Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Glossary Term - Neptune  

NLE Websites -- All DOE Office Websites (Extended Search)

Mole Mole Previous Term (Mole) Glossary Main Index Next Term (Neutrino) Neutrino Neptune Neptune as seen by the Voyager II spacecraft on August 14, 1989. Neptune is the eighth planet from the sun and takes 165 years to orbit the sun once. Neptune is about 4 times larger than the Earth and is about 17 times as massive. Neptune was discovered on September 23, 1846 based on calculations done by the French astronomer Urbain LeVerrier and the English astronomer John Adams. Neptune is also the Roman name for Poseidon, the god of the sea and earthquakes. Neptune was the son of Chronus and Rhea and carries the trident, a three pronged spear. Planetary Data Distance from Sun Length of Day Length of Year Radius Mass 30.069 AU 16.1 hours 164.79 years 24,764 km 1.02*1026 kg Known Satellites

2

NETL: Deepwater Technology Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Deepwater Technology Deepwater Technology Offshore Architecture | Safety & Environmental | Other UDW Technology | Completed DW Projects Project Number Project Name Primary Performer 10121-4306-01 All Electric Subsea Autonomous High Integrity Pressure Protection System (HIPPS) Architecture GE Global Research 10121-4401-02 Ultra-Deepwater Riser Concepts for High Motion Vessels Stress Engineering Services, Inc. 10121-4405-02 Ultra-deepwater Dry Tree System for Drilling and Production in the Gulf of Mexico Det Norske Veritas 10121-4505-01 Coil Tubing Drilling and Intervention System Using Cost Effective Vessel Nautilus International, LLC 09121-3500-01 Intelligent Production System for Ultra-Deepwater with Short Hop Wireless Power and Wireless Data Transfer for Lateral Production Control and Optimization

3

deepwater_technology | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

development. The three research focus areas of Deepwater Technology are offshore architecture, safety and environmental, and other deepwater technology. Offshore...

4

Deepwater Oil & Gas Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

5

Millimeter and Near-Infrared Observations of Neptune's Atmospheric Dynamics  

E-Print Network (OSTI)

B Near-Infrared Radiative Transfer Model B.15 Near-Infrared Observations of Neptunes Clouds with the133 6.2 Near-infrared spectroscopy . . . . . .

Cook, Statia Honora Luszcz

2012-01-01T23:59:59.000Z

6

Environmental disaster or just a drop in the bucket?: Texas scientists on the real effects of the Deepwater Horizon oil spill  

E-Print Network (OSTI)

Winter 2011 tx H2O 3 or just a drop in thebucket?Texas scientists on the real e#31;ects of the Deepwater Horizon oil spill 4 tx H2O Winter 2011 Environmental Disaster Continued What if gasoline pumped into cars, seafood eaten at restaurants... but forgo#27;en as the wreckage of the Deepwater Horizon MC#31;#30;#31; drilling platform sank into its waters. A crude awakening Like any large oil spill, this one took its toll in many ways. Eleven BP employees on the rig died in the explosion...

Lee, Leslie

2011-01-01T23:59:59.000Z

7

Category:Amarillo, TX | Open Energy Information  

Open Energy Info (EERE)

Amarillo, TX Amarillo, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Amarillo, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Amarillo TX CPS Energy.png SVFullServiceRestauran... 62 KB SVHospital Amarillo TX CPS Energy.png SVHospital Amarillo TX... 66 KB SVLargeHotel Amarillo TX CPS Energy.png SVLargeHotel Amarillo ... 61 KB SVLargeOffice Amarillo TX CPS Energy.png SVLargeOffice Amarillo... 59 KB SVMediumOffice Amarillo TX CPS Energy.png SVMediumOffice Amarill... 62 KB SVMidriseApartment Amarillo TX CPS Energy.png SVMidriseApartment Ama... 61 KB SVOutPatient Amarillo TX CPS Energy.png SVOutPatient Amarillo ... 60 KB SVPrimarySchool Amarillo TX CPS Energy.png SVPrimarySchool Amaril... 61 KB SVQuickServiceRestaurant Amarillo TX CPS Energy.png

8

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

9

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

10

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

11

Category:Houston, TX | Open Energy Information  

Open Energy Info (EERE)

TX TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houston, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houston TX Entergy Texas Inc..png SVFullServiceRestauran... 73 KB SVHospital Houston TX Entergy Texas Inc..png SVHospital Houston TX ... 74 KB SVLargeHotel Houston TX Entergy Texas Inc..png SVLargeHotel Houston T... 74 KB SVLargeOffice Houston TX Entergy Texas Inc..png SVLargeOffice Houston ... 74 KB SVMediumOffice Houston TX Entergy Texas Inc..png SVMediumOffice Houston... 78 KB SVMidriseApartment Houston TX Entergy Texas Inc..png SVMidriseApartment Hou... 77 KB SVOutPatient Houston TX Entergy Texas Inc..png SVOutPatient Houston T... 75 KB SVPrimarySchool Houston TX Entergy Texas Inc..png

12

First Plasma Wave Observations at Neptune  

Science Journals Connector (OSTI)

...revealed that Neptune has a large and complex magnetosphere...first observations of plasma waves and low-frequency...from lightning. Such large dispersions would require path lengths and plasma densities that are much larger than anything plausible...

D. A. Gurnett; W. S. Kurth; R. L. Poynter; L. J. Granroth; I. H. Cairns; W. M. Macek; S. L. Moses; F. V. Coroniti; C. F. Kennel; D. D. Barbosa

1989-12-15T23:59:59.000Z

13

D&TX  

Office of Legacy Management (LM)

*. *. ( ARGONNE RATIONAL 1-Ci3ORATORY . 1 D&TX 7. my 19, 1349 70 t. Z. ROse at L, Em &=i*p~~4 DVur;uM hLl%L ?bvs -Lcs . FReti c. c. Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un !! 1 0 * the >rt &Fz=z d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS~~~ of Science a2 31~52-37 fo2 T&imcyyg c.=A+=< he-< - ,,a uas c:cgetes ALL 12, 1SL9. Z 0 sor;~~,-~-lioi! c.jme s 'm&-go& ~WC& c ",& d*cg&A c&.6 be ciS',&Ctti 03 2.q ZLS CC the 5iiUdi; 0~ eqt&-p*t ~-3 niq b the &-CT iq95, - < less Se&,-0~22 3 wels off tze b.ckm5n' ,e ueze t& 233 &,/zip fe pe*-se a?& coL&cs El5 less t&3 c. 5z/z fo- pcxabi beta-g+iis couxezs.

14

Deepwater Wind | Open Energy Information  

Open Energy Info (EERE)

Deepwater Wind Deepwater Wind Name Deepwater Wind Address 36-42 Newark Street Suite 402 Place Hoboken, New Jersey Zip 07030 Sector Wind energy Product offshore wind Phone number 201.850.1717 Website http://dwwind.com/ Coordinates 40.7366674°, -74.0295985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7366674,"lon":-74.0295985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Ultra-Deepwater Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee Minutes of Meeting of June 21, 2007 Crystal City Marriott, Arlington, VA Executive Session Bill Hochheiser, the Committee Management Officer (CMO), welcomed the Ultra- Deepwater Advisory Committee (hereafter referred to as the Committee) at 8:35 a.m. on June 21, 2007. Bill noted that he shared the CMO responsibilities with Elena Melchert but, although she was not able to attend the meeting, she sent her regards to the Committee members. The Agenda for the meeting and Committee Member Sign-in sheet are provided as Appendix 1 and Appendix 2, respectively. After appointment and administration of Oath of Office for special Government employees, the Committee was briefed on conflict of interest statutes and the

16

Deepwater Horizon Situation Report #5  

SciTech Connect

At approximately 11:00 pm EDT April 20, 2010 an explosion occurred aboard the Deepwater Horizon mobile offshore drilling unit (MODU) located 52 miles Southeast of Venice, LA and 130 miles southeast of New Orleans, LA. The MODU was drilling an exploratory well and was not producing oil at the time of the incident. The Deepwater Horizon MODU sank 1,500 feet northwest of the well site. Detailed information on response and recovery operations can be found at: http://www.deepwaterhorizonresponse.com/go/site/2931/

none,

2010-06-10T23:59:59.000Z

17

Deepwater Horizon: one year on  

Science Journals Connector (OSTI)

... In April 2010, BP's Deepwater Horizon drilling rig in the Gulf of Mexico exploded and sank. With the pipe that had once ... there was "no actionable oil in the water or sediments of the deep water or offshore zones", it acknowledged that "quantitative estimates of remaining oil" were beyond its scope ...

Melissa Gaskill

2011-04-19T23:59:59.000Z

18

What is industry's deepwater capability  

SciTech Connect

Industry now has drilled many wells in water depths of from 2000 to 5000 ft offshore countries like Canada, Surinam, Australia, UK, Spain, Ivory Coast, Nigeria, Gabon, Brazil, Mauritania, Indonesia, Morocco and Ireland. The US has the world's best technology and the world's best experience and most of the world's proven deepwater drilling equipment and contractors are in the US. However, the US has not released for exploration its deepwater areas. The OCS out to 600+ ft is being exlored in a routine manner by mobile, bottom-supported and floating drilling equipment. The continental slope (600 to 5000 ft.) is being explored by the special deepwater floating drilling units. The continental rise (5000 to 13,000 ft.) is industry's next objective for exploration. The technology and experience used in exploration drilling is applied to producing oil/gas in deepwater. Production is handled by a floating platform resembling a semi drilling rig with a production riser substituting for the drilling riser. Industry takes small, steady steps to develop its techniques for drilling and producing. (DP)

Hammett, D.

1980-11-01T23:59:59.000Z

19

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...  

Energy Savers (EERE)

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The...

20

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ultra-Deepwater Production Systems  

SciTech Connect

The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

Ken L. Smith; Marc E. Leveque

2005-05-31T23:59:59.000Z

22

Neptun Light: Proposed Penalty (2012-SE-3504) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neptun Light: Proposed Penalty (2012-SE-3504) Neptun Light: Proposed Penalty (2012-SE-3504) Neptun Light: Proposed Penalty (2012-SE-3504) May 2, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Neptun Light, Inc. failed to certify a variety of medium base compact fluorescent lamps as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Neptun Light: Proposed Penalty (2012-SE-3504) More Documents & Publications Neptun Light: Order (2012-SE-3504) Excellence Opto: Proposed Penalty (2013-CE-49002)

23

Deepwater Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Deepwater Wind Farm Deepwater Wind Farm Jump to: navigation, search Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation / Deepwater Wind LLC Developer Garden State Offshore Energy Location Atlantic Ocean NJ Coordinates 39.091°, -74.306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.091,"lon":-74.306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Ultra-Deepwater Production Systems  

SciTech Connect

This report includes technical progress made during the period October, 2003 through September, 2004. At the end of the last technical progress report, the subsea processing aspects of the work program had been dropped due to the lack of commercial opportunity within ConocoPhillips, and the program had been redirected towards two other promising deepwater technologies: the development and demonstration of a composite production riser, and the development and testing of a close-tolerance liner drilling system. This report focuses on these two technologies.

K. L. Smith; M. E. Leveque

2004-09-30T23:59:59.000Z

25

Microsoft Word - FOR WEB - Neptun CE-3504 NPCP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neptun Light, Inc. Neptun Light, Inc. (medium base compact fluorescent lamps) ) ) ) ) ) Case Number: 2013-CE-3504 NOTICE OF PROPOSED CIVIL PENALTY Date issued: May 2, 2013 Number of alleged violations: 6,570 (18 basic models; 365 days) Maximum possible assessment: $1,314,000 Proposed civil penalty: $131,400 The U.S. Department of Energy ("DOE") Office of the General Counsel, Office of Enforcement, alleges that Neptun Light, Inc. ("Neptun") has violated certain provisions of the Energy Policy and Conservation Act, 42 U.S.C. § 6291 et seq. ("the Act"), and 10 C.F.R. § 429.12. Specifically, DOE alleges: 1. Neptun has manufactured 1 a variety of medium base compact fluorescent lamps, including basic models 62520, 62516, 62514, 62016, 62014, 62009, 62123, 61920,

26

NETL: Oil and Natural Gas: Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Deepwater Technology Research Project Summaries Reference Shelf O&G Document Archive Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industry’s most advanced engineering accomplishments. NETL is funding research to catalyze further advances that can help Gulf of Mexico discoveries progress to production quickly and safely, and that can help maximize oil and gas recovery from fields that are currently at the edge of industry capabilities. Many of these efforts are focused on subsea production

27

Limitations of extended reach drilling in deepwater  

E-Print Network (OSTI)

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2012-06-07T23:59:59.000Z

28

RNA-Seq reveals complex genetic response to deepwater horizon oil release in Fundulus grandis  

E-Print Network (OSTI)

the Deepwater Hori- zon oil drilling platform initiated theoil resulting from the blowout of the Deepwater Horizon (DH) drilling

Garcia, Tzintzuni I; Shen, Yingjia; Crawford, Douglas; Oleksiak, Marjorie F; Whitehead, Andrew; Walter, Ronald B

2012-01-01T23:59:59.000Z

29

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic...

30

RAPID/Roadmap/19-TX-e | Open Energy Information  

Open Energy Info (EERE)

Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us 19-TX-e Temporary Surface Water Permit 19-TX-e Temporary...

31

MHK Technologies/Neptune Proteus NP1000 | Open Energy Information  

Open Energy Info (EERE)

Neptune Proteus NP1000 Neptune Proteus NP1000 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Proteus NP1000.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Neptune Proteus Tidal Power Pontoon consists of a 6m x 6m vertical axis crossflow turbine mounted within a patented, symmetrical diffuser duct and beneath a very simple steel deck and buoyancy packages. The Neptune Proteus is designed for estuarine sites, which can exhibit powerful currents yet have lower access, cabling and maintenance costs than offshore environments. The vertical shaft connects to the gearbox and generator/alternator, located on the top of the pontoon with associated valves and electrical processing and control machinery. The power pontoon is easily moored in the free stream, thus minimizing environmental impact and operates just as efficiently in both flood and ebb currents. The rotor is maintained at optimal power outputs by sets of computer-controlled shutters within the duct. Theoretical work on 1/10th, 1/40th and 1/100th scale laboratory experiments suggest an overall efficiency of greater than 45%.

32

Data from Deepwater Horizon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data from Deepwater Horizon Data from Deepwater Horizon Data from Deepwater Horizon "Transparency is not only in the public interest, it is part of the scientific process. We want to make sure that independent scientists, engineers and other experts have every opportunity to review this information and make their own conclusions." -Secretary Chu As part of the Obama Administration's ongoing commitment to transparency surrounding the response to the BP oil spill, the Department of Energy is providing online access to schematics, pressure tests, diagnostic results and other data about the malfunctioning blowout preventer. Secretary Chu insisted on making the data widely available to ensure the public is as informed as possible, and to ensure that outside experts making recommendations have access to the same information that BP and the

33

TX-100 manufacturing final project report.  

SciTech Connect

This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

2007-11-01T23:59:59.000Z

34

ORISE: White paper analyzes Deepwater Horizon event for improving nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Horizon and Nuclear and Radiological Incidents: Common Challenges Deepwater Horizon and Nuclear and Radiological Incidents: Common Challenges and Solutions White paper analyzes Deepwater Horizon response, identifies approaches for radiological or nuclear emergency planning The 2010 Deepwater Horizon oil spill shares many of the same challenges associated with a radiological incident like the one considered in the Empire 09 exercise or even a much larger nuclear incident. By analyzing experiences during Deepwater Horizon, these challenges can be identified by the interagency in advance of a radiological or nuclear emergency and solutions made available. In the white paper Deepwater Horizon and Nuclear and Radiological Incidents: Common Challenges and Solutions (PDF, 462KB), ORISE examines the following three aspects of the Deepwater Horizon response:

35

Ultra-Deepwater Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee Ultra-deepwater architecture and technology. | Graphic courtesy of FMC Ultra-deepwater architecture and technology. | Graphic courtesy of FMC Mission The Secretary of Energy, in response to provisions of Subtitle J, Sec. 999 of the Energy Policy Act of 2005, must carry out a program of research, development, demonstration, and commercial application of technologies for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, including addressing the technology challenges for small producers, safe operations, and environmental mitigation (including reduction of greenhouse gas emissions and sequestration of carbon). The Department's Ultra-Deepwater Advisory Committee (UDAC) was established

36

Perception vs. reality in deepwater exploration  

SciTech Connect

The common perception in exploration is that deepwater sands are predominantly a product of turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that in many cases, deepwater sands are deposits of sandy debris flows and bottom currents, not turbidity currents. Submarine-fan models with channels and lobes are designed for turbidite-dominated deepwater systems, and therefore, fan models are obsolete for debris-flow deposits. The subject is described here in a discussion that covers: Deepwater processes. How sediments move downslope from the shelf, definitions, and misunderstood effects of high-density turbidity and bottom currents; Submarine fan models, and sequence stratigraphic implications. Limitations of widely used models, and seismic geometries and log motifs. Better calibrations are needed. In the conclusion, the author states a critical need for developing additional models for debris flows, and that research should also focus on developing reliable methods for using seismic geometry and wireline-log motifs to recognize depositional facies. A comprehensive bibliography of published literature on the subject is liberally referenced. In this paper, the term deep water refers to bathyal water depths, i.e., area seaward of the shelf edge, that existed at the time of deposition of reservoir sands; it does not necessarily refer to present-day water depths in offshore examples.

Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

1996-09-01T23:59:59.000Z

37

Category:El Paso, TX | Open Energy Information  

Open Energy Info (EERE)

El Paso, TX El Paso, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "El Paso, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant El Paso TX CPS Energy.png SVFullServiceRestauran... 60 KB SVHospital El Paso TX CPS Energy.png SVHospital El Paso TX ... 65 KB SVLargeHotel El Paso TX CPS Energy.png SVLargeHotel El Paso T... 60 KB SVLargeOffice El Paso TX CPS Energy.png SVLargeOffice El Paso ... 59 KB SVMediumOffice El Paso TX CPS Energy.png SVMediumOffice El Paso... 62 KB SVMidriseApartment El Paso TX CPS Energy.png SVMidriseApartment El ... 60 KB SVOutPatient El Paso TX CPS Energy.png SVOutPatient El Paso T... 60 KB SVPrimarySchool El Paso TX CPS Energy.png SVPrimarySchool El Pas... 61 KB SVQuickServiceRestaurant El Paso TX CPS Energy.png

38

Tank 241-TX-105 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

Carpenter, B.C.

1995-01-01T23:59:59.000Z

39

RAPID/Roadmap/3-TX-a | Open Energy Information  

Open Energy Info (EERE)

has not identified geothermal resources on the land, then they must initiate the State Exploration Process. 3-TX-a.2 - Initiate State Exploration Process Green arrow.PNG 4-TX-a:...

40

RAPID/Roadmap/19-TX-b | Open Energy Information  

Open Energy Info (EERE)

while, groundwater rights belong to the surface owner and are dictated by the rule-of-capture. 19-TX-b.2 to 19-TX-b.4 - Is the Surface Water Use Temporary? Texas allows developers...

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cathodic protection requirements for deepwater systems  

SciTech Connect

Field and laboratory experience related to requirements for cathodic protection (CP) in deep water are reviewed with emphasis on identification of the major variables that need to be specified for successful deepwater CP designs for offshore structures. The subject is addressed based on the historical development of cathodic protection design methodologies for offshore structures focusing on sacrificial anode systems and trends that have resulted in specific changes in design requirements. Three main subjects are discussed: (1) application of existing industry standards such as NACE RP0176; (2) environmental factors--dissolved oxygen, temperature, salinity, pH, water velocity and fouling; and (3) calcareous deposits--difference between shallow and deep waters. Current practice of design criteria and systems for deepwater applications is assessed, including initial polarization, use of coatings and anode materials. The results from laboratory tests are compared with available documented service experiences and field tests results.

Menendez, C.M.; Hanson, H.R.; Kane, R.D.; Farquhar, G.B.

1999-07-01T23:59:59.000Z

42

ORISE: White paper analyzes Deepwater Horizon event for improving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizon and Nuclear and Radiological Incidents: Common Challenges and Solutions White paper analyzes Deepwater Horizon response, identifies approaches for radiological or...

43

Formation and Structure of Low-Density Exo-Neptunes  

E-Print Network (OSTI)

Kepler has found hundreds of Neptune-size (2-6 R [subscript ?]) planet candidates within 0.5 AU of their stars. The nature of the vast majority of these planets is not known because their masses have not been measured. ...

Bodenheimer, Peter

44

CleanTX Foundation | Open Energy Information  

Open Energy Info (EERE)

CleanTX Foundation CleanTX Foundation Address 3925 W Braker Lane Place Austin, Texas Zip 78759 Region Texas Area Notes Promotes entrepreneurship in the field of clean technology, by providing educational forums, content, awareness and networking opportunities Website http://cleantx.org/ Coordinates 30.396989°, -97.735768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.396989,"lon":-97.735768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09  

Office of Legacy Management (LM)

Sutton Steele and Steele Co - TX 09 Sutton Steele and Steele Co - TX 09 FUSRAP Considered Sites Site: SUTTON, STEELE & STEELE CO. (TX.09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sutton, Steele & Steele, Inc. TX.09-1 Location: Dallas , Texas TX.09-1 Evaluation Year: 1993 TX.09-2 Site Operations: Conducted operations to separate Uranium shot by means of air float tables and conducted research to air classify C-Liner and C-Special materials. TX.09-1 TX.09-3 TX.09-4 TX.09-5 Site Disposition: Eliminated - Potential for contamination considered remote TX.09-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium TX.09-4 TX.09-5 Radiological Survey(s): Health and Safety Monitoring TX.09-4 TX.09-5 Site Status: Eliminated from consideration under FUSRAP

46

The Deepwater Horizon oil spill and Miami-Dade County  

E-Print Network (OSTI)

, 2010 the Deepwater Horizon off- shore drilling platform exploded in the Gulf of Mexico and sank two of oil per day. For the first time since the Deepwater Horizon platform sank, there is no oil leaking and 2 did not contain elevated levels of chemicals usually found in oil. DEP State Air Monitoring

Jawitz, James W.

47

Assess Plan Restore DEEPWATER HORIZON OIL SPILL NRDA TRUSTEES  

E-Print Network (OSTI)

workers. Millions of gallons of oil spill into the Gulf of Mexico. BP agrees to provide $1 billionAssess Plan Restore DEEPWATER HORIZON OIL SPILL NRDA TRUSTEES Early Restoration, Phase III A guide DEEPWATER HORIZON OIL SPILL NATURAL RESOURCE DAMAGE ASSESSMENT TRUSTEES OCTOBER 2014 2 On April 20, 2011

48

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

49

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

U.S. Energy Information Administration (EIA) Indexed Site

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

50

RAPID/Roadmap/3-TX-d | Open Energy Information  

Open Energy Info (EERE)

RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Tools Contribute Contact Us 3-TX-d Lease of Permanent...

51

RAPID/Roadmap/3-TX-g | Open Energy Information  

Open Energy Info (EERE)

RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Tools Contribute Contact Us 3-TX-g Lease of...

52

RAPID/Roadmap/3-TX-i | Open Energy Information  

Open Energy Info (EERE)

construction plans on the leased asset; Permission for the representatives of TxDOT to enter the area for inspection, maintenance, or reconstruction of highway facilities as...

53

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

54

Are subsurface safety valves needed in deepwater?  

SciTech Connect

The object of this study was to evaluate SCSSV reliability and identify a preferred configuration for subsea completions in deepwater. A system design consisting of subsea, conventional, dual-bore tree, cluster wells was selected for evaluation. The study examined inherent risks associated with six tubing retrievable SCSSV configurations. Risks were evaluated for personnel and environmental safety, and operational and financial impact of: No SCSSV; Single SCSSV; Dual operating system single SCSSV; Tandem hot/hot (both valves active) SCSSVs without lockout features; Tandem hot/hot SCSSVs with lockout features; Tandem hot/cold (one valve active, the other dormant in open position) SCSSVs with lockout features. A ``fault tree`` identifying events that could lead to deleterious incidents was used to evaluate risks. Costs and consequences associated with potential events were determined using existing industry data, and resulting calculated risks were evaluated. Recommendations were developed and compared to current regulations, and potential regulatory conflicts were identified.

Verret, A.; Hey, C.

1995-11-01T23:59:59.000Z

55

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater and Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing technologies to increase America's domestic oil and gas production and reduce the Nation's dependency on foreign imports. Key aspects of the program include utilizing a non-profit consortium to manage the research, establishing two federal advisory committees, and funding of $50 million per year derived from royalties, rents, and bonuses from federal onshore

56

Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Convene Meeting on Strengthening to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities September 17, 2010 - 12:00am Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu and Secretary of the Interior Ken Salazar will convene top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen capabilities for responding to potential blowouts of oil and gas wells in deepwaters on the Outer Continental Shelf. The September 22, 2010 panel discussion will help guide reforms that are raising the bar for the oil and gas industry's practices, inform recommendations on whether and how to lift the current deepwater drilling suspension, and assist in establishing a path forward for government and

57

DOE Announces New Research to Advance Safe and Responsible Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Research to Advance Safe and Responsible Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further development. Negotiations for the new projects will lead to awards totaling $35.4 million, adding to the research portfolio of the Office of Fossil Energy's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include (1) new and better ways to

58

DOE Announces New Research to Advance Safe and Responsible Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces New Research to Advance Safe and Responsible DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further development. Negotiations for the new projects will lead to awards totaling $35.4 million, adding to the research portfolio of the Office of Fossil Energy's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include (1) new and better ways to

59

Acoustic measurement of the Deepwater Horizon Macondo well flow rate  

E-Print Network (OSTI)

On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

Camilli, Richard

60

Science in support of the Deepwater Horizon response  

Science Journals Connector (OSTI)

...the families of the 11 workers who lost their lives on...technicians, response workers, and managers inside...Fellowship program and the Oak Ridge Institute for Science and...Deepwater Horizon Response Workers: Health Hazard Evaluation...

Jane Lubchenco; Marcia K. McNutt; Gabrielle Dreyfus; Steven A. Murawski; David M. Kennedy; Paul T. Anastas; Steven Chu; Tom Hunter

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Selection of deepwater floating oil platform based on grey correlation  

Science Journals Connector (OSTI)

Abstract To select a suitable floating oil platform for a given deepwater oilfield, a method based on grey-correlation theory was proposed and verified. By analyzing factors that may affect selection of deepwater platform, thirteen main factors were chosen. This article also summed up the statistics on 65 deepwater floating platforms (including tension leg platform, deep-draft column type platform, semi-submersible platform, and floating storage mining and unloading device) performing well in the world. With a deepwater oilfield to be developed as a sample, the application of the method was illustrated: Considering the factor series of the given oilfield to be developed as referent series, the relevance between referent series and factor series of each platform in statistics was calculated with grey-correlation analysis, and the optimal platform was identified as the one that had the highest relevance. Two examples proved the feasibility and reliability of the method.

Dongfeng MAO; Menglan DUAN; Xinzhong LI; Junwei SU; Yingying WANG

2013-01-01T23:59:59.000Z

62

Federal seafood safety response to the Deepwater Horizon oil spill  

Science Journals Connector (OSTI)

Federal seafood safety response to the Deepwater Horizon oil spill 10...Atmospheric Administration, Seattle, WA 98112;bNational Seafood Inspection Laboratory, andbNational Seafood Inspection Laboratory, andbNational Seafood Inspection...

Gina M. Ylitalo; Margaret M. Krahn; Walton W. Dickhoff; John E. Stein; Calvin C. Walker; Cheryl L. Lassitter; E. Spencer Garrett; Lisa L. Desfosse; Karen M. Mitchell; Brandi T. Noble; Steven Wilson; Nancy B. Beck; Ronald A. Benner; Peter N. Koufopoulos; Robert W. Dickey

2012-01-01T23:59:59.000Z

63

Epifaunal Assemblages on Deep-water Corals in Roatan, Honduras  

E-Print Network (OSTI)

Deep-water corals provide complex habitat structure for diverse assemblages of invertebrates and fishes. Similar to shallow coral reefs, oyster reefs, and seagrass beds, these complex biogenic structures serve many ecosystem functions: (a) as prey...

Lavelle, Katherine

2012-10-30T23:59:59.000Z

64

LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIVE: Meeting on Strengthening Deepwater Blowout Containment LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities September 22, 2010 - 12:56pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs At 1 PM EDT today Secretary Chu and Secretary of the Interior Ken Salazar will convene top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen capabilities for responding to potential blowouts of oil and gas wells on the Outer Continental Shelf. The panel discussion will help guide reforms that are raising the bar for the oil and gas industry's practices, inform recommendations on whether and how to lift the current deepwater drilling suspension and assist in

65

Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm  

SciTech Connect

This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, C. L.; Harlow, D> G.

2014-07-22T23:59:59.000Z

66

DESTRUCTION OF BINARY MINOR PLANETS DURING NEPTUNE SCATTERING  

SciTech Connect

The existence of extremely wide binaries in the low-inclination component of the Kuiper Belt provides a unique handle on the dynamical history of this population. Some popular frameworks of the formation of the Kuiper Belt suggest that planetesimals were moved there from lower semimajor axis orbits by scattering encounters with Neptune. We test the effects such events would have on binary systems and find that wide binaries are efficiently destroyed by the kinds of scattering events required to create the Kuiper Belt with this mechanism. This indicates that a binary-bearing component of the cold Kuiper Belt was emplaced through a gentler mechanism or was formed in situ.

Parker, Alex H. [Department of Astronomy, University of Victoria, BC (Canada); Kavelaars, J. J., E-mail: alexhp@uvic.c [Herzberg Institute of Astrophysics, National Research Council of Canada (Canada)

2010-10-20T23:59:59.000Z

67

Price of Freeport, TX Natural Gas LNG Imports from Other Countries...  

Annual Energy Outlook 2012 (EIA)

Price of Freeport, TX Natural Gas LNG Imports from Other Countries (Nominal Dollars per Thousand Cubic Feet) Price of Freeport, TX Natural Gas LNG Imports from Other Countries...

68

2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2008 Annual Plan for the Ultra-Deepwater and...

69

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy Savers (EERE)

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

70

Deepwater pipeline repair technology: A general overview  

SciTech Connect

During the life of oil and gas transportation sea lines, periodic inspection, maintenance and repair in case of major damage are the most important tasks to be considered especially in deepwater installations. In particular the capabilities to perform quick and cost effective repairs have been of strategic importance in the eighties for SNAM during the development of the S.A.S. (Submersible Automatic System) a diverless and guidelineless repair system for the 20 inch Transmediterranean sealines. The trials on this prototype were successfully completed in early summer 1992, simulating a complete repair procedure at 610 in water depth. Based on the technology the authors have acquired during the implementation of the system, an upgrading phase aimed at improving the capability to mate the new 26 inch lines is being developed. Considering that at the moment only a few pipeline transportation systems are laid in deep water, but some new installations are foreseen in the near future, technological developments would be necessary in view of different scenarios other than the Mediterranean area. This paper will be focused on an overview of the existing repair technologies and will discuss the possible future pipelines operating scenarios and the envisaged new developments of repair technology. Possible way of approaching and solving in a cost-effective way the needs of Pipeline Operators to have repair systems available will be discussed for the different pipeline scenarios.

Magnelli, G.; Radicioni, A. [Snamprogetti S.p.A., Fano (Italy). Offshore Division

1994-12-31T23:59:59.000Z

71

Deepwater Horizon Study Finds Crude Oil Harmful to Bluefin, Yellowfin Tuna  

E-Print Network (OSTI)

occurred on April 20, 2010 when the Deepwater Horizon oil-drilling rig collapsed and exploded, leaving oil

Grosell, Martin

72

Review of flow rate estimates of the Deepwater Horizon oil spill  

Science Journals Connector (OSTI)

...actions accordingly. The Deepwater Horizon oil platform suffered a catastrophic explosion and...produced before the Deepwater Horizon accident. Based on the success of this approach...Release Following the Deepwater Horizon Accident. Report of the DOE-NNSA Flow Analysis...

Marcia K. McNutt; Rich Camilli; Timothy J. Crone; George D. Guthrie; Paul A. Hsieh; Thomas B. Ryerson; Omer Savas; Frank Shaffer

2012-01-01T23:59:59.000Z

73

EDF Industrial Power Services (TX), LLC | Open Energy Information  

Open Energy Info (EERE)

Power Services (TX), LLC Power Services (TX), LLC Jump to: navigation, search Name EDF Industrial Power Services (TX), LLC Place Texas Utility Id 56315 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0394/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=EDF_Industrial_Power_Services_(TX),_LLC&oldid=410609" Categories: EIA Utility Companies and Aliases

74

RAPID/Roadmap/4-TX-a | Open Energy Information  

Open Energy Info (EERE)

4-TX-a State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Permit Overview In Texas, geothermal exploration on state lands or lands with state...

75

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

Gasoline and Diesel Fuel Update (EIA)

to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2014 2,664...

76

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt...  

Annual Energy Outlook 2012 (EIA)

Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 -...

77

RAPID/Roadmap/11-TX-c | Open Energy Information  

Open Energy Info (EERE)

of the terms of the contract or permit. (NRC Sec. 191.053 and Sec. 191.054). 11-TX-c.20 - Conduct Survey All scientific investigations or recovery operations conducted under the...

78

RAPID/Roadmap/3-TX-b | Open Energy Information  

Open Energy Info (EERE)

and forfeiture of the application fee. 3-TX-b.7 - LeaseEasement The developer may not conduct any operations on the land prior to receiving a completed contract from the GLO....

79

,"TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12292014 1:55:39 AM" "Back to Contents","Data 1: TX, RRC...

80

RAPID/Roadmap/19-TX-c | Open Energy Information  

Open Energy Info (EERE)

9-TX-c Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Permit Overview In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water...

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...  

Gasoline and Diesel Fuel Update (EIA)

Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

82

Freeport, TX Exports to japan Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

japan Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to japan Liquefied Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

83

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

84

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas Annual report on ultra-deepwater natural gas, etc, required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan

85

Deep-water drilling remains a risky business  

Science Journals Connector (OSTI)

... Two years after the blowout of the BP oil well drilled by the Deepwater Horizon rig in the Gulf of Mexico, the United States is largely failing to act on ... commission that produced the report Deep Water: The Gulf Oil Disaster and the Future of Offshore Drilling the other was Cherry Murray of Harvard University. The commission concluded that ...

Donald Boesch

2012-04-17T23:59:59.000Z

86

MMS 2008-030 Survey of Deepwater Currents in the  

E-Print Network (OSTI)

: Executive Summary Authors Kathleen Donohue Peter Hamilton Robert Leben Randolph Watts Evans Waddell Prepared, K., P. Hamilton, R. Leben, R.Watts, and E. Waddell. 2008. Survey of deepwater currents, constructive and greatly appreciated. SAIC program personnel, Paul Blankinship (Data Management) and James

Rhode Island, University of

87

MMS 2008-031 Survey of Deepwater Currents in the  

E-Print Network (OSTI)

: Technical Report Authors Kathleen Donohue Peter Hamilton Robert Leben Randolph Watts Evans Waddell Prepared, K., P. Hamilton, R. Leben, R.Watts, and E. Waddell. 2008. Survey of deepwater currents, constructive and greatly appreciated. SAIC program personnel, Paul Blankinship (Data Management) and James

Rhode Island, University of

88

Deepwater Horizon Study Group 3 Environmental Report January 2011  

E-Print Network (OSTI)

The Deepwater Horizon oil rig exploded 5,000 feet below the surface of the Gulf of Mexico on April 20, 2010 gallons) of oil had discharged into the Gulf of Mexico by the time the well was capped and sealed July 15 investment in developing environmentally-sensitive cleanup technologies. 1.1 Emulsification of Crude

Silver, Whendee

89

THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS  

SciTech Connect

We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

Sheppard, Scott S. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington, DC 20015 (United States); Trujillo, Chadwick A., E-mail: sheppard@dtm.ciw.ed [Gemini Observatory, 670 North A'ohoku Place, Hilo, HI 96720 (United States)

2010-11-10T23:59:59.000Z

90

DOE - Office of Legacy Management -- Pantex Sewage Reservoir - TX 03  

Office of Legacy Management (LM)

Pantex Sewage Reservoir - TX 03 Pantex Sewage Reservoir - TX 03 FUSRAP Considered Sites Site: Pantex Sewage Reservoir (TX.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

91

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Annual Plan for the Ultra-Deepwater and Unconventional Natural 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan Recommendations: Draft 2008 Section 999 Annual Plan 2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program

92

Royalty break eyed for U. S. deepwater oil, gas  

SciTech Connect

This paper reports that Sen. Bennett Johnston (D-La.) wants to amend the U.S. omnibus energy bill to waive initial royalties for deepwater production. Johnston recently introduced the bill and is pressing for the bush administration's support. Johnston's bill would defer federal oil and gas royalty on leases in 200 m or more of water until payout of development costs. Producers would pay full royalty if the price of oil topped $34/bbl for 6 months.

Not Available

1992-08-31T23:59:59.000Z

93

Effects of the Deepwater Horizon Oil Spill on Pelagic Fish Species of the Gulf of Mexico.  

E-Print Network (OSTI)

??The Deepwater Horizon oil spill of 2010 is the largest unintended marine oil spill in history. The point-source location of the spill, below the pelagic (more)

Stieglitz, John Dommerich

2014-01-01T23:59:59.000Z

94

Crude Injustice in the Gulf: Why Categorical Exclusions for Deepwater Drilling in the Gulf of Mexico are Inconsistent with U.S. International Ocean Law and Policy  

E-Print Network (OSTI)

torium on Deepwater Oil Drilling, Demands Environmentaland Offshore Oil Drilling .. Deepwater Horizon-D. NEPA and Offshore Oil Drilling NEPA and the Outer

Hull, Eric V.

2011-01-01T23:59:59.000Z

95

Deepwater Horizon Oil Spill Principal Inves6gator (PI) Conference Sponsored by the NSTC SOST, hosted by the University of South Florida  

E-Print Network (OSTI)

Deepwater Horizon Oil Spill Principal Inves6gator (PI) Conference Sponsored #12;Deepwater Horizon Oil Spill Principal Inves6gator (PI) Conference Sponsored

Meyers, Steven D.

96

ORISE: DeepwaterHorizon and Nuclear & Radiological Incidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Wi l l i a m H a l e y Wi l l i a m H a l e y B r a d P o t t e r C o mm o n C h a l l e n g e s a n d S o l u t i o n s J u n e 2 0 1 1 D e e p w a t e r H o r i z o n a n dN u c l e a r & R a d i o l o g i c a l I n c i d e n t s The 2010 Deepwater Horizon oil spill shares many of the same challenges associated with a radiological incident like the one considered in the Empire 09 1 exercise or even a much larger nuclear incident. By analyzing experiences during Deepwater Horizon, these challenges can be identified by the interagency in advance of a radiological or nuclear emergency and solutions made available. Establishing and staffing a UnifiEd Command strUCtUrE The demands of Deepwater Horizon challenged the traditional response construct envisioned by national planning systems.

97

Deepwater pipeline-repair system deployed to Mediterranean  

SciTech Connect

The latest phase in development of a deepwater pipeline-repair system received full-scale trials earlier this summer in Norway and has been deployed on standby for the Trans-Mediterranean pipeline by operator SNAM. In Stavanger harbor in June, Sonsub International Inc.`s Arcos diverless repair system underwent successful shallow-water trials that employed all the system`s equipment. (Arcos is an Italian acronym for attrezzaturre per la riparazione di condotte sottomarine-subsea pipe repair tooling.) The system is the most recent development in an evolution of efforts to develop a diverless pipeline-repair system for deepwater use. The prototype PRS (pipeline repair system) received deepwater (300m) trials offshore southern Italy in 1992. It used two work-class ROVs. In 1995, a modified PRS, renamed the DSRS (diverless sealine repair system), underwent shallow-water trials, also offshore southern Italy, that led to a modification of its pipe-lifting system. In 1997, the DSRS underwent more shallow-water trials, this time in Stavanger, which led to improvement in the spool-installation module. According to Sonsub, this refined version of the Arcos employs a low-force modular concept that is ROV supported and can be adapted quickly and easily to a wide range of pipe sizes.

True, W.R.

1998-11-16T23:59:59.000Z

98

txH2O: Volume 1, Number 1 (Complete)  

E-Print Network (OSTI)

OF DESALINATION ? SEDIMENT SETBACK ? PHOSPHORUS LOSS ? CLOUD SEEDING ? RAINWATER HARVESTING ? AND MUCH MORE! tx H 2 O Published by Texas Water Resources Institute Clint Wolfe Managing Editor Texas Water Resources Institute Steven Keating Art Director... Student Research Assessing Phosphorus Loss to Protect Surface Water The Sky is Falling Using cloud-seeding technology to produce rain Communicating Outcomes Collaboration leads to water conservation Live, Learn and Thrive RGBI team award presented at NMSU...

Texas Water Resources Institute

2005-01-01T23:59:59.000Z

99

High Mercury Concentrations Reflect Trophic Ecology of Three Deep-Water Chondrichthyans  

E-Print Network (OSTI)

High Mercury Concentrations Reflect Trophic Ecology of Three Deep-Water Chondrichthyans Michael C concentrations were explored for three deep-water chondrichthyans (Etmopterus princeps, Cen- troscymnus position in the trophic web (as indicated by differences in d15 N). Mercury is a major contaminant

Newman, Michael C.

100

Perception vs. reality in deep-water exploration  

SciTech Connect

The common perception in exploration is that deep-water sands are predominantly a product of low- and high-density turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that deep-water systems are extremely complex and variable in terms of depositional processes and sand-body geometries. For example, the Bourna Sequence, composed of T{sub a}, T{sub b}, T{sub c}, T{sub d}, and T{sub e} divisions, is believed to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences also can be explained by processes other than turbidity currents, such as sandy debris flows (i.e., {open_quotes}T{sub a}{close_quotes}) and bottom-current reworking (i.e., {open_quotes}T{sub b}, T{sub c} and T{sub d}{close_quotes}). Massive sands are interpreted routinely as high-density turbidites, but the reality is that the term {open_quotes}high-density turbidity current{close_quotes} commonly refers to sandy debris flow in terms of flow theology and sediment-support mechanism. Deep-water sequences in the North Sea, Norwegian Sea, Offshore Gabon, Offshore Nigeria, Gulf of Mexico, and the Ouachita Mountains are generally considered to be turbidite-rich submarine fans. However, the reality is that these sequences are composed predominantly of sandy slumps and debris flows, not turbidites. Fan models are attractive to explorationists because of their predictable sheet-like geometries; however, these simplistic conceptual models are obsolete because they defy reality. Although the turbidite paradigm is alive and well for now in the minds of many sedimentologists and sequence stratigraphers, the turbidites themselves that form the foundation for fan models are becoming an endangered facies!

Shanmugam, G. [Mobil Exploration & Producing Technical Center, Dallas, TX (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Perception vs. reality in deep-water exploration  

SciTech Connect

The common perception in exploration is that deep-water sands are predominantly a product of low- and high-density turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that deep-water systems are extremely complex and variable in terms of depositional processes and sand-body geometries. For example, the Bourna Sequence, composed of T[sub a], T[sub b], T[sub c], T[sub d], and T[sub e] divisions, is believed to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences also can be explained by processes other than turbidity currents, such as sandy debris flows (i.e., [open quotes]T[sub a][close quotes]) and bottom-current reworking (i.e., [open quotes]T[sub b], T[sub c] and T[sub d][close quotes]). Massive sands are interpreted routinely as high-density turbidites, but the reality is that the term [open quotes]high-density turbidity current[close quotes] commonly refers to sandy debris flow in terms of flow theology and sediment-support mechanism. Deep-water sequences in the North Sea, Norwegian Sea, Offshore Gabon, Offshore Nigeria, Gulf of Mexico, and the Ouachita Mountains are generally considered to be turbidite-rich submarine fans. However, the reality is that these sequences are composed predominantly of sandy slumps and debris flows, not turbidites. Fan models are attractive to explorationists because of their predictable sheet-like geometries; however, these simplistic conceptual models are obsolete because they defy reality. Although the turbidite paradigm is alive and well for now in the minds of many sedimentologists and sequence stratigraphers, the turbidites themselves that form the foundation for fan models are becoming an endangered facies

Shanmugam, G. (Mobil Exploration Producing Technical Center, Dallas, TX (United States))

1996-01-01T23:59:59.000Z

102

DOE's Portal to Deepwater Horizon Oil Spill Data  

DOE Data Explorer (OSTI)

On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

103

GRR/Section 8-TX-b - ERCOT Interconnection | Open Energy Information  

Open Energy Info (EERE)

8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection Process.pdf Click to View Fullscreen Regulations & Policies PUCT Substantive Rule 25.198 Triggers None specified Click "Edit With Form" above to add content 8-TX-b - ERCOT Interconnection Process.pdf 8-TX-b - ERCOT Interconnection Process.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the responsibility for

104

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

105

GRR/Section 3-TX-g - Lease of Relinquishment Act Lands | Open Energy  

Open Energy Info (EERE)

3-TX-g - Lease of Relinquishment Act Lands 3-TX-g - Lease of Relinquishment Act Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-g - Lease of Relinquishment Act Lands 03-TX-g - Lease of Relinquishment Act Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-g - Lease of Relinquishment Act Lands.pdf 03-TX-g - Lease of Relinquishment Act Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a geothermal lease on Relinquishment Act Lands in Texas. The Texas General Land Office (GLO) of Texas handles the leasing process on Relinquishment Act Lands through Title

106

Staubli TX-90XL robot qualification at the LLIHE.  

SciTech Connect

The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

Covert, Timothy Todd

2010-10-01T23:59:59.000Z

107

txH20: Volume 8, Number 2 (Complete)  

E-Print Network (OSTI)

Texas A&M AgriLife Research Texas A&M AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences Summer 2013 TECHNOLOGY & WATER Computer models, electron beams, irrigation efficiencies and more Kevin Wagner... Message from the Director Welcome to the Summer #31;#30;#29;#28; edition of txH#31;O. #27;is issue highlights technologies developed and enhanced by #27;e Texas A&M University System researchers to help the state meet its growing water and food needs...

Wythe, Kathy

2013-01-01T23:59:59.000Z

108

E-Print Network 3.0 - austin tx usa Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Austin Collection: Engineering 9 Updated 050411 First Name Last Name City State Country Cell Phone Home Phone Summary: Acosta Austin TX United States (512) 6574215 (512) 8262678...

109

Potential value extraction from TxDOTs right of way and other property assets.  

E-Print Network (OSTI)

??Many Departments of Transportation (DOTs), including Texas Department of Transportation (TxDOT), have been challenged by inadequate funding from traditional federal and state fuel taxes, increasing (more)

Paes, Thiago Mesquita

2012-01-01T23:59:59.000Z

110

TX Cnc as a Member of the Praesepe Open Cluster  

Science Journals Connector (OSTI)

We present B-, V-, and I-band CCD photometry of the W UMa-type binary system TX Cnc, which is a member star of the Praesepe open cluster. Based on the observations, new ephemeris and a revised photometric solution of the binary system were derived. Combined with the results of the radial velocity solution contributed by Pribulla etal., the absolute parameters of the system were determined. The mass, radius, and luminosity of the primary component are derived to be 1.35 0.02 M ?, 1.27 0.04 R ?, and 2.13 0.11 L ?. Those for the secondary star are computed as 0.61 0.01 M ?, 0.89 0.03 R ?, and 1.26 0.07 L ?, respectively. Based on these results, a distance modulus of (m M) V = 6.34 0.05 is determined for the star. It confirms the membership of TX Cnc to the Praesepe open cluster. The evolutionary status and the physical nature of the binary system are discussed compared with the theoretical model.

X. B. Zhang; L. Deng; P. Lu

2009-01-01T23:59:59.000Z

111

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

112

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

113

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

114

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

115

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

116

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

117

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

118

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

119

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

120

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

122

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

123

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

124

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

125

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

126

Deepwater Wind Formerly Winergy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Formerly Winergy LLC Wind Formerly Winergy LLC Jump to: navigation, search Name Deepwater Wind (Formerly Winergy LLC) Place Shirley, New York Zip 11967 Sector Wind energy Product Has carried out a survey of feasible offshore wind sites in the US. Coordinates 40.80063°, -72.872189° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.80063,"lon":-72.872189,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selects Projects Aimed at Reducing Drilling Risks in Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater November 22, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy's Office of Fossil Energy (FE) has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings. The projects have been selected for negotiation leading to awards totaling $9.6 million, and will add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include the prevention of uncontrolled oil flow through new and better ways to cement well casing,

128

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume  

E-Print Network (OSTI)

of Gulf of Mexico from other historic offshore oil spillsHorizon oil spill in the Gulf of Mexico is the deepest andDeepwater Horizon oil spill in the Gulf of Mexico was one of

Lu, Z.

2012-01-01T23:59:59.000Z

129

Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume  

E-Print Network (OSTI)

Horizon oil spill in the Gulf of Mexico is the deepest andof Gulf of Mexico from other historic offshore oil spillsDeepwater Horizon oil spill in the Gulf of Mexico was one of

Lu, Z.

2012-01-01T23:59:59.000Z

130

New ultra-deepwater rig with dual rotaries will reduce costs  

SciTech Connect

The Discoverer Enterprise, a next generation, ultra-deepwater drill ship with a dual rotary system, will decrease drilling and completion costs by reducing bottom hole assembly (BHA) and tubular preparation time. Transocean Offshore received a contract from Amoco Corp. to build the ultra-deep floating rig and is scheduled to spud its first well in July 1998. It will generally work in water deeper than 6,000 ft. The rig design involves a new approach that addresses the overall well-construction process and equipment required to decrease significantly deepwater drilling time. The Discoverer is the first ultra-deepwater rig designed specifically for handling subsea completions and extended well tests. The paper discusses increased deepwater rig demand, rig construction costs, drillship design, well construction, development drilling, and cost justification.

Cole, J.C.; Herrmann, R.P.; Scott, R.J. [Transocean Offshore Inc., Houston, TX (United States); Shaughnessy, J.M. [Amoco Corp., Houston, TX (United States)

1997-05-26T23:59:59.000Z

131

Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill  

E-Print Network (OSTI)

Deep-sea bacteria enriched by oil and dispersant from the510- Running title: Enrichment of oil degraders from Gulf ofThe Deepwater Horizon oil spill resulted in a massive influx

Baelum, J.

2014-01-01T23:59:59.000Z

132

CX-100 and TX-100 blade field tests.  

SciTech Connect

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

133

GRR/Section 13-TX-a - State Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 13-TX-a - State Land Use Assessment GRR/Section 13-TX-a - State Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-TX-a - State Land Use Assessment 13-TX-a - State Land Use Assessment.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Open Beaches Act Dune Protection Act Beach Dune Rules Triggers None specified Click "Edit With Form" above to add content 13-TX-a - State Land Use Assessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas General Land Office (GLO) is in charge of making sure construction on the Texas coast that affects the beach and dunes is

134

GRR/Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land | Open  

Open Energy Info (EERE)

TX-e - Lease of Texas Parks & Wildlife Department Land TX-e - Lease of Texas Parks & Wildlife Department Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Texas Parks & Wildlife Department (TPWD) land in Texas. The Texas General Land Office manages

135

GRR/Section 3-TX-d - Lease of Permanent School Fund Land | Open Energy  

Open Energy Info (EERE)

3-TX-d - Lease of Permanent School Fund Land 3-TX-d - Lease of Permanent School Fund Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-d - Lease of Permanent School Fund Land 03-TX-d - Lease of Public School Fund Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-d - Lease of Public School Fund Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Public School Fund (PSF) lands in Texas. The Texas General Land Office (GLO) oversees the leasing process for PSF lands through Title 31 of the Texas Administrative Code

136

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

137

GRR/Section 3-TX-f - Lease of Land Trade Lands | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-TX-f - Lease of Land Trade Lands GRR/Section 3-TX-f - Lease of Land Trade Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-f - Lease of Land Trade Lands 03-TX-f - Lease of Land Trade Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-f - Lease of Land Trade Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Land Trade Lands in Texas. The Texas General Land Office (GLO) administers leases on Land Trade Lands through Title 31 of the Texas Administrative Code Section 155.42.

138

DISTRIBUTION AND IMPACTS OF PETROLEUM HYDROCARBONS IN LOUISIANA TIDAL MARSH SEDIMENTS FOLLOWING THE DEEPWATER HORIZON OIL SPILL.  

E-Print Network (OSTI)

??Following the 2010 Deepwater Horizon (DWH) spill, sediment cores were analyzed from marshes at various levels of oiling to determine how deeply oil penetrated sediment (more)

Hatch, Rachel S

2013-01-01T23:59:59.000Z

139

Microsoft Word - FOR WEB - VERSION 4.2 - NO-IMPORT, WONT SELL - Neptun CE-3504 CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neptun Light, Inc., Neptun Light, Inc., Respondent ) ) ) ) ) ) Case Number: 2012-SE-3504 ORDER By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Neptun Light, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at 10 C.F.R. Part 429. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolves this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts before me,

140

The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both its magnitude --nearly 5  

E-Print Network (OSTI)

PROBLEM The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both of Mexico during the Deepwater Horizon oil spill. This satellite image shows the oil slick off its magnitude -- nearly 5 million barrels of oil spilled over nearly three months -- and its location

Entekhabi, Dara

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Late Cenomanian Early Turonian Reconstruction of Intermediate and Deep-Water Circulation in the Proto-Indian Ocean  

E-Print Network (OSTI)

change during the mid-Cretaceous that may have coincided with the C/T. Here we present new high-resolution data from the proto-Indian Ocean Sites to determine the evolution and timing of intermediate- and deep-water Nd isotope values. Deep-water ?...

Tilghman, David S

2013-09-24T23:59:59.000Z

142

Study: Exposure to crude oil from the Deepwater Horizon disaster causes swimming deficiencies in juvenile mahi mahi  

E-Print Network (OSTI)

of large fish Crude oil spreads across a wide swath of the Gulf of Mexico during the 2010 Deepwater Horizon. The four million barrels of crude oil that spewed into the Gulf of Mexico from BP's failed oil drillingStudy: Exposure to crude oil from the Deepwater Horizon disaster causes swimming deficiencies

Grosell, Martin

143

National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling THE AMOUNT AND FATE OF THE OIL  

E-Print Network (OSTI)

- 1 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling THE AMOUNT AND FATE OF THE OIL ---Draft--- Staff Working Paper No. 3 Staff Working Papers are written by the staff of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling for the use of members

Meyers, Steven D.

144

GRR/Section 3-TX-c - Highway Right of Way Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-c - Highway Right of Way Lease 3-TX-c - Highway Right of Way Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-c - Highway Right of Way Lease 03TXCEncroachmentIssues.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Texas Department of Transportation Regulations & Policies 43 TAC 21.600 43 TAC 21.603 43 TAC 21.606 Triggers None specified Click "Edit With Form" above to add content 03TXCEncroachmentIssues.pdf 03TXCEncroachmentIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure for obtaining a state highway asset lease in Texas. The Texas Department of Transportation (TxDOT) may lease any highway asset.

145

GRR/Section 11-TX-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-TX-a - State Cultural Considerations Overview GRR/Section 11-TX-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-a - State Cultural Considerations Overview 11TXAStateCulturalConsiderationsOverview.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies NRC Ch. 191: Antiquities Code CCP Ch. 49: Inquests Upon Dead Bodies Triggers None specified Click "Edit With Form" above to add content 11TXAStateCulturalConsiderationsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered?

146

DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready affordable home in Garland, TX, that was the first retrofit home certified to the DOE Zero Energy Ready home requirements. The construction team achieved a...

147

Verification of the WRF model during a high ozone event over Houston, TX  

E-Print Network (OSTI)

High ozone values were observed in Houston, TX during August 25 - September 1, 2000. A comparison of WRF data with observations and MM5 data was conducted to determine the WRF model's performance in simulating the meteorological conditions...

Ames, Douglas Seeley

2012-06-07T23:59:59.000Z

148

GRR/Section 11-TX-c - Cultural Resource Discovery Process | Open Energy  

Open Energy Info (EERE)

-TX-c - Cultural Resource Discovery Process -TX-c - Cultural Resource Discovery Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-c - Cultural Resource Discovery Process 11TXCCulturalResourceDiscoveryProcess.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies Sec. 191: Antiquities Code Triggers None specified Click "Edit With Form" above to add content 11TXCCulturalResourceDiscoveryProcess.pdf 11TXCCulturalResourceDiscoveryProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-c.1 - Is the Project Located on State or Local Public Land? Before breaking ground at a project location on state or local public land,

149

EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Federal Loan Guarantee to Support Construction of the TX 12: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas Overview The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas. TXE is a subsidiary of Eastman Chemical Company (Eastman) and proposes to develop the Facility on a 417-acre parcel of land. The Facility would

150

Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Platform Aims to Harness Offshore Wind and Deepwater Platform Aims to Harness Offshore Wind and Wave Power Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power March 28, 2011 - 5:55pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Principle Power, Inc, of Seattle is using $1.4 million in funding from the Department of Energy's Office of Energy Efficiency and Renewable Energy to develop an innovative technology with the potential to generate electricity

151

EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

92-S1: University of Maine's Deepwater Offshore Floating Wind 92-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site SUMMARY This Supplemental EA in a evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine, Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792). PUBLIC COMMENT OPPORTUNITIES No public comment opportunities at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

152

Farmers and ranchers in Calhoun County, TX: their land ethic and their interest in nature tourism  

E-Print Network (OSTI)

FARMERS AND RANCHERS IN CALHOUN COUNTY, TX: THEIR LAND ETHIC AND THEIR INTEREST IN NATURE TOURISM A Thesis by KIMBERLY LYN WILLIAMS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2000 Major Subject: Recreation, Park and Tourism Sciences FARMERS AND RANCHERS IN CALHOUN COUNTY, TX: THEIR LAND ETHIC AND INTEREST IN NATURE TOURISM A Thesis by KIMBERLY LYN WILLIAMS Submitted to Texas ASM...

Williams, Kimberly Lyn

2000-01-01T23:59:59.000Z

153

Deepwater pipelay prospects prompt study of mechanical connectors  

SciTech Connect

A joint industry project to study mechanical connectors for pipeline construction will issue results to its participants next month. Although the study addresses mechanical connector`s use in any environment, connectors are being looked at by offshore operators as a means to minimize pipeline-installation costs, especially in deepwater. The joint industry project, dubbed Low Cost Pipeline Connection Systems, does not compare available connectors but was initiated to specify criteria that operators can use to qualify connectors for use. The project was organized and is now being managed by Hunting Oilfield Services, Aberdeen. Secondarily, the project aims for the following: to develop a clear design premise; to address relevant installation and service issues such as corrosion protection, installation methods, and repair methods, and costing models; to develop specifications and acceptance criteria for the testing of pipeline connectors, this will parallel the ISO specifications and API recommended practices for the testing of downhole connectors; to prove the adequacy of the specifications and criteria by analytical validation methods and in particular by testing programs that simulate, with adequate margins of safety, the installation and service loads on pipeline connectors; to establish and prove, as far as possible, a standardized approach to the testing of pipeline connector systems. That the study is being carried out at all indicates the growth in nonwelded approaches to pipeline construction and reflects industry`s efforts to hold down construction costs, especially for offshore. Yearly, labor costs exceed 45% of pipeline construction costs, as reported in Oil and Gas Journal`s annual Pipeline Economic Reports. This paper reviews the project goals and progress in the areas of research.

True, W.R.

1996-05-06T23:59:59.000Z

154

Tracking Oil from the Deepwater Horizon Oil Spill in Barataria Bay Sediments  

E-Print Network (OSTI)

technically recoverable resources (UTRR) of oil and 50% of the UTRR of natural gas within the United States (Hagerty, 2010). On April 2001, British Petroleum (BP) acquired a contract with the Deepwater Horizon (DWH) mobile oil-drilling rig for oil and gas... technically recoverable resources (UTRR) of oil and 50% of the UTRR of natural gas within the United States (Hagerty, 2010). On April 2001, British Petroleum (BP) acquired a contract with the Deepwater Horizon (DWH) mobile oil-drilling rig for oil and gas...

Dincer, Zeynep

2013-05-03T23:59:59.000Z

155

NOAA Technical Memorandum NOS OR&R 42 Deepwater Horizon Oil Spill  

E-Print Network (OSTI)

NOAA Technical Memorandum NOS OR&R 42 Deepwater Horizon Oil Spill: Salt Marsh Oiling Conditions, evaluating, and responding to threats to coastal environments, including oil and chemical spills, releases to prepare for and respond to oil and chemical releases. Determines damage to natural resources from

156

Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill  

E-Print Network (OSTI)

Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil of Houston, Houston, Texas, United States of America Abstract Oil spills represent a major environmental.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted

Pennings, Steven C.

157

5/7/2010 9:22 AM Deepwater Horizon Oil Spill: BP Claims Information  

E-Print Network (OSTI)

on for subsistence use purposes have been injured, destroyed, or lost by an oil spill incident. Anyone who is the Oil Spill Liability Trust Fund (OSLTF) and how can it be used? · The OSLTF can provide up to $15/7/2010 9:22 AM Deepwater Horizon Oil Spill: BP Claims Information Frequently Asked Questions 1

158

Remote Camera and Trapping Survey of the Deep-water Shrimps Heterocarpus laevigatus and  

E-Print Network (OSTI)

and the Geryonid Crab Chaceon granulatus in Palau W. B. SAUNDERS and LEE C. HASTIE Introduction Deep-water bottom 2TN, Scotland, U.K. ABSTRACT-Time-lapse remote photo sequences at 73-700 m depth off Palau, Western efforts using a submers ible show much promise (Ralston et aI., 1986; Moffitt and ParrishI. In Palau

159

Variability of the Deep-Water Overflow in the Luzon Strait  

Science Journals Connector (OSTI)

The Luzon Strait, with its deepest sills at the Bashi Channel and Luzon Trough, is the only deep connection between the Pacific Ocean and the South China Sea (SCS). To investigate the deep-water overflow through the Luzon Strait, 3.5 yr of ...

Chun Zhou; Wei Zhao; Jiwei Tian; Qingxuan Yang; Tangdong Qu

2014-11-01T23:59:59.000Z

160

Late Cretaceous through Paleogene Reconstruction of Pacific Deep-Water Circulation  

E-Print Network (OSTI)

A growing body of Nd isotope data derived from fish debris and Fe-Mn crusts suggests that the Pacific was characterized by deep-water mass formation in both the North and South Pacific during the Early Paleogene. However, the South Pacific source...

Schubert, Jessica

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish  

Science Journals Connector (OSTI)

...Although subsurface application of dispersant near the wellhead resulted in retention of a considerable portion...634 . 2 Kujawinski EB ( 2011 ) Fate of dispersants associated with the Deepwater Horizon oil spill . Environ...receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental...

John P. Incardona; Luke D. Gardner; Tiffany L. Linbo; Tanya L. Brown; Andrew J. Esbaugh; Edward M. Mager; John D. Stieglitz; Barbara L. French; Jana S. Labenia; Cathy A. Laetz; Mark Tagal; Catherine A. Sloan; Abigail Elizur; Daniel D. Benetti; Martin Grosell; Barbara A. Block; Nathaniel L. Scholz

2014-01-01T23:59:59.000Z

162

Deepwater Horizon oil left tuna, other species with heart defects likely to prove fatal  

E-Print Network (OSTI)

of crude, young tuna and amberjack, some of the speediest predators in the ocean, developed heart defects in the northern Gulf of Mexico in April 2010. Embryos are highly sensitive, so fragile that it is possible to see population." The study -- "Deepwater Horizon crude oil impacts the developing hearts of large predatory

Grosell, Martin

163

Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria  

SciTech Connect

An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge. Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.

Hermance, W.E.; Olaifa, J.O. [Mobile Producing Nigeria, Lagos (Nigeria); Shanmugam, G. [Mobile Research and Development Corp., Dallas, TX (United States)] [and others

1995-08-01T23:59:59.000Z

164

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY  

SciTech Connect

WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

Horton, Duane G.

2007-03-26T23:59:59.000Z

165

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

166

GRR/Section 11-TX-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

1-TX-b - Human Remains Process 1-TX-b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-b - Human Remains Process 11TXBHumanRemainsProcess.pdf Click to View Fullscreen Regulations & Policies CCP Art. 49 Triggers None specified Click "Edit With Form" above to add content 11TXBHumanRemainsProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure a developer must follow when human remains are discovered on or near the project site. Local law enforcement must conduct an investigation into the death of the person, and is the

167

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

168

GRR/Section 7-TX-b - REC Generator | Open Energy Information  

Open Energy Info (EERE)

TX-b - REC Generator TX-b - REC Generator < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-b - REC Generator 07TXBRECGeneratorCertification.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies Goal for Renewable Energy, PUCT Substantive Rule 25.173 Triggers None specified Click "Edit With Form" above to add content 07TXBRECGeneratorCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the application and approval process for participating in the Renewable Energy Credit program in Texas.

169

GRR/Section 19-TX-c - Surface Water Permit | Open Energy Information  

Open Energy Info (EERE)

19-TX-c - Surface Water Permit 19-TX-c - Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-c - Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 295 30 TAC 297 Triggers None specified Click "Edit With Form" above to add content 19TXCSurfaceWaterPermit.pdf 19TXCSurfaceWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water permits. Under, Tex. Water Code § 11, surface water permits

170

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

171

GRR/Section 14-TX-b - Texas NPDES Permitting Process | Open Energy  

Open Energy Info (EERE)

14-TX-b - Texas NPDES Permitting Process 14-TX-b - Texas NPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-b - Texas NPDES Permitting Process 14TXBTexasNPDESPermittingProcess (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies Tex. Water Code § 26.131(b) 16 TAC 3.8 Memorandum of Understanding between the RRC and the TCEQ 16 TAC 3.30 Triggers None specified Click "Edit With Form" above to add content 14TXBTexasNPDESPermittingProcess (4).pdf 14TXBTexasNPDESPermittingProcess (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

172

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

173

GRR/Section 8-TX-a - Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-TX-a - Transmission Siting GRR/Section 8-TX-a - Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-a - Transmission Siting 08TXATransmissionSiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive 25.83: Transmission Construction Reports PUCT Substantive Rule 25.101: Certification Criteria Triggers None specified Click "Edit With Form" above to add content 08TXATransmissionSiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Transmission siting is handled by the Public Utility Commission of Texas

174

GRR/Section 6-TX-a - Extra-Legal Vehicle Permitting Process | Open Energy  

Open Energy Info (EERE)

6-TX-a - Extra-Legal Vehicle Permitting Process 6-TX-a - Extra-Legal Vehicle Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-a - Extra-Legal Vehicle Permitting Process 06TXAExtraLegalVehiclePermittingProcess.pdf Click to View Fullscreen Contact Agencies Texas Department of Motor Vehicles Texas Department of Transportation Regulations & Policies Tex. Transportation Code § 621 Tex. Transportation Code § 622 Tex. Transportation Code § 623 43 TAC 219 Triggers None specified Click "Edit With Form" above to add content 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

175

GRR/Section 19-TX-d - Transfer of Surface Water Right | Open Energy  

Open Energy Info (EERE)

19-TX-d - Transfer of Surface Water Right 19-TX-d - Transfer of Surface Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-d - Transfer of Surface Water Right 19TXDTransferOfWaterRight.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 297.81 30 TAC 297.82 30 TAC 297.83 Triggers None specified Click "Edit With Form" above to add content 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Texas water law allows surface water rights to be transferred from one party to another. (Tex. Water Code § 11)

176

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

177

GRR/Section 3-TX-a - State Geothermal Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-a - State Geothermal Lease 3-TX-a - State Geothermal Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-a - State Geothermal Lease 03TXAStateGeothermalLease.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Texas Natural Resources Code 31 TAC 9.22 31 TAC 13.33 31 TAC 13.62 31 TAC 155.42 Triggers None specified Click "Edit With Form" above to add content 03TXAStateGeothermalLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a state geothermal lease from the state of Texas. The Texas General Land Office manages

178

GRR/Section 19-TX-a - Water Access and Water Issues Overview | Open Energy  

Open Energy Info (EERE)

9-TX-a - Water Access and Water Issues Overview 9-TX-a - Water Access and Water Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-a - Water Access and Water Issues Overview 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Flowchart Narrative In the late 1960's Texas transitioned its water law system, switching

179

GRR/Section 12-TX-a - Flora and Fauna Considerations | Open Energy  

Open Energy Info (EERE)

TX-a - Flora and Fauna Considerations TX-a - Flora and Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-TX-a - Flora and Fauna Considerations 12TXAFloraAndFaunaConsiderations.pdf Click to View Fullscreen Contact Agencies Texas Parks and Wildlife Department Regulations & Policies Texas Parks and Wildlife Code § 68 31 TAC 65.175 31 TAC 65.176 31 TAC 65.173 Triggers None specified Click "Edit With Form" above to add content 12TXAFloraAndFaunaConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, no person may capture, trap, take, or kill, or attempt to

180

GRR/Section 14-TX-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-TX-a - Nonpoint Source Pollution GRR/Section 14-TX-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-a - Nonpoint Source Pollution 14TXANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Clean Water Act CWA §319(b) Triggers None specified Click "Edit With Form" above to add content 14TXANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas Nonpoint Source Management Program (Management Program) is required under the Clean Water Act(CWA), specifically CWA §319(b). The

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GRR/Section 6-TX-b - Construction Storm Water Permitting Process | Open  

Open Energy Info (EERE)

6-TX-b - Construction Storm Water Permitting Process 6-TX-b - Construction Storm Water Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-b - Construction Storm Water Permitting Process 06TXBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality EPA Regulations & Policies TPDES Construction General Permit (TXR150000) 30 Texas Administrative Code 205 General Permits for Waste Discharges Texas Water Code 26.040 General Permits Clean Water Act Triggers None specified Click "Edit With Form" above to add content 06TXBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

182

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

183

GRR/Section 14-TX-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-TX-d - Section 401 Water Quality Certification 4-TX-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-d - Section 401 Water Quality Certification 14TXDSection401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Regulations & Policies 16 TAC 3.93 - RRC Water Quality Certification 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content 14TXDSection401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

184

GRR/Section 3-TX-b - Land Access | Open Energy Information  

Open Energy Info (EERE)

3-TX-b - Land Access 3-TX-b - Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-b - Land Access 03TXBLandAccess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Regulations & Policies Tex. Nat. Rec. Code Sec. 51.291(a) Tex. Nat. Rec. Code Sec. 33.111 Triggers None specified Click "Edit With Form" above to add content 03TXBLandAccess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of gaining access to certain types of land in Texas apart from the geothermal resource lease process.

185

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

186

GRR/Section 7-TX-a - Energy Facility Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-TX-a - Energy Facility Registration GRR/Section 7-TX-a - Energy Facility Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-a - Energy Facility Registration 07TXAEnergyFacilitySiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUC Substantive Rule 25.109: Registration of Power Generation Companies and Self-Generators Triggers None specified Click "Edit With Form" above to add content 07TXAEnergyFacilitySiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the necessary process for registering as an

187

GRR/Section 7-TX-c - Certificate of Convenience and Necessity | Open Energy  

Open Energy Info (EERE)

GRR/Section 7-TX-c - Certificate of Convenience and Necessity GRR/Section 7-TX-c - Certificate of Convenience and Necessity < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-c - Certificate of Convenience and Necessity 07TXCCertificateOfConvenienceAndNecessity.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 22 PUCT Substantive Rule 25.5 PUCT Substantive Rule 25.83 PUCT Substantive Rule 25.101 Public Utility Regulatory Act Triggers None specified Click "Edit With Form" above to add content 07TXCCertificateOfConvenienceAndNecessity.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

188

A New Method for Calculating the Equivalent Circulating Density of Drilling Fluid in Deepwater Drilling for Oil and Gas  

Science Journals Connector (OSTI)

We have developed a simple and accurate method for calculating the equivalent circulating density for drilling fluid which can be used for deepwater drilling calculations. The calculation takes into account de...

Hui Zhang; Tengfei Sun; Deli Gao

2013-11-01T23:59:59.000Z

189

Prediction of Barrier-Island Inundation and Overwash: Application to the Gulf of Mexico Deepwater Horizon Oil Spill  

E-Print Network (OSTI)

Prediction of Barrier-Island Inundation and Overwash: Application to the Gulf of Mexico Deepwater Horizon Oil Spill 0 10.5 Kilometers 0 0.25 0.5 Miles Photo: NOAA Photo: NOAA Low Risk: No inundation

Torgersen, Christian

190

ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose  

NLE Websites -- All DOE Office Websites (Extended Search)

ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose Name Project Role Affiliation University Project Title Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Liu, Xingbo PI WVU Chen, Ting Graduate Student WVU Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Xing, Dazun Post Doc Pitt Baled, Hseen Grad Student Pitt Anderson, Brian PI WVU Velaga, Srinath Grad Student WVU Equation of State Model Assessment and development Evaluate Heavy Oil Viscosity Standard Quantifying complex fluid- phase properties at high pressure/high temperature (HTHP) Experimental and numerical evaluation of key metal-based failures Plume Modeling for High- pressure Water Tunnel Facility Name Title Affiliation Rose, Kelly Geologist

191

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) NETL-ORD Project Information Resource Assessment | Drilling Under Extreme Conditions | Environmental Impacts Enhanced and Unconventional Oil Recovery Enhanced Oil Recovery from Fractured Media Read Detailed Project Information [PDF] Read project abstract Oil recovery from unconventional media is often difficult. However, significant hydrocarbon resources can be found in fractured reservoirs. As the supply of oil from conventional reservoirs is depleted, fractured media will provide a greater proportion of the country's oil reserves. One example of such a resource is the Bakken shale, part of the Williston Basin in North and South Dakota and Montana. It is estimated that over 100-176 billion barrels of oil are present in the Bakken shale. However, due to the low permeability of the formation and the apparent oil-wet nature of the shale, production from this formation presents considerable problems.

192

Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Horizon Source Control Deepwater Horizon Source Control June 30, 2010 DOE/DOI External Science Advisors On-Site DOI + DOE Labs Team Reach Back to Labs BP + Contractors + Industry Design Key Decisions * Independent Analysis * Information Flow * Integrated Design Reviews * Development of Joint Action Plans * Decision Engagement Analysis Operations Federal & BP Working Relationship Path Forward via Unified Command Strategy and Forward Plan * Run a Safe Operation * Long Term - Relief Wells * Short Term - Containment - Option to Shut-in Well; Test Integrity * Leverage Industry and Government Expertise * Multiple Parallel Options * No Stone Unturned to Minimize Pollution Containment: Early July Capacity 40 - 53 mbd Containment: Offshore Operations Toisa Pisces Loch Rannoch Helix Producer Subsea Manifold Air Can in Moonpool

193

Department of Energy Activities in Response to the Deepwater BP Oil Spill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activities in Response to the Deepwater BP Oil Spill Activities in Response to the Deepwater BP Oil Spill At the request of the President, Secretary Chu and Secretary Salazar traveled to Houston and participated in meetings today with DOE and national lab staff, industry officials and other engineers and scientists involved in finding solutions to cap the flow of oil and contain the spill. Secretary Chu assembled a group of top scientific experts from inside and outside of government to join in today's discussions in Houston about possible solutions. This team includes: * Dr. Tom Hunter, Director of the Department of Energy's Sandia National Labs * Dr. George A. Cooper, an expert in materials science and retired professor from UC Berkeley * Richard Lawrence Garwin, a physicist and IBM Fellow Emeritus

194

Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of M Dwarfs  

E-Print Network (OSTI)

We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with $\\sim 1 M_\\oplus$ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

Luger, Rodrigo; Lopez, Eric; Fortney, Jonathan; Jackson, Brian; Meadows, Victoria

2015-01-01T23:59:59.000Z

195

1996 National Heat Trans/er Conference Houston, TX August 3-6, J996  

E-Print Network (OSTI)

and diffusive transport associated with fluid dynamics. radiative heat transfer often plays a large role in governing combustion dynamics. Radiative heat transfer is the dominant mode of heat transfer in many1996 National Heat Trans/er Conference Houston, TX August 3-6, J996 AN ADAPTIVE MESH REFINEMENT

196

DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation...

197

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

198

CCD Photometric Study of the Contact Binary TX Cnc in the Young Open Cluster NGC 2632  

E-Print Network (OSTI)

TX Cnc is a member of the young open cluster NGC 2632. In the present paper, four CCD epochs of light minimum and a complete V light curve of TX Cnc are presented. A period investigation based on all available photoelectric or CCD data showed that it is found to be superimposed on a long-term increase ($dP/dt=+3.97\\times{10^{-8}}$\\,days/year), and a weak evidence suggests that it includes a small-amplitude period oscillation ($A_3=0.^{d}0028$; $T_3=26.6\\,years$). The light curves in the V band obtained in 2004 were analyzed with the 2003 version of the W-D code. It was shown that TX Cnc is an overcontact binary system with a degree of contact factor $f=24.8%(\\pm0.9%)$. The absolute parameters of the system were calculated: $M_1=1.319\\pm0.007M_{\\odot}$, $M_2=0.600\\pm0.01M_{\\odot}$; $R_1=1.28\\pm0.19R_{\\odot}$, $R_2=0.91\\pm0.13R_{\\odot}$. TX Cnc may be on the TRO-controlled stage of the evolutionary scheme proposed by Qian (2001a, b; 2003a), and may contains an invisible tertiary component ($m_3\\approx0.097M_{\\o...

Liang, Liu; Soonthornthum, BOONRUCKSAR; Liying, Zhu; Jiajia, He; Yuan, J -Z

2011-01-01T23:59:59.000Z

199

Aeolian Delivery of Organic Matter to a Middle Permian Deepwater Ramp  

E-Print Network (OSTI)

-Chairs of Committee, Bruce Herbert Mike Tice Committee Member, Thomas McDonald Head of Department, Andreas Kronenberg May 2011 Major Subject: Geology iii ABSTRACT Aeolian Delivery of Organic Matter to a Middle Permian Deepwater Ramp. (May 2011..., Semra Artan, and my father, Mehmet Ali Artan vi ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my co-advisors, Dr. Bruce Herbert and Dr. Mike Tice, for their time, guidance and advice throughout the course of this research. I...

Artan, Sinem

2012-07-16T23:59:59.000Z

200

Intermediate- to Deep-Water Circulation Changes on Short and Long Time Scales  

E-Print Network (OSTI)

circulation in abrupt climate fluctuations. The other two studies investigated deep-water circulation during the Late Cretaceous (~70 ? 100 Ma) greenhouse interval, to determine if deep waters formed in the southern Indian or Atlantic basins. The above... on the late Pleistocene California margin as well as seven Deep Sea Drilling Project and Ocean Drilling Program Cretaceous aged sites; four in the South Atlantic Ocean, and three in the Indian Ocean. The new Pleistocene data rule out changes in the source...

Murphy, Daniel Patrick

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Crude Injustice in the Gulf: Why Categorical Exclusions for Deepwater Drilling in the Gulf of Mexico are Inconsistent with U.S. International Ocean Law and Policy  

E-Print Network (OSTI)

impacts. The increasing demand for oil continues to pushthe Gulf ecosystem. Increas- ing demand for oil coupled withtorium on Deepwater Oil Drilling, Demands Environmental

Hull, Eric V.

2011-01-01T23:59:59.000Z

202

Long?Range Sound?Propagation Study in the Southern OceanProject Neptune  

Science Journals Connector (OSTI)

An experiment to determine some characteristics of long?range underwater sound propagation was undertaken by the U.S. Naval Ordnance Laboratory in April 1964. In this experiment Project Neptune sound signals were dropped at various ranges from a listening station in Bermuda. To supplement this and other stations one was established by the New Zealand Naval Research Laboratory off southern New Zealand to record the sound signals dropped on the final phase between Cape Town South Africa and Perth Australia. The recorded energy was analyzed in 1 3 ?oct bands to determine the transmission?path characteristics for low frequencies. The signal envelopes were found to differ in shape from the usual solar case and the attenuations were much larger than previously obtained for either RSR (refracted?surface reflected) or sofar propagation. These differences may be explained in terms of the different velocity structure of the Southern Ocean from that sound in the Atlantic or Pacific Oceans. In particular the thermocline is not as pronounced as in temperate or tropical regions and is absent south of the Antarctic convergence. Thus the energy was transmitted by a mixture of RSR and sofar modes little sofar energy arriving from those shots whose tracks crossed the Antarctic convergence.

A. C. Kibblewhite; R. N. Denham; P. H. Barker

1965-01-01T23:59:59.000Z

203

Response and Rescue Plans for Marine Mammals and Sea Turtles Impacted by the Deepwater Horizon Oil Spill in the Gulf of Mexico  

E-Print Network (OSTI)

Response and Rescue Plans for Marine Mammals and Sea Turtles Impacted by the Deepwater Horizon Oil Spill in the Gulf of Mexico The Wildlife Branch of the Unified Command has organized trained wildlife that will be impacted by the Deepwater Horizon Oil Spill. The marine mammal and sea turtle response teams include

204

File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Jump to: navigation, search File File history File usage Metadata File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 16 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:17, 12 June 2013 Thumbnail for version as of 14:17, 12 June 2013 1,275 × 1,650 (16 KB) Apalazzo (Talk | contribs)

205

File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 46 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:50, 26 July 2013 Thumbnail for version as of 12:50, 26 July 2013 1,275 × 1,650 (46 KB) Apalazzo (Talk | contribs)

206

File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information  

Open Energy Info (EERE)

TX.pdf TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 442 KB, MIME type: application/pdf) Description Texas Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Texas External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:21, 27 December 2010 Thumbnail for version as of 16:21, 27 December 2010 1,650 × 1,275 (442 KB) MapBot (Talk | contribs) Automated bot upload

207

GRR/Section 15-TX-a - Air Permit - Permit to Construct | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-TX-a - Air Permit - Permit to Construct GRR/Section 15-TX-a - Air Permit - Permit to Construct < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-TX-a - Air Permit - Permit to Construct 15TXAAirPermitPermitToConstruct (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Title 30 of the Texas Administrative Code 30 TAC 116.114 30 TAC 39.418 30 TAC 39.604 30 TAC 39.605 30 TAC 39.409 30 TAC 116.136 30 TAC 55.254 30 TAC 116.136 30 TAC 116.137 Triggers None specified Click "Edit With Form" above to add content 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf Error creating thumbnail: Page number not in range.

208

File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy  

Open Energy Info (EERE)

-TX-g - Lease of Relinquishment Act Lands.pdf -TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 82 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:49, 29 July 2013 Thumbnail for version as of 11:49, 29 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs) 14:43, 26 July 2013 Thumbnail for version as of 14:43, 26 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs)

209

British Petroleum's Deepwater Horizon Accident and the Thinking, Engaged Workforce - 13265  

SciTech Connect

On April 20, 2010, hydrocarbons escaped from the Macondo well into Transocean's Deepwater Horizon, resulting in fire and multiple explosions. 11 people on the rig died. The billion dollar Deepwater Horizon sank. 4.9 M gallons of product flowed from the well for 87 days creating an environmental nightmare for communities bordering on the Gulf of Mexico. BP established a $20 B reserve to pay for damages. Investigations and legal culpability continue to this day. In September 2010, the Institute for Nuclear Power Operators (INPO) issued Significant Operating Experience Report (SOER) 10-2, Engaged, Thinking Organizations. The industry had experienced 11 events, 9 in US commercial nuclear utilities, and 2 international, that had disturbing trends. The underlying causes highlighted by INPO were inadequate recognition of risk, weaknesses in application of significant operating experience, tolerance of equipment and personnel problems, and a significant drift in standards. While the noted INPO problems and the Deepwater Horizon event appear to have nothing in common, they do exhibit similarities in a drift away from expected behavior on the part of front line workers and their supervisors. At the same time, hidden hazards are accumulating in the environment leading to error intolerant conditions. Without a good understanding of this concept, many organizations tend to focus on the person who 'touched it last', while missing the deeper organizational factors that led that individual to think that what they were doing was correct. An understanding of this failure model is important in reconstruction of events and crafting effective corrective actions. It is much more important, however, for leaders in high hazard industries to recognize when they are approaching error intolerant conditions and take steps immediately to add safety margin. (authors)

Rigot, William L. [Fluor Corporation, Technical Support Services (United States)] [Fluor Corporation, Technical Support Services (United States)

2013-07-01T23:59:59.000Z

210

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

NSTec Environmental Restoration

2011-08-31T23:59:59.000Z

211

Photochemistry in Terrestrial Exoplanet Atmospheres III: Photochemistry and Thermochemistry in Thick Atmospheres on Super Earths and Mini Neptunes  

E-Print Network (OSTI)

Some super Earths and mini Neptunes will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO2 rather than CH4 or CO in a H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons (C2H2 and C2H4). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1...

Hu, Renyu

2014-01-01T23:59:59.000Z

212

ON THE FORMATION LOCATION OF URANUS AND NEPTUNE AS CONSTRAINED BY DYNAMICAL AND CHEMICAL MODELS OF COMETS  

SciTech Connect

The D/H enrichment observed in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Given the predicted strong variation of D/H with heliocentric distance in the solar nebula, this observation links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. That is, comets from the nearly-isotropic class were most likely fed into their current reservoir, the Oort cloud, from a source region near the formation location of Enceladus. Dynamical simulations of the formation of the Oort cloud indicate that Uranus and Neptune are, primarily, responsible for the delivery of material into the Oort cloud. In addition, Enceladus formed from material that condensed from the solar nebula near the location at which Saturn captured its gas envelope, most likely at or near Saturn's current location in the solar system. The coupling of these lines of evidence appears to require that Uranus and Neptune were, during the epoch of the formation of the Oort cloud, much closer to the current location of Saturn than they are currently. Such a configuration is consistent with the Nice model of the evolution of the outer solar system. Further measurements of the D/H enrichment in comets, particularly in ecliptic comets, will provide an excellent discriminator among various models of the formation of the outer solar system.

Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Mousis, Olivier; Petit, Jean-Marc [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, 25010 Besancon Cedex (France); Weaver, Harold A., E-mail: JJ.Kavelaars@nrc.gc.ca [Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099 (United States)

2011-06-20T23:59:59.000Z

213

Developing safety indicators for preventing offshore oil and gas deepwater drilling blowouts  

Science Journals Connector (OSTI)

An important question with respect to the Macondo blowout is whether the accident is a symptom of systemic safety problems in the deepwater drilling industry. An answer to such a question is hard to obtain unless the risk level of the oil and gas (O&G) industry is monitored and evaluated over time. This article presents information and indicators from the Risk Level Project (RNNP) in the Norwegian O&G industry related to safety climate, barriers and undesired incidents, and discusses the relevance for deepwater drilling. The main focus of the major hazard indicators in RNNP is on production installations, whereas only a limited number of incident indicators and barrier indicators are related to mobile drilling units. The number of kicks is an important indicator for the whole drilling industry, because it is an incident with the potential to cause a blowout. Currently, the development and monitoring of safety indicators in the O&G industry seems to be limited to a short list of accepted indicators, but there is a need for more extensive monitoring and understanding. This article suggests areas of extensions of the indicators in RNNP for drilling based on experience from the Macondo blowout. The areas are related to schedule and cost, well planning, operational aspects, well incidents, operators well response, operational aspects and status of safety critical equipment. Indicators are suggested for some of the areas. For other areas, more research is needed to identify the indicators and their relevance and validity.

Jon Espen Skogdalen; Ingrid B. Utne; Jan Erik Vinnem

2011-01-01T23:59:59.000Z

214

Acute Embryonic or Juvenile Exposure to Deepwater Horizon Crude Oil Impairs the Swimming Performance of Mahi-Mahi (Coryphaena  

E-Print Network (OSTI)

approximately 4 million barrels (6 ? 108 L) of crude oil into the northern Gulf of Mexico (GoM).1-3 The DWHAcute Embryonic or Juvenile Exposure to Deepwater Horizon Crude Oil Impairs the Swimming and ecologically important fish species to crude oil during the sensitive early life stages. We show that brief

Grosell, Martin

215

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

216

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

217

Tank 241-TX-104, cores 230 and 231 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-TX-104 push mode core segments collected between February 18, 1998 and February 23, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-104 Push Mode Core Sampling and Analysis Plan (TSAP) (McCain, 1997), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al., 1995) and the Safety Screening Data Quality Objective (DQO) (Dukelow, et.al., 1995). The analytical results are included in the data summary table. None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Alpha Activity (AT) exceeded notification limits as stated in the TSAP. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report. Appearance and Sample Handling Attachment 1 is a cross reference to relate the tank farm identification numbers to the 222-S Laboratory LabCore/LIMS sample numbers. The subsamples generated in the laboratory for analyses are identified in these diagrams with their sources shown. Core 230: Three push mode core segments were removed from tank 241-TX-104 riser 9A on February 18, 1998. Segments were received by the 222-S Laboratory on February 19, 1998. Two segments were expected for this core. However, due to poor sample recovery, an additional segment was taken and identified as 2A. Core 231: Four push mode core segments were removed from tank 241-TX-104 riser 13A between February 19, 1998 and February 23, 1998. Segments were received by the 222-S Laboratory on February 24, 1998. Two segments were expected for this core. However, due to poor sample recovery, additional segments were taken and identified as 2A and 2B. The TSAP states the core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank; this requirement was not met for the segments from Core 231.

Diaz, L.A.

1998-07-07T23:59:59.000Z

218

The influence of littoral zone structural complexity on fish assemblages in Lake Conroe, TX  

E-Print Network (OSTI)

1999 Major Subject: Wildlife and Fisheries Science ABSTRACT The Influence of Littoral Zone Structural Complexity on Fish Assemblages in Lake Conroe, TX. (May 1999) Perry Felix Trial, B. A. , Austin College Chair of Advisory Committee: Dr. Frances... 6. 3626 6. 1100 5, 24 0. 0047 1. 61 0. 1551 1. 04 0, 4095 Season Habitat Error x Season 3 9 32 879. 134 15. 7056 3. 8325 229. 38 4. 10 0. 0001 0. 001 012 0. 1 E 0. 06 E 006 u 0. 04 IP ru 0. 02 012 01 E o. os E 0. 06 a 0...

Trial, Perry Felix

2012-06-07T23:59:59.000Z

219

Tank 241-TX-118, core 236 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-TX-118 push mode core segments collected between April 1, 1998 and April 13, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-118 Push Mode Core sampling and Analysis Plan (TSAP) (Benar, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al, 1995) and the Historical Model Evaluation Data Requirements (Historical DQO) (Sipson, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Benar, 1997). One sample exceeded the Total Alpha Activity (AT) analysis notification limit of 38.4{micro}Ci/g (based on a bulk density of 1.6), core 236 segment 1 lower half solids (S98T001524). Appropriate notifications were made. Plutonium 239/240 analysis was requested as a secondary analysis. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report.

ESCH, R.A.

1998-11-19T23:59:59.000Z

220

File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information  

Open Energy Info (EERE)

f - Lease of Land Trade Lands.pdf f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:54, 26 July 2013 Thumbnail for version as of 13:54, 26 July 2013 1,275 × 1,650 (42 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 3-TX-f - Lease of Land Trade Lands

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

RPSEA Phase 2 Final Report: MSDC Electrical System for Deepwater Subsea Process  

NLE Websites -- All DOE Office Websites (Extended Search)

RPSEA RPSEA Phase 2 Final Report: MSDC Electrical System for Deepwater Subsea Process 08121.2901.01.FINAL Deep Water Electrical Power Distribution System and Power Components 08121-2901-01 November 19, 2013 Rixin Lai Senior Electrical Engineer General Electric Global Research One Research Circle, Niskayuna, NY 12309 LEGAL NOTICE This report was prepared by General Electric Global Research as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of any of the entities: MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED WITH RESPECT TO ACCURACY, COMPLETENESS, OR USEFULNESS OF THE INFORMATION

222

Deepwater royalty relief product of 3 1/2 year U.S. political effort  

SciTech Connect

Against the backdrop of more than 20 years of increasingly stringent environmental regulation, ever-expanding exploration and development moratoria on the Outer Continental Shelf (OCS), and reductions in producer tax incentives, oil and natural gas exploration companies active in deep waters of the Gulf of Mexico recently won a significant legislative victory. On Nov. 28, 1995, President Clinton signed into law S.395, the Alaska Power Administration Sale Act. Title 3 of S.395 embodies the Outer Continental Shelf Deep Water Royalty Relief Act. This landmark legislation provides substantial incentives for oil and natural gas production in the gulf of Mexico by temporarily eliminating royalties on certain deepwater leases. It is the first direct incentive for oil and gas production enacted at the federal level in many years. This paper reviews the elements used to arrive at this successful legislation including the congressional leadership. It describes debates, cabinet level discussions, and use of parlimentary procedures.

Davis, R.E. [Stuntz and Davis, Washington, DC (United States); Neff, S. [Senate Energy and Natural Resources Committee, Washington, DC (United States)

1996-04-01T23:59:59.000Z

223

Unmanned deepwater-line repair system passes full-scale trials  

SciTech Connect

The first ever full-scale tests of an unmanned, deepwater-pipeline repair system were successfully conducted last year off the coast of Italy. The Italian gas-transmission company SNAM tested a submersible automatic system (SAS) sealine repair system at a depth of 600 m. The modular SAS allows sealines to be repaired by installation of the Nuovo Pignone mechanical connector. The system's trials simulated complete repair intervention on the 20-in. Trans mediterranean pipeline and provided unprecedented experience to SNAM and to the other involved in this project. The paper discusses the origin of the idea for the SAS, the design of the system, construction and testing, the first sea trials, final deep sea trials, and future developments.

Venzi, S.; Vienna, A. (SNAM SpA, Milan (Italy))

1993-09-06T23:59:59.000Z

224

Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 1 MPI-Video Infrastructure for Dynamic Environments  

E-Print Network (OSTI)

Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 1 MPI-Video Infrastructure for Dynamic Environments Je#11;rey E. Boyd #3; Edward Hunter Patrick H. Kelly Li-Cheng Tai Clifton. #12; Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 2

Boyd, Jeffrey E.

225

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

226

Catching the fish - Constraining stellar parameters for TX Psc using spectro-interferometric observations  

E-Print Network (OSTI)

Stellar parameter determination is a challenging task when dealing with galactic giant stars. The combination of different investigation techniques has proven to be a promising approach. We analyse archive spectra obtained with the Short-Wavelength-Spectrometer (SWS) onboard of ISO, and new interferometric observations from the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI) of a very well studied carbon-rich giant: TX Psc. The aim of this work is to determine stellar parameters using spectroscopy and interferometry. The observations are used to constrain the model atmosphere, and eventually the stellar evolutionary model in the region where the tracks map the beginning of the carbon star sequence. Two different approaches are used to determine stellar parameters: (i) the 'classic' interferometric approach where the effective temperature is fixed by using the angular diameter in the N-band (from interferometry) and the apparent bolometric magnitude; (ii) parameters are obtained by fit...

Klotz, D; Hron, J; Aringer, B; Sacuto, S; Marigo, P; Verhoelst, T

2013-01-01T23:59:59.000Z

227

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network (OSTI)

Albany, OR · Anchorage, AK · Morgantown, WV · Pittsburgh, PA · Sugar Land, TX Website: www.netl-285-5437 briggs.white@netl.doe.gov Neil Nofziger Principal Investigator seM-coM company, Inc. 1040 North Westwood 304-285-4717 daniel.driscoll@netl.doe.gov PARTNERS University of Toledo Ceramatec, Inc. PROJECT

Azad, Abdul-Majeed

228

What: UHV Degree Information Session Where: UH System Cinco Ranch, 4242 S Mason Rd. Katy TX 77450  

E-Print Network (OSTI)

What: UHV Degree Information Session Where: UH System Cinco Ranch, 4242 S Mason Rd. Katy TX 77450 with times to suit most schedules, as well as online options. Admission to UHV is straightforward and free! Stop by to learn more about the programs UHV offers at the UHS Cinco Ranch (Katy) campus: Business

Azevedo, Ricardo

229

Emergence of coherent wave groups in deep-water random sea  

Science Journals Connector (OSTI)

Extreme surface waves in a deep-water long-crested sea are often interpreted as a manifestation in the real world of the so-called breathing solitons of the focusing nonlinear Schrdinger equation. While the spontaneous emergence of such coherent structures from nonlinear wave dynamics was demonstrated to take place in fiber-optics systems, the same point remains far more controversial in the hydrodynamic case. With the aim to shed further light on this matter, the emergence of breatherlike coherent wave groups in a long-crested random sea is investigated here by means of high-resolution spectral simulations of the fully nonlinear two-dimensional Euler equations. The primary focus of our study is to parametrize the structure of random wave fields with respect to the Benjamin-Feir index, which is a nondimensional measure of the energy localization in Fourier space. This choice is motivated by previous results, showing that extreme-wave activity in a long-crested sea is highly sensitive to such a parameter, which is varied here by changing both the characteristic spectral bandwidth and the average wave steepness. It is found that coherent wave groups, closely matching realizations of Kuznetsov-Ma breathers in Euler dynamics, develop within wave fields characterized by sufficiently narrow-banded spectra. The characteristic spatial and temporal scales of wave group dynamics, and the corresponding occurrence of extreme events, are quantified and discussed by means of space-time autocorrelations of the surface elevation envelope and extreme-event statistics.

C. Viotti; D. Dutykh; J. M. Dudley; F. Dias

2013-06-03T23:59:59.000Z

230

File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open Energy  

Open Energy Info (EERE)

Land (1).pdf Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-d - Lease of Public School Fund Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:26, 29 July 2013 Thumbnail for version as of 11:26, 29 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) 13:47, 26 July 2013 Thumbnail for version as of 13:47, 26 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

231

To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration  

E-Print Network (OSTI)

efficient than ASHRAE 90.1- 1999. The utility data from the first year's operation match well the analysisLBNL-60978 To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX

232

Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico  

Science Journals Connector (OSTI)

The Deepwater Horizon (Macondo) oil spill released large volumes of oil and gas of distinct carbon isotopic composition to the northern Gulf of Mexico, allowing Graham etal (2010 Environ. Res. Lett. 5 045301) to use stable carbon isotopes (?13C) to infer the introduction of spilled oil into the planktonic food web. Surface ocean organic production and measured oil are separated by 57 in stable carbon isotope (?13C) space, while in radiocarbon (?14C) space these two potential sources are separated by more than 1000. Thus radiocarbon isotopes provide a more sensitive tracer by which to infer possible introduction of Macondo oil into the food web. We measured ?14C and ?13C in plankton collected from within 100km of the spill site as well as in coastal and offshore DIC (dissolved inorganic carbon or ?CO2) to constrain surface production values. On average, plankton values were depleted in 14C relative to surface DIC, and we found a significant linear correlation between ?14C and ?13C in plankton. Cumulatively, these results are consistent with the hypothesis that carbon released from the Deepwater Horizon spill contributed to the offshore planktonic food web. Our results support the findings of Graham etal (2010 Environ. Res. Lett. 5 045301), but we infer that methane input may be important.

J P Chanton; J Cherrier; R M Wilson; J Sarkodee-Adoo; S Bosman; A Mickle; W M Graham

2012-01-01T23:59:59.000Z

233

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a  

E-Print Network (OSTI)

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Researchers at the MagLab compare the detailed molecular analysis of hydrocarbons in oiled sands from

Weston, Ken

234

Forts du succs de l'expdition DeepWater mene le long du Gulf Stream auprintemps2013,l'UniversitdeGenve(UNIGE)etPlanetSolarlancent  

E-Print Network (OSTI)

Forts du succès de l'expédition DeepWater menée le long du Gulf Stream auprintemps2013,l rive nord de la baie de Kiladha (Golfe de Nauplie), a été occupée pendant près de 35 000 ans, du

Halazonetis, Thanos

235

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

236

DEEPWATER HORIZON OIL SPILL ESTIMATE: UPDATE JUNE 11, 2010 by Professor Satish Nagarajaiah, Rice University (www.ruf.rice.edu/~nagaraja &  

E-Print Network (OSTI)

DEEPWATER HORIZON OIL SPILL ESTIMATE: UPDATE JUNE 11, 2010 by Professor Satish Nagarajaiah, Rice. http://www.nytimes.com/2010/06/11/us/11spill.html?hp New Estimates Double Rate of Oil Flowing on Thursday essentially doubled its estimate of how much oil has been spewing from the out-of-control BP well

Nagarajaiah, Satish

237

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills Host institution: Heriot-Watt University Gatliff (BGS), Jeffrey Polton (NOC), Alejandro Gallego and Eileen Bresnan (MSS). Project description: Oil

Henderson, Gideon

238

Analysis of Seven NEPTUN-III (Tight-Lattice) Bottom-Flooding Experiments with RELAP5/MOD3.3/BETA  

SciTech Connect

Seven tight-lattice NEPTUN-III bottom-flooding experiments are analyzed by using the frozen version of RELAP5, RELAP5/MOD3.3/BETA. This work is part of the Paul Scherrer Institute (PSI) contribution to the High Performance Light Water Reactor (HPLWR) European Union project and aims at assessing the capabilities of the code to model the reflooding phenomena in a tight hexagonal lattice (which was one of the core geometries considered at the time for an HPLWR) following a hypothetical loss-of-coolant accident scenario. Even though the latest version of the code has as a default the new PSI reflood model developed by the author, which was tested and assessed against reflooding data obtained at standard light water reactor lattices, this work shows that for tight lattices, the code underpredicts the peak clad temperatures measured during a series of reflooding experiments performed at the NEPTUN-III tight-lattice heater rod bundle facility. The reasons for these differences are discussed, and the (possible) changes needed in the framework of RELAP5/MOD3.3 for improving the modeling of reflooding in tight lattices are investigated.

Analytis, G.Th. [Paul Scherrer Institute (Switzerland)

2004-05-15T23:59:59.000Z

239

Magnetic Fields at Neptune  

Science Journals Connector (OSTI)

...LOWENSTEIN, R.F., ASTROPHYS J 218 : L145 ( 1977 ). LUNDIN, R, ON THE MAGNETOSPHERIC BOUNDARY-LAYER AND SOLAR-WIND ENERGY-TRANSFER INTO THE MAGNETOSPHERE, SPACE SCIENCE REVIEWS 48 : 263 ( 1988 ). NELLIS, W.J., THE NATURE OF THE...

Norman F. Ness; Mario H. Acua; Leonard F. Burlaga; John E. P. Connerney; Ronald P. Lepping; Fritz M. Neubauer

1989-12-15T23:59:59.000Z

240

Cotton Yield Mapping at AG-CARES, Lamesa, TX, 2003 John Everitt, Alan Brashears, Wayne Keeling, and Danny Carmichael, Research Associate,  

E-Print Network (OSTI)

TITLE: Cotton Yield Mapping at AG-CARES, Lamesa, TX, 2003 AUTHORS: John Everitt, Alan Brashears, and Research Associate RESULTS AND DISCUSSION: A John Deere 7445 cotton stripper equipped with a MICRO-TRAK ® yield monitor was used to harvest cotton at AG-CARES in 2003. The MICRO-TRAK ® yield monitor system used

Mukhtar, Saqib

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Results of Phase I groundwater quality assessment for single-shell tank waste management areas T and TX-TY at the Hanford Site  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL) under the requirements of the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Areas (WMAs) T and TX-TY have impacted groundwater quality. Waste Management Areas T and TX-TY, located in the northern part of the 200 West Area of the Hanford Site, contain the 241-T, 241-TX, and 241-TY tank farms and ancillary waste systems. These two units are regulated under RCRA interim-status regulations (under 40 CFR 265.93) and were placed in assessment groundwater monitoring because of elevated specific conductance in downgradient wells. Anomalous concentrations of technetium-99, chromium, nitrate, iodine-129, and cobalt-60 also were observed in some downgradient wells. Phase I assessment, allowed under 40 CFR 265, provides the owner-operator of a facility with the opportunity to show that the observed contamination has a source other than the regulated unit. For this Phase I assessment, PNNL evaluated available information on groundwater chemistry and past waste management practices in the vicinity of WMAs T and TX-TY. Background contaminant concentrations in the vicinity of WMAs T and TX-TY are the result of several overlapping contaminant plumes resulting from past-practice waste disposal operations. This background has been used as baseline for determining potential WMA impacts on groundwater.

Hodges, F.N.

1998-01-01T23:59:59.000Z

242

Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico  

Science Journals Connector (OSTI)

Abstract We examined the geographic extent of petroleum hydrocarbon contamination in sediment, seawater, biota, and seafood during/after the BP/Deepwater Horizon Oil Spill (April 20July 15, 2010; 28.736667N, ?88.386944W). TPH, PAHs, and 12 compound classes were examined, particularly C1-benzo(a)anthracenes/chrysenes, C-2-/C-4-phenanthrenes/anthracenes, and C3-naphthalenes. Sediment TPH, PAHs, and all classes peaked near Pensacola, Florida, and Galveston, Texas. Seawater TPH peaked off Pensacola; all of the above classes peaked off the Mississippi River, Louisiana and Galveston. Biota TPH and \\{PAHs\\} peaked near the Mississippi River; C-3 napthalenes peaked near the spill site. Seafood TPH peaked near the spill site, with \\{PAHs\\} and all classes peaking near Pensacola. We recommend that oil concentrations continued to be monitored in these media well after the spill has ceased to assist in defining re-opening dates for fisheries; closures should be maintained until hydrocarbon levels are deemed within appropriate limits.

Paul W. Sammarco; Steve R. Kolian; Richard A.F. Warby; Jennifer L. Bouldin; Wilma A. Subra; Scott A. Porter

2013-01-01T23:59:59.000Z

243

Deep-water bottom-current reworked sands: Their recognition and reservoir potential, northern Gulf of Mexico  

SciTech Connect

Some Pliocene and Pleistocene reservoir sands in intraslope basins of the northern Gulf of Mexico exhibit features that are interpreted to be indicative of reworking by deep-water (bathyal) bottom currents (contour currents). These fine sands have previously been interpreted as turbidites associated with levee overbanks and lobes of submarine fan complexes; however, sedimentological features characteristic of turbidites are rare in these laminated sands. Common features observed are (1) numerous (up to 75 layers/m) thin (<2 cm) sand layers, (2) sharp upper contacts, (3) inverse grading, (4) current ripples, (5) lenticular bedding, (6) flaser bedding, (7) bidirectional cross-lamination, and (8) sigmoidal bed forms with mud drapes (i.e., mud offshoots). These features, dominated by traction structures, can be explained by reworking of overbank turbidite sands by deep-bottom currents. In the present Gulf of Mexico, the surface Loop Current is considered to be a major cause of deep circulation. The authors propose that similar bottom currents and perhaps minor deep tidal currents existed during Pliocene and Pleistocene times. The entire sediment package may be thick and continuous, but individual sand layers within the package are thin and discontinuous. Porosity values of these sands range from 27 to 40%, and permeability ranges from 100 to 2,000 md at 200 psi. In seismic profiles or seismic facies maps, it is difficult to distinguish the reworked sands from turbidites. Therefore, geologic models based on core and process sedimentology are the key to a better understanding of these often misinterpreted complex reservoir facies.

Shanmugam, G. (Mobil Research and Development Corp., Dallas, TX (USA)); Spalding, T.D.; Kolb, R.A.; Lockrem, T.M. (Mobil Exploration and Producing Inc., New Orleans, LA (USA))

1990-05-01T23:59:59.000Z

244

Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico  

Science Journals Connector (OSTI)

The fluorescence excitationemission matrix (EEM) technique coupled with parallel factor (PARAFAC) modeling and measurements of bulk organic carbon and other optical properties were used to characterize the oil components released from the Deepwater Horizon oil spill in the Gulf of Mexico and to examine the chemical evolution and transformation of oil in the water column. Seawater samples were collected from the Gulf of Mexico during October 2010 and October 2011, three months and fifteen months, respectively, after the oil spill was stopped. Together with previous results from samples collected during the oil spill in May/June 2010, these time series samples allow us to elucidate changes in the optical properties of dissolved organic matter (DOM) from the time of maximum oil impact to its recovery, 15 months after the spill. Although the oil had profoundly altered the optical properties of the DOM in the entire water column during the oil spill, naturally occurring DOM became predominant in surface waters by October 2010, three months after the spill. Anomalous DOM with high optical yields, however, still resided in deep waters even 15 months after the oil spill in October 2011, showing a persistent influence of the oil in deep waters. Based on fluorescence EEM data and PARAFAC modeling, three oil components and one natural humic-like DOM could be readily identified. The most prominent oil component had its maximum fluorescence intensity at Ex/Em 224/328nm, and the other two centered on Ex/Em 264/324 and 232/346nm, respectively. The humic-like DOM component had its wide emission peak from 390 to 460nm over the excitation wavelength at ~248nm. We hypothesized that component-2 (264/324nm) was mostly derived from photochemical degradation and the component-3 (232/346nm) could be a degradation product from both microbial and photochemical degradation, although both C2 and C3 are subject to degradation at different rates. The oil component ratios, such as C2/C1 and C3/C1, were closely related to degradation states of oil and can be used as a sensitive index to track the fate, transport and transformation of oil in the water column.

Zhengzhen Zhou; Laodong Guo

2012-01-01T23:59:59.000Z

245

~tx421.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

FRIDAY APRIL 3, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., Edward Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG JOHN PAUL DELEY, OIT

246

~tx410.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

THURSDAY, APRIL 2, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, SW, Washington, D.C., Ed Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN MICHAEL COHEN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG

247

Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols  

SciTech Connect

The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}--C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X is a S, Se, or Te, will be determined. The alkali component A, which is essential for C-O and C-C bond forming reactions leading to alcohols, will be highly dispersed on the TX{sub 2} surfaces by using chemical vapor deposition (CVD) and chemical complexation/anchoring (CCA) methods. Catalysts that have been prepared during this quarter include RuS{sub 2}, NbS{sub 2}, K/MoS{sub 2}, and K/Crown either/MoS{sub 2}. Catalysts tested include KOH/MoS{sub 2} and K/Crown ether/MoS{sub 2}. 9 refs., 10 figs., 2 tabs.

Klier, K.; Herman, R.G.; Brimer, A.; Richards, M.; Kieke, M.; Bastian, R.D.

1990-09-01T23:59:59.000Z

248

Neptune Systems | Open Energy Information  

Open Energy Info (EERE)

Address: PO Box 8719 Place: Breda Zip: 4820 BA Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: +31 (0) 652000097 Website: http:ftp:ftp.cordis.europa This...

249

P h y s i c a l O c e a n o g r a p h y D i v i s i o n Monitoring of the Gulf of Mexico Conditions during the Deepwater  

E-Print Network (OSTI)

to the ocean conditions during the oil spill. Upper left: Altimetry-derived Gulf of Mexico surface currentsP h y s i c a l O c e a n o g r a p h y D i v i s i o n Monitoring of the Gulf of Mexico Conditions during the Deepwater Horizon Oil Spill An AOML - wide effort As part of NOAA's mission to study the role

250

P h y s i c a l O c e a n o g r a p h y D i v i s i o n Monitoring the Gulf of Mexico Conditions during the Deepwater  

E-Print Network (OSTI)

P h y s i c a l O c e a n o g r a p h y D i v i s i o n Monitoring the Gulf of Mexico Conditions during the Deepwater Horizon Oil Spill An AOML - wide effort As part of NOAA's mission to study the role research cruises focused on assessing the extent of the spill in the greater Gulf of Mexico

251

U.S. Price of Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 7.07 10.03 4.59 4.94 5.63 4.27 1985-2012 Cameron, LA -- -- 4.78 5.78 8.13 10.54 2007-2012 Cove Point, MD 7.26 9.07 4.05 5.37 5.30 13.82 2003-2012 Elba Island, GA 6.79 9.71 3.73 4.39 4.20 2.78 2003-2012 Everett, MA 7.32 10.33 5.87 4.79 4.77 3.70 2003-2012 Freeport, TX -- 13.83 4.51 6.96 9.27 10.53 2007-2012 Golden Pass, TX -- -- -- 7.90 5.36 -- 2007-2012 Gulf Gateway, LA 8.36 -- -- -- 2004-2010 Gulf LNG, MS -- -- -- -- 12.93 -- 2007-2012 Lake Charles, LA 6.88 7.63 3.32 4.05 4.18 2.10 2003-2012 Neptune Deepwater Port -- -- -- 6.41 -- -- 2007-2012 Northeast Gateway -- 12.54 6.71 5.41 -- -- 2007-2012 Sabine Pass, LA -- 11.82 4.21 5.39 7.58 7.99 2007-2012

252

Table 2 -Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN MO NE NY NC ND OH PA SD TX WI Area  

E-Print Network (OSTI)

Table 2 - Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN.7 Table 2 - Lime use and practices on Corn, major producing states, 2000 CO IL IN IA KS KY MI MN MO NE NY use and practices on Corn, major producing states, 1999 CO IL IN IA KS KY MI MN MO NE NC OH SD TX WI

Kammen, Daniel M.

253

The weathering of oil after the Deepwater?Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments  

Science Journals Connector (OSTI)

The oil released during the Deepwater Horizon (DWH) oil spill may have both short-?and long-time impacts on the northern Gulf of Mexico ecosystems. An understanding of how the composition and concentration of the oil are altered by weathering, including chemical, physical and biological processes, is needed to evaluate the oil toxicity and impact on the ecosystem in the northern Gulf of Mexico. This study examined petroleum hydrocarbons in oil mousse collected from the sea surface and salt marshes, and in oil deposited in sediments adjacent to the wellhead after the DWH oil spill. Oil mousses were collected at two stations (OSS and CT, located 130 and 85?km away from the wellhead, respectively) in May 2010, and two sediment samples from stations SG and SC, within 6 km of the wellhead, in May 2011. We also collected oil mousse from salt marshes at Marsh Point (MP), Mississippi, 186?km away from the wellhead in July 2010. In these samples, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, BTEX (collective name of benzene, toluene, ethylbenzene and p-, m-, and o-xylenes), C3-benzenes and trace metals were measured to examine how the oil was altered chemically. The chemical analysis indicates that the oil mousses underwent different degrees of weathering with the pattern of OSS?DWH oil spill, as supported by the presence of short-chained n-alkanes (C10?C 15), BTEX and C 3-benzenes. The weathering of oil in sediment may result from biological degradation and dissolution, evidenced by the preferential loss of mid-chained n-alkanes C16?C 27, lower ratios of n-C 17/Pr and n-C 18/Ph , and preferential loss of PAHs relative to alkylated PAHs.

Zhanfei Liu; Jiqing Liu; Qingzhi Zhu; Wei Wu

2012-01-01T23:59:59.000Z

254

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DE-AC26-07NT42677 RPSEA FE Stress Engineering Services SCNGO FY13-1424 months Gary Covatch Houston, TX Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir...

255

5/10/10 7:22 AMTerry Hazen, Berkeley Lab: Deepwater Horizon Spill Detergents Could Make Bad Situation Worse Page 1 of 3http://www.outlookseries.com/N7/Science/3910_Terry_Hazen_Berkeley_La...water_Horizon_Spill_Detergents_Could_Situation_Worse_Terry_Hazen.  

E-Print Network (OSTI)

With millions of gallons crude oil being spewed into the Gulf of Mexico from the Deepwater Horizon oil spill a day into the Gulf of Mexico. To contain the spreading oil slick and keep it from polluting the fragile three miles off the coast of Normandy, releasing about 227,000 tons heavy crude oil that ultimately

Hazen, Terry

256

~txF74.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEDNESDAY WEDNESDAY OCTOBER 19, 2011 + + + + + The Electricity Advisory Committee met in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 2:00 p.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings RALPH MASIELLO, KEMA RICH MEYER, National Rural Electric

257

~tx22C0.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

+ + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE McSLARROW ROY PERRY 202-234-4433 Neal R. Gross & Co., Inc. Page 2

258

College TX 71843-25000  

E-Print Network (OSTI)

C L S F A 5 P F E m. N .n. m m w. F u .H II. A, m m mu" ..... 59. (1973) 5003. [ll] BACRI, J. C. et RAJAONARISON, R., A paraitre. [12] KAWASAKI, K., Ann. Phys.

259

Closure of open wellbores in creeping salt sheets  

Science Journals Connector (OSTI)

......Harmelen 3 4 1 Bureau of Economic Geology, The University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758, USA 2 Department...the Deepwater Drilling and Completions Conference (2012) Galveston, TX, USA. June 20-21. Nikolinakou M.A. , Luo G......

R. Weijermars; M. P. A. Jackson; A. van Harmelen

2014-01-01T23:59:59.000Z

260

For questions, contact the Rice Alliance at 713.348.3443 Submit form with payment details via fax at 713.348.3110 or mail to: Rice Alliance for Technology and Entrepreneurship Rice University MS-531 P.O. Box 2932 Houston, TX 77252-2932  

E-Print Network (OSTI)

For questions, contact the Rice Alliance at 713.348.3443 · Submit form with payment details via fax at 713.348.3110 or mail to: Rice Alliance for Technology and Entrepreneurship · Rice University · MS-531 · P.O. Box 2932 · Houston, TX · 77252-2932 Rice Alliance Annual Corporate Underwriter Program 2012

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

First Plasma Wave Observations at Neptune  

Science Journals Connector (OSTI)

...the electric field of plasma waves and radio emissions...range from 10 Hz to 56.2 kHz. Further information...high frequencies (>100 kHz) as much as 30 days before...closest approach (2), the plasma wave in-strument did...low frequencies (kHz) until only a few days...

D. A. Gurnett; W. S. Kurth; R. L. Poynter; L. J. Granroth; I. H. Cairns; W. M. Macek; S. L. Moses; F. V. Coroniti; C. F. Kennel; D. D. Barbosa

1989-12-15T23:59:59.000Z

262

EVIDENCE FOR A COMET BELT BEYOND NEPTUNE  

Science Journals Connector (OSTI)

...OBSERVATORY, CAMBRIDGE, MASSACHUSETTS HARVARD COLLEGE OBSERVATORY, CAMBRIDGE, MASSACHUSETTS EVIDENCE FOR A COMET...OBSERVATORY, CAMBRIDGE, MASSACHUSETTS. | Journal Article Proceedings...the outskirts of the solar system." I concur with...

Fred L. Whipple

1964-01-01T23:59:59.000Z

263

Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of E. I. Du Pont de Nemours and Company, Chambers Works, Deepwater, New Jersey  

SciTech Connect

A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at du Pont de Nemours and Company (SIC-2800), Deepwater, New Jersey in November 1981. Hazardous wastes generated at the facility were disposed of by incineration, wastewater and thermal treatment, and landfilling. Engineering controls for the incineration process and at the landfill were noted. At the landfill, water from a tank trailer was sprayed periodically to suppress dust generation. Vapor control devices, such as spot scrubbers, were used during transfer of organic wastes from trailers and drums to storage prior to incineration. Wastes were also recirculated to prevent build up of grit in the strainers. The company conducted area monitoring for nitrobenzene (98953) and amines at the landfill and personal monitoring for chloramines at the incinerator. Half mask dust respirators were worn by landfill operators. Operators who unloaded and emptied drums at the incinerator were required to wear face masks, rubber gloves, and boots. The author concludes that disposal of hazardous wastes at the facility is state of the art. An in depth survey is recommended.

Anastas, M.

1984-01-01T23:59:59.000Z

264

Microsoft Word - URTAC MEMBER FINAL ROSTER.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources 2007 - 2008 Unconventional Resources Technology Advisory Committee Members Mr. Eugene L. Ames III Petroleum Geologist and General Manager Nordan Trust San Antonio, TX Dr. Fred Aminzadeh President and CEO dGB-USA Sugar Land, TX Mr. Kenneth L. Ancell* Petroleum Engineer Ancell Energy Consulting, Inc. Houston, TX Mr. A. Scott Anderson Energy Policy Advisor Environmental Defense Fund Austin, TX Mr. David J. Bardin* Of Counsel Arent Fox LLP (retired) Washington, DC Commissioner Victor G. Carrillo Commissioner Railroad Commission of Texas Austin, TX Ms. Jessica J. Cavens Geologist EnCana Oil & Gas (USA) Denver, CO Mr. Russell J. Conser Manager-GameChanger Shell International E&P

265

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multiple Multiple SCNGO FY12/ 12 months Gary Covatch Multiple sites, FL, NY & TX Deepwater Direct Offloading Systems, Phase One Design, risk assessment, and analysis of a deepwater direct offloading system for use in the Gulf of Mexico. Gary L. Covatch Digitally signed by Gary L. Covatch DN: cn=Gary L. Covatch, o=NETL, ou=SCNGO, email=gary.covatch@netl.doe.gov, c=US Date: 2012.07.02 09:23:16 -04'00' 07 02 2012 Jesse Garcia Digitally signed by Jesse Garcia DN: cn=Jesse Garcia, o=NETL, ou=ECD, email=Jesse.Garcia@netl.doe.gov, c=US Date: 2012.07.13 16:00:42 -05'00' 07 13 2012 Contractors covered under this CX(A) include Remora Technology (Houston, TX), ABS Consulting (Houston, TX), Ecology and Environment (Houston, TX, Pensacola, FL, Lancaster, NY), Peter Lovie PE (Houston, TX)

266

Field demonstration of aviation turbine fuel MIL-T-83133C, grade JP-8 (NATO code F-34) at Fort Bliss, TX. Interim report 1 Feb 89-31 Jul 90  

SciTech Connect

A JP-8 fuel demonstration was initiated at Ft. Bliss, TX, to demonstrate the impact of using aviation turbine fuel MIL-T-83133C, grade JP-8 in all military diesel fuel-consuming ground vehicles and equipment. Three major organizations, one ordnance battalion and two activities with a total of 2807 vehicles/equipment (V/E), were identified as participants in the demonstration program, which is authorized to continue through 30 September 1991. No fuel storage tank or V/E fuel cells were drained and flushed prior to introduction of JP-8 fuel. This procedure resulted in a commingling of JP-8 fuel with existing diesel fuel. As of 31 July 1990 approximately 4,700,000 gallons of JP-8 fuel had been dispensed to user units at Ft. Bliss and at Ft. Irwin National Training Center (NTC) in California. Three areas of concern arose from the beginning of the program: (1) plugging of fuel filters, (2) loss of power, and (3) overheating. The use of JP-8 fuel did not cause or exacerbate any V/E fuel filter plugging. Where power loss was apparent, generally it was commensurate with the difference in heating values between JP-8 and diesel fuel. The V/E at Ft. Bliss operated satisfactorily with the JP-8 fuel with no alterations, mechanical or otherwise, having to be made to any engines or fuel systems. There were no major differences in fuel procurement costs, V/E fuel consumption, AOAP-directed oil changes, and fuel-wetted component replacements.

Butler, W.E.; Alvarez, R.A.; Yost, D.M.; Westbrook, S.R.; Buckingham, J.P.

1990-12-01T23:59:59.000Z

267

Environmental disaster or just a drop in the bucket: Texas scientists on the real effects of the Deewater Horizon oil spill  

E-Print Network (OSTI)

Winter 2011 tx H2O 3 or just a drop in thebucket?Texas scientists on the real e#31;ects of the Deepwater Horizon oil spill 4 tx H2O Winter 2011 Environmental Disaster Continued What if gasoline pumped into cars, seafood eaten at restaurants... but forgo#27;en as the wreckage of the Deepwater Horizon MC#31;#30;#31; drilling platform sank into its waters. A crude awakening Like any large oil spill, this one took its toll in many ways. Eleven BP employees on the rig died in the explosion...

Lee, Leslie

2011-01-01T23:59:59.000Z

268

~txF7D.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THURSDAY THURSDAY OCTOBER 20, 2011 + + + + + The Electricity Advisory Committee met, in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 8:00 a.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair RICK BOWEN, Alcoa RALPH CAVANAGH, Natural Resources Defense Council THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings

269

SSA annual Meeting Announcement - Austin, TX  

Science Journals Connector (OSTI)

...reported here were obtained assuming an average radiation factor of G.6. Characteristic frequencies (boatwTIght, 1981) were usec to calculate relative estimates of fault size. All three moment estimates resulted in approximate linear increases of log...

270

,"TX, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

2R9911RTXSF1","RNGR9908RTXSF1","RNGR9909RTXSF1","RNGR9910RTXSF1" "Date","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Texas--State...

271

Micro-Grids for Colonias (TX)  

SciTech Connect

This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

2012-07-31T23:59:59.000Z

272

SSA annual Meeting Announcement - Austin, TX  

Science Journals Connector (OSTI)

...Murphy, Earth Sciences Branch, Office of Nuclear Regulatory Research, U. S. Nuclear Regu- latory Commision, Mail Stop 113055, Washington, D...P-coda and LG waves from underground nuclear explosions in Eurasia W. Mitronovas...

273

University of Texas, Austin Austin, TX 78712  

E-Print Network (OSTI)

to this problem including; toxic materials, waste and wastewater, emissions and greenhouse gases, energy usage industrial activities in the US, the contribution of manu- facturing to various environmental impacts waste, 3 energy, and 4 carbon emissions. Manufacturing is also a heavy user of water, and there have

Gutowski, Timothy

274

Deepwater Ports: Issue Mixes Supertankers, Land Policy  

Science Journals Connector (OSTI)

...building of terminals offshore in naturally deep...into the prevailing wind and sea; (ii...extends to a tank farm ashore; (iv) a...proposed Louisiana Offshore Oil Port (LOOP...the licensing of offshore termi-nals and...facilities (tank farms and pipeline) clearly...

Luther J. Carter

1973-08-31T23:59:59.000Z

275

Deepwater Horizon Disaster Professor Satish Nagarajaiah  

E-Print Network (OSTI)

;Collapse / Oil Spill Offshore and Marine Systems Research @ Rice Source: NYT/AP/flickr #12;Horizon Before Offshore and Marine Systems Research @ Rice on any individual or company or industry or government. #12;#12;Space Shuttle Columbia Disaster Offshore and Marine Systems Research @ Rice #12;Space Shuttle Columbia

Nagarajaiah, Satish

276

Deepwater Internal Wave Study and Application  

E-Print Network (OSTI)

and ocean currents. Although their effects on floating drilling platforms and their riser systems have not been extensively studied, in the past these waves have seriously disrupted offshore exploration and drilling operations. In particular, a drill pipe...

Jiang, Lei

2013-12-10T23:59:59.000Z

277

Microsoft Word - UDAC MEMBER FINAL ROSTER.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2007 - 2008 Ultra-Deepwater Advisory Committee Members Mr. Kent F. Abadie Manager, Development and Production Shell Exploration & Production Company New Orleans, LA Mr. Ronald G. Bland Shared Technologies Manager Baker Hughes Drilling Fluids Houston, TX Mr. Raymond G. Charles Area Exploration & Geoscience Manager ExxonMobil Exploration Company Houston, TX Mr. Quenton R.Dokken Executive Director Gulf of Mexico Foundation Corpus Christi, TX Dr. Joe R. Fowler* President Stress Engineering Services, Inc. Houston, TX Mr. Phil Grossweiler* Energy Industry Consultant M&H Energy Services Houston, TX Mr. Michael Idelchik Vice President, Advanced Technologies General Electric Company Niskayuna, NY Dr. Luc T. Ikelle* Robert R. Berg Professor Texas A&M University College Station,

278

Neptune Beach, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

30.311908°, -81.3964734° 30.311908°, -81.3964734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.311908,"lon":-81.3964734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Millimeter and Near-Infrared Observations of Neptune's Atmospheric Dynamics  

E-Print Network (OSTI)

Steffes 1996) and a solar abundance or less of NH 3 (RomaniSteffes 1996) and using a solar abundance of nitrogen in NHof 0.1 times the solar abundance, from observations of the

Cook, Statia Honora Luszcz

2012-01-01T23:59:59.000Z

280

Possibility of detecting magnetospheric radio bursts from Uranus and Neptune  

Science Journals Connector (OSTI)

... see from Fig. 1 that Jupiter and Saturn may radiate 1?5% of the solar wind energy input into the magnetosphere while Earth may radiate only 0.1%. These percentages must ...

C. F. KENNEL; J. E. MAGGS

1976-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALENDAR AND NEXT STEPS CALENDAR AND NEXT STEPS ELENA MELCHERT Committee Manager Ultra-Deepwater Advisory Committee SEPTEMBER 26, 2012 Ultra-Deepwater Advisory Committee  Committee Calendar - September 26, 2012: 20th UDAC Meeting in Houston, TX * Review the Secretary of Energy's 2013 Annual Plan * Establish ad hoc Review Subcommittees that will provide in depth review of the Annual Plan * Develop finding and draft recommendations for the Committee to discuss and review at October 2012 meeting - October 23 - 24, 2012: 21st UDAC Meeting in Houston, TX * Ad hoc Review Subcommittees will present findings and recommendations to the full Committee for discussion * Committee will focus on developing final recommendations - November 1, 2012: 22nd UDAC Meeting via Conference call

282

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

283

RAPID/Roadmap/3-TX-e | Open Energy Information  

Open Energy Info (EERE)

session of the legislature, the commissioner must report on the status of the exploration, development, and production of geothermal energy and associated resources under...

284

RAPID/Roadmap/13-TX-a | Open Energy Information  

Open Energy Info (EERE)

Dune Rules Sec. 15.3(d)). Note: Under the Beach Dune Rules Sec. 15.3(s)(2)(a) the exploration for and production of oil and gas is exempted from the Dune Protection permit...

285

RAPID/Roadmap/3-TX-f | Open Energy Information  

Open Energy Info (EERE)

session of the legislature, the commissioner must report on the status of the exploration, development, and production of geothermal energy and associated resources under...

286

Freeport, TX Liquefied Natural Gas Exports Price to Brazil (Dollars...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.74 11.19 --...

287

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0...

288

Freeport, TX LNG Imports (Price) from Yemen (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 10.30...

289

txH20; Volume 6, Number 1 (Complete)  

E-Print Network (OSTI)

impaired water bodies with stakeholder-driven WPPs 18 I A watershed blueprint Partners work together to restore Arroyo Colorado?s health 20 I The battle of bacteria Agencies, stakeholders focusing on restoring water quality 22 I Lone Star Healthy... contami- nation of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney...

Wythe, Kathy

2010-01-01T23:59:59.000Z

290

txH2O: Volume 6, Number 1 (Complete)  

E-Print Network (OSTI)

impaired water bodies with stakeholder-driven WPPs 18 I A watershed blueprint Partners work together to restore Arroyo Colorado?s health 20 I The battle of bacteria Agencies, stakeholders focusing on restoring water quality 22 I Lone Star Healthy... contami- nation of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney...

Texas Water Resources Institute

2010-01-01T23:59:59.000Z

291

T>x Qoooo&>9 m Ris-M-2733  

E-Print Network (OSTI)

at the Desy synchroton in Hamburg. This report describes a new instrumentation based on a personal computer

292

RAPID/Roadmap/12-TX-a | Open Energy Information  

Open Energy Info (EERE)

take, or kill, or attempt to capture, trap, take, or kill, endangered or threatened fish or wildlife. (Texas Parks and Wildlife Code 68). "Take" means collect, hook, hunt,...

293

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

Office of Legacy Management (LM)

Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site. LMSS10631. March 2014 Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings...

294

txH2O: Volume 5, Number 2 (Complete)  

E-Print Network (OSTI)

water use in the land- scape, and capture and reuse water,? Harris said. ?We want families to learn how to use water wisely and efficiently.? For more information about water conserva- tion and rainwater harvesting, visit http://fcs. tamu... optional with drip irrigation), and 7) distribu- tion to plants, wildlife, birds, livestock, or in-home uses. Incentives such as no sales tax on supplies encourage rainwater harvesting. In January 2007, the Texas Commission on Environmental Quality...

Texas Water Resources Institute

2009-01-01T23:59:59.000Z

295

txH20: Volume 8, Number 3 (Complete)  

E-Print Network (OSTI)

in the Metroplex are looking at spending millions of dollars to build water and wastewater treatment plants because of population growth. ?If many people would harvest rainwater and use that for irrigation, that would be a huge savings, so cities might be able... tolerance, water reclamation and water e#23;ciency. ? Six new campus buildings are using harvested rainwater and air conditioner condensate to water their landscapes. I hope you enjoying reading this issue about a timely topic. As always, let?s continue...

Wythe, Kathy

2013-01-01T23:59:59.000Z

296

RAPID/Roadmap/18-TX-a | Open Energy Information  

Open Energy Info (EERE)

that could result from the release of harmful substances stored in underground storage tanks (USTs) and provides for the protection of human health and safety as well as...

297

txH2O: Volume 3, Number 1 (Complete)  

E-Print Network (OSTI)

deposits?remnants of the shallow Permian Sea that once covered the area?in soils and rocks. The reduced quality and quantity has also harmed the river basin?s biodiversity. These problems have per- sisted for many years and have only been intensified... be increased.? According to Dr. Charles Hart, project director, the project?s first objective is establishing a research baseline for the watershed by identifying and evaluating the river basin?s physical features, from both a historical view as well...

Texas Water Resources Institute

2007-01-01T23:59:59.000Z

298

txH2O: Volume 2, Number 2 (Complete)  

E-Print Network (OSTI)

Summerlin Message from the DirectorDr. C. Allan Jones A n important component of restoring and maintaining water quality is the Total Maximum Daily Load (TMDL) Program, authorized by and created to fulfill the requirements of Section 303(d) of the federal...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

299

txH2O: Volume 2, Number 1 (Complete)  

E-Print Network (OSTI)

help control nonpoint source pollution in Texas Got Manure? Technologies reducing phosphorus in dairy wastes West Texas Rain Rainwater harvesting demonstration sites save water and money Investing in the Future TWRI awards Mills Scholarships... loading, logging, and agricultural and residential development, the consen- sus of the workshop participants was that some restoration of the timing, magnitude and duration of flows in Big Cypress Creek is critical to the sustain- ability of the lake...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

300

txH20: Volume 6, Number 2 (Complete)  

E-Print Network (OSTI)

participation matters and stories from a few folks who?ve proved it 20 I Deep in the forests Program works to protect water quality through forestry practices 23 I Rainwater for the future Rainwater harvesting increases in popularity across the state... ecosystem there has adapted to it. Naturally occurring microbes thrive on those small amounts of crude, and acres of deep coral forests live o#15; of the seeps, McKinney said. However, massive amounts of oil released in a short amount of time...

Wythe, Kathy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

txH2O: Volume 6, Number 2 (Complete)  

E-Print Network (OSTI)

participation matters and stories from a few folks who?ve proved it 20 I Deep in the forests Program works to protect water quality through forestry practices 23 I Rainwater for the future Rainwater harvesting increases in popularity across the state... ecosystem there has adapted to it. Naturally occurring microbes thrive on those small amounts of crude, and acres of deep coral forests live o#15; of the seeps, McKinney said. However, massive amounts of oil released in a short amount of time...

Texas Water Resources Institute

2011-01-01T23:59:59.000Z

302

August 15, 2013 RX/TX BARGAINING UPDATE 11  

E-Print Network (OSTI)

years. In addition, UPTE has yet to meaningfully negotiate over UC's pension reforms that will protect reform designed to preserve the long-term viability of the retirement programs, so that UC can continue already agreed to these pension reforms, which also apply to non- represented faculty and staff. · Good

Leistikow, Bruce N.

303

txH2O: Volume 4, Number 3 (Complete)  

E-Print Network (OSTI)

. In this position, I will focus on improving urban and suburban water management. I have enjoyed my 20 years in administration positions with Texas AgriLife Research (Texas Agricultural Experiment Station). I am proud of the accomplishments of the institute..., the utility can reverse the process and withdraw the same water out of the Carrizo, into its water delivery system, and on to its customers. This type of water management system is called aquifer storage and recovery (ASR). Although definitions vary, ASR...

Texas Water Resources Institute

2008-01-01T23:59:59.000Z

304

RAPID/Roadmap/14-TX-d | Open Energy Information  

Open Energy Info (EERE)

Texas (RRC) or the Texas Commission on Environmental Quality (TCEQ) reviews and issues Water Quality Certificates. Under the Memorandum of Understanding between the Railroad...

305

txH20: Volume 7, Number 3 (Complete)  

E-Print Network (OSTI)

Texas A&M AgriLife Research Texas A&M AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences In this issue: ReLevant research: ensuring water supplies Vadose zone modeling, desalination technology...-based technology. In South Texas, scientists tested an innovative technology for desalinating brackish water, learning much about what worked and what didn?t. Technology transfer#24;that critical last step of ge#26;ing science out to the public#24;is...

Wythe, Kathy

2012-01-01T23:59:59.000Z

306

txH2O: Volume 3, Number 2 (Complete)  

E-Print Network (OSTI)

the state to become involved. Through other bills, the Legislature created seven new groundwater districts, addressed flooding and desalination, dealt with rainwater harvesting and irrigation and provided significant appropriations to implement various water... budgets, monitoring research and ensuring that deadlines are met. One of the project managers? primary functions is to align interested research scientists from the Texas Agricultural Experiment Station and other universi- ties and Texas Cooperative...

Texas Water Resources Institute

2007-01-01T23:59:59.000Z

307

RAPID/Roadmap/7-TX-c | Open Energy Information  

Open Energy Info (EERE)

utility and a "retail electric utility". A "retail electric utility" means a person, political subdivision, electric cooperative, or agency that operates, maintains, or controls...

308

Depositional systems distribution of the lower Oligocene Vicksburg Formation, TX  

SciTech Connect

The lower Oligocene Vicksburg Formation of Texas is situated between the upper Eocene Jackson Group and the upper Oligocene Frio Formation. The paleogeography of the Texas Gulf coastal plain during the early Oligocene is typical of a progradational passive continental margin. However, a detailed regional depositional systems analysis of stratigraphic units, such as the Vicksburg, within a mature petroleum basin can yield results beneficial in both exploration and development. Stratigraphic plays are determined from the distribution of depositional systems, and reservoir characteristics are heavily influenced by conditions of sedimentation. Two primary depocenters (and exploration fairways) of the Texas Vicksburg were the Houston Embayment and the Rio Grande Embayment; they were separated by a deep-rooted structural nose in central Texas: the San Marcos arch. Within the embayments, deltaic depositional systems merged along strike with barrier/strand plain systems. Updip, fluvial systems traversed coastal plain units. On the seaward edge of the paralic systems, sand and mud deposits prograded across, and built up over, the relict Jackson shelf and shelf margin. Contemporaneous growth faulting controlled deltaic depositional patterns in the Rio Grande Embayment and, to a lesser degree, in the Houston Embayment. A barrier/strand plain system within an interdeltaic coastal bight extended across the northern flank of the San Marcos arch. Several minor wave-dominated delta complexes were interspersed within this regional setting. The southern flank of the arch was influenced by the fluvial systems of the Rio Grande Embayment that established another wave-dominated delta. Deposition of the Vicksburg progradational paralic sediments was initiated seaward of the Jackson coastal position. A brief, minor transgression interrupted the progradational pattern during middle Vicksburg deposition.

Coleman, J.; Galloway, W.E. (Univ. of Texas, Austin (USA))

1990-05-01T23:59:59.000Z

309

txH20: Volume 7, Number 2 (Complete)  

E-Print Network (OSTI)

to come from,? Mace said. According to Dr. Michael Hightower of Sandia National Laboratories in Albuquerque, NM, desalination use is growing by #23;#24; percent a year and water reuse by #23;#20; percent in the United States. #31;at diversi#28...;cation is important, he said, because the country is ?stressing its surface water and groundwater sources.? Although cost is a hindrance to desalination, he said, that cost is decreasing while the cost of fresh water production is increasing. Robert...

Wythe, Kathy

2012-01-01T23:59:59.000Z

310

txH2O: Volume 9, Number 1 (Complete)  

E-Print Network (OSTI)

Runoff Water Table Unsaturated Soil Lake Infiltration Kevin Wagner Message from the Director Groundwater is the largest source of water in Texas, comprising almost 60 percent of water use in the state. The Ogallala Aquifer alone supplies 40 percent... will provide additional drinking water for thirsty communities. Storage of water supplies underground where the water will not be subject to evaporation through aquifer storage and recovery is yet another important tool for helping Texans meet future water...

Wythe, Kathy

2014-01-01T23:59:59.000Z

311

RAPID/Roadmap/8-TX-f | Open Energy Information  

Open Energy Info (EERE)

to the utility system using pre-certified equipment, the protective settings and operations shall be those specified by the utility; Developer is responsible for...

312

RAPID/Roadmap/5-TX-a | Open Energy Information  

Open Energy Info (EERE)

Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Resources SET VARIABLES FOR USE WITH RESOURCE QUERY Well Field Texas...

313

Acoustic characteristics of bay bottom sediments in Lavaca Bay, TX  

E-Print Network (OSTI)

METHODS An Edgetech X-Star chirp sonar was used to gather subbottom acoustic profile data from Lavaca Bay. The sonar fish was towed on a short line next to the side of the boat, about 0.5 m below the water surface. The data were recorded onto 4 mm... middle Lavaca Bay (just above Chocolate Bay) and Keller bay, which have lines running southwest to northeast (Fig. 1). The subbottom data were plotted and examined on a computer using SonarWeb, a seismic processing program from Chesapeake...

Patch, Mary Catherine

2005-08-29T23:59:59.000Z

314

txH20: Volume 7, Number 1 (Complete)  

E-Print Network (OSTI)

companies and other interests. #31;e bill also required the TWDB to publish a compre- hensive state water plan every #30;ve years and base its projections on a #21;#24;-year planning horizon. Mace said the drought in #23;#22;#22;#19; served as a wake...Texas AgriLife Research Texas AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences Fall 2011 Texas drought: Now and then Also in this issue . . . A timeline of drought in Texas, Re-water, Drought detective...

Wythe, Kathy

2011-01-01T23:59:59.000Z

315

txH2O: Volume 2, Number 3 (Complete)  

E-Print Network (OSTI)

the Trinity River. This initiative will bring together the talents and knowledge of these organizations and others to improve rural and urban streams, reservoirs and watersheds; to enhance wildlife habitat; and to expand ecotourism opportu- nities...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

316

Houston-Galveston, TX Alternative Fuel Vehicle (AFV) Incentives  

Energy.gov (U.S. Department of Energy (DOE))

The Houston-Galveston Area Council provides Congestion Mitigation and Air Quality (CMAQ) program grants through the Greater Houston Clean Cities Coalition for 33% of the cost of a new original...

317

RAPID/Roadmap/8-TX-b | Open Energy Information  

Open Energy Info (EERE)

of its intention to pursue the project by proceeding to the Full Interconnection Study (FIS). After 180 days, the results of the Screening Study will expire, and the GINR will be...

318

TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

8 7 2005-2013 Adjustments 0 0 0 9 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

319

TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...  

Annual Energy Outlook 2012 (EIA)

71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

320

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

322

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

323

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

324

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 354 155 916 331 57 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld...

325

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

8,489 2,977 1,206 NA 2000's NA NA 5,100 3,036 718 0 0 0 18,923 4,262 2010's 1,371 6,871 0 0 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to...

326

txH20: Volume 6, Number 3 (Complete)  

E-Print Network (OSTI)

and drought. For example, angelonia, petunia, vinca, ornamental peppers, and blue plumbago are moderately tolerant to salt stress. #29;ey can be safely irrigated with municipal reclaimed water without any foliar damage, although plants would become a li... Dr. Genhua Niu of El Paso is identifying drought, salt, and heat-tolerant landscape plants more suitable for El Paso?s environment in her research. The hot, dry climate and saltier water of El Paso can be a landscaper?s nightmare...

Wythe, Kathy

2011-01-01T23:59:59.000Z

327

,"TX, RRC District 3 Onshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Excel File Name:","ngenradngdcurtx03a.xls" ,"Available from Web Page:","http:www.eia.govdnavngngenradngdcurtx03a.htm" ,"Source:","Energy Information...

328

RAPID/Roadmap/7-TX-a | Open Energy Information  

Open Energy Info (EERE)

with the Federal Energy Regulatory Commission (FERC) after the effective date of this section, copies of any information, excluding responses to interrogatories, that was filed...

329

RAPID/Roadmap/15-TX-a | Open Energy Information  

Open Energy Info (EERE)

of such notice and any affidavit to the EPA regional administrator in Dallas, all local air pollution control agencies with jurisdiction in the county in which the construction...

330

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect

The CRS Group, Inc. is pleased to submit this report on the Energy Engineering Analysis Program (EEAP) for Fort Bliss, Texas. This work summarizes the present completion of the increments of the Fort Bliss EEAP where: (1) Data gathering and field inspections; (2) Analysis, project identification, technical feasibility and economic evaluations; (3) Preparation of DD Forms 1391 and POB`s where applicable and final documentation of results and recommendations.

NONE

1983-01-01T23:59:59.000Z

331

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect

This is a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM`s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1984-04-01T23:59:59.000Z

332

Dallas-Fort Worth, TX Clean Taxi Replacement Incentive  

Energy.gov (U.S. Department of Energy (DOE))

The North Central Texas Council of Governments has partnered with the U.S. Environmental Protection Agency and the City of Dallas to develop the North Texas Green & Go Clean Taxi Partnership as...

333

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect

This summary provides a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results to date are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM1s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates, and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1983-09-01T23:59:59.000Z

334

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 th Meeting: Ultra-Deepwater Advisory Committee Hyatt North Houston, Houston, TX Wednesday, September 26, 2012 RPSEA Administered Cost Share Research Overview: Ultra-Deepwater Program rpsea.org James Pappas, P.E. Vice President, Ultra-Deepwater Programs jpappas@rpsea.org (281) 690-5511 rpsea.org 2 Outline * Current UDW Program Status * Technical Accomplishments 2011 - 2012 * Accomplishments * Significant Findings * Safety & Environment Impact * Plan Forward * 2011 Annual Plan Solicitations * 2012 Annual Plan Progress * Current Schedule 2 3 Current UDW Program Status 4 Selected Project Totals 2007 2008 2009 2010 Total Universities 5 4 1 3 13 (21%) For Profits 9* 10 9 15 43 (70%) Non Profits 3 0 0 1 4 (7%) National Labs 0 0 1 0 1 (2%) TOTAL SELECTED

335

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 rd Ultra-Deepwater Advisory Committee Meeting NETL Office, Sugar Land, TX Tuesday, September 17, 2013 RPSEA Administered Cost Share Research Overview: Ultra-Deepwater Program rpsea.org James Pappas, P.E. Vice President, Ultra-Deepwater Programs jpappas@rpsea.org (281) 690-5511 rpsea.org 2 Outline o Current UDW Program Status o Technical Accomplishments FY 2013 * Accomplishments * Significant Findings * Safety & Environment Impact o Plan Forward * 2012 Solicitation - Selection Progress * Current Schedule 2 3 Current UDW Program Status 4 Selected Project Totals 2007 2008 2009 2010 2011 Total Universities 5 4 1 3 0 13 (19%) For Profits 9* 10 9 15 7 50 (74%) Non Profits 3 0 0 1 0 4 (6%) National Labs 0 0 1 0 0 1 (1%) TOTAL SELECTED 17* 14 11 19 7** 68

336

Estimated Business Interruptions Losses of the Deepwater Horizon Oil Spill.  

E-Print Network (OSTI)

??A generalized framework of Economic Analysis of natural and man-made disasters is applied to the estimation of business interruption losses associated with an oil spill. (more)

Vargas, Vanessa

2011-01-01T23:59:59.000Z

337

The Temperature Prediction in Deepwater Drilling of Vertical Well  

E-Print Network (OSTI)

.................................................................................................. 30 3.4 Geothermal Gradient ................................................................................ 30 3.5 Overall Heat Transfer Coefficient ............................................................ 30... ............................................................................................ 47 vii ? Page 5.2 Conservation Of Energy ........................................................................... 47 5.3 Steady-state Heat Transfer Model...

Feng, Ming

2012-07-16T23:59:59.000Z

338

MMS 2006-074 Exploratory Study of Deepwater Currents  

E-Print Network (OSTI)

: Technical Report Authors Kathleen Donohue Peter Hamilton Kevin Leaman Robert Leben Mark Prater Evans Waddell) 736-2519 or 1-800-200-GULF CITATION Donohue, K., P. Hamilton, K. Leaman, R. Leben, M. Prater, D.R and are greatly appreciated. SAIC program personnel, Paul Blankinship (Data Management) and James Singer (Field

Rhode Island, University of

339

MMS 2006-073 Exploratory Study of Deepwater Currents  

E-Print Network (OSTI)

: Executive Summary Authors Kathleen Donohue Peter Hamilton Kevin Leaman Robert Leben Mark Prater Evans) 736-2519 or 1-800-200-GULF CITATION Donohue, K., P. Hamilton, K. Leaman, R. Leben, M. Prater, D.R appreciated. SAIC program personnel, Paul Blankinship (Data Management) and James Singer (Field Operations

Rhode Island, University of

340

CRUISE REPORT DEEPWATER HORIZON CRUISE RAPID GULF SURVEY  

E-Print Network (OSTI)

regarding the presence or absence of oil and/or tar balls in offshore regions where connectivity to the Loop for transport of oil offshore. At the time, NOAA's Office of Response and Restoration (OR&R) predicted limited presence of oil, sheens, and/or tar balls offshore but did not have observational confirmation (Fig. 2

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Deepwater Horizon Study Group Working Paper January 2011  

E-Print Network (OSTI)

-scale study of chemically-dispersed Alaska North Slope crude oil artificially weathered __________________________________________________________________________________ The Tradeoffs of Chemical Dispersant Use in Marine Oil Spills Artin Laleian & Thomas Oil Spill Chemical dispersants are solvents that move oil from the water

Silver, Whendee

342

Solutions and procedures to assure the flow in deepwater conditions  

SciTech Connect

Petrobras has been developing deep water oil fields located in Campos Basin, a vanguard subsea project which faces big challenges, one of them wax deposition in production flowlines. So, since 1990, Petrobras has been studying methods to prevent and remove paraffin-wax deposits. Tests of techniques based on chemical inhibition of crystal growth, thermo-chemical cleaning (SGN), mechanical cleaning (pigging), electrical heating and thermal insulation were done and the main results obtained at CENPES (Petrobras R and D Center) started to be used in the field in 1993. This paper presents solutions and procedures which has been used to minimize oil production losses at Campos Basin -- Brazil.

Gomes, M.G.F.M.; Pereira, F.B.; Lino, A.C.F.

1996-12-31T23:59:59.000Z

343

Science in support of the Deepwater Horizon response  

Science Journals Connector (OSTI)

...are total discharge: oil plus liquid natural gas. The total discharge (oil + liquid...science and views. Protecting intellectual capital is also important. However, some scientists...48 Redmond MC Valentine DL ( 2012 ) Natural gas and temperature structured...

Jane Lubchenco; Marcia K. McNutt; Gabrielle Dreyfus; Steven A. Murawski; David M. Kennedy; Paul T. Anastas; Steven Chu; Tom Hunter

2012-01-01T23:59:59.000Z

344

Submesoscale dispersion in the vicinity of the Deepwater Horizon spill  

Science Journals Connector (OSTI)

...Lagrangian position and velocity increments by simultaneously...two-point Lagrangian velocity and displacement statistics...in the presence of wind and waves...contemporaneous position and velocity data at a...sea-surface salinity maps for S 1 (Upper...times. Center of mass trajectories for...

Andrew C. Poje; Tamay M. zgkmen; Bruce L. Lipphardt; Jr.; Brian K. Haus; Edward H. Ryan; Angelique C. Haza; Gregg A. Jacobs; A. J. H. M. Reniers; Maria Josefina Olascoaga; Guillaume Novelli; Annalisa Griffa; Francisco J. Beron-Vera; Shuyi S. Chen; Emanuel Coelho; Patrick J. Hogan; Albert D. Kirwan; Jr.; Helga S. Huntley; Arthur J. Mariano

2014-01-01T23:59:59.000Z

345

Mississippi Canyon 252 Incident NRDA Tier 1 for Deepwater Communities  

E-Print Network (OSTI)

, and are visible on Google Earth. With 3D seismic data obtained by the oil and gas industry for geophysical invertebrates, and very small abundant planktivorous fishes in the mesophotic habitats. Oil fouling and death

346

Understanding the thermal evolution of deep-water continental margins  

Science Journals Connector (OSTI)

... exploration risks are potentially much higher. The bulk of major hydrocarbon fields located in shallow-water depths (that is, up to 200 m) have probably been located, if one ... Over the past ten years, there has been a relentless drive to explore ever-increasing water depths. This drive has been stimulated by an engineering technology that has allowed us ...

Nicky White; Mark Thompson; Tony Barwise

2003-11-20T23:59:59.000Z

347

Science in support of the Deepwater Horizon response  

Science Journals Connector (OSTI)

...Protection Agency (EPA) were well-versed in oil response and remediation and the National Response Team responded quickly, the...management tool previously available only to responders, the innovative ERMA, was rapidly transformed into a publicly accessible...

Jane Lubchenco; Marcia K. McNutt; Gabrielle Dreyfus; Steven A. Murawski; David M. Kennedy; Paul T. Anastas; Steven Chu; Tom Hunter

2012-01-01T23:59:59.000Z

348

deepwater_current_proj | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Martin 09121-3300-06 High Resolution 3D Laser Imaging for Inspection, Maintenance, Repair, and Operations 3D at Depth, LLC 09121-3300-08 Sensors and Processing for Pipe,...

349

Ultra-Deepwater Advisory Committee Elena Melchert Acting Designated...  

Office of Environmental Management (EM)

of gas and liquid leak in open water. * Heat leak detection and mapping during offshore pipeline inspection. * Independent of water clarity. o Safety & Environment Impact * Can...

350

Experimental and numerical analysis of a deepwater mini-TLP  

E-Print Network (OSTI)

As the quest for oil and gas resources drives the industry to ever deeper waters, model testing still represents an essential step after numerical modeling when designing offshore platforms in these hostile environments. In an attempt to better...

Guichard, Aurelien

2012-06-07T23:59:59.000Z

351

Air quality implications of the Deepwater Horizon oil spill  

Science Journals Connector (OSTI)

...products rather than wind-driven oily spray...Forecasting/Chemistry (WRF-CHEM) regional...for June 10 when the wind direction was from...Time (UTC) (3 pm local time), June 10...horizontal resolution WRF-CHEM model results...periods with onshore winds from over the spill...

Ann M. Middlebrook; Daniel M. Murphy; Ravan Ahmadov; Elliot L. Atlas; Roya Bahreini; Donald R. Blake; Jerome Brioude; Joost A. de Gouw; Fred C. Fehsenfeld; Gregory J. Frost; John S. Holloway; Daniel A. Lack; Justin M. Langridge; Rich A. Lueb; Stuart A. McKeen; James F. Meagher; Simone Meinardi; J. Andrew Neuman; John B. Nowak; David D. Parrish; Jeff Peischl; Anne E. Perring; Ilana B. Pollack; James M. Roberts; Thomas B. Ryerson; Joshua P. Schwarz; J. Ryan Spackman; Carsten Warneke; A. R. Ravishankara

2012-01-01T23:59:59.000Z

352

Development of design tool for statically equivalent deepwater mooring systems  

E-Print Network (OSTI)

tests is the depth and spatial limitations in wave basins. It is therefore important to design and build equivalent mooring systems to ensure that the static properties (global restoring forces and global stiffness) of the prototype floater are matched...

Udoh, Ikpoto Enefiok

2009-05-15T23:59:59.000Z

353

Interlaboratory Analytical Comparison Study to Support Deepwater Horizon  

E-Print Network (OSTI)

of Mexico, a large number of coastal sediment and tissue (i.e., oysters) samples have been collected outside of thousands of barrels of oil per day from the seafloor into the Gulf of Mexico. In what has become the worst that NIST coordinate interlaboratory comparison studies with sediment, crude oil, and bivalve tissue being

354

FE's Ultra-Deepwater Program focuses on spill prevention, safety...  

Office of Environmental Management (EM)

6, 2014 - 1:44pm Addthis Nearly everyone recognizes that prudent development of domestic oil and natural gas resources will continue to be an important part of U.S. energy strategy...

355

FRONTC~1.ai  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Fourth Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Mexico Qatar Brazil Norway Yemen Portugal POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett,

356

DOE/FE-0552  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Second Quarter Report 2011 LNG LNG Japan Trinidad and Tobago Canada Yemen Egypt Mexico Peru India South Korea Qatar Spain China Brazil POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater

357

DOE/FE-0558  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports First Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Qatar Brazil Egypt Norway India POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett,

358

INSIDE COVER MAP (JUNE 2012).pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 60 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Second Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Qatar POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett, Massachusetts 20.

359

DOE/FE-0554  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Third Quarter Report 2011 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Nigeria Qatar China Brazil POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett,

360

FRONTCOVER (3rd Qtr 2012).pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Third Quarter Report 2012 LNG LNG Japan Trinidad and Tobago Canada Mexico Qatar POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater Port 19. Everett, Massachusetts 20. Cove

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FRONTCOVER (4Q11).pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Prepared by: U.S. Department of Energy Natural Gas Imports and Exports Fourth Quarter Report 2011 LNG LNG Japan Trinidad and Tobago Canada Yemen Mexico Qatar China Brazil Chile Egypt South Korea Norway POINTS OF IMPORT 1. Sumas, Washington 2. Eastport, Idaho 3. Whitlash / Babb / Port of Del Bonita / Sweetgrass, Montana 4. Port of Morgan, Montana / Portal, North Dakota 5. Sherwood, North Dakota 6. Noyes / Warroad, Minnesota 7. Detroit / St. Clair / Marysville, Michigan 8. Niagara Falls / Grand Island, New York 9. Waddington, New York 10. Massena / Champlain, New York 11. Highgate Springs, Vermont 12. Pittsburg, New Hampshire 13. Calais, Maine 14. Ogilby, California 15. Alamo / Hidalgo, Texas 16. McAllen / Galvan Ranch, Texas 17. Northeast Gateway Deepwater Port 18. Neptune Deepwater

362

MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test |  

Open Energy Info (EERE)

Renewable Energy 1 10 Scale Prototype Pilot Test Renewable Energy 1 10 Scale Prototype Pilot Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.7123,"lon":-0.38306,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

363

John Couch Adams's Asperger syndrome and the British non-discovery of Neptune  

Science Journals Connector (OSTI)

...Verrier's paper (in the French Academy's journal Comptes Rendus) the following June, which finally triggered the surreptitious British search for the planet. Related to it is the problem of explaining why, even after the search was launched, it...

2007-01-01T23:59:59.000Z

364

Formation, structure and habitability of super-Earth and sub-Neptune exoplanets  

E-Print Network (OSTI)

Insights into a distant exoplanet's interior are possible given a synergy between models and observations. Spectral observations of a star's radial velocity wobble induced by an orbiting planet's gravitational pull measure ...

Rogers, Leslie Anne

2012-01-01T23:59:59.000Z

365

Ultra-cold spin-polarized jet for the NEPTUN - A experiment at UNK  

SciTech Connect

A high-intensity jet of proton-spin-polarized atomic hydrogen is being designed for use as an internal target in the 400 GeV and 3 TeV UNK accelerator. An ultra-cold (300 mK) helium-film-coated cell located in the gradient of a 12 T solenoid will produce a beam of electron-spin-polarized hydrogen atoms. The beam transport components include a quasi-parabolic hydrogen-focusing mirror, an RF transition unit and a superconducting sextupole. The target thickness design goal is 10{sup 14} protons cm{sup {minus}2}.

Nurushev, T.S.; Bywater, J.A.; Court, G.R. [and others

1993-04-01T23:59:59.000Z

366

SPE Western Regional Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UDAC Calendar and Next Steps UDAC Calendar and Next Steps Elena Melchert Committee Manager Ultra-Deepwater Advisory Committee February 23, 2011 Ultra-Deepwater Advisory Committee  Committee Calendar - February/March 2011: Subcommittee meetings - April 6-7, 2011, 8am-5pm, 15 th UDAC Meeting in Houston, TX - April 8, 2011: Editing Subcommittee meets to prepare final report of UDAC comments and recommendations - April 16, 2011, Editing Subcommittee sends final report to the Committee Manager for distribution to the UDAC members - April 19, 2011, 10:00 am CDT, 16 th UDAC Meeting, Conference Call in Washington, DC to vote on Editing Subcommittee report - April 26, 2011 Chair sends UDAC final report of comments & recommendations to the Designated Federal Officer for delivery to the Secretary of Energy

367

Microsoft Word - Final Minutes of UDAC Mtg Sep16-17 2009.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 16-17, 2009 September 16-17, 2009 Eleventh Meeting Meeting Minutes A Federal Advisory Committee to the U.S. Secretary of Energy 3 Minutes of the 11th Meeting of the Ultra-Deepwater Advisory Committee (San Antonio, TX, September 16-17, 2009) Call to Order The meeting was called to order 1 at 1:30 PM on September 16 th by Mr. Arnis Judzis, Vice Chair. As the Acting Chair of the meeting (Chair), he reminded all that the purpose of this meeting was for the Ultra-Deepwater Advisory Committee (UDAC) to begin review the DOE Draft 2010 Annual Plan in order to develop written recommendations and advice to the Secretary of Energy. Committee Business: Change of Membership Ms. Elena Melchert, DOE Committee Manager (CM), informed the UDAC that

368

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

369

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

370

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

371

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

372

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

373

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

374

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

375

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

376

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

377

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

378

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

379

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

380

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

382

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

383

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

384

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

385

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

386

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

387

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

388

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

389

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

390

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

391

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

392

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

393

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

394

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

395

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

396

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

397

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

398

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

399

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

400

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

402

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

403

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

404

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

405

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

406

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

407

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

408

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

409

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

410

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

411

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

412

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

413

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

414

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

415

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

416

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

417

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

418

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

419

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

420

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

422

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

423

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

424

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

425

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

426

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

427

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

428

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

429

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

430

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

431

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

432

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

433

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

434

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

435

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

436

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

437

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

438

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

439

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

440

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

442

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

443

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

444

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

445

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

446

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

447

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

448

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

449

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

450

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

451

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

452

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

453

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

454

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

455

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

456

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

457

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

458

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

459

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

460

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

462

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

463

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

464

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

465

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

466

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

467

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

468

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

469

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

470

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

471

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

472

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

473

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

474

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

475

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

476

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

477

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

478

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

479

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

480

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

Note: This page contains sample records for the topic "tx neptune deepwater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

482

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

483

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

484

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

485

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

486

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

487

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

488

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

489

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

490

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

491

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

492

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

493

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

494

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

495

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

496

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

497

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

498

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

499

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

500

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the