan (Harriman, TN)

2010-07-27T23:59:59.000Z

417

Senate Bill 2548er was passed into law in the 2006 Legislative Session  

E-Print Network (OSTI)

the minimum requirements state agencies must follow for proper accountability over state and federal resources on a case by case basis pursuant to federal regulations for these programs. State agencies must determine over federal financial assistance, which is passed on to sub-recipients. State agencies will use

Weston, Ken

418

Optimizing the Synchronization Operations in Message Passing Interface One-Sided Communication  

Science Conference Proceedings (OSTI)

One-sided communication in Message Passing Interface (MPI) requires the use of one of three different synchronization mechanisms, which indicate when the one-sided operation can be started and when the operation is completed. Efficient implementation ... Keywords: MPI, one-sided communication, remote-memory access, synchronization

Rajeev Thakur; William Gropp; Brian Toonen

2005-05-01T23:59:59.000Z

419

Hiding message delivery latency using Direct-to-Cache-Transfer techniques in message passing environments  

Science Conference Proceedings (OSTI)

Communication overhead is the key obstacle to reaching hardware performance limits. The majority is associated with software overhead, a significant portion of which is attributed to message copying. To reduce this copying overhead, we have devised techniques ... Keywords: Cache, Direct-to-Cache-Transfer policies, Memory hierarchy, Message Passing Interface (MPI)

Farshad Khunjush; Nikitas J. Dimopoulos

2009-10-01T23:59:59.000Z

420

Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not identify the maximum vertical penetration of the tank related plumes. However, the more elevated portions of the electrical conductivity (EC) profile at probe hole C3830 currently resides at the bottom of a fine-grained thin lens in the Hanford H2 unit at 87 ft bgs. At C3831, we lack good sample coverage to ascertain whether the salt plume has significantly descended into the Cold Creek Unit. There is strong indication at probe hole C3832 that the saline plume has descended into the Cold Creek Unit. The profiles do collectively suggest that the deepest penetration of tank related fluids is found in probe hole C3832. The water potential data from 299-W10-27?s H2 unit, the unit where most of the contaminants reside in the TX probe holes, are consistent with a draining profile. Despite the evidence that elevated EC values may be present in all three probe holes to their depth of refusal, the concentrations of long-term risk drivers are not large. The inventories of potential contaminants of concern, nitrate, technetium-99, uranium, and chromium, are provided. In addition, in situ desorption Kd values for these contaminants are provided. For conservative modeling purposes, we recommend using Kd values of 0 mL/g for nitrate and technetium-99, a value of 1 mL/g for uranium, and 10 mL/g for chromium to represent the entire vadose zone profile from the bottoms of the tanks to the water table. These conservative Kd values along with the provided inventories in the vadose zone sediments obtained from the three probe holes can be used in long-term risk projections that rely on estimates of water recharge and vadose zone and aquifer transport calculations.

Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model  

Science Conference Proceedings (OSTI)

Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem and predict the strip crown, a new customized semi-analytical modeling technique that couples the Finite Element Method (FEM) with classical solid mechanics was developed to model the deflection of the rolls and strip while under load. The technique employed offers several important advantages over traditional methods to calculate strip crown, including continuity of elastic foundations, non-iterative solution when using predetermined foundation moduli, continuous third-order displacement fields, simple stress-field determination, and a comparatively faster solution time.

Malik, Arif S.; Grandhi, Ramana V. [Dept. of Mechanical Engineering, Wright State University, 3640 Col. Glenn Hwy., Dayton, OH 45435 (United States); Zipf, Mark E. [Intergrated Industrial Systems, Inc., 475 Main St., Yalesville, CT 06492 (United States)

2007-05-17T23:59:59.000Z

422

U.S. Price of Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 7.07 10.03 4.59 4.94 5.63 4.27 1985-2012 Cameron, LA -- -- 4.78 5.78 8.13 10.54 2007-2012 Cove Point, MD 7.26 9.07 4.05 5.37 5.30 13.82 2003-2012 Elba Island, GA 6.79 9.71 3.73 4.39 4.20 2.78 2003-2012 Everett, MA 7.32 10.33 5.87 4.79 4.77 3.70 2003-2012 Freeport, TX -- 13.83 4.51 6.96 9.27 10.53 2007-2012 Golden Pass, TX -- -- -- 7.90 5.36 -- 2007-2012 Gulf Gateway, LA 8.36 -- -- -- 2004-2010 Gulf LNG, MS -- -- -- -- 12.93 -- 2007-2012 Lake Charles, LA 6.88 7.63 3.32 4.05 4.18 2.10 2003-2012 Neptune Deepwater Port -- -- -- 6.41 -- -- 2007-2012 Northeast Gateway -- 12.54 6.71 5.41 -- -- 2007-2012 Sabine Pass, LA -- 11.82 4.21 5.39 7.58 7.99 2007-2012

423

Microsoft Word - Northern_Pass_Announcement_2011_03_02.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement Public Scoping Meeting Environmental Impact Statement Public Scoping Meeting on Northern Pass Transmission Line Project Washington, D.C. - The Department of Energy (DOE) will host seven public scoping meetings as part of its Environmental Impact Statement (EIS) preparation process pursuant to the National Environmental Policy Act (NEPA) to assess the potential environmental impacts from its proposed action of granting a Presidential permit to Northern Pass Transmission to construct, operate, maintain, and connect a new electric transmission line across the U.S.-Canada border in northern New Hampshire. Six of these meetings were previously noticed, but in response to requests, a seventh location has been added in Haverhill, NH, also the meeting venue in Plymouth has been

424

Application for Presidential permit OE Docket No. PP-371 Northern Pass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presidential permit OE Docket No. PP-371 Northern Presidential permit OE Docket No. PP-371 Northern Pass Transmission: Comments and Requests for Intervention Received on the Amended Application Application for Presidential permit OE Docket No. PP-371 Northern Pass Transmission: Comments and Requests for Intervention Received on the Amended Application PP-371 Comments from Lee Ann Moulder 08/25/13 Comments from Pamela Martin 08/25/13 Comments from Elisha Gray 08/26/13 Comments from Larry Rappaport 08/26/13 Comments from Michael Marino 08/26/13 Comments from Robert Martin 08/26/13 Comments from Linda Upham 09/02/13 Comments from City of Concord 09/20/13 Comments from The Weeks Lancaster Trust 09/12/13 Comments from Campton Conservation Commission 09/13/13 Comments from Bruce Adami 09/16/13 Comments from Anne Moschella 09/16/13

425

Temperature controlled multiple pass absorption cell for gas phase chemical kinetics studies  

Science Conference Proceedings (OSTI)

The application of a Herriott-type optical multiple pass cell for absorption detection of transient species in temperature controlled laser pump-probe kinetics experiments is described. Using reaction initiation by laser photolysis in combination with reaction monitoring by absorption of a multiple pass laser allows confinement of the probed reaction volume to the temperature controlled region of a slow flow reactor. For transient measurements, this apparatus provides enhanced sensitivity from increased path length and accurate temperature control by limiting the pump-probe interaction volume. In addition, for a polarized probe laser, a simple arrangement using a polarizing beam splitter and a {lambda}/4 plate allows doubling of the path length. {copyright} {ital 1997 American Institute of Physics.}

Pilgrim, J.S.; Jennings, R.T.; Taatjes, C.A. [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969 (United States)

1997-04-01T23:59:59.000Z

426

Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, T. D.; Monter, Tyrell J.; Skalski, J. R.; Townsend, Richard L.; Zimmerman, Shon A.

2012-09-01T23:59:59.000Z

427

Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, Tyler; Monter, Tyrell J.; Skalski, John R.; Townsend, Richard L.; Zimmerman, Shon A.

2011-12-01T23:59:59.000Z

428

EA-1971: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes approximately 8 miles of pipeline connecting to existing pipelines in Calcasieu Parish, Louisiana, and Jefferson County.

429

Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror  

Science Conference Proceedings (OSTI)

In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TS system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.

Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

2012-10-15T23:59:59.000Z

430

A pilot golden eagle population study in the Altamont Pass Wind Resource Area, California  

Science Conference Proceedings (OSTI)

Orloff and Flannery (1992) estimated that several hundred reports are annually killed by turbine collisions, wire strikes, and electrocutions at the Altamont Pass Wind Resource Area (WRA). The most common fatalities were those of red-tailed hawks (Buteo jamaicensis), American kestrels (Falco sparvatius), and golden eagles (Aquila chrysaetos), with lesser numbers of turkey vultures (Cathartes aura), common ravens (Corvus corax), bam owls (Tyto alba), and others. Among the species of raptors killed at Altamont Pass, the one whose local population is most likely to be impacted is the golden eagle. Besides its being less abundant than the others, the breeding and recruitment rates of golden eagles are naturally slow, increasing their susceptibility to decline as a result of mortality influences. The golden eagle is a species afforded special federal protection because of its inclusion within the Bald Eagle Protection Act as amended in 1963. There are no provisions within the Act which would allow the killing ``taking`` of golden eagles by WRA structures. This report details the results of field studies conducted during 19941. The primary purpose of the investigation is to lay the groundwork for determining whether or not turbine strikes and other hazards related to energy at Altamont Pass may be expected to affect golden eagles on a population basis. We also seek an understanding of the physical and biotic circumstances which attract golden eagles to the WRA within the context of the surrounding landscape and the conditions under which they are killed by wind turbines. Such knowledge may suggest turbine-related or habitat modifications that would result in a lower incidence of eagle mortality.

Hunt, G. [California Univ., Santa Cruz, CA (United States). Predatory Bird Research Group

1995-05-01T23:59:59.000Z

431

Wake deficit measurements on the Jess and Souza Ranches, Altamont Pass  

DOE Green Energy (OSTI)

This report is ninth in a series of documents presenting the findings of field test under DOE's Cooperative Field Test Program (CFTP) with the wind industry. This report provides results of a project conducted by Altamont Energy Corp. (AEC) to measure wake deficits on the Jess and Sousa Ranches in Altamont Pass, CA. This research enhances and complements other DOE-funded projects to refine estimates of wind turbine array effects. This project will help explain turbine performance variability caused by wake effects. 4 refs., 28 figs., 106 tabs.

Nierenburg, R. (Altamont Energy Corp., San Rafael, CA (USA))

1990-04-01T23:59:59.000Z

432

MPICH-GQ: quality-of-service for message passing programs  

SciTech Connect

Parallel programmers typically assume that all resources required for a program's execution are dedicated to that purpose. However, in local and wide area networks, contention for shared networks, CPUs, and I/O systems can result in significant variations in availability, with consequent adverse effects on overall performance. The authors describe a new message-passing architecture, MPICH-GQ, that uses quality of service (QoS) mechanisms to manage contention and hence improve performance of message passing interface (MPI) applications. MPICH-GQ combines new QoS specification, traffic shaping, QoS reservation, and QoS implementation techniques to deliver QoS capabilities to the high-bandwidth bursty flows, complex structures, and reliable protocols used in high-performance applications--characteristics very different from the low-bandwidth, constant bit-rate media flows and unreliable protocols for which QoS mechanisms were designed. Results obtained on a differentiated services testbed demonstrate their ability to maintain application performance in the face of heavy network contention.

Roy, A.; Foster, I.; Gropp, W.; Karonis, N.; Sander, V.; Toonen, B.

2000-07-28T23:59:59.000Z

433

Evaluation of Several Single-Pass Estimators of the Mean and the Standard Deviation of Wind Direction  

Science Conference Proceedings (OSTI)

Proposed single-pass methods for estimating the mean (D?) and the standard deviation (?d) of wind direction and other problems in wind statistics have been evaluated using extensive field data. It can be concluded that Mardia's methods for ...

Yukihiro Mori

1986-10-01T23:59:59.000Z

434

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon  

DOE Green Energy (OSTI)

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. (ed.)

1992-10-01T23:59:59.000Z

435

UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...  

NLE Websites -- All DOE Office Websites (Extended Search)

- 42 - LNG ) APPLICATION OF SABINE PASS LIQUEFACTION, LLC FOR LONG-TERM AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS Pursuant to Section 3 of the Natural Gas Act ("NGA") 1 and...

436

U.S. Liquefied Natural Gas Exports To Brazil  

Annual Energy Outlook 2012 (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to...

438

NETL: News Release - DOE-Funded Acoustic Monitor Passes Key Field Test  

NLE Websites -- All DOE Office Websites (Extended Search)

March 7, 2005 March 7, 2005 DOE-Funded Acoustic Monitor Passes Key Field Test Detection System Can Help Locate Pipeline Leaks, Damage MORGANTOWN, WV - A new, lightweight device that uses natural gas itself to detect leaks in natural gas pipelines has been successfully tested on a transmission main owned and operated by Dominion Transmission Inc., in Morgantown, W.Va. The test was conducted by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and West Virginia University, which has worked with NETL for the past 2 years to advance the detection system. The device is one of a suite of technologies being developed by the Energy Department's Office of Fossil Energy to effectively and efficiently monitor the 1.3 million miles of transmission and distribution pipelines which crisscross the United States

439

NETL: News Release - Vehicle-Mounted Natural Gas Leak Detector Passes Key  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2, 2003 October 2, 2003 Vehicle-Mounted Natural Gas Leak Detector Passes Key "Road Test" Spots Natural Gas Leaks from 30 Feet Away At Speeds Approaching 20 Miles Per Hour Handheld Prototype Gas Detector Now Being Outfitted as a Van-Mounted Unit PSI has modified this early prototype of a handheld remote natural gas detector to operate from a moving vehicle. ANDOVER, MA - Physical Sciences Inc. (PSI) recently conducted a successful test of its mobile natural gas detector at the company's research facilities in Andover, Mass. PSI's prototype leak detector demonstrated its ability to spot natural gas leaks from a distance of up to 30 feet from a vehicle moving at speeds approaching 20 miles per hour. In the United States, significant resources are devoted annually to leak

440

Message Passing for Integrating and Assessing Renewable Generation in a Redundant Power Grid  

E-Print Network (OSTI)

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of "firm" generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch settings where no generator is overloaded.

Zdeborov, Lenka; Chertkov, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Message passing for integrating and assessing renewable generation in a redundant power grid  

SciTech Connect

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

442

A fast, one pass algorithm to label objects and compute their features  

SciTech Connect

In many image processing applications, labeling objects and computing their features for recognition are crucial steps for further analysis. In general these two steps are done separately. This paper proposes a new approach to label all objects and compute their features (such as moments, best fit ellipse, major and minor axis) in one pass. The basic idea of the algorithm is to detect interval overlaps among the line segments as the image is scanned from left to right, top to bottom. Ambiguity about an object's connectivity can also be resolved with the proposed algorithm. It is a fast algorithm and can be implemented on either serial or parallel processors. 6 refs., 5 figs.

Thai, Tan.

1991-01-01T23:59:59.000Z

443

A grid-enabled MPI : message passing in heterogeneous distributed computing systems.  

SciTech Connect

Application development for high-performance distributed computing systems, or computational grids as they are sometimes called, requires grid-enabled tools that hide mundate aspects of the heterogeneous grid environment without compromising performance. As part of an investigation of these issues, they have developed MPICH-G, a grid-enabled implementation of the Message Passing Interface (MPI) that allows a user to run MPI programs across multiple computers at different sites using the same commands that would be used on a parallel computer. This library extends the Argonne MPICH implementation of MPI to use services provided by the globus grid toolkit. In this paper, they describe the MPICH-G implementation and present preliminary performance results.

Foster, I.; Karonis, N. T.

2000-11-30T23:59:59.000Z

444

U.S. Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 From Canada 0 0 0 88 139 139 2013-2013 Highgate Springs, VT 88 139 139 2013-2013 From Algeria 0 0 0 0 0 0 1973-2013 From Australia 0 0 0 0 0 0 1973-2013 From Brunei 0 0 0 0 0 0 2001-2013 From Egypt 0 0 0 0 0 0 2005-2013 Cameron, LA 2011-2011 Elba Island, GA 2011-2012 Freeport, TX 2011-2011 Gulf LNG, MS 2011-2011 From Equatorial Guinea 0 0 0 0 0 0 2007-2013 From Indonesia 0 0 0 0 0 0 1997-2013 From Malaysia 0 0 0 0 0 0 1999-2013 From Nigeria 0 0 0 0 0 2,590 1997-2013 Cove Point, MD 2,590 2011-2013 From Norway 0 0 0 0 2,709 2,918 2007-2013 Cove Point, MD 2011-2011 Freeport, TX 2,709 2,918 2013-2013 Sabine Pass, LA 2011-2012 From Oman 0 0 0 0 0 0 2000-2013 From Peru

445

~txF74.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEDNESDAY WEDNESDAY OCTOBER 19, 2011 + + + + + The Electricity Advisory Committee met in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 2:00 p.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings RALPH MASIELLO, KEMA RICH MEYER, National Rural Electric

446

~tx22C0.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

+ + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE McSLARROW ROY PERRY 202-234-4433 Neal R. Gross & Co., Inc. Page 2

447

Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001  

Science Conference Proceedings (OSTI)

Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

Smallwood, K. S.; Thelander, C. G.

2005-09-01T23:59:59.000Z

448

Recent mophologic changes at Dog Keys Pass, Mississippi: formation and disappearance of Isle of Caprice  

SciTech Connect

Approximately 70 years ago the Isle of Caprice, originally known as Dog Island, emerged on the northern margin of an interchannel shoals in Dog Keys Pass, located between Horn and Ship Islands, 18 km southeast of Biloxi, Mississippi. The island was emergent for less than 15 years. The Isle of Caprice was not a true barrier island like neighboring Horn and Ship Islands, but rather an emergent shoal that developed from the coalescence of several small ephemeral sand keys known locally as the Dog Keys. The island formed and grew rapidly between 1917 and 1924, reaching a length of nearly 3000 m and a width of 400 m by 1924. Low dunes developed on the island, which were reportedly thinly vegetated with Uniola paniculata (sea oats). The sediment supply needed to nourish the Isle of Caprice diminished as the secondary channel reached equilibrium. The island then began to erode gradually in response to the normal effects of winds, waves, and tides. By 1931, the island was reduced to a duneless sand bar; a year later it was completely awash.

Rucker, J.B.; Snowden, J.O.

1988-09-01T23:59:59.000Z

449

Magnetometry via a double-pass continuous quantum measurement of atomic spin  

E-Print Network (OSTI)

We argue that it is possible in principle to reduce the uncertainty of an atomic magnetometer by double-passing a far-detuned laser field through the atomic sample as it undergoes Larmor precession. Numerical simulations of the quantum Fisher information suggest that, despite the lack of explicit multi-body coupling terms in the system's magnetic Hamiltonian, the parameter estimation uncertainty in such a physical setup scales better than the conventional Heisenberg uncertainty limit over a specified but arbitrary range of particle number N. Using the methods of quantum stochastic calculus and filtering theory, we demonstrate numerically an explicit parameter estimator (called a quantum particle filter) whose observed scaling follows that of our calculated quantum Fisher information. Moreover, the quantum particle filter quantitatively surpasses the uncertainty limit calculated from the quantum Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only single-body operators. We also show that a quantum Kalman filter is insufficient to obtain super-Heisenberg scaling, and present evidence that such scaling necessitates going beyond the manifold of Gaussian atomic states.

Bradley A. Chase; Ben Q. Baragiola; Heather L. Partner; Brigette D. Black; JM Geremia

2009-03-11T23:59:59.000Z

450

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

To Russia 1,895 0 0 0 0 0 2007-2012 Kenai, AK 1,895 0 0 0 0 2006-2011 To South Korea 0 0 2,735 11,809 9,143 0 2007-2012 Freeport, TX 0 0 2,735 2,861 6,242 2007-2011 Sabine...

451

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

To Russia 12.12 -- -- -- -- -- 2007-2012 Kenai, AK 12.12 -- -- -- -- 2006-2011 To South Korea -- -- 6.30 7.54 9.98 -- 2007-2012 Freeport, TX -- -- 6.30 8.09 10.89 2007-2011 Sabine...

452

Sabine Parish, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -93.5003454° °, -93.5003454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.4893252,"lon":-93.5003454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Experimental Determination of the Effect of Last Pass Heat Sink Welding on Residual Stress in a Large Stainless Steel Pipe  

Science Conference Proceedings (OSTI)

This report discusses the experimental determination of through-wall residual distribution at welds in a 24-inch diameter heavy wall pipe. The results of a conventional butt weld and a butt weld made using the last pass heat sink welding method are compared.

1983-11-01T23:59:59.000Z

454

Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1  

DOE Green Energy (OSTI)

The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Western Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.

Cox, B.L.; Gardner, M.C.; Koenig, J.B.

1981-08-01T23:59:59.000Z

455

New Delhi http://www.nipfp.org.in Oil Price Shock, Pass-through Policy and its Impact on  

E-Print Network (OSTI)

This paper analyses the impact of transmission of international oil prices and domestic oil price pass-through policy on major macroeconomic variables in India with the help of a macroeconomic policy simulation model. Three major channels of transmission viz. import channel, price channel, and fiscal channel are explored with the help of a structural macroeconomic framework. The policy option of deregulation of domestic oil prices in the scenario of occurrence of a one-time shock in international oil prices as well as no oil price shock situation analysed through its impact on growth, inflation, fiscal balances and external balances during the 12 th Plan period of 2012-13 to 2016-17. The simulation results indicate that in the short run the deregulation policy would have adverse impact on the growth as well as on the inflation. But if this policy is complemented with the policy of switching of subsidy bill to capital expenditure it might result in positive growth effects in the medium and long run. Given, the current passthrough policy, one-time oil shock has adverse impact on growth and inflation in the year of shock while it mitigates slowly over time. The model shows that with the oil shock and with current partial pass-through regime, a 10 percent rise in oil prices result in a 0.6 percent fall in growth while in the full pass-through situation, it can reduce the growth by 0.9 percent. Overall, the paper argues that the pass-through has differential impact on growth and inflation over the 12 th Plan period. Hence, the policy of oil price deregulation must be carefully weighed and prioritised.

N R Bhanumurthy; Surajit Das; Sukanya Bose; N R Bhanumurthy; Surajit Das; Sukanya Bose

2012-01-01T23:59:59.000Z

456

Probability of passing through a parabolic barrier and thermal decay rate: Case of linear coupling both in momentum and in coordinate  

SciTech Connect

With the quantum diffusion approach, the probability of passing through the parabolic barrier and the quasistationary thermal decay rate from a metastable state are examined in the limit of linear coupling both in momentum and in coordinate between a collective subsystem and the environment. An increase of passing probability with friction coefficient is demonstrated to occur at subbarrier energies.

Kuzyakin, R. A. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Omsk State Transport University, RU-644046 Omsk (Russian Federation); Sargsyan, V. V. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Yerevan State University, International Center for Advanced Studies, Yerevan (Armenia); Adamian, G. G.; Antonenko, N. V. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation)

2011-09-15T23:59:59.000Z

457

Aspect ratio effect on heat transfer in rotating two-pass rectangular channels with smooth walls and ribbed walls  

E-Print Network (OSTI)

This study experimentally investigates the effects of rotation, the buoyancy force, and the channel aspect ratio on heat transfer in two-pass rotating rectangular channels. The experiments are conducted with two surface conditions: smooth walls and 45?? angled ribbed walls. The channel aspect ratios include 4:1, 2:1, 1:1, 1:2 and 1:4. Four Reynolds numbers are studied: 5000, 10000, 25000 and 40000. The rotation speed is fixed at 550 rpm for all tests, and for each channel, two channel orientations are studied: 90?? and 45?? or 135??, with respect to the plane of rotation. Rib turbulators are placed on the leading and trailing walls of the channels at an angle of 45?? to the flow direction. The ribs have a 1.59 by 1.59 mm square cross section, and the rib pitch-to-height ratio (P/e) is 10 for all tests. The effects of the local buoyancy parameter and channel aspect ratio on the regional Nusselt number ratio are presented. Pressure drop data are also measured for both smooth and ribbed channels in rotating and non-rotating conditions. The results show that increasing the local buoyancy parameter increases the Nusselt number ratio on the trailing surface and decreases the Nusselt number ratio on the leading surface in the first pass for all channels. However, the trend of the Nusselt number ratio in the second pass is more complicated due to the strong effect of the 180?? turn. Results are also presented for this critical turn region of the two-pass channels. In addition to these regions, the channel averaged heat transfer, friction factor, and thermal performance are determined for each channel. With the channels having comparable Nusselt number ratios, the 1:4 channel has the superior thermal performance because it incurs the least pressure penalty. In this study, the author is able to systematically analyze, correlate, and conclude the thermal performance comparison with the combination of rotation effects on five different aspect ratio channels with both smooth walls and rib turbulated walls.

Fu, Wen-Lung

2005-05-01T23:59:59.000Z

458

Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators  

DOE Green Energy (OSTI)

The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

Hibbs, R.; Acharya, S.; Chen, Y. [Louisiana State Univ., Baton Rouge, LA (United States)] [and others

1995-12-31T23:59:59.000Z

459

Unsupervised intralingual and cross-lingual speaker adaptation for HMM-based speech synthesis using two-pass decision tree construction  

E-Print Network (OSTI)

with the Pass 2 leaf node contexts. C-Na sal?L-V ow el? L-Vo wel? C-Vo wel? C-Na sal? L-Vo wel? C-Vo wel? C-Na sal? R-st res sed? 2 syl lable s in u tt? Pass 1 Pass 2 R-st res sed? 2 3 C-Na sal?L-V ow el? 2 syl lable s in utt? 1 4 5 C-Na sal?L-V ow el... ? 5 4 3 2 1 Full con text mo dels (singl e-c om pone nt) Trip hone mo dels (mult i-com pone nt) Map ping Inve rse ma ppin g Mod el ma ppin g Fig. 1. Two-pass decision tree construction. Mapping functions permit sharing of components between full...

Gibson, Matthew; Byrne, William

2010-01-01T23:59:59.000Z

460

Evaluation of Nature-like and Technical Fish Passes for the Passage of Alewife (Alosa pseudoharengus) at Two Coastal Streams in New England.  

E-Print Network (OSTI)

??Nature-like fish passes have been designed with the intent to re-connect river corridors and provide passage for all species occurring in a system. Nature-like fish (more)

Franklin, Abigail

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report  

DOE Green Energy (OSTI)

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. [ed.

1992-10-01T23:59:59.000Z

462

Notices EIS No. 20070360, ERP No. F-BLM- J03020-00, Overland Pass Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 Federal Register 81 Federal Register / Vol. 72, No. 197 / Friday, October 12, 2007 / Notices EIS No. 20070360, ERP No. F-BLM- J03020-00, Overland Pass Natural Gas Liquids Pipeline Project (OPP), Construction and Operation of 760 mile Natural Gas Liquids Pipeline, Right-of-Way Grant, KS, WY, and CO Summary While most of EPA's previous issues have been resolved, EPA continues to have environmental concerns about the water quality monitoring program. EIS No. 20070378, ERP No. F-VAD- K11116-CA, Fort Rosecrans National Cemetery Annex, Construction and Operation, Located at Marine Corps Air Station (MCAS) Miramar, Point Loma, San Diego County, CA. Summary EPA continues to have environmental concerns about impacts to biological resources and continues to recommend additional compensation for these

463

Single Pass Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization  

Science Conference Proceedings (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Single-Pass Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using these two methods. Results show that the materials exhibit a relatively low forward dissolution rate on the order of 10-3 g/(m2d) with the material made in the laboratory giving slightly higher values.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Valenta, Michelle M.; Cordova, Elsa A.; Strandquist, Sara C.; Dage, DeNomy C.; Brown, Christopher F.

2012-03-20T23:59:59.000Z

464

Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives  

Science Conference Proceedings (OSTI)

Stabilization traps toxic contaminants (usually both chemically and physically) in a matrix so that they do not leach into the environment. Typical contaminants are metals (mostly transition metals) that exhibit the characteristic of toxicity. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP-the federal leach test) or the Soluble Threshold Leachate Concentration (STLC-the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California`s and EPA`s, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory, additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens). The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements.

Bowers, J.S.; Anson, J.R.; Painter, S.M.; Maitino, R.E. [Lawrence Livermore National Lab., CA (United States). Hazardous Waste Management Div.

1995-03-01T23:59:59.000Z

465

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Press Release Archive 5 Press Release Archive High Energy Physics Team Captures Network Prize at SC|05 12/6/05 Beyond Einstein: A live Webcast from around the Globe Thursday, December 1, 2005, from 5:00 a.m. to 5:00 p.m. CST 11/21/05 Pierre Auger Observatory Celebrates Progress on Detector Array and Presents First Science Results 11/10/05 Science and Reading Combine in Family Literacy Experience at Fermilab on Thursday, November 17 10/11/05 Media invited to attend Pierre Auger Observatory Celebration, to be held November 9-12, 2005 in Malargüe, Argentina 11/2/05 Science and Reading Combine in Family Literacy Experience at Fermilab on Thursday, November 17 10/11/05 Volunteers Welcome at Fermilab's Prairie Harvest on Oct. 1 and 29 9/26/05 Hot Topics Featured at World Year of Physics Symposium for Students and Teachers, Saturday, October 8 from 8 a.m. to 3:15 p.m. at Fermilab's Ramsey Auditorium 9/14/05

466

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Press Release Archive 7 Press Release Archive The Midnight Ride of the CMS Tracking Detector 12/20/07 Industry and Research Heavyweights Collaborate to Demonstrate Data Transport Capability at SC07 11/12/07 Auger Observatory closes in on long-standing mystery, links highest-energy cosmic rays with violent black holes 11/08/07 Fermilab environmental program receives international recognition 10/15/07 Fermilab in Top 10 list of Chicagoland Scientific Achievements 10/02/07 Volunteers Welcome at Fermilab's Prairie Harvest on Oct. 6 and Nov. 3 09/28/07 Fermilab named one of the Chicago area's best places to work 09/25/07 Anna Zuccarini, Naperville, leads Department of Energy education program for undergraduates 08/10/07 Pierre Auger Observatory shares cosmic-ray data with public, students 07/03/07

467

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Press Release Archive 4 Press Release Archive Recent Releases Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator 12/16/04 NIU launches Institute for Neutron Therapy at Fermilab 12/6/04 Pier Oddone of Berkeley Lab Named Fermilab Director 11/19/04 Fermilab To Host Girl Scout Badge Event on Saturday, November 6 11/4/04 Rocky Kolb to Direct New Fermilab Particle Astrophysics Center 11/1/04 Fermilab Director Witherell One of Eight Directors to Receive Energy Secretary's Gold Award 10/25/04 Fermilab Arts Series Celebrates 30th Anniversary 10/7/04 Fermilab Offers Tours of Antimatter Production Site, October 3 and 24 9/14/04 Fermilab Scientists Present New Physics Results at ICHEP Beijing 8/18/04 How They Spent Their Summer Vacation: QuarkNet Students Experience Real Work of Fermilab Scientists 8/3/04

468

Computing Mountain Passes  

E-Print Network (OSTI)

typically potential energy surfaces for a system with xa and xb associated with ... refer to this paper and to the related papers [9, 14, 15] for additional information.

469

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Press Release Archive Recent Releases Beams are Back in the Large Hadron Collider 112009 Fermilab seeks nominations for new Community Advisory Board to assist in future...

470

ARM - Instrument - pass  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility, Lamont, OK ARM Mobile Facility PVC S1 Browse Data Highland Center, Cape Cod MA; MAOS See Also Contact(s) Manvendra Dubey (505) 665-3128 dubey@lanl.gov Stephen...

471

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab to Build Illinois Accelerator Research Center 121611 Possible signs of the Higgs remain in latest analyses 121311 Tevatron shuts down, but analysis continues 0930...

472

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

test facility 092110 Fermilab experiments narrow allowed mass range for Higgs boson 072610 New measurements from Fermilabs MINOS experiment suggest a difference in...

473

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

finds evidence of rare single top quark; Observation marks a step closer to finding Higgs boson 121306 Fermilab Seeks Nominations for Citizens' Task Force 112006 Experimenters...

474

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Fermilab press release mailing list. Press Releases Recent Releases Discovery of rare decay narrows space for new physics - 071913 Giant electromagnet to conclude its...

475

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

Employment Opportunities Fellowships and Awards ConferencesWorkshopsSchools INSPIRE Database Interactions.org Frontier Science Results Archive Fermilab Publications Fermilab...

476

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

experiment, a collaboration of 54 physicists from the United States, Japan, Korea and Greece. "It is one thing to think that there are tau neutrinos out there. But to really look...

477

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Tevatron, CDF and DZero, as the next possible venue for discovery of the Higgs boson, an as-yet-unseen particle that physicists believe may determine the property of...

478

Press Pass - Press Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. scientists count down to LHC startup 80808 Tevatron Experiments Double-Team Higgs Boson 80408 Prelude to the Higgs: A work for two bosons in the key of Z 73008 Media...

479

A Population Study of Golden Eagles in the Altamont Pass Wind Resource Area: Population Trend Analysis, 1994-1997  

SciTech Connect

The wind industry has annually reported 28-43 turbine blade strike casualties of golden eagles in the Altamont Pass Wind Resource Area, and many more carcasses have doubtless gone unnoticed. Because this species is especially sensitive to adult survival rate changes, we focused upon estimating the demographic trend of the population. In aerial surveys, we monitored survival within a sample of 179 radio-tagged eagles over a four-year period. We also obtained data on territory occupancy and reproduction of about 65 eagle pairs residing in the area. Of 61 recorded deaths of radio-tagged eagles during the four-year investigation, 23 (38%) were caused by wind turbine blade strikes. Additional fatalities were unrecorded because blade strikes sometimes destroy radio transmitters. Annual survival was estimated at 0.7867 (SE=0.0263) for non-territorial eagles and 0.8964 (SE=0.0371) for territorial ones. Annual reproduction was 0.64 (SE=0.08) young per territorial pair (0.25 per female). These parameters were used to estimate population growth rates under different modeling frameworks. At present, there are indications that a reserve of non-breeding adults still exists, i.e., there is an annual territorial reoccupancy rate of 100% and a low incidence (3%) of subadults as members of breeding pairs.

Predatory Bird Research Group, Long Marine Laboratory

1999-07-20T23:59:59.000Z

480

Bird Risk Behaviors and Fatalities at the Altamont Pass Wind Resource Area: Period of Performance, March 1998--December 2000  

SciTech Connect

It has been documented that wind turbine operations at the Altamont Pass Wind Resource Area kill large numbers of birds of multiple species, including raptors. We initiated a study that integrates research on bird behaviors, raptor prey availability, turbine design, inter-turbine distribution, landscape attributes, and range management practices to explain the variation in avian mortality at two levels of analysis: the turbine and the string of turbines. We found that inter-specific differences in intensities of use of airspace within close proximity did not explain the variation in mortality among species. Unique suites of attributes relate to mortality of each species, so species-specific analyses are required to understand the factors that underlie turbine-caused fatalities. We found that golden eagles are killed by turbines located in the canyons and that rock piles produced during preparation of the wind tower laydown areas related positively to eagle mortality, perhaps due to the use of these rock piles as cover by desert cottontails. Other similar relationships between fatalities and environmental factors are identified and discussed. The tasks remaining to complete the project are summarized.

Thelander, C. G.; Smallwood, K. S.; Rugge, L.

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx sabine pass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method  

E-Print Network (OSTI)

1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

482

Characterizing Lenses and Lensed Stars of High-Magnification Gravitational Microlensing Events With Lenses Passing Over Source Stars  

E-Print Network (OSTI)

We present the analysis of the light curves of 9 high-magnification gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For 8 events, we measure the Einstein radii and the lens-source relative proper motions. Among them, 6 events (OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2011-BLG-093, MOA-2011-BLG-274, and OGLE-2011-BLG-0990/MOA-2011-BLG-300) are found to have Einstein radii less than 0.2 mas, making the lenses candidates of very low-mass stars or brown dwarfs. For MOA-2011-BLG-274, especially, the small Einstein ...

Choi, J -Y; Park, S -Y; Han, C; Gould, A; Sumi, T; Udalski, A; Beaulieu, J -P; Street, R; Dominik, M; Allen, W; Bos, M; Christie, G W; Depoy, D L; Dong, S; Drummond, J; Gal-Yam, A; Gaudi, B S; Henderson, C B; Hung, L -W; Janczak, J; Lee, C -U; Mallia, F; Maury, A; McCormick, J; McGregor, D; Monard, L A G; Moorhouse, D; Muoz, J A; Natusch, T; Nelson, C; Park, B -G; Pogge, R W; Tan, T -G "TG"; Thornley, G; Yee, J C; Abe, F; Barnard, E; Baudry, J; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Furusawa, K; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Kilmartin, P M; Kobara, S; Korpela, A; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Nagaya, M; Nishimoto, K; Ohnishi, K; Okumura, T; Omori, K; Perrott, Y C; Rattenbury, N; Saito, To; Skuljan, L; Sullivan, D J; Suzuki, D; Suzuki, K; Sweatman, W L; Takino, S; Tristram, P J; Wada, K; Yock, P C M; Szyma?ski, M K; Kubiak, M; Pietrzy?ski, G; Soszy?ski, I; Poleski, R; Ulaczyk, K; Wyrzykowski, ?; Koz?owski, S; Pietrukowicz, P; Albrow, M D; Bachelett, E; Batista, V; Bennett, C; Bowens-Rubin, R; Brillant, S; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqu, P; Greenhill, J; Kane, S R; Menzies, J; Sahu, K C; Wambsganss, J; Williams, A; Zub, M; Allan, A; Bramich, D M; Browne, P; Clay, N; Fraser, S; Horne, K; Kains, N; Mottram, C; Snodgrass, C; Steele, I; Tsapras, Y; Alsubai, K A; Bozza, V; Burgdorf, M J; Novati, S Calchi; Dodds, P; Dreizler, S; Finet, F; Gerner, T; Glitrup, M; Grundahl, F; Hardis, S; Harpse, K; Hinse, T C; Hundertmark, M; Jrgensen, U G; Kerins, E; Liebig, C; Maier, G; Mancini, L; Mathiasen, M; Penny, M T; Proft, S; Rahvar, S; Ricci, D; Scarpetta, G; Schfer, S; Schnebeck, F; Skottfelt, J; Surdej, J; Southworth, J; Zimmer, F

2011-01-01T23:59:59.000Z

483

An exact method to find a circle passing through two points and minimizing the maximal weighted distance to a set of points  

Science Conference Proceedings (OSTI)

This paper proposes an optimal algorithm to solve a circuit design problem. We consider the constrained minimax problem to find a circle which minimizes the maximal weighted distance to a set of points passing through two given points. The problem is ... Keywords: Location of a circle, Minimax problem

Seonjeong Lee; Dongyung Kim; Dongwoo Sheen

<