National Library of Energy BETA

Sample records for tx neptune deepwater

  1. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.41 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price

  2. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Trinidad and Tobago (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.44 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  3. Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Yemen (Dollars per Thousand Cubic Feet) Yemen (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Yemen (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.33 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  4. Neptune Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Neptune Systems Address: PO Box 8719 Place: Breda Zip: 4820 BA Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: +31 (0)...

  5. Neptune Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Neptune Renewable Energy Place: United Kingdom Zip: HU14 3JP Product: Tidal project developer. References: Neptune Renewable Energy1 This article is a stub. You...

  6. MHK Technologies/Neptune Proteus NP1000 | Open Energy Information

    Open Energy Info (EERE)

    Neptune Proteus NP1000.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK ProjectsNeptune Renewable...

  7. Neptun Light: Order (2012-SE-3504)

    Broader source: Energy.gov [DOE]

    DOE ordered Neptun Light, Inc. to pay a $13,000 civil penalty after finding Neptun Light had failed to certify that certain models of medium base compact fluorescent lamps comply with the applicable energy conservation standards.

  8. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  9. Deepwater_Response.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DeepwaterResponse.pdf DeepwaterResponse.pdf PDF icon DeepwaterResponse.pdf More Documents & Publications UDAC Meeting - September 2012 UDAC Meeting - January 2012...

  10. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: ...

  11. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  12. D&TX

    Office of Legacy Management (LM)

    *. ( ARGONNE RATIONAL 1-Ci3ORATORY . 1 D&TX 7. my 19, 1349 70 t. Z. ROse at L, Em &=i*p~~4 DVur;uM hLl%L ?bvs -Lcs . FReti c. c. Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un !! 1 0 * the >rt &Fz=z d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS~~~ of Science a2 31~52-37 fo2 T&imcyyg c.=A+=< he-< - ,,a uas c:cgetes ALL 12, 1SL9. Z 0 sor;~~,-~-lioi! c.jme s 'm&-go& ~WC& c ",& d*cg&A

  13. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  14. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  15. Neptun Light: Proposed Penalty (2012-SE-3504)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Neptun Light, Inc. failed to certify a variety of medium base compact fluorescent lamps as compliant with the applicable energy conservation standards.

  16. Deepwater seismic acquisition technology

    SciTech Connect (OSTI)

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  17. CleanTX Foundation | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. CleanTX Foundation is a policy organization located in Austin, Texas. References About CleanTX Foundation Retrieved from...

  18. On-Site Research: Deepwater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Resources Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with remote and challenging regions, such as the ultra-deepwater (greater than 5,000 feet) Gulf of Mexico and the offshore Arctic. Development in these areas poses unique technical and operational challenges, as well as distinct environmental and societal concerns. At present, ultra-deepwater resources

  19. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont,

    Energy Savers [EERE]

    TX | Department of Energy 2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: Notice of Intent to Prepare an Environmental Impact Statement Construction of the TX Energy, LLC, Industrial Gasification Facility near Beaumont, Texas

  20. THE ORBITS OF NEPTUNE'S OUTER SATELLITES

    SciTech Connect (OSTI)

    Brozovic, Marina; Jacobson, Robert A.; Sheppard, Scott S. E-mail: raj@jpl.nasa.gov

    2011-04-15

    In 2009, we used the Subaru telescope to observe all the faint irregular satellites of Neptune for the first time since 2004. These observations extend the data arcs for Halimede, Psamathe, Sao, Laomedeia, and Neso from a few years to nearly a decade. We also report on a search for unknown Neptune satellites in a half-square degree of sky and a limiting magnitude of 26.2 in the R band. No new satellites of Neptune were found. We numerically integrate the orbits for the five irregulars and summarize the results of the orbital fits in terms of the state vectors, post-fit residuals, and mean orbital elements. Sao and Neso are confirmed to be Kozai librators, while Psamathe is a 'reverse circulator'. Halimede and Laomedeia do not seem to experience any strong resonant effects.

  1. Deepwater Horizon Situation Report #5

    SciTech Connect (OSTI)

    2010-06-10

    At approximately 11:00 pm EDT April 20, 2010 an explosion occurred aboard the Deepwater Horizon mobile offshore drilling unit (MODU) located 52 miles Southeast of Venice, LA and 130 miles southeast of New Orleans, LA. The MODU was drilling an exploratory well and was not producing oil at the time of the incident. The Deepwater Horizon MODU sank 1,500 feet northwest of the well site. Detailed information on response and recovery operations can be found at: http://www.deepwaterhorizonresponse.com/go/site/2931/

  2. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  3. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  4. EDF Industrial Power Services (TX), LLC | Open Energy Information

    Open Energy Info (EERE)

    EDF Industrial Power Services (TX), LLC Jump to: navigation, search Name: EDF Industrial Power Services (TX), LLC Place: Texas Phone Number: 877-432-4530 Website:...

  5. ultra_deepwater | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Policy Act of 2005 The Energy Policy Act of 2005 charges NETL with review and ... ultra-deepwater and unconventional natural gas and other petroleum resource exploration ...

  6. Ultra-Deepwater Production Systems

    SciTech Connect (OSTI)

    Ken L. Smith; Marc E. Leveque

    2005-05-31

    The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

  7. Ultra-Deepwater Advisory Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Deepwater Advisory Committee Ultra-deepwater architecture and technology. | Graphic ... gas and other petroleum resources, and review and comment on the program's annual plan. ...

  8. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind ...

  9. Ultra-Deepwater Production Systems

    SciTech Connect (OSTI)

    K. L. Smith; M. E. Leveque

    2003-09-30

    This report includes technical progress made during the period October, 2002 through September, 2003. At the end of the second technical progress report, the ConocoPhillips opportunities to apply subsea processing in the Gulf of Mexico had been exhausted, and an alternative site was identified in Norway. This was a non-ConocoPhillips operated field, and the subsea processing was proposed as a phased development approach with 2-phase separation at the field, and then gas and liquids exported via pipeline to remote platform locations for processing. Although the unrisked economics were quite favorable, the risked economic evaluation compelled the operator to develop the field with the more conventional and proven Floating Production, Storage and Offloading (FPSO) option. Work on the subsea processing was suspended at this time. Discussions with DOE regarding two other step-change deepwater technologies ensued. One was an effort to develop a light-weight, high pressure composite production riser. A field demonstration of the design would then be performed by deploying a limited number of composite joints in a Gulf of Mexico deepwater development. The other was to begin the process of taking drilling with casing technology to the deepwater. This is called, ''close-tolerance liner drilling''. It was agreed that both technologies should be pursued, and the work began. During this reporting period, the initial production riser design had been completed and preliminary test sample components were being fabricated. Regarding the liner drilling, the sub-contractors were selected, the design basis was agreed and designs progressed towards meeting a projected first quarter, 2004 onshore test program.

  10. Ultra-Deepwater Production Systems

    SciTech Connect (OSTI)

    K. L. Smith; M. E. Leveque

    2004-09-30

    This report includes technical progress made during the period October, 2003 through September, 2004. At the end of the last technical progress report, the subsea processing aspects of the work program had been dropped due to the lack of commercial opportunity within ConocoPhillips, and the program had been redirected towards two other promising deepwater technologies: the development and demonstration of a composite production riser, and the development and testing of a close-tolerance liner drilling system. This report focuses on these two technologies.

  11. TX-100 manufacturing final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Berry, Derek S.

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

  12. Deepwater Offshore Wind Technology Research Requirements (Poster)

    SciTech Connect (OSTI)

    Musial, W.

    2005-05-01

    A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

  13. ARM - Field Campaign - TX-2002 AIRS Validation Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTX-2002 AIRS Validation Campaign Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : TX-2002 AIRS Validation...

  14. Ultra-Deepwater Advisory Committee Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Deepwater Advisory Committee » Ultra-Deepwater Advisory Committee Members Ultra-Deepwater Advisory Committee Members 2013-2014 Ultra-Deepwater Advisory Committee Members Dr. George A. Cooper* Professor University of California, Berkeley Dr. Quenton R. Dokken President/CEO Gulf of Mexico Foundation Dr. Hartley H. Downs Technology Fellow Baker Hughes Incorporated Dr. Douglas J. Foster Senior Scientist ConocoPhillips Mr. James D. Litton* President and CEO Litton Consulting Group, Inc. Mr. D.

  15. RAPID/Roadmap/6-TX-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Construction Storm Water Permit (6-TX-b) The Texas...

  16. RAPID/Roadmap/19-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Water Access and Water Rights Overview (19-TX-a) In the late 1960's Texas...

  17. RAPID/Roadmap/14-TX-d | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us 401 Water Quality Certification (14-TX-d) Section 401 of the Clean Water Act (CWA)...

  18. RAPID/Roadmap/11-TX-b | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Human Remains Process (11-TX-b) This flowchart illustrates the procedure a...

  19. RAPID/Roadmap/11-TX-a | Open Energy Information

    Open Energy Info (EERE)

    thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered? If the developer discovers potential human remains during any...

  20. RAPID/Roadmap/3-TX-i | Open Energy Information

    Open Energy Info (EERE)

    construction plans on the leased asset; Permission for the representatives of TxDOT to enter the area for inspection, maintenance, or reconstruction of highway facilities as...

  1. RAPID/Roadmap/15-TX-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Permit to Construct (15-TX-a) This flowchart illustrates the general...

  2. RAPID/Roadmap/11-TX-c | Open Energy Information

    Open Energy Info (EERE)

    11-TX-c.2 - Does the Project Area Contain a Recorded Archaeological Site? However, oil, gas, or other mineral exploration, production, processing, marketing, refining, or...

  3. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  4. RAPID/Roadmap/6-TX-a | Open Energy Information

    Open Energy Info (EERE)

    must obtain the proper oversizeoverweight permit from the Texas Department of Motor Vehicles (TxDMV). 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating...

  5. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  6. DOE Announces New Research to Advance Safe and Responsible Deepwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling Technologies | Department of Energy Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further

  7. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Program | Department of Energy Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing

  8. ORISE: White paper analyzes Deepwater Horizon event for improving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incidents: Common Challenges and Solutions White paper analyzes Deepwater Horizon response, identifies approaches for radiological or nuclear emergency planning The 2010...

  9. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-deepwater architecture and technology (35% of funds). Unconventional natural gas and ... development and implementation, and review and comment on the program's annual plan. ...

  10. University of Maine Researching Floating Technologies for Deepwater...

    Office of Environmental Management (EM)

    Maine Researching Floating Technologies for Deepwater Offshore Wind University of Maine Researching ... To pursue commercial development of floating wind turbine technology, ...

  11. Subsea valve actuator for ultra deepwater

    SciTech Connect (OSTI)

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  12. Application of a neptune propulsion concept to a manned mars excursion. Master's thesis

    SciTech Connect (OSTI)

    Finley, C.J.

    1993-04-01

    NEPTUNE is a multimegawatt electric propulsion system. It uses a proven compact nuclear thermal rocket, NERVA, in a closed cycle with a magnetohydrodynamic (MHD) generator to power a magnetoplasmadynamic (MPD) thruster. This thesis defines constraints on an externally sourced propulsion system intended to carry out a manned Martian excursion. It assesses NEPTUNE's ability to conform to these constraints. Because an unmodified NEPTUNE system is too large, the thesis develops modifications to the system which reduce its size. The result is a far less proven, but more useful derivative of the unmodified NEPTUNE system.

  13. MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot...

    Open Energy Info (EERE)

    Neptune Renewable Energy 1 10 Scale Prototype Pilot Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappings...

  14. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  15. Freeport, TX Liquefied Natural Gas Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 - No Data ...

  16. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 159 155 151 135 135 127 118 ...

  17. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  18. Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Laredo, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 0.512 0.497 2016 2.732 - No ...

  19. Freeport, TX Liquefied Natural Gas Exports to South Korea (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157 ...

  20. Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  1. TxDOT Access Management Manual | Open Energy Information

    Open Energy Info (EERE)

    Access Management Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TxDOT Access Management ManualLegal Abstract Manual prepared...

  2. RAPID/Roadmap/12-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Biological Resource Considerations (12-TX-a) In Texas, no person may capture, trap, take, or kill, or attempt to capture, trap, take, or kill,...

  3. RAPID/Roadmap/19-TX-e | Open Energy Information

    Open Energy Info (EERE)

    will not interfere with other water rights. 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  4. RAPID/Roadmap/3-TX-e | Open Energy Information

    Open Energy Info (EERE)

    the leasing process. 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  5. RAPID/Roadmap/19-TX-b | Open Energy Information

    Open Energy Info (EERE)

    19-TX-b.6 - Does the Developer Own the Overlying Land? In Texas, the right to acquire and pump ground water is tied to the ownership of the land overlying the groundwater aquifer....

  6. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    individual company data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Alamo, TX Natural Gas Exports to...

  7. Moray Firth Deepwater Wind Farm Trial | Open Energy Information

    Open Energy Info (EERE)

    Firth Deepwater Wind Farm Trial Place: United Kingdom Sector: Wind energy Product: A joint venture to trial deep water wind turbines on the Beatrice Oil Field in the Moray...

  8. Research Portfolio Report Ultra-Deepwater: Drilling and Completion Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultra-Deepwater: Drilling and Completion Operations Cover images: Photograph of the North Star Imaging M-5000 industrial CT scanner (left) and 3-D renderings of a (10.4 mm) 3 digital subsection of 10% foam quality cement sample (right). Research Portfolio Report Ultra-Deepwater: Drilling and Completion Operations DOE/NETL-2015/1697 Prepared by: Kathy Bruner, Jennifer Funk, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer

  9. Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blowout Containment Capabilities | Department of Energy to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities Secretaries Chu and Salazar to Convene Meeting on Strengthening Deepwater Blowout Containment Capabilities September 17, 2010 - 12:00am Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu and Secretary of the Interior Ken Salazar will convene top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen

  10. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  11. File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy...

    Open Energy Info (EERE)

    TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this...

  12. File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information

    Open Energy Info (EERE)

    TX-f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 599...

  13. Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico...

    Gasoline and Diesel Fuel Update (EIA)

    Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

  14. File:03-TX-e - Lease of Texas Parks & Wildlife Department Land...

    Open Energy Info (EERE)

    3-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife...

  15. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  16. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...

    Office of Environmental Management (EM)

    Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 PDF icon 2007 Annual Plan for the Ultra-Deepwater ...

  17. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,088 6,402 7,296 6,783 8,836 ...

  18. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  19. Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 2014 2,664 2015 2,805 2,728 2,947 3,145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  20. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price of

  1. Rotary mode core sampling approved checklist: 241-TX-113

    SciTech Connect (OSTI)

    Fowler, K.D.

    1998-08-03

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-113 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  2. Rotary mode core sampling approved checklist: 241-TX-116

    SciTech Connect (OSTI)

    FOWLER, K.D.

    1999-02-24

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-116 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  3. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugarland, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Enhanced Oil Recovery Program The mission of the Enhanced Oil Recovery Program is to provide information and technologies that will assure sustainable, reliable, affordable, and environmentally sound supplies of domestic oil resources. The Strategic Center for Natural Gas and Oil (SCNGO) seeks to accomplish this critical mission by advancing environmentally responsible technological solutions that enhance recovery of oil

  4. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation system that supplies all of the home's electricity, heating, and cooling on site. The tri-generator is powered by a

  5. Microsoft Word - TX-100 Final Report - SAND2007-6066.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager: Tom Ashwill Abstract This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and...

  6. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Petroleum Resources Research and Development Program | Department of Energy 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 PDF icon 2007

  7. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geologic Uncertainty Cover Image: 3D visualization of directionally drilled boreholes in the Gulf of Mexico, field MC109, showing NETL's interpretation of two reservoir sand intervals. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty DOE/NETL-2015/1694 Prepared by: Mari Nichols-Haining, Jennifer Funk, Kathy Bruner, John Oelfke, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  8. Research Portfolio Report Ultra-Deepwater: Surface Systems and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Systems and Umbilicals (Wellbore Stability) Research Portfolio Report Ultra-Deepwater: Surface Systems and Umbilicals (Wellbore Stability) DOE/NETL-2015/1696 Prepared by: Mari Nichols-Haining, Jennifer Funk, John Oelfke, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the

  9. The impact of subsea boosting on deepwater field development

    SciTech Connect (OSTI)

    Ribeiro, O.J.S.; Camargo, R.M.T.; Paulo, C.A.S.

    1996-12-31

    This paper describes the impact that the use of a subsea boosting system will have on the development of a deepwater field. The analysis covers the technology demands and constraints encountered on screening studies executed for the fields of Marlim, Albacora and Barracuda, as well as an overview of the economic benefits encountered. The paper focuses on the technological demands and constraints identified as well as some considerations about possible alternatives. The demands and constraints identified in the study will provide the industry with some more input to guide the development of the subsea boosting technology, as well as a better understanding of how to apply this new tool on the development of deepwater prospects. The results of the screening study are showing that the subsea boosting systems are a valuable tool to reduce the costs of deepwater developments. The cost cutting possibilities through an integration between the conventional subsea hardware and the subsea boosting systems and the combination of boosting systems are promising alternatives. The encouraging economic results found, as well as the demands and constraints raised in the paper will be of use for those trying to apply these technologies in various areas of the world.

  10. Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields

    SciTech Connect (OSTI)

    Gerdes, D. W.

    2015-07-18

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-term dynamical stability and physical properties.

  11. Observation of two new L4 Neptune Trojans in the Dark Energy Survey supernova fields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gerdes, D. W.

    2016-01-28

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-termmore » dynamical stability and physical properties.« less

  12. CX-100 and TX-100 blade field tests.

    SciTech Connect (OSTI)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  13. The measured compositions of Uranus and Neptune from their formation on the CO ice line

    SciTech Connect (OSTI)

    Ali-Dib, Mohamad; Mousis, Olivier; Petit, Jean-Marc

    2014-09-20

    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might have had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties that were observed in no other planets. Here, we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide ice line. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water-rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus's and Neptune's building blocks with the cometary value. Finally, our scenario generalizes a well known hypothesis that Jupiter formed on an ice line (water snow line) for the two ice giants, and might be a first step toward generalizing this mechanism for other giant planets.

  14. New subsea wiper plugs hold down deepwater cementing costs

    SciTech Connect (OSTI)

    Stringer, R.; Sonnefeld, A.; Minge, J.

    1997-02-01

    British Petroleum Exploration (BPX) achieved top-quality cementing performance at significantly lower costs in a deepwater area 45 miles offshore Louisiana by using a new method of launching subsea wiper plugs. The method is based on a newly designed subsea casing wiper plug release system, which uses up to three solid wiper plugs loaded in a basket and released by individual darts launched from a surface tool. This design has eliminated the problems sometimes associated with the latching, unlatching and sealing of conventional subsea casing wiper plugs.

  15. DOE's Portal to Deepwater Horizon Oil Spill Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deepwater Research in the DOE NETL High-Pressure Water Tunnel Facility Background The National Energy Technology Laboratory's (NETL) High-Pressure Water Tunnel Facility (HWTF) allows researchers to investigate the chemistry, physics, and hydrodynamics of gas bubbles, liquid drops, and solid particles in deepwater environments. Built to withstand conditions at simulated ocean depths in excess of 3,000 meters, the facility was originally used to study the fate of COâ‚‚ in the deep ocean, released

  17. Major deepwater pipelay vessel starts work in North Sea

    SciTech Connect (OSTI)

    Heerema, E.P.

    1998-05-04

    Industry`s deepwater pipelaying capability has received a boost this year with the entry into the world`s fleet of Solitaire, a dynamically positioned pipelay vessel of about 350 m including stinger. The converted bulk carrier, formerly the Trentwood, will arrive on station in the North Sea and begin laying pipe this month on Statoil`s Europipe II project, a 600-km, 42-in. OD gas pipeline from Norway to Germany. Next year, the vessel will install pipe for the Exxon U.S.A.`s Gulf of Mexico South Diana development (East Breaks Block 945) in a water depth of 1,643 m and for Mobil Oil Canada as part of the Sable Island Offshore and Energy Project offshore Nova Scotia. Using the S-lay mode, Solitaire is particularly well-suited for laying large lines economically, including the deepwater projects anticipated for the US Gulf of Mexico. Table 1 presents Solitaire`s technical specifications. The design, construction, pipelaying, and justification for building vessels such as the Solitaire are discussed.

  18. File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information

    Open Energy Info (EERE)

    TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  19. TxDOT - Right of Way Forms webpage | Open Energy Information

    Open Energy Info (EERE)

    Right of Way Forms webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: TxDOT - Right of Way Forms webpage Abstract This webpage provides the...

  20. Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to Egypt

  1. Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Turkey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 3,145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas Exports to Turkey

  2. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  3. THE COLOR DIFFERENCES OF KUIPER BELT OBJECTS IN RESONANCE WITH NEPTUNE

    SciTech Connect (OSTI)

    Sheppard, Scott S.

    2012-12-01

    The optical colors of 58 objects in mean motion resonance with Neptune were obtained. The various Neptune resonant populations were found to have significantly different surface color distributions. The 5:3 and 7:4 resonances have semimajor axes near the middle of the main Kuiper Belt and both are dominated by ultra-red material (spectral gradient: S {approx}> 25). The 5:3 and 7:4 resonances have statistically the same color distribution as the low-inclination 'cold' classical belt. The inner 4:3 and distant 5:2 resonances have objects with mostly moderately red colors (S {approx} 15), similar to the scattered and detached disk populations. The 2:1 resonance, which is near the outer edge of the main Kuiper Belt, has a large range of colors with similar numbers of moderately red and ultra-red objects at all inclinations. The 2:1 resonance was also found to have a very rare neutral colored object showing that the 2:1 resonance is really a mix of all object types. The inner 3:2 resonance, like the outer 2:1, has a large range of objects from neutral to ultra-red. The Neptune Trojans (1:1 resonance) are only slightly red (S {approx} 9), similar to the Jupiter Trojans. The inner 5:4 resonance only has four objects with measured colors but shows equal numbers of ultra-red and moderately red objects. The 9:5, 12:5, 7:3, 3:1, and 11:3 resonances do not have reliable color distribution statistics since few objects have been observed in these resonances, though it appears noteworthy that all three of the measured 3:1 objects have only moderately red colors, similar to the 4:3 and 5:2 resonances. The different color distributions of objects in mean motion resonance with Neptune are likely a result from the disruption of the primordial Kuiper Belt from the scattering and migration of the giant planets. The few low-inclination objects known in the outer 2:1 and 5:2 resonances are mostly only moderately red. This suggests if the 2:1 and 5:2 have a cold low-inclination component, the objects likely had a significantly different origin than the ultra-red-dominated cold components of the cold classical belt and 5:3 and 7:4 resonances.

  4. DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Fossil Energy has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings.

  5. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modi¬fied in 40 CFR Part 265, Subpart F and Washington State’s Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  6. Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to India Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,120 2,873 2012 3,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Freeport, TX Liquefied Natural Gas

  7. Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Peru

  8. Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Norway (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,709 2,918 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Norway

  9. Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108 2012 2,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Yemen

  10. Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.43 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  11. Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 2,994 2015 5,992 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from All Countries

  12. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from Egypt

  13. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Other Countries (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Freeport, TX LNG Imports from

  14. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  15. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-04-30

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03 Crater (Neptune), is within the existing UR for CAU 551. Additional postings were not installed, and annual post-closure inspections will be performed in conjunction with the inspections performed for CAU 551. At CAS 12-45-01, U12e.05 Crater (Blanca), the administrative UR does not require postings or inspections. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 574; and (2) The transfer of CAU 574 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  16. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,414 4,236 5,595 6,174 4,938 ...

  17. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation...

  18. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

  19. New design of a guidelineless horizontal tree for deepwater ESP wells

    SciTech Connect (OSTI)

    Olijnik, L.A.; Vigesa, S.; Paula, M.T.R.; Figueiredo, M.W. de; Rutherford, H.W.

    1996-12-31

    This paper presents the new design of a horizontal tree for deepwater installation, as a key piece of equipment for application of a Electrical Submersible Pump in Subsea Wells. The production from subsea wells equipped with ESPs is a reality since October/94 with the first installation in Campos Basin. The horizontal tree adds simplicity to workover operations expected to be two to three times more frequency when compared to natural flow or gas lifted wells. The design and fabrication of the deepwater horizontal tree is a result of a Technological Cooperation Agreement. The design incorporates new solutions, mainly in diverless guidelineless connection of power cables and flowlines using the vertical connection system. The guidelineless horizontal subsea tree is fully prepared to be integrated on the new manifolds being designed for the Brazilian deepwater oilfields. The applications of the horizontal trees in subsea ESP wells reduce intervention cost, increasing economical attractiveness and scenarios for the applications of this new boosting technology.

  20. 2011 HM{sub 102}: DISCOVERY OF A HIGH-INCLINATION L5 NEPTUNE TROJAN IN THE SEARCH FOR A POST-PLUTO NEW HORIZONS TARGET

    SciTech Connect (OSTI)

    Parker, Alex H.; Holman, Matthew J.; McLeod, Brian A.; Buie, Marc W.; Borncamp, David M.; Spencer, John R.; Stern, S. Alan; Osip, David J.; Gwyn, Stephen D. J.; Fabbro, Sebastian; Kavelaars, J. J.; Benecchi, Susan D.; Sheppard, Scott S.; Binzel, Richard P.; DeMeo, Francesca E.; Fuentes, Cesar I.; Trilling, David E.; Gay, Pamela L.; Petit, Jean-Marc; Tholen, David J.; and others

    2013-04-15

    We present the discovery of a long-term stable L5 (trailing) Neptune Trojan in data acquired to search for candidate trans-Neptunian objects for the New Horizons spacecraft to fly by during an extended post-Pluto mission. This Neptune Trojan, 2011 HM{sub 102}, has the highest inclination (29. Degree-Sign 4) of any known member of this population. It is intrinsically brighter than any single L5 Jupiter Trojan at H{sub V} {approx} 8.18. We have determined its gri colors (a first for any L5 Neptune Trojan), which we find to be similar to the moderately red colors of the L4 Neptune Trojans, suggesting similar surface properties for members of both Trojan clouds. We also present colors derived from archival data for two L4 Neptune Trojans (2006 RJ{sub 103} and 2007 VL{sub 305}), better refining the overall color distribution of the population. In this document we describe the discovery circumstances, our physical characterization of 2011 HM{sub 102}, and this object's implications for the Neptune Trojan population overall. Finally, we discuss the prospects for detecting 2011 HM{sub 102} from the New Horizons spacecraft during its close approach in mid- to late-2013.

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Research Portfolio Assessing Risk and Mitigating Adverse Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with chal- lenging offshore regions such as the ultra-deepwater (> 5,000 feet) Gulf of Mexico and the offshore Arctic. Development in these areas poses unique technical and operational challenges as well as distinct environmental and societal concerns. At present, offshore domestic resources

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Foamed Wellbore Cement Stability Under Deep-Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support the annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into

  3. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    SciTech Connect (OSTI)

    Howe, Alex R.; Burrows, Adam; Verne, Wesley E-mail: burrows@astro.princeton.edu

    2014-06-01

    Many exoplanets have been discovered with radii of 1-4 R {sub ?}, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H{sub 2}-He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H{sub 2}-He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  4. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    SciTech Connect (OSTI)

    Mason, O.U.; Hazen, T.C.

    2011-06-15

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

  5. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    SciTech Connect (OSTI)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y.; Udalski, A.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Gould, A.; Jørgensen, U. G.; Snodgrass, C.; Prester, D. Dominis; Albrow, M. D.; Botzler, C. S.; Freeman, M.; Chote, P.; Harris, P.; Fukui, A. E-mail: liweih@astro.ucla.edu E-mail: rzellem@lpl.arizona.edu; Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; MiNDSTEp Consortium; RoboNet Collaboration; PLANET Collaboration; and others

    2013-12-20

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M {sub h} = 0.11 ± 0.01 M {sub ☉} and M {sub p} = 9.2 ± 2.2 M {sub ⊕}, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D {sub L} = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.

  6. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 996 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  7. Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 253 40 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  9. A semisubmersible type drilling, early production and testing system with 100,000 bbl storage for deepwater

    SciTech Connect (OSTI)

    Nakamura, Masahiro; Yokokura, Kozo; Nakamura, Arata

    1996-12-31

    Deepwater petroleum development is increasing throughout the world. Complete evaluation of deepwater oil fields prior to development is extremely important, but difficult due to harsh conditions and deepwater. Extended well testing and early production of a field will allow complete evaluation, reducing risk prior to long term commitments. Conceptual design and studies for a semisubmersible type deepwater drilling, early production and testing system with 100,000 bbl storage (DEPTS) that will allow this have been completed. Needs analysis were performed and several potential concepts compared. Sizing and costing of the semisubmersible unit, mooring, and riser systems as well as selection of the drilling, production, and storage units were carried out. The unique aspect of the system is that the combination of drilling, production facilities, and storage on the same vessel will allow the system to be applied across the early phases of offshore oil field development from drilling to early production. With storage integrated into the vessel, oil production can continue in the most extreme conditions. The system`s intended operational area will be the deepwater fields of Asia and Oceania. Studies have been carried out showing the technical and economic feasibility of the system in deepwater up to 2,000 m.

  10. METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B?

    SciTech Connect (OSTI)

    Beaulieu, J.-P.; Batista, V.; Tinetti, G.; Kipping, D. M.; Barber, R. J.; Tennyson, J.; Waldmann, I.; Miller, S.; Fossey, S. J.; Aylward, A.; Ribas, I.; Cho, J. Y.-K.; Polichtchouk, I.; Yurchenko, S. N.; Griffith, C. A.; Carey, S.; Mousis, O.

    2011-04-10

    We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5, and 8 {mu}m obtained with the Infrared Array Camera on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, Hubble Space Telescope, and ground-based V, I, H, and K{sub s} published observations, the range 0.5-10 {mu}m can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the data set. Representative climate models were calculated by using a three-dimensional, pseudospectral general circulation model with idealized thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio-calculated, line list for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water, and other molecules. No clear evidence of carbon monoxide and carbon dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesized to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.

  11. Sandia and Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Study and Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore Turbine Study - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  12. Texas A&M University College Station, TX 77843-3366

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MS #3366 Texas A&M University College Station, TX 77843-3366 Ph: 979-845-1411 Fax: 979-458-3213 Beam Time Request Form In order to be scheduled you must fill in and return this form by FAX (979-458-3213) or email to Henry Clark (clark@comp.tamu.edu) TO SCHEDULE CYCLOTRON TIME: Please indicate in the appropriate spaces below the number of 8 hour shifts you need, your preferred start date and the beams you intend to use. Since we cannot always schedule your preferred start date, please also

  13. El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.09 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price of

  14. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601 2,644 2,897 2014 2,664 2015 2,805 2,728 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S.

  15. Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,706 2012 2,872 2014 2,994 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of

  16. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,902 4,896 4,100 18,487 4,900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  17. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,609 17,243 13,496 41,879 2000's 2,093 7,292 782 0 0 1,342 967 5,259 1,201 284 2010's 62 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  18. Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.56 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring

  19. McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,118 NA 402 0 0 5,322 7,902 26,605 20,115 12,535 2010's 2,520 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  20. Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 12,651 2000's 8,390 2,984 571 0 0 2,656 3,880 22,197 20,653 13,279 2010's 4,685 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  1. Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 R& D FAC T S Geological & Environmental Sciences CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Kelly Rose Principal Investigator Research Physical Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@contr.netl.doe.gov Cynthia Powell Acting Focus Area Lead 541-967-5803 cynthia.powell@netl.doe.gov RESEARCH

  2. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  3. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 1. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-10-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG). Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced LPG and differentials between propane and gasoline/diesel in infrastructure costs for a fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Sensitivity analyses are performed on the discount rate, price of propane, maintenance savings, vehicle utilization, diesel vehicles, extended vehicle life, original equipment manufacturer (OEM) vehicles, and operating and infrastructure costs. The best results are obtained when not converting diesel vehicles, converting only large fleets, and extending the period the vehicle is kept in service. Combining these factors yields results that are most cost-effective for TxDOT. This is volume one of two volumes.

  4. Cost-effectiveness analysis of TxDOT LPG fleet conversion. Volume 2. Interim research report

    SciTech Connect (OSTI)

    Euritt, M.A.; Taylor, D.B.; Mahmassani, H.

    1992-11-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes liquefied petroleum gas (LPG), commonly called propane. Based on an analysis of 30-year life-cycle costs, development of a propane vehicle program for the Texas Department of Transportation (TxDOT) would cost about $24.3 million (in 1991 dollars). These costs include savings from lower-priced propane and differentials between propane and gasoline/diesel in infrastructure costs, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $308, or about 2.5 cents more per vehicle mile of travel. Based on the cost-effectiveness analysis and assumptions, there are currently no TxDOT locations that can be converted to propane without additional financial outlays. This is volume two of two volumes.

  5. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    SciTech Connect (OSTI)

    Hu, Renyu; Seager, Sara

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 ?m in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 ?m in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  6. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Broader source: Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  7. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site

    SciTech Connect (OSTI)

    Hodges, Floyd N.; Chou, Charissa J.

    2001-02-23

    A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

  8. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-06-30

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

  9. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-05-31

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

  10. FORMATION OF CLOSE IN SUPER-EARTHS AND MINI-NEPTUNES: REQUIRED DISK MASSES AND THEIR IMPLICATIONS

    SciTech Connect (OSTI)

    Schlichting, Hilke E.

    2014-11-01

    Recent observations by the Kepler space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here, we calculate the required disk masses for in situ formation of the Kepler planets. We find that if close-in planets formed as isolation masses, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is 2v {sub esc}/?, where v {sub esc} is the escape velocity of the planet and ? is the Keplerian frequency, and we use it to calculate the required disk masses for in situ formation with giant impacts. Even with giant impacts, formation without migration requires disk surface densities in solids at semi-major axes of less than 0.1 AU of 10{sup 3}-10{sup 5} g cm{sup –2}, implying typical enhancements above the minimum-mass solar nebular (MMSN) by at least a factor of 20. Corresponding gas disks are below but not far from the gravitational stability limit. In contrast, formation beyond a few AU is consistent with MMSN disk masses. This suggests that the migration of either solids or fully assembled planets is likely to have played a major role in the formation of close-in super-Earths and mini-Neptunes.

  11. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  12. Office of Fossil Energy

    Energy Savers [EERE]

    91 Email: ngreports@hq.doe.gov 2016 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Egypt - - 0.0 Nigeria - - 0.0 Norway - - 0.0 Qatar - - 0.0 Trinidad 12.0 9.6 21.6 Yemen - - 0.0 TOTAL 12.0 9.6 21.6 2016 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Cameron, LA - - 0.0 Cove Point, MD - - 0.0 Elba Island, GA - - 0.0 Everett, MA 10.6 8.6 19.2 Freeport, TX - - 0.0 Golden Pass, TX - - 0.0 Gulf LNG, MS - - 0.0 Lake Charles, LA - - 0.0 Neptune Deepwater Port - - 0.0

  13. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    SciTech Connect (OSTI)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  14. Deepwater royalty relief product of 3 1/2 year U.S. political effort

    SciTech Connect (OSTI)

    Davis, R.E.; Neff, S.

    1996-04-01

    Against the backdrop of more than 20 years of increasingly stringent environmental regulation, ever-expanding exploration and development moratoria on the Outer Continental Shelf (OCS), and reductions in producer tax incentives, oil and natural gas exploration companies active in deep waters of the Gulf of Mexico recently won a significant legislative victory. On Nov. 28, 1995, President Clinton signed into law S.395, the Alaska Power Administration Sale Act. Title 3 of S.395 embodies the Outer Continental Shelf Deep Water Royalty Relief Act. This landmark legislation provides substantial incentives for oil and natural gas production in the gulf of Mexico by temporarily eliminating royalties on certain deepwater leases. It is the first direct incentive for oil and gas production enacted at the federal level in many years. This paper reviews the elements used to arrive at this successful legislation including the congressional leadership. It describes debates, cabinet level discussions, and use of parlimentary procedures.

  15. Review of the independent risk assessment of the proposed Cabrillo liquified natural gas deepwater port project.

    SciTech Connect (OSTI)

    Gritzo, Louis Alan; Hightower, Marion Michael; Covan, John Morgan; Luketa-Hanlin, Anay Josephine

    2006-01-01

    In March 2005, the United States Coast Guard requested that Sandia National Laboratories provide a technical review and evaluation of the appropriateness and completeness of models, assumptions, analyses, and risk management options presented in the Cabrillo Port LNG Deepwater Port Independent Risk Assessment-Revision 1 (Cabrillo Port IRA). The goal of Sandia's technical evaluation of the Cabrillo Port IRA was to assist the Coast Guard in ensuring that the hazards to the public and property from a potential LNG spill during transfer, storage, and regasification operations were appropriately evaluated and estimated. Sandia was asked to review and evaluate the Cabrillo Port IRA results relative to the risk and safety analysis framework developed in the recent Sandia report, ''Guidance on Risk Analysis and Safety Implications of a Large Liquefied Natural Gas (LNG) Spill over Water''. That report provides a framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. This report summarizes the results of the Sandia review of the Cabrillo Port IRA and supporting analyses. Based on our initial review, additional threat and hazard analyses, consequence modeling, and process safety considerations were suggested. The additional analyses recommended were conducted by the Cabrillo Port IRA authors in cooperation with Sandia and a technical review panel composed of representatives from the Coast Guard and the California State Lands Commission. The results from the additional analyses improved the understanding and confidence in the potential hazards and consequences to people and property from the proposed Cabrillo Port LNG Deepwater Port Project. The results of the Sandia review, the additional analyses and evaluations conducted, and the resolutions of suggested changes for inclusion in a final Cabrillo Port IRA are summarized in this report.

  16. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    SciTech Connect (OSTI)

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E.; Schuessler, B.K.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.

  17. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Come, Jeremy; Xie, Yu; Naguib, Michael; Jesse, Stephen; Kalinin, Sergei V.; Gogotsi, Yury; Kent, Paul R. C.; Balke, Nina

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti3C2Tx) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  18. Design and installation of an ultra deepwater subsea system: How to minimize risks and costs

    SciTech Connect (OSTI)

    Izetti, R.G.; Moreira, J.R.F.

    1994-12-31

    The world`s deepest Subsea Tree was successfully installed offshore Brazil at a water depth of 1,027 m. The psychological barrier of 1,000 m was finally broken. Actually, subsea completion technology reached a point where the fundamental question is no longer whether fields located at water depths beyond 1,000 m can be profitably completed. The key issue now is: is there a better and safer way to do it? PETROBRAS has pursued an aggressive strategy in research and development concept evaluations and various field studies aiming at a continuous decrease in both CAPEX and OPEX. This paper primarily describes the major subsea completion achievements, resulting from this great effort, which among other topics include: implementation of a standardization program; sharp reduction of both subsea completion and drilling time; a new flowline connection method which combines the advantages of both lay-away and pull-in methods; design and future installation of the world first subsea electrical submersible pump; completion equipment simplification and resulting cost reduction. Also addressed are the key safety aspects related to deepwater completions and the equipment design improvement necessary to safely conduct those operations.

  19. Design and installation of an ultra-deepwater subsea system: How to minimize risks and costs

    SciTech Connect (OSTI)

    Izetti, R.G.; Moreira, J.R.F.

    1995-04-01

    The world`s deepest subsea tree was successfully installed offshore Brazil at a water depth of 1,027 m, finally breaking the psychological barrier of 1,000 m. Actually, subsea completion technology has reached a point where the fundamental question no linger is whether fields located at water depths > 1,000 m can be profitably completed; is there a better and safer way to do it is now the key issue. Petrobras has pursued an aggressive strategy in R and D concept evaluations and various field studies aiming at a continuous decrease in both capital and operational expenditures. This paper describes the major subsea completion achievements resulting from this great effort, which include implementation of a standardization program; sharp reduction of subsea completion and drilling time; a new flowline connection method that combines the advantages of lay-away and pull-in methods; design and future installation of the world`s first subsea electrical submersible pump; and completion equipment simplification and resulting cost reduction. Also addressed are the key safety aspects related to deepwater completions and the equipment design improvement necessary to conduct those operations safely.

  20. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect (OSTI)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  1. Alternating magnetic anisotropy of Li2(Li1–xTx)N(T=Mn,Fe,Co,andNi)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more »As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  2. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  3. The polyester rope taut leg mooring concept: A feasible means for reducing deepwater mooring cost and improving stationkeeping performance

    SciTech Connect (OSTI)

    Winkler, M.M.; McKenna, H.A.

    1995-12-01

    The polyester rope taut leg mooring system offers a unique opportunity to reduce deepwater mooring system cost, while simultaneously improving stationkeeping performance. These gains are over catenary or taut leg systems designed using all steel components. This paper builds upon work presented at prior OTC conferences and focuses on concept feasibility and implementation. Feasibility is addressed from a systems basis including fiber and rope selection, definition of mechanical properties, mooring system integration, and effects of long-term usage. Implementation is believed practical based on current technology and in-place manufacturing capability. Available cyclic tension test results for polyester rope suggest a comparable fatigue performance to wire rope. The most significant challenge facing application of the polyester taut leg mooring concept is the lack of in-service experience compared to conventional steel catenary mooring systems.

  4. Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies Brian C. Owens ∗ and D. Todd Griffith † Sandia National Laboratories ‡ , Albuquerque, New Mexico, 87185, USA John E. Hurtado § Texas A&M University, College Station, Texas, 77843, USA The availability of offshore wind resources in coastal regions, along with a high concen- tration of load centers in these areas, makes offshore

  5. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; Naguib, Michael; Gogotsi, Yury

    2015-12-08

    MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and a great promise in energy storage and many other applications. However, a complex surface chemistry and small coherence length has been an obstacle in some applications of MXenes, also limiting accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti3C2Tx MXenes (T standsmore » for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. The true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed third-generation structure model we present. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical and functional properties of Ti3C2-based MXenes. Furthermore, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical and other properties. We suggest that the multi-level structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less

  6. HIA 2015 DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L.C./Green Extreme Homes, CDC, McKinley Project, Garland TX

    Energy Savers [EERE]

    Carl Franklin Homes, L.C./ Green Extreme Homes, CDC McKinley Project Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research.

  7. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    SciTech Connect (OSTI)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-12-10

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  8. ~tx421.ptx

    U.S. Energy Information Administration (EIA) Indexed Site

    ... a day-to- 3 day percentage change in past prices. 4 But what ... similar to our STEO query system where the 20 user could ... The term that I've 20 used in class all the time, I tend to ...

  9. ~tx410.ptx

    U.S. Energy Information Administration (EIA) Indexed Site

    ... right. 13 I'll legally change my name to sucker. 14 ... I lead a group that basically 18 does power system modeling, ... graduate energy modeling class where we 19 actually have ...

  10. Training Session: Euless, TX

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  11. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  12. Salt tectonics and structural styles in the deep-water province of the Cabo Frio Region, Rio de Janeiro, Brazil

    SciTech Connect (OSTI)

    Mohriak, W.U.; Macedo, J.M.; Castellani, R.T.

    1996-12-31

    The Cabo Frio region, offshore Rio de Janeiro, lies between two of the most prolific Brazilian oil provinces, the Campos and Santos basins. Major geologic features have been identified using a multidisciplinary approach integrating seismic, gravity, petrographic, and borehole data. The Cabo Frio frontier region is characterized by marked changes in stratigraphy and structural style and is unique among the Brazilian marginal basins. Major geologic features include the deflection of the coastline and pre-Aptian hings line from northeast to east; a large east-striking offshore graben related to salt tectonics; a northwest-trending lineament extending from oceanic crust to the continent; basement-involved landward-dipping (antithetic) normal faults in shallow water; a stable platform in the southern Campos Basin; a thick sequence of postbreakup intrusive and extrusive rocks; and, near the Santos Basin, a mobilized sequence of deep-water postrift strata affected by landward-dipping listric normal faults. These faults are unusual in salt-related passive margins in that they dip landward, apparently detach on the Aptian salt, and show large late Tertiary offsets. Locally, the older sequences do not show substantial growth in the downthrown blocks. South of the Rio de Janeiro coast, a phenomenal landward-dipping fault system detaches blocks of the Albian platform to the north and, to the south, coincides with the depositional limit of the Albian platform. Two end-member processes of salt tectonics in the Cabo Frio region result in either synthetic or antithetic basal shear along the fault weld under the overburden: (1) thin-skinned processes, in which the listric faults were caused by salt flow in response to gravity forces related to massive clastic progradation from the continent; and (2) thick-skinned processes, in which faulting was indirectly triggered by diastrophic causes or disequilibrium in the basement topography.

  13. Annual Report: EPAct Complementary Program's Ultra-Deepwater R&D Portfolio and Unconventional Resources R&D Portfolio (30 September 2012)

    SciTech Connect (OSTI)

    none,; Rose, Kelly; Hakala, Alexandra; Guthrie, George

    2012-09-30

    This report summarizes FY13 research activities performed by the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD), along with its partners in the Regional University Alliance (RUA) to fulfill research needs under the Energy Policy Act of 2005 (EPAct) Section 999�s Complementary Program. Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes $50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research and development effort, the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. Section 999 further prescribes four program elements for the effort, one of which is the Complementary Research Program that is to be performed by NETL. This document lays out the plan for the research portfolio for the Complementary Research Program, with an emphasis on the 2013 funding. The Complementary Program consists of two research portfolios focused on domestic resources: (1) the Deepwater and Ultra-Deepwater Portfolio (UDW) (focused on hydrocarbons in reservoirs in extreme environments) and (2) the Unconventional Resources Portfolio (UCR) (focused on hydrocarbons in shale reservoirs). These two portfolios address the science base that enables these domestic resources to be produced responsibly, informing both regulators and operators. NETL is relying on a core Department of Energy-National Energy Technology Laboratory (DOE-NETL) competency in engineered-natural systems to develop this science base, allowing leveraging of decades of investment. NETL�s Complementary Research Program research portfolios support the development of unbiased research and information for policymakers and the public, performing rapid predictions of possible outcomes associated with unexpected events, and carrying out quantitative assessments for energy policy stakeholders that accurately integrate the risks of safety and environmental impacts. The objective of this body of work is to build the scientific understanding and assessment tools necessary to develop the confidence that key domestic oil and gas resources can be produced safely and in an environmentally sustainable way. For the Deepwater and Ultra-Deepwater Portfolio, the general objective is to develop a scientific base for predicting and quantifying potential risks associated with exploration and production in extreme offshore environments. This includes: (1) using experimental studies to improve understanding of key parameters (e.g., properties and behavior of materials) tied to loss-of-control events in deepwater settings, (2) compiling data on spatial variability for key properties used to characterize and simulate the natural and engineered components involved in extreme offshore settings, and (3) utilizing findings from (1) and (2) in conjunction with integrated assessment models to model worst-case scenarios, as well as assessments of most likely scenarios relative to potential risks associated with flow assurance and loss of control. This portfolio and approach is responsive to key Federal-scale initiatives including the Ocean Energy Safety Advisory Committee (OESC). In particular, the findings and recommendations of the OESC�s Spill Prevention Subcommittee are addressed by aspects of the Complementary Program research. The Deepwater and Ultra-Deepwater Portfolio is also aligned with some of the goals of the United States- Department of the Interior (US-DOI) led Alaska Interagency Working Group (AIWG) which brings together state, federal, and tribal government personnel in relation to energy-related issues and needs in the Alaskan Arctic. For the Unconventional Fossil Resources Portfolio, the general objective is to develop a sufficient scientific base for predicting and quantifying potential risks associated with the oil/gas resources in shale reservoirs that require hydraulic fracturing and/or other engineering measures to produce. The major areas of focus include: (1) improving predictions of fugitive methane and greenhouse gas emissions, (2) predicting the composition and volume of waters produced during shale gas development, (3) predicting subsurface fluid and gas migration, and (4) predicting subsurface phenomena (e.g., geophysical and geomechanical responses) using the application of field measurements and observations. The portfolio is building a general understanding of: (1) spatial variations in reservoir properties that impact risk, (2) wellbore integrity (particularly for pre-existing wellbores), (3) fracture propagation dynamics, (4) groundwater geochemistry and hydrogeology, and (5) air quality. This portfolio and approach is responsive to key Federal-scale initiatives including the Multi-Agency Collaboration on Unconventional Oil and Gas Research.

  14. UDAC Meeting - September 2012 | Department of Energy

    Energy Savers [EERE]

    Ultra-Deepwater Advisory Committee Meeting Tuesday, September 25, 2012 Hyatt North Houston North Sam Houston Parkway East Houston, TX PDF icon Overview of "Section 999" and the Ultra-Deepwater Advisory Committee PDF icon Risk Informed Decision Support for Ultra-Deepwater Drilling PDF icon EPAct Complementary Program - Extreme Offshore PDF icon RPSEA Administered Cost Share Research Overview: Ultra-Deepwater Program PDF icon UDAC Calendar and Next Steps More Documents & Publications

  15. S. 403: A Bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect (OSTI)

    1993-12-31

    The report S.403 is a bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. The proposed legislative text is included.

  16. ~tx22C0.ptx

    Energy Savers [EERE]

    + + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE

  17. ~txF74.ptx

    Energy Savers [EERE]

    WEDNESDAY OCTOBER 19, 2011 + + + + + The Electricity Advisory Committee met in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 2:00 p.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT

  18. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Texas A ...

  19. About ZERH Sessions: Austin, TX

    Broader source: Energy.gov [DOE]

    10:00 a.m. - 12:30 p.m. An Overview: What is it, and how do I participate?This session discusses the critical components that define a truly zero energy ready home (ZERH), how builders are able to...

  20. Slide 1

    Energy Savers [EERE]

    23 rd Ultra-Deepwater Advisory Committee Meeting NETL Office, Sugar Land, TX Tuesday, September 17, 2013 RPSEA Administered Cost Share Research Overview: Ultra-Deepwater Program rpsea.org James Pappas, P.E. Vice President, Ultra-Deepwater Programs jpappas@rpsea.org (281) 690-5511 rpsea.org 2 Outline o Current UDW Program Status o Technical Accomplishments FY 2013 * Accomplishments * Significant Findings * Safety & Environment Impact o Plan Forward * 2012 Solicitation - Selection Progress *

  1. Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa

    SciTech Connect (OSTI)

    Baled, Hseen O.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Gamwo, Isaac; Krukonis, Val; Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.; Burgess, Ward A.; M Enick, Robert M.

    2013-10-01

    DuPont’s perfluoropolyether oil Krytox® GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 mPa?s at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox® GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox® GPL 102 viscosity is (27.2±1.3)mPa?s . The rolling-ball viscometer viscosity results for Krytox® GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox® GPL 102 viscosity, yielding a value of (26.2±1)mPa?s at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox® GPL 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa ? s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL® 102 from the same lot to further establish the properties of Krytox GPL® 102.

  2. Exploring atmospheres of hot mini-Neptune and extrasolar giant planets orbiting different stars with application to HD 97658b, WASP-12b, CoRoT-2b, XO-1b, and HD 189733b

    SciTech Connect (OSTI)

    Miguel, Y.; Kaltenegger, L.

    2014-01-10

    We calculated an atmospheric grid for hot mini-Neptune and giant exoplanets that links astrophysical observable parameters—orbital distance and stellar type—with the chemical atmospheric species expected. The grid can be applied to current and future observations to characterize exoplanet atmospheres and serves as a reference to interpret atmospheric retrieval analysis results. To build the grid, we developed a one-dimensional code for calculating the atmospheric thermal structure and linked it to a photochemical model that includes disequilibrium chemistry (molecular diffusion, vertical mixing, and photochemistry). We compare the thermal profiles and atmospheric composition of planets at different semimajor axes (0.01 AU ? a ? 0.1 AU) orbiting F, G, K, and M stars. Temperature and UV flux affect chemical species in the atmosphere. We explore which effects are due to temperature and which are due to stellar characteristics, showing the species most affected in each case. CH{sub 4} and H{sub 2}O are the most sensitive to UV flux, H displaces H{sub 2} as the most abundant gas in the upper atmosphere for planets receiving a high UV flux. CH{sub 4} is more abundant for cooler planets. We explore vertical mixing, to inform degeneracies on our models and in the resulting spectral observables. For lower pressures, observable species like H{sub 2}O or CO{sub 2} can indicate the efficiency of vertical mixing, with larger mixing ratios for a stronger mixing. By establishing the grid, testing the sensitivity of the results, and comparing our model to published results, our paper provides a tool to estimate what observations could yield. We apply our model to WASP-12b, CoRoT-2b, XO-1b, HD189733b, and HD97658b.

  3. Deepwater Wind | Open Energy Information

    Open Energy Info (EERE)

    Street Suite 402 Place: Hoboken, New Jersey Zip: 07030 Region: Northeast - NY NJ CT PA Area Sector: Wind energy Product: offshore wind Phone Number: 201.850.1717 Website:...

  4. On-Site Research: Deepwater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Successful implementation of portfolio research objectives will ultimately increase America's domestic oil and gas supply, reduce our nation's dependency foreign imports, and ...

  5. ULTRA-DEEPWATER ADVISORY COMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    Wilson thanked the committee for years of service, with special thanks to Ms. Melchert. ... with the diversity of the group providing interesting and stimulating discussions. ...

  6. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect (OSTI)

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  7. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  8. Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

    SciTech Connect (OSTI)

    Bureau of Economic Geology

    2009-04-30

    The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

  9. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AC26-07NT42677 RPSEA Sugar Land, TX Lloyd's Register Drilling Integrity Svcs - Houston, TX & San Diego, CA (Approval is for this recipient only; RPSEA previously approved). FE/TDIC/OG/UOG Team Gary Covatch Trident: A Human Factors Decision Aid Integrating Deepwater Drilling Tasks, Inc 1) Develop commercialization plan for the Trident tool. 2)Conduct internal and external pilot of the tool. 3) Analyze results and incorporate findings. 4) Support final report. GARY COVATCH Digitally signed by

  10. TX, RRC District 1 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    26 144 436 1,266 1,324 1,427 1996-2014 Lease Condensate (million bbls) 6 28 128 257 158 233 1998-2014 Total Gas (billion cu ft) 743 1,725 3,627 6,524 4,317 7,542 1996-2014 Nonassociated Gas (billion cu ft) 719 1,545 2,960 4,532 2,079 4,721 1996-2014 Associated Gas (billion cu ft) 24 180 667 1,992 2,238 2,821

  11. TX, RRC District 10 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    9 35 51 70 70 46 1996-2014 Lease Condensate (million bbls) 27 55 54 59 41 68 1998-2014 Total Gas (billion cu ft) 2,325 3,353 2,954 2,906 2,062 2,744 1996-2014 Nonassociated Gas (billion cu ft) 2,162 3,138 2,633 2,579 1,728 2,486 1996-2014 Associated Gas (billion cu ft) 163 215 321 327 334 258

  12. TX, RRC District 5 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1 29 12 28 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 9,039 9,340 8,784 3,255 2,729 3,216 1996-2014 Nonassociated Gas (billion cu ft) 9,039 9,340 8,779 3,237 2,724 3,201 1996-2014 Associated Gas (billion cu ft) 0 0 5 18 5 15

  13. TX, RRC District 6 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2 11 16 32 18 40 1996-2014 Lease Condensate (million bbls) 21 34 25 39 27 42 1998-2014 Total Gas (billion cu ft) 5,690 7,090 6,712 4,849 4,273 4,458 1996-2014 Nonassociated Gas (billion cu ft) 5,671 6,977 6,596 4,643 4,087 4,373 1996-2014 Associated Gas (billion cu ft) 19 113 116 206 186 8

  14. TX, RRC District 8 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    679 790 934 1,144 1,057 1,441 1996-2014 Lease Condensate (million bbls) 6 44 19 29 30 20 1998-2014 Total Gas (billion cu ft) 2,469 2,518 2,891 2,626 2,752 3,333 1996-2014 Nonassociated Gas (billion cu ft) 1,427 1,157 991 335 402 368 1996-2014 Associated Gas (billion cu ft) 1,042 1,361 1,900 2,291 2,350 2,965

  15. TX, RRC District 9 Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    5 21 20 32 20 39 1996-2014 Lease Condensate (million bbls) 8 8 12 8 10 4 1998-2014 Total Gas (billion cu ft) 4,168 4,274 2,974 2,824 2,455 2,133 1996-2014 Nonassociated Gas (billion cu ft) 3,935 4,043 2,724 2,452 2,236 1,763 1996-2014 Associated Gas (billion cu ft) 233 231 250 372 219 370

  16. TX, State Offshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 1 0 0 0 1996-2014 Lease Condensate (million bbls) 2 0 1 0 1 0 1998-2014 Total Gas (billion cu ft) 61 29 29 24 15 10 1996-2014 Nonassociated Gas (billion cu ft) 59 29 25 22 13 10 1996-2014 Associated Gas (billion cu ft) 2 0 4 2 2 0

  17. Roma, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    36,813 65,794 133,769 138,340 154,471 168,049 1999-2015 Pipeline Prices 4.55 4.14 2.86 3.80 4.62 2.79

  18. ~txF7D.ptx

    Energy Savers [EERE]

    THURSDAY OCTOBER 20, 2011 + + + + + The Electricity Advisory Committee met, in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 8:00 a.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair RICK BOWEN, Alcoa RALPH CAVANAGH, Natural Resources Defense Council THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American

  19. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  20. Microsoft Word - abstract-lacognata-tx_2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASTROPHYSICAL ENERGIES Dr. M. La Cognata INFN-Laboratori Nazionali del Sud, Catania, Italy ABSTRACT The 19 F(p,) 16 O reaction is an important fluorine destruction channel in ...

  1. Clint, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    87,449 96,722 101,585 108,573 123,670 126,022 1997-2015 Pipeline Prices 4.61 4.29 3.08 4.05 4.68 2.70 1997

  2. Hidalgo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  3. Hidalgo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

  4. Penitas, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 2016 0.10 -3.90 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Alamo, TX Natural Gas Exports to Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  6. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio ...

  7. Deepwater completion and tieback -- A case study

    SciTech Connect (OSTI)

    Ghiselin, D.

    1996-10-01

    Major operators are engaged in large-scale integrated projects around the world. Does integration favor the big boys, or can a small independent operator benefit from this approach? Independent partners Hardy Oil and Gas USA and Samedan Oil Corp. looked into integrated project management to successfully design and install subsea completions, subsea pipelines, and platform tiebacks and interfaces to two platforms operated by Texaco and Chevron, respectively. The paper describes the project management approach taken and results of the project.

  8. Horizontal subsea trees allow frequent deepwater workovers

    SciTech Connect (OSTI)

    Krenek, M.; Hall, G.; Sheng, W.Z.

    1995-05-01

    Horizontal subsea wellheads have found application in the Liuhua oil field in the South China Sea. These trees allow installation and retrieval of downhole equipment through the tree without having to disturb the tree or its external connections to flow lines, service lines, or control umbilicals. This access to the well is important because the Liuhua wells will be produced with electrical submersible pumps (ESPs), which may have relatively short intervals between maintenance, leading to frequent well work. The wells will be completed subsea in about 300 m of water. The large bore, horizontal trees allow all downhole equipment to be pulled without removal of the subsea tree. This wellhead configuration also provides well control and vertical access to downhole equipment through a conventional marine drilling riser and subsea blowout preventer (BOP), eliminating the need for costly specialized completion risers. Another benefit of the horizontal tree is its extremely compact profile with a low number of valves for well control. Valve size and spacing are decoupled from the size and bore spacing of the tubing hanger. The tree`s low profile geometry reduces costs of manufacturing the tree and framework and optimize load transfer to the wellhead.

  9. Data from Deepwater Horizon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Blow Out Preventer Drawing (.pdf) - This file is an engineering drawing of the Blow Out Preventer with the key components labeled. Pressure Data Within BOP (.xls) (.ods) - This ...

  10. Shell appraising deepwater discovery off Philippines

    SciTech Connect (OSTI)

    Scherer, M. ); Lambers, E.J.T.; Steffens, G.S. )

    1993-05-10

    Shell International Petroleum Co. Ltd. negotiated a farmout in 1990 from Occidental International Exploration and Production Co. for Block SC-38 in the South China Sea off Palawan, Philippines, following Oxy's discovery of gas in 1989 in a Miocene Nido limestone buildup. Under the terms of the farmout agreement, Shell became operator with a 50% share. Following the disappointing well North Iloc 1, Shell was successful in finding oil and gas in Malampaya 1. Water 700-1,000 m deep, remoteness, and adverse weather conditions have imposed major challenges for offshore operations. The paper describes the tectonic setting; the Nido limestone play; the Malampaya discovery; and Shell's appraisal studies.

  11. Pantex Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    TX Collingsworth County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Donley County, TX Floyd County, TX Gaines County, TX Garza County, TX Gray ...

  12. Pantex Regional High School Science Bowl | U.S. DOE Office of...

    Office of Science (SC) Website

    TX Cottle County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Dickens County, TX Donley County, TX Floyd County, TX Gaines County, TX ...

  13. MHK Technologies/Neptune Triton Wave | Open Energy Information

    Open Energy Info (EERE)

    Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  14. U.S. Department of Energy

    Gasoline and Diesel Fuel Update (EIA)

    ... TX ROBERTS INDIAN CREEK 1909833001 TX GREGG LONGVIEW 1976560001 TX SMITH CHAPEL HILL ... TX STEPHENS SHACKELFORD 170 4916171012 TX IRION MERTZON 4916171017 TX SMITH TYLER GAS ...

  15. Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    8,101 6,852 6,008 5,844 5,840 4,837 2015 3,440 3,990 6,547 6,431 7,980 6,896 7,411 5,451 5,292 6,185 4,875 4,771 2016 7,203 5,595 - No Data Reported; -- Not Applicable; NA ...

  16. Clint, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.51 4.57 4.11 4.50 4.51 4.73 4.68 4.57 4.21 3.89 3.71 3.63 2012 3.30 2.93 2.62 2.34 2.57 2.82 3.13 3.23 3.07 3.53 3.83 ...

  17. Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.43 4.15 3.95 4.32 4.37 4.58 4.44 4.38 3.88 3.64 3.10

  18. Alamo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.37 4.38 3.92 4.24 4.36 4.46 4.46 4.29 3.88 3.67 3.40 3.31 2012 3.11 2.64 2.28 2.09 2.41 2.48 2.90 3.08 2.80 3.26 3.53 ...

  19. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.52 2.79 2.24 2.35 2000's 3.91 4.45 3.44 5.34 5.95 7.49 6.73 6.72 9.00 4.47 2010's 5.13 4.57 ...

  20. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.54 4.33 3.95 4.33 4.42 4.49 4.47 4.44 3.92 3.66 3.24 3.30 2012 2.81 2.64 2.35 2.09 2.46 2.63 2.93 3.05 2.81 3.23 3.49 ...

  1. Alamo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4.49 4.12 3.35 5.36 5.97 7.17 6.62 7.11 8.40 3.95 2010's 4.50 4.10 2.86 3.81 4.63 ...

  2. Clint, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.24 1.99 2.22 2000's 3.95 4.28 3.16 5.50 5.91 8.01 6.42 6.37 7.83 3.78 2010's 4.61 4.29 3.08 ...

  3. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3.27 3.34 2.85 3.28 3.41 3.38 3.44 3.42 2.94 2.82 2.55 2.41 2012 2.17 1.80 1.56 1.27 1.15 1.52 1.86 2.09 1.76 2.09 2.80 ...

  4. Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.05 2.62 2.09 NA 2000's NA NA 3.27 6.53 5.71 -- -- -- 8.41 4.37 2010's 4.94 4.19 -- -- --

  5. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 5.18 5.84 7.29 6.75 6.93 8.58 3.91 2010's 4.55 4.14 2.86 3.80 4.62 2.79

  6. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 2.69 2010's 3.52 3.12 1.87 2.66 3.45 1.71

  7. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.77 4.97 4.44 4.94 5.00 4.95 5.04 4.61 4.61 4.39 4.11 3.94 2012 3.67 3.24 3.02 2.78 2.63 3.10 3.43 3.78 3.28 3.64 4.04 ...

  8. TX, RRC District 1 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    398 2,399 5,910 8,868 7,784 11,945 1977-2014 Adjustments -22 -95 53 122 161 81 1977-2014 Revision Increases 105 424 2,221 1,896 1,141 4,001 1977-2014 Revision Decreases 104 320 174 1,548 2,833 872 1977-2014 Sales 35 466 1,193 32 91 150 2000-2014 Acquisitions 50 416 1,139 19 127 173 2000-2014 Extensions 143 1,023 1,657 2,884 1,076 1,766 1977-2014 New Field Discoveries 358 117 24 38 2 0 1977-2014 New Reservoir Discoveries in Old Fields 0 15 2 1 11 16 1977-2014 Estimated Production 82 113 218 422

  9. TX, RRC District 10 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    6,882 7,663 7,513 7,253 7,034 7,454 1977-2014 Adjustments 188 -172 -76 301 41 127 1977-2014 Revision Increases 526 1,252 795 1,022 891 910 1977-2014 Revision Decreases 1,060 958 1,413 2,427 1,369 1,101 1977-2014 Sales 46 131 1,089 132 533 1,387 2000-2014 Acquisitions 68 96 579 671 813 1,846 2000-2014 Extensions 837 1,263 1,687 1,003 532 657 1977-2014 New Field Discoveries 0 0 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 14 0 92 0 1977-2014 Estimated Production 553 569 650 698

  10. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 1 2 4 2005-2014 Adjustments 0 0 0 1 1 -5 2009-2014 Revision Increases 0 0 0 0 0 9 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 0 1

  11. TX, RRC District 2 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    800 2,090 3,423 5,462 5,910 6,559 1977-2014 Adjustments -90 -10 178 -19 -219 -84 1977-2014 Revision Increases 190 333 425 403 985 633 1977-2014 Revision Decreases 372 302 550 614 1,462 732 1977-2014 Sales 22 18 162 11 370 1,327 2000-2014 Acquisitions 5 30 634 195 426 1,267 2000-2014 Extensions 86 178 1,001 2,446 1,595 1,462 1977-2014 New Field Discoveries 11 307 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 13 9 113 69 27 103 1977-2014 Estimated Production 259 237 306 430 534 673

  12. TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 5 47 229 506 594 706 1979-2014 Adjustments 3 1 13 -26 7 -9 2009-2014 Revision Increases 2 4 33 54 98 70 2009-2014 Revision Decreases 6 4 20 15 162 89 2009-2014 Sales 0 0 6 0 10 139 2009-2014 Acquisitions 0 0 80 22 24 137 2009-2014 Extensions 1 15 91 272 179 208 2009-2014 New Field Discoveries 0 21 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 9 3 1 0 2009-2014 Estimated Production 3 5 18 33 49 6

  13. TX, RRC District 2 Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    14 53 242 711 615 825 1996-2014 Lease Condensate (million bbls) 1 22 100 369 268 438 1998-2014 Total Gas (billion cu ft) 648 886 1,504 3,707 2,477 4,014 1996-2014 Nonassociated Gas (billion cu ft) 617 810 1,104 2,307 1,567 2,454 1996-2014 Associated Gas (billion cu ft) 31 76 400 1,400 910 1,560

  14. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 71 47 49 2005-2014 Adjustments 0 0 0 81 -17 -37 2009-2014 Revision Increases 0 0 0 0 0 21 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 1 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 26 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 10 7 7

  15. TX, RRC District 3 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2,616 2,588 2,260 2,154 2,307 2,199 1977-2014 Adjustments -124 82 -95 164 49 -191 1977-2014 Revision Increases 490 482 375 604 547 370 1977-2014 Revision Decreases 369 319 252 631 284 264 1977-2014 Sales 174 184 274 214 103 142 2000-2014 Acquisitions 190 199 204 182 130 171 2000-2014 Extensions 288 175 104 121 119 222 1977-2014 New Field Discoveries 61 20 16 10 3 27 1977-2014 New Reservoir Discoveries in Old Fields 11 25 3 8 9 20 1977-2014 Estimated Production 509 508 409 350 317 321

  16. TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 75 76 81 63 67 1979-2014 Adjustments 3 -2 3 13 -8 1 2009-2014 Revision Increases 20 19 18 20 12 9 2009-2014 Revision Decreases 10 16 9 16 17 8 2009-2014 Sales 1 4 11 8 2 3 2009-2014 Acquisitions 1 12 10 4 4 7 2009-2014 Extensions 10 10 6 6 3 4 2009-2014 New Field Discoveries 3 1 0 0 0 1 2009-2014 New Reservoir Discoveries in Old Fields 0 1 0 0 1 3 2009-2014 Estimated Production 17 20 16 14 11 10

  17. TX, RRC District 3 Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    26 37 19 118 163 189 1996-2014 Lease Condensate (million bbls) 14 15 14 25 13 19 1998-2014 Total Gas (billion cu ft) 798 879 714 671 735 709 1996-2014 Nonassociated Gas (billion cu ft) 685 739 627 556 502 527 1996-2014 Associated Gas (billion cu ft) 113 140 87 115 233 182

  18. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 1 1 1 2005-2014 Adjustments 0 0 0 1 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 0 0

  19. TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    6,728 7,014 9,458 8,743 9,640 11,057 1977-2014 Adjustments -127 3 358 635 225 82 1977-2014 Revision Increases 774 1,084 2,271 965 905 1,496 1977-2014 Revision Decreases 1,419 850 1,087 2,072 1,491 786 1977-2014 Sales 260 208 939 550 424 505 2000-2014 Acquisitions 309 180 1,245 65 523 1,148 2000-2014 Extensions 506 943 1,452 1,162 1,977 843 1977-2014 New Field Discoveries 45 24 7 1 0 2 1977-2014 New Reservoir Discoveries in Old Fields 309 3 23 5 1 19 1977-2014 Estimated Production 1,013 893 886

  20. TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes, and Production 96 202 181 228 223 1979-2014 Adjustments -2 -1 4 28 83 -16 2009-2014 Revision Increases 15 12 47 17 23 16 2009-2014 Revision Decreases 16 14 35 100 74 24 2009-2014 Sales 5 2 10 3 8 4 2009-2014 Acquisitions 3 2 20 2 5 18 2009-2014 Extensions 7 37 94 53 38 26 2009-2014 New Field Discoveries 3 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 1 0 0 0 2009-2014 Estimated Production 11 12 15 18 20 21

  1. TX, RRC District 4 Onshore Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    80 3 1 7 6 1996-2014 Lease Condensate (million bbls) 23 43 83 90 132 115 1998-2014 Total Gas (billion cu ft) 2,663 3,171 4,489 4,755 5,850 6,564 1996-2014 Nonassociated Gas (billion cu ft) 2,644 3,147 4,475 4,741 5,831 6,501 1996-2014 Associated Gas (billion cu ft) 19 24 14 14 19 63

  2. TX, RRC District 5 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision Increases 1,904 1,577 3,693 336 3,338 740 1977-2014 Revision Decreases 1,458 1,274 2,157 8,168 769 1,417 1977-2014 Sales 31 1 10,556 529 93 614 2000-2014 Acquisitions 277 5 10,694 289 574 1,229 2000-2014 Extensions 2,992 3,457 3,034 387 188 193 1977-2014 New Field Discoveries 0 0 2 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 3 24 0 1977-2014 Estimated Production 1,718

  3. TX, RRC District 6 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296 -1,010 128 -272 1977-2014 Revision Increases 1,820 2,660 4,894 2,108 2,089 1,979 1977-2014 Revision Decreases 2,225 2,680 5,464 5,203 1,404 1,178 1977-2014 Sales 358 505 3,938 290 429 842 2000-2014 Acquisitions 243 955 3,944 393 572 614 2000-2014 Extensions 1,671 2,173 1,670 979 409 562 1977-2014 New Field Discoveries 0 51 3 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 41 51 268 7 7 0 1977-2014 Estimated

  4. TX, RRC District 7B Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2,077 2,242 3,305 2,943 2,787 2,290 1977-2014 Adjustments 63 68 -65 666 -162 -170 1977-2014 Revision Increases 144 260 387 41 405 203 1977-2014 Revision Decreases 193 231 344 983 223 355 1977-2014 Sales 494 3 683 142 18 2 2000-2014 Acquisitions 27 0 1,855 116 15 0 2000-2014 Extensions 319 220 109 205 2 8 1977-2014 New Field Discoveries 0 0 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 53 0 1977-2014 Estimated Production 171 149 196 265 228 181

  5. TX, RRC District 7B Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    8 8 13 19 12 16 1996-2014 Lease Condensate (million bbls) 0 1 0 0 0 0 1998-2014 Total Gas (billion cu ft) 737 897 890 857 629 464 1996-2014 Nonassociated Gas (billion cu ft) 714 890 878 840 617 407 1996-2014 Associated Gas (billion cu ft) 23 7 12 17 12 5

  6. TX, RRC District 7C Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    4,827 4,787 4,475 4,890 4,800 6,422 1977-2014 Adjustments 29 68 -311 639 -236 764 1977-2014 Revision Increases 355 535 684 421 693 1,343 1977-2014 Revision Decreases 447 710 708 1,113 889 1,177 1977-2014 Sales 90 575 260 84 129 636 2000-2014 Acquisitions 97 451 271 106 127 886 2000-2014 Extensions 263 496 305 708 568 865 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 2 10 0 46 104 1 1977-2014 Estimated Production 328 315 293 309 328 424

  7. TX, RRC District 7C Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    221 286 301 438 400 642 1996-2014 Lease Condensate (million bbls) 10 13 4 14 3 5 1998-2014 Total Gas (billion cu ft) 1,619 1,659 1,551 1,844 1,540 2,305 1996-2014 Nonassociated Gas (billion cu ft) 875 789 447 387 157 318 1996-2014 Associated Gas (billion cu ft) 744 870 1,104 1,457 1,383 1,98

  8. TX, RRC District 8 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    6,672 7,206 7,039 7,738 8,629 9,742 1977-2014 Adjustments 233 304 -703 395 243 -395 1977-2014 Revision Increases 828 1,082 1,056 1,115 1,154 2,164 1977-2014 Revision Decreases 1,375 1,268 1,028 1,549 1,060 1,388 1977-2014 Sales 260 363 185 385 608 734 2000-2014 Acquisitions 194 758 482 656 575 771 2000-2014 Extensions 747 568 676 1,023 1,223 1,429 1977-2014 New Field Discoveries 1 0 4 7 0 1 1977-2014 New Reservoir Discoveries in Old Fields 25 2 1 1 26 32 1977-2014 Estimated Production 545 549

  9. TX, RRC District 8A Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    1,218 1,164 1,226 1,214 1,269 1,257 1977-2014 Adjustments 87 -40 -30 -2 16 4 1977-2014 Revision Increases 161 138 195 107 168 137 1977-2014 Revision Decreases 111 63 36 36 59 59 1977-2014 Sales 8 14 25 29 36 5 2000-2014 Acquisitions 17 4 41 27 42 6 2000-2014 Extensions 8 14 10 16 23 8 1977-2014 New Field Discoveries 0 0 0 1 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 1 1 0 0 1977-2014 Estimated Production 108 93 94 97 99 103

  10. TX, RRC District 8A Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    413 418 419 433 367 361 1996-2014 Lease Condensate (million bbls) 6 11 5 6 0 0 1998-2014 Total Gas (billion cu ft) 376 369 360 336 309 258 1996-2014 Nonassociated Gas (billion cu ft) 2 1 1 1 1 1 1996-2014 Associated Gas (billion cu ft) 374 368 359 335 308 25

  11. TX, RRC District 9 Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    10,904 12,464 10,115 8,894 9,195 8,791 1977-2014 Adjustments 18 336 -110 -725 378 248 1977-2014 Revision Increases 610 1,070 2,850 212 1,087 793 1977-2014 Revision Decreases 503 221 5,564 1,048 636 1,036 1977-2014 Sales 71 92 1,204 353 583 139 2000-2014 Acquisitions 86 46 1,432 281 18 0 2000-2014 Extensions 2,400 1,147 850 977 396 346 1977-2014 New Field Discoveries 0 0 10 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 14 7 0 46 244 0 1977-2014 Estimated Production 687 733 613 611 603

  12. TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    4 4 3 3 2 2 2009-2014 Adjustments -2 0 -2 1 -1 1 2009-2014 Revision Increases 1 0 3 0 0 1 2009-2014 Revision Decreases 0 0 2 1 0 2 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 1 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 0 0 0

  13. TX, State Offshore Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    64 131 118 94 59 42 1981-2014 Adjustments -29 11 -25 16 -13 -3 1981-2014 Revision Increases 29 20 75 16 9 18 1981-2014 Revision Decreases 22 56 66 11 19 22 1981-2014 Sales 3 20 2 23 6 0 2000-2014 Acquisitions 0 39 26 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 10 0 0 0 8 0 1981-2014 Estimated Production 40 27 21 22 14 10 1981

  14. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales 0 0 2009-2010 Acquisitions 0 0 2009-2010 Extensions 0 0 2009-2010 New Field Discoveries 0 0 2009-2010 New Reservoir Discoveries in Old Fields 0 0 2009-2010 Estimated Production 0 0 0 0 2007-2010

  15. RAPID/Roadmap/14-TX-b | Open Energy Information

    Open Energy Info (EERE)

    Wyoming. On October 9, 2015, the U.S. Court of Appeals for the Sixth Circuit issued a stay halting implementation of the new rule nationwide pending its own determination of its...

  16. TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  17. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 7 2005-2013 Adjustments 0 0 0 9 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  18. TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1 2005-2013 Adjustments 0 0 0 1 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  19. TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2 2005-2013 Adjustments 0 0 0 1 1 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  20. Rio Bravo, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    62,914 74,790 75,026 78,196 76,154 81,837 1999-2015 Pipeline Prices 4.42 4.14 2.94 3.88 4.47 2.71

  1. Rio Grande, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 2015 View History Pipeline Volumes 0 8,045 310,965 2013-2015 Pipeline Prices -- 4.42 2.85 2013

  2. TX, RRC District 1 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    96 263 893 2,031 2,360 2,887 2009-2014 Adjustments -3 -20 7 -19 -60 83 2009-2014 Revision Increases 19 16 95 302 288 330 2009-2014 Revision Decreases 19 10 52 253 237 262 2009-2014 Sales 0 4 33 7 90 56 2009-2014 Acquisitions 0 9 33 6 123 86 2009-2014 Extensions 8 137 593 1,194 484 591 2009-2014 New Field Discoveries 4 54 29 19 2 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 2 8 11 18 2009-2014 Estimated Production 10 15 44 112 192 263

    398 2,399 5,910 8,868 7,784 11,945 1977-2014

  3. TX, RRC District 10 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    523 2,599 6,127 9,141 8,118 12,431 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,456 2,332 5,227 6,516 4,442 7,733 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Dry Natural Gas 1,398 2,399 5,910 8,868 7,784 11,945 Lease Separation

    456 2,332 5,227 6,516 4,442 7,733 1979-2014 Adjustments 5 -95 -42 20 120 -73 1979-2014 Revision Increases 110 430 2,184 1,620 702 3,462 1979-2014 Revision Decreases 110 331 116

  4. TX, RRC District 2 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    7,594 8,484 8,373 8,007 7,744 8,354 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Dry Natural Gas 6,882 7,663 7,513 7,253 7,034 7,454 Lease Separation

    6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Adjustments 223 -144 -5 213 23 233 1979-2014 Revision Increases 492 1,288 593 1,044 762 801 1979-2014 Revision Decreases 1,120 868

  5. TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    909 2,235 3,690 5,985 6,640 7,524 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,837 2,101 2,766 3,986 4,348 4,802 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Dry Natural Gas 1,800 2,090 3,423 5,462 5,910 6,559 After Lease Separation

    837 2,101 2,766 3,986 4,348 4,802 1979-2014 Adjustments -101 18 153 15 -39 -1 1979-2014 Revision Increases 194 321 397 212 719 454 1979-2014 Revision Decreases 364 308 572

  6. TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    2,802 2,774 2,490 2,429 2,592 2,483 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Dry Natural Gas 2,616 2,588 2,260 2,154 2,307 2,19 After Lease Separation

    2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Adjustments -105 56 -29 164 -99 52 1979-2014 Revision Increases 456 419 355 608 335 290 1979-2014 Revision Decreases 338 288 225 655

  7. TX, RRC District 5 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    4 22 28 65 47 62 2009-2014 Adjustments -4 1 5 1 5 4 2009-2014 Revision Increases 5 3 8 11 1 3 2009-2014 Revision Decreases 1 3 3 3 22 7 2009-2014 Sales 0 0 6 0 0 19 2009-2014 Acquisitions 0 0 6 24 0 19 2009-2014 Extensions 1 0 0 9 4 21 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 3 3 4 5 6 6

    22,343 24,363 27,843 17,331 19,280 17,880 1977-2014 Adjustments 96 27 674 -1,078 269 -119 1977-2014 Revision

  8. TX, RRC District 6 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    24 240 232 252 267 299 2009-2014 Adjustments 3 3 16 18 -37 19 2009-2014 Revision Increases 38 45 38 17 35 62 2009-2014 Revision Decreases 29 29 43 31 26 27 2009-2014 Sales 3 5 28 18 13 94 2009-2014 Acquisitions 4 11 21 23 26 80 2009-2014 Extensions 8 9 6 30 49 12 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 18 18 18 19 19 20

    12,795 14,886 15,480 11,340 11,655 11,516 1977-2014 Adjustments 423 403 296

  9. TX, RRC District 7B Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    102 102 126 134 113 148 2009-2014 Adjustments 9 4 -3 5 -37 39 2009-2014 Revision Increases 7 9 16 19 24 23 2009-2014 Revision Decreases 7 3 3 5 8 17 2009-2014 Sales 0 0 2 1 0 1 2009-2014 Acquisitions 1 0 27 1 10 0 2009-2014 Extensions 1 0 0 0 1 3 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 10 10 11 11 11 12

    2,077 2,242 3,305 2,943 2,787 2,290 1977-2014 Adjustments 63 68 -65 666 -162 -170 1977-2014

  10. TX, RRC District 7C Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    509 618 672 891 964 1,298 2009-2014 Adjustments 35 -10 8 63 -23 30 2009-2014 Revision Increases 55 69 77 66 162 363 2009-2014 Revision Decreases 25 37 118 139 271 421 2009-2014 Sales 7 56 56 13 9 14 2009-2014 Acquisitions 25 83 62 30 21 155 2009-2014 Extensions 69 88 121 254 227 309 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 6 0 8 29 0 2009-2014 Estimated Production 32 34 40 50 63 8

    4,827 4,787 4,475 4,890 4,800 6,422 1977-2014 Adjustments

  11. TX, RRC District 8 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    985 2,254 2,709 3,304 3,356 4,142 2009-2014 Adjustments 10 -93 75 69 33 -16 2009-2014 Revision Increases 201 273 309 401 383 948 2009-2014 Revision Decreases 99 149 235 339 471 554 2009-2014 Sales 63 116 125 78 321 232 2009-2014 Acquisitions 87 315 253 242 270 302 2009-2014 Extensions 202 196 332 500 375 605 2009-2014 New Field Discoveries 0 0 2 3 0 0 2009-2014 New Reservoir Discoveries in Old Fields 4 1 0 2 11 16 2009-2014 Estimated Production 121 158 156 205 228 283

    6,672 7,206 7,039 7,738

  12. TX, RRC District 8A Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    790 1,822 1,800 1,758 1,736 1,668 2009-2014 Adjustments 19 21 13 10 27 37 2009-2014 Revision Increases 172 181 115 103 97 78 2009-2014 Revision Decreases 15 66 90 66 54 63 2009-2014 Sales 8 23 70 60 57 36 2009-2014 Acquisitions 24 12 102 49 51 17 2009-2014 Extensions 4 15 14 17 21 7 2009-2014 New Field Discoveries 1 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 1 13 0 0 2009-2014 Estimated Production 111 108 107 108 107 108

    1,218 1,164 1,226 1,214 1,269 1,257 1977-2014

  13. TX, RRC District 9 Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    49 155 181 177 195 209 2009-2014 Adjustments -24 13 -18 -7 37 20 2009-2014 Revision Increases 29 11 32 13 15 28 2009-2014 Revision Decreases 9 21 17 17 45 22 2009-2014 Sales 12 4 11 13 9 2 2009-2014 Acquisitions 22 10 22 11 15 4 2009-2014 Extensions 45 14 39 31 25 7 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 1 0 2009-2014 Estimated Production 15 17 21 22 21 21

    10,904 12,464 10,115 8,894 9,195 8,791 1977-2014 Adjustments 18 336 -110

  14. TX, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    11,522 13,172 10,920 9,682 10,040 9,760 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 422 585 957 1,161 1,093 1,477 1979-2014 Dry Natural Gas 10,904 12,464 10,115 8,894 9,195 8,791 Lease Separation

    11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Adjustments 98 345 211 -609 407 102 1979-2014 Revision Increases 628 932 3,016 177 1,110 774 1979-2014 Revision

  15. TX, State Offshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    4 4 3 3 2 2 2009-2014 Adjustments -2 0 -2 1 -1 1 2009-2014 Revision Increases 1 0 3 0 0 1 2009-2014 Revision Decreases 0 0 2 1 0 2 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 1 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 0 0 0

    64 131 118 94 59 42 1981-2014 Adjustments -29 11 -25 16 -13 -3 1981-2014 Revision Increases 29 20 75 16 9 18 1981-2014

  16. Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0 2,664...

  17. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 10.31 11.16 13.45 15.51 15.7

  18. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 13.45 2014 15.51 2015 17.44 12.89 16.71 15.9

  19. RAPID/Roadmap/4-TX-a | Open Energy Information

    Open Energy Info (EERE)

    and written evidence confirming that it is not delinquent in paying its franchise taxes. The application to prospect must be accompanied by the appropriate filing fee....

  20. RAPID/Roadmap/7-TX-b | Open Energy Information

    Open Energy Info (EERE)

    defined in PUCT Substantive Rule 25.173(c) and must meet the requirements of 25.173. A power generating company may participate in the program and may generate RECs and buy or...

  1. RAPID/Roadmap/7-TX-c | Open Energy Information

    Open Energy Info (EERE)

    in this state a facility to provide retail electric utility service. If a power producer is not a "retail electric utility" then the developer is not required to obtain a...

  2. High Performance Builder Spotlight: GreenCraft, Lewisville, TX

    SciTech Connect (OSTI)

    2011-01-01

    In October and November 2009, the TimberCreek Zero Energy House in Lewisville, Texas, opened as a Building America Demonstration House. The 2,538-foot,three-bedroom, 2½-bath custom-built home showed a home energy rating score (HERS) of 56 without the solar photovoltaics and a HERS score of 1 with PV.

  3. TX, State Offshore Nonassociated Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    161 128 113 88 56 42 1981-2014 Adjustments -29 -7 -24 7 -10 -2 1981-2014 Revision Increases 29 20 70 14 9 17 1981-2014 Revision Decreases 21 35 65 9 19 19 1981-2014 Sales 3 20 2 23 ...

  4. TX, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 2 1 1 1 1 1981-2014 Adjustments -1 0 -1 0 0 1 2009-2014 Revision Increases 1 0 1 0 0 0 2009-2014 Revision Decreases 0 0 1 0 0 1 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions ...

  5. RAPID/Roadmap/1-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Land use planning in Texas is delegated to municipalities. 01TXALandUsePlanning.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  6. RAPID/Roadmap/19-TX-d | Open Energy Information

    Open Energy Info (EERE)

    Quality (TCEQ) handles transfers of surface water rights. 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  7. Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    to Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 16.950 - No Data Reported; -- Not Applicable; NA Not Available; W ...

  8. Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 17 - No Data Reported; -- Not Applicable; NA Not Available; W ...

  9. Laredo, TX Liquefied Natural Gas Exports (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld...

  10. RAPID/Roadmap/3-TX-b | Open Energy Information

    Open Energy Info (EERE)

    following: A diagram of the project showing all structures and dimensions; A copy of a tax statement as proof of ownership of littoral property; A vicinity map showing project...

  11. RAPID/Roadmap/3-TX-a | Open Energy Information

    Open Energy Info (EERE)

    Act Lands' are defined in the Texas Administrative Code as "any public free school or asylum lands, whether surveyed or unsurveyed, sold with a mineral classification or...

  12. Transactive Controls R&D (Tx-R&D)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and communication technologies (ICT). - Most common signal is economics based: ... ICT & related physical hardware) that allow applications to be programmed and negotiate...

  13. RAPID/Roadmap/8-TX-f | Open Energy Information

    Open Energy Info (EERE)

    of the total load of the secondary network under consideration; The TDU may postpone processing an application for an individual distributed generation facility if the total...

  14. DOE - Office of Legacy Management -- Falls City Mill Site - TX...

    Office of Legacy Management (LM)

    Also see Falls City, Texas, Disposal Site Documents Related to Falls City Mill Site Data Validation Package for the April 2009 Groundwater Sampling at the Falls City, Texas, ...

  15. RAPID/Roadmap/3-TX-g | Open Energy Information

    Open Energy Info (EERE)

    must report on the status of the exploration, development, and production of geothermal energy and associated resources under the land governed by Tex. Nat. Rec. Code Sec. 141...

  16. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  17. Del Rio, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    320 282 355 372 324 306 2006-2015 Pipeline Prices 5.92 5.53 4.33 4.69 5.35 3.59 200

  18. Eagle Pass, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    1,471 2,114 2,970 2,608 3,801 4,282 1996-2015 Pipeline Prices 5.13 4.57 3.41 4.37 5.18 3.78

  19. El Paso, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) definitions English FranÇais Español A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Browse terms related to these categories: border crossing electricity border crossing gas border crossing liquid liquefied natural gas terminals natural gas processing plants power plants refineries See index of all terms A

    Referencia cruzada de definición English FranÇais Español A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Explorar los términos relacionados con las

  20. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  1. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    225 501 314 1,046 1,426 933 2007-2015 Pipeline Prices 3.52 3.12 1.87 2.66 3.45 1.71 2007

  2. McAllen, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0,627 56,569 68,425 78,000 79,396 61,402 1998-2015 Pipeline Prices 4.52 4.19 2.95 3.84 4.62 2.85 1998

  3. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  4. RAPID/Roadmap/14-TX-a | Open Energy Information

    Open Energy Info (EERE)

    specifically CWA 319(b). The Management Program outlines Texas' comprehensive strategy to protect and restore water quality impacted by nonpoint sources of pollution....

  5. RAPID/Roadmap/3-TX-f | Open Energy Information

    Open Energy Info (EERE)

    address of the surface owner of record in the tax assessor's office; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  6. RAPID/Roadmap/3-TX-d | Open Energy Information

    Open Energy Info (EERE)

    in the section, and county or counties in which the land lies; The name, address, phone number, and taxpayer ID number of a non-corporate applicant; The corporate name,...

  7. RAPID/Roadmap/19-TX-c | Open Energy Information

    Open Energy Info (EERE)

    post-office address of the applicant; Identify the source of water supply; State the nature and purposes of the proposed use or uses and the amount of water to be used for each...

  8. RAPID/Roadmap/7-TX-a | Open Energy Information

    Open Energy Info (EERE)

    is intended to be sold at wholesale, including the owner or operator of electric energy storage equipment or facilities to which the Public Utility Regulatory Act applies; Does...

  9. Price Liquefied Freeport, TX Natural Gas Exports to India (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.56 8.66 11.10 -- --

  10. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales...

  11. TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    13,691 16,032 19,747 11,513 13,592 2007-2013 Adjustments 657 105 233 -516 -70 2009-2013 Revision Increases 928 643 3,094 30 2,922 2009-2013 Revision Decreases 587 405 1,405 6,895...

  12. TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    48 24 90 61 583 649 2007-2013 Adjustments -1 53 -79 249 -21 2009-2013 Revision Increases 2 20 45 19 121 2009-2013 Revision Decreases 22 0 12 47 112 2009-2013 Sales 0 0 0 19 50...

  13. TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2 435 1,564 5,123 8,340 7,357 2007-2013 Adjustments 5 8 0 47 315 2009-2013 Revision Increases 1 322 2,141 1,852 1,083 2009-2013 Revision Decreases 0 251 48 1,272 2,818 2009-2013...

  14. TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    73 1,161 4,381 6,584 4,172 4,633 2007-2013 Adjustments 40 1,968 26 -225 564 2009-2013 Revision Increases 422 1,206 2,322 999 513 2009-2013 Revision Decreases 8 1,319 1,860 2,907...

  15. TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 1 6 24 2007-2013 Adjustments 0 0 1 1 -3 2009-2013 Revision Increases 0 0 0 1 2 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 4 2009-2013 Acquisitions 0 0 0 2 0...

  16. TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    78 565 2,611 3,091 4,377 2007-2013 Adjustments 53 0 185 300 592 2009-2013 Revision Increases 0 66 792 253 174 2009-2013 Revision Decreases 0 12 295 1,160 819 2009-2013 Sales 0 0 75...

  17. TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    10,756 12,573 10,276 9,260 9,580 2007-2013 Adjustments 179 533 42 -483 378 2009-2013 Revision Increases 580 1,044 3,005 200 1,092 2009-2013 Revision Decreases 469 191 5,864...

  18. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 2010-2013 Adjustments 6 237 494 40 2010-2013 Revision Increases 6 388 326 839 2010-2013...

  19. TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 37 37 2007-2013 Adjustments 0 0 -1 11 6 2009-2013 Revision Increases 0 0 0 31 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 1 2009-2013 Acquisitions 0 0...

  20. RAPID/Roadmap/8-TX-a | Open Energy Information

    Open Energy Info (EERE)

    a Certificate of Convenience and Necessity (CCN). However, minor modifications and maintenance to an existing transmission system may not need a CCN. 08TXATransmissionSiting.pdf...

  1. RAPID/Roadmap/8-TX-b | Open Energy Information

    Open Energy Info (EERE)

    This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the...

  2. RAPID/Roadmap/3-TX-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  3. ,"TX, RRC District 10 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"TX, RRC District 1 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  6. ,"TX, RRC District 5 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  7. ,"TX, RRC District 3 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  8. ,"TX, RRC District 8A Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  9. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"TX, RRC District 7B Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  11. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"TX, State Offshore Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  14. ,"TX, RRC District 4 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  15. ,"TX, RRC District 9 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"TX, RRC District 8 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. ,"TX, RRC District 2 Onshore Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  18. ,"TX, RRC District 6 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  19. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"TX, RRC District 7C Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  1. RAPID/Roadmap/18-TX-a | Open Energy Information

    Open Energy Info (EERE)

    used in connection with an activity associated with the exploration, development, or production of oil, gas, or geothermal resources, or any other activity regulated by the...

  2. RAPID/Roadmap/5-TX-a | Open Energy Information

    Open Energy Info (EERE)

    for exploratory wells, commercial drilling operations, geothermal wells, and co-production wells. A geothermal resource well is a well drilled within the established...

  3. RAPID/Roadmap/14-TX-c | Open Energy Information

    Open Energy Info (EERE)

    A reservoir is considered to be in a productive reservoir if there is any current or past production of oil, gas, or geothermal resources within 2 mile radius of the proposed well...

  4. RAPID/Roadmap/13-TX-a | Open Energy Information

    Open Energy Info (EERE)

    15.3(d)). Note: Under the Beach Dune Rules Sec. 15.3(s)(2)(a) the exploration for and production of oil and gas is exempted from the Dune Protection permit requirement. If the...

  5. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  6. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  7. RAPID/Roadmap/14-TX-e | Open Energy Information

    Open Energy Info (EERE)

    Publication. If the pit is in a wetland, submit a copy of the Army Corp of Engineers Wetlands Permit or Permit Application. Note: In addition to requirements listed by the RRC,...

  8. EV Community Readiness projects: Center for the Commercialization of Electric Technologies (TX); City of Austin, Austin Energy (TX)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.41 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Price

  10. Subsea technology progress buoys Gulf of Mexico deepwater action

    SciTech Connect (OSTI)

    Koen, A.D.

    1996-09-02

    This paper reviews the technological advances in subsea oil and gas equipment to drive a new era of exploration and development in the outer continental shelf and other areas considered to complex to economically pursue. As subsea technology expands into deep waters, operators in the Gulf are using subsea production systems based on template and well cluster designs. Subsea cluster systems are gaining favor among operators because they allow more flexibility with shallow water flow which occurs during the first 1,000 feet of clay formations below the seabed. The paper also provides insight into deep water drilling, remote operated vehicles, deep water umbilicals, and other deep water production equipment.

  11. ORISE: DeepwaterHorizon and Nuclear & Radiological Incidents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System's Incident Command System was utilized during the response, there were immense command and coordination challenges for the unified management team never before...

  12. Deepwater Wind Formerly Winergy LLC | Open Energy Information

    Open Energy Info (EERE)

    New York Zip: 11967 Sector: Wind energy Product: Has carried out a survey of feasible offshore wind sites in the US. Coordinates: 40.80063, -72.872189 Show Map Loading...

  13. University of Maine Researching Floating Technologies for Deepwater

    Energy Savers [EERE]

    From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. Project Description For the inaugural U.S. Department of Energy Collegiate Wind

  14. Peru onshore-deepwater basins should have large potential

    SciTech Connect (OSTI)

    Zuniga-Rivero, F.; Keeling, J.A.; Hay-Roe, H.

    1998-10-19

    Perupetro`s recent announcement that 13 offshore exploration blocks of nearly 1 million acres each will be offered for bids in the fourth quarter of 1998 has reawakened interest in this extensive, largely unexplored area. The new government policy, combined with the results of modern, deep-probing seismic surveys, has already led to a stepped-up search for oil and gas that will probably escalate. Most of Peru`s ten coastal basins are entirely offshore, but at both ends of the 1,500-mile coastline the sedimentary basins stretch from onshore across the continental shelf and down the continental slope. Two of these basin areas, both in the north, have commercial production. The third, straddling the country`s southern border, has never been drilled either on land or offshore. The Peruvian sectors of these three basins total roughly 50,000 sq miles in area, 75% offshore. All have major oil and gas potential. They are described individually in this article, an update in the ongoing studies last reported at the 1998 Offshore Technology Conference and in the first article of this series.

  15. FE's Ultra-Deepwater Program focuses on spill prevention, safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will continue to be an important part of U.S. energy strategy for decades to come. ... Why are these resources important? Consider these facts: U.S. offshore oil and gas ...

  16. Ultra-Deepwater Advisory Committee Elena Melchert Acting Designated...

    Office of Environmental Management (EM)

    Attachment 3 2 2014 Annual Plan Review Process * September 17, 2013; Web Meeting - Overview of DOE Research Program - Establish subcommittees * October 8, 2013; Web Meeting - ...

  17. OCT (Offshore Technology Conference) accents deepwater action around the globe

    SciTech Connect (OSTI)

    Yost, P.; Scarborough, R.H.

    1980-05-12

    According to P. Yost (US Coast Guard) at the 12th Offshore Technology Conference (Houston 1980), the US Coast Guard's high-seas boom and skimmer equipment worked well with the strong constant currents and heavy crude involved in the Ixtoc blowout but due to a lighter crude and more variable currents, was not as successful in containing spills from the Burmah Agate tanker in the fall of 1989. Texas beaches will not remove any more oil from the Ixtoc blowout, but the long term effects of the spill remain unknown. Federal and state officials are examining options concerning the 17-19 tar mats deposited by the spill on the beaches; the only way to remove the tar mats might be by bulldozer at low tide. A Coast Guard study of tanker and freighter traffic off Galveston, Texas has been completed and recommendations, possibly involving earlier boarding by pilots of incoming vessels, will be made soon. Other papers presented at the OTC are discussed.

  18. deepwater_current_proj | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through Improved Seismic Imaging SEAM Corporation 12121-6001-01 Marine Sources for Air-gun Substitution Texas A&MTEES 11121-5402-01 Integrity Management of Risers to Support ...

  19. Annual Report: EPAct Complementary Program's Ultra-Deepwater...

    Office of Scientific and Technical Information (OSTI)

    Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes 50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research ...

  20. Annual Report: EPAct Complementary Program's Ultra-Deepwater...

    Office of Scientific and Technical Information (OSTI)

    The objective of this body of work is to build the scientific understanding and assessment ... gas emissions, (2) predicting the composition and volume of waters produced during ...

  1. LIVE: Meeting on Strengthening Deepwater Blowout Containment Capabilities

    Broader source: Energy.gov [DOE]

    Secretary Chu and Secretary of the Interior Ken Salazar convened with top U.S. government scientists and key industry and stakeholder leaders to discuss how to strengthen capabilities for responding to potential blowouts of oil and gas wells on the Outer Continental Shelf.

  2. Ultra-Deepwater Advisory Committee Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    George A. Cooper* Professor University of California, Berkeley Dr. Quenton R. Dokken PresidentCEO Gulf of Mexico Foundation Dr. Hartley H. Downs Technology Fellow Baker Hughes ...

  3. Department of Energy Activities in Response to the Deepwater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This team includes: * Dr. Tom Hunter, Director of the Department of Energy's Sandia National Labs * Dr. George A. Cooper, an expert in materials science and retired professor from ...

  4. Research Portfolio Report Ultra-Deepwater: Subsea Systems Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... results and experimental data were found for low injection rate cases. Neither 2-D nor 3-D simulations were able to reproduce methanol overriding the water phase at both low spots. ...

  5. Observation of two new L4 Neptune Trojans in the Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8 and 19.4...

  6. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11121-5402-01 RPSEA Sugar Land, TX GE Global Research: Offshore Gulf of Mexico (CX only applies to this sub-recipient) FE/TDIC/Oil & Gas/OUGT Dave Cercone Integrity Management of Risers to Support Deepwater Drilling & Production Ops... GE Global Research will deploy the RLMS into the Gulf of Mexico at an active platform operated by BP. Unmanned subsurface vehicles will be used to assist in the operation. TASK 7 DAVID CERCONE Digitally signed by DAVID CERCONE DN: c=US, o=U.S. Government,

  7. U.S. Total LNG Export From All point of Exit

    U.S. Energy Information Administration (EIA) Indexed Site

    VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria ...

  8. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TX University of Texas at Austin - Austin, TX (approved CX); Bureau of Economic Geology UT-Austin - Austin, TX (approved CX) Laredo Petroleum, Inc. - Reagan Co., TX FE...

  9. Texas A&M Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  10. Texas AM Junior Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... County, TX Titus County, TX Tom Green County, TX Travis County, TX Trinity ...

  11. UDW_Annual _FY13 Format

    Office of Scientific and Technical Information (OSTI)

    Deepwater and Ultra-Deepwater Research Deepwater and Ultra-Deepwater Research Deepwater and Ultra-Deepwater Research Deepwater and Ultra-Deepwater Research Annual Report: Deepwater and Ultra-Deepwater Research 30 September 2013 NETL Technical Report Series Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied,

  12. McAllen, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.52 4.36 3.99 4.35 4.41 4.53 4.49 4.45 3.99 3.74 3.50 3.34 2012 3.08 2.66 2.41 2.16 2.32 2.54 2.98 3.20 2.83 3.30 3.61 ...

  13. McAllen, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 4.81 3.37 3.42 5.36 5.92 7.49 6.76 6.65 9.07 3.90 2010's 4.52 4.19 2.95 3.84 4.62 ...

  14. Rio Bravo, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 4.99 6.13 8.02 6.51 6.80 9.11 3.91 2010's 4.42 4.14 2.94 3.88 4.47 2.71

  15. Rio Bravo, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.58 4.26 4.13 4.36 4.44 4.69 4.56 4.22 4.03 3.68 3.34 3.32 2012 2.85 2.64 2.34 2.09 2.59 2.56 3.05 3.00 2.97 3.44 3.65 3.52 2013 3.52 3.44 4.02 4.31 4.25 4.03 3.77 3.58 3.80 3.80 3.74 4.31 2014 4.73 6.15 4.95 4.74 4.68 4.75 4.26 4.05 4.07 3.97 4.14 3.54 2015 3.13 2.91 2.93 2.72 2.97 2.85 3.00 2.91 2.72 2.46 2.15 2.06 2016 2.34 2.39

  16. Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 8,986 39,588 40,466 60,432 54,660 49,073 56,035 2010's 62,914 74,790 75,026 78,196 76,154 81,83

  17. Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6,264 5,596 5,084 6,745 6,527 7,001 6,404 7,024 5,603 5,556 6,129 6,857 2012 7,001 6,473 5,109 4,087 4,285 7,082 6,586 6,845 7,001 7,306 6,482 6,770 2013 5,681 6,205 5,607 6,193 7,167 6,327 7,125 7,201 6,390 6,810 6,945 6,546 2014 5,377 4,717 6,745 6,735 7,381 6,865 6,894 6,408 6,520 6,460 5,578 6,475 2015 6,981 6,575 6,308 5,147 6,340 5,880 7,442 6,641 7,325 7,558 7,837 7,802 2016 7,096 6,55

  18. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 8,045 310,965

  19. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 8,045 2015 15,984 17,668 21,372 22,842 23,041 24,529 29,766 30,441 29,787 31,090 29,995 34,452 2016 31,055 38,906

  20. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 62,591 63,331 37,517 20,476 23,152 24,905 20,042 2010's 36,813 65,794 133,769 138,340 154,471 168,049

  1. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,096 4,366 5,682 7,739 7,085 7,322 6,867 4,309 3,565 3,941 3,724 6,098 2012 7,203 6,395 9,986 11,277 12,777 12,656 12,587 12,852 12,403 12,529 11,604 11,500 2013 12,364 10,749 12,263 12,320 13,026 12,678 12,542 12,790 11,100 10,410 9,480 8,619 2014 11,008 11,039 12,280 11,962 12,995 12,455 12,784 12,812 13,937 15,124 15,124 12,951 2015 12,494 10,114 11,377 12,397 14,689 15,053 15,779 16,165 15,423 15,404 14,585 14,568 2016 13,965 11,

  2. TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Adjustments -2 -15 -15 70 156 140 1979-2014 Revision Increases 4 29 119 335 488 702 1979-2014 Revision Decreases 3 16 64 215 172 397 1979-2014 Sales 0 0 10 5 82 42 2000-2014 Acquisitions 0 6 9 12 126 65 2000-2014 Extensions 14 148 601 1,599 771 902 1979-2014 New Field Discoveries 0 63 22 38 2 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 2 1 11 16 1979-2014 Estimated Production 6 15 31 110 249 36

  3. TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    96 263 893 2,031 2,360 2,887 2009-2014 Adjustments -3 -20 7 -19 -60 83 2009-2014 Revision Increases 19 16 95 302 288 330 2009-2014 Revision Decreases 19 10 52 253 237 262 2009-2014 Sales 0 4 33 7 90 56 2009-2014 Acquisitions 0 9 33 6 123 86 2009-2014 Extensions 8 137 593 1,194 484 591 2009-2014 New Field Discoveries 4 54 29 19 2 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 2 8 11 18 2009-2014 Estimated Production 10 15 44 112 192 263

  4. TX, RRC District 1 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 4 35 211 320 304 392 1979-2014 Adjustments 5 -5 1 1 -11 -5 2009-2014 Revision Increases 1 2 37 104 97 113 2009-2014 Revision Decreases 1 3 1 95 107 33 2009-2014 Sales 0 4 31 0 2 6 2009-2014 Acquisitions 0 4 30 0 7 7 2009-2014 Extensions 1 16 151 125 38 58 2009-2014 New Field Discoveries 4 12 1 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 12 26 38 4

  5. TX, RRC District 1 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    523 2,599 6,127 9,141 8,118 12,431 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,456 2,332 5,227 6,516 4,442 7,733 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Dry Natural Gas 1,398 2,399 5,910 8,868 7,784 11,945

  6. TX, RRC District 1 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 456 2,332 5,227 6,516 4,442 7,733 1979-2014 Adjustments 5 -95 -42 20 120 -73 1979-2014 Revision Increases 110 430 2,184 1,620 702 3,462 1979-2014 Revision Decreases 110 331 116 1,380 2,783 511 1979-2014 Sales 38 505 1,227 28 13 114 2000-2014 Acquisitions 55 445 1,172 8 6 115 2000-2014 Extensions 141 960 1,117 1,374 352 936 1979-2014 New Field Discoveries 390 63 2 1 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 16 0 0 0 0 1979-2014 Estimated Production 84 107 195

  7. TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 435 1,564 5,123 8,340 7,357 11,729 2007-2014 Adjustments 5 8 0 47 315 129 2009-2014 Revision Increases 1 322 2,141 1,852 1,083 4,056 2009-2014 Revision Decreases 0 251 48 1,272 2,818 791 2009-2014 Sales 0 409 1,132 4 84 120 2009-2014 Acquisitions 0 401 1,130 6 105 140 2009-2014 Extensions 85 971 1,604 2,911 1,046 1,765 2009-2014 New Field Discoveries 353 114 20 39 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 14 0 0 0 15 2009-2014 Estimated Production 11 41 156 362 630

  8. TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Adjustments 20 -20 -24 42 2 48 1979-2014 Revision Increases 89 97 293 84 219 219 1979-2014 Revision Decreases 49 193 41 310 384 310 1979-2014 Sales 8 0 40 0 13 41 2000-2014 Acquisitions 18 8 6 49 248 133 2000-2014 Extensions 106 124 204 261 159 206 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 18 0 1979-2014 Estimated Production 48 57 69 90 99 125

  9. TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 8 7 7 2005-2014 Adjustments 0 0 0 9 0 5 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 4 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 1 1 1

  10. TX, RRC District 10 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    98 243 290 347 351 363 2009-2014 Adjustments -3 -12 -3 10 -14 25 2009-2014 Revision Increases 52 63 70 66 93 61 2009-2014 Revision Decreases 18 54 51 80 81 109 2009-2014 Sales 1 0 30 1 59 34 2009-2014 Acquisitions 2 3 14 27 56 63 2009-2014 Extensions 39 67 75 75 47 46 2009-2014 New Field Discoveries 0 0 1 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 1 0 5 0 2009-2014 Estimated Production 16 22 30 40 43 40

  11. TX, RRC District 10 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 104 140 139 143 138 167 1979-2014 Adjustments 4 -4 1 6 5 5 2009-2014 Revision Increases 25 38 18 26 43 36 2009-2014 Revision Decreases 13 27 38 44 26 32 2009-2014 Sales 1 0 19 1 48 24 2009-2014 Acquisitions 0 2 10 8 19 44 2009-2014 Extensions 16 38 42 27 20 14 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 2 0 2009-2014 Estimated Production 8 11 15 18 20 14

  12. TX, RRC District 10 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,594 8,484 8,373 8,007 7,744 8,354 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Dry Natural Gas 6,882 7,663 7,513 7,253 7,034 7,454

  13. TX, RRC District 10 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Adjustments 223 -144 -5 213 23 233 1979-2014 Revision Increases 492 1,288 593 1,044 762 801 1979-2014 Revision Decreases 1,120 868 1,533 2,370 1,123 923 1979-2014 Sales 42 145 1,174 146 574 1,513 2000-2014 Acquisitions 57 99 639 692 647 1,936 2000-2014 Extensions 817 1,274 1,676 846 426 530 1979-2014 New Field Discoveries 0 0 4 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 15 0 83 0 1979-2014 Estimated Production

  14. TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 0 0 0 37 37 66 2007-2014 Adjustments 0 0 -1 11 6 36 2009-2014 Revision Increases 0 0 0 31 0 1 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 1 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 1 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 5 5 8

  15. TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Adjustments 15 -13 57 23 -56 44 1979-2014 Revision Increases 8 35 61 230 388 272 1979-2014 Revision Decreases 30 15 21 157 652 198 1979-2014 Sales 0 0 8 1 81 578 2000-2014 Acquisitions 0 3 235 42 118 595 2000-2014 Extensions 11 67 440 1,022 769 515 1979-2014 New Field Discoveries 12 1 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 86 53 23 114 1979-2014 Estimated Production 16 16 60 137 216 33

  16. TX, RRC District 2 Onshore Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    66 154 691 1,508 1,857 2,110 2009-2014 Adjustments -7 -2 26 -11 -48 -34 2009-2014 Revision Increases 8 14 44 148 327 178 2009-2014 Revision Decreases 6 5 28 51 417 198 2009-2014 Sales 0 0 9 1 50 387 2009-2014 Acquisitions 0 2 215 50 105 394 2009-2014 Extensions 13 72 296 761 590 486 2009-2014 New Field Discoveries 0 22 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 39 28 12 48 2009-2014 Estimated Production 10 15 46 107 170 234

  17. TX, RRC District 2 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    909 2,235 3,690 5,985 6,640 7,524 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,837 2,101 2,766 3,986 4,348 4,802 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Dry Natural Gas 1,800 2,090 3,423 5,462 5,910 6,559

  18. TX, RRC District 2 Onshore Nonassociated Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 837 2,101 2,766 3,986 4,348 4,802 1979-2014 Adjustments -101 18 153 15 -39 -1 1979-2014 Revision Increases 194 321 397 212 719 454 1979-2014 Revision Decreases 364 308 572 516 990 642 1979-2014 Sales 23 19 167 11 335 944 2000-2014 Acquisitions 5 29 449 172 361 859 2000-2014 Extensions 80 123 639 1,659 1,023 1,162 1979-2014 New Field Discoveries 0 327 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 13 10 36 23 7 4 1979-2014 Estimated Production 259 237 270 334

  19. TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 395 1,692 4,743 5,595 6,648 2010-2014 Adjustments 6 237 494 40 79 2010-2014 Revision Increases 6 388 326 839 583 2010-2014 Revision Decreases 5 402 320 1,433 705 2010-2014 Sales 0 61 0 198 1,403 2010-2014 Acquisitions 2 38 210 357 1,402 2010-2014 Extensions 109 1,157 2,604 1,692 1,639 2010-2014 New Field Discoveries 282 0 0 0 0 2010-2014 New Reservoir Discoveries in Old Fields 2 81 64 29 107 2010-2014 Estimated

  20. TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Adjustments -14 34 1 81 145 -256 1979-2014 Revision Increases 69 98 58 74 280 128 1979-2014 Revision Decreases 57 54 52 57 104 70 1979-2014 Sales 34 40 43 18 29 17 2000-2014 Acquisitions 57 11 6 30 60 62 2000-2014 Extensions 38 7 9 14 47 154 1979-2014 New Field Discoveries 8 0 11 4 3 12 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 1 3 0 1979-2014 Estimated Production 70 66 57 64 72 87

  1. TX, RRC District 3 Onshore Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    257 272 261 428 500 613 2009-2014 Adjustments -7 26 14 53 -16 -19 2009-2014 Revision Increases 46 53 47 165 80 81 2009-2014 Revision Decreases 29 31 24 43 38 66 2009-2014 Sales 12 42 40 27 22 11 2009-2014 Acquisitions 42 21 15 43 39 59 2009-2014 Extensions 19 29 16 16 73 115 2009-2014 New Field Discoveries 3 2 1 1 1 10 2009-2014 New Reservoir Discoveries in Old Fields 0 1 0 1 3 4 2009-2014 Estimated Production 40 44 40 42 48 60

  2. TX, RRC District 3 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,802 2,774 2,490 2,429 2,592 2,483 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Dry Natural Gas 2,616 2,588 2,260 2,154 2,307 2,19

  3. TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Adjustments -105 56 -29 164 -99 52 1979-2014 Revision Increases 456 419 355 608 335 290 1979-2014 Revision Decreases 338 288 225 655 215 228 1979-2014 Sales 152 157 259 224 87 143 2000-2014 Acquisitions 147 202 219 175 86 131 2000-2014 Extensions 270 181 106 122 86 97 1979-2014 New Field Discoveries 58 21 6 7 0 18 1979-2014 New Reservoir Discoveries in Old Fields 12 27 4 8 8 23 1979-2014 Estimated Production 475 479 394 331

  4. TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 0 0 1 6 24 106 2007-2014 Adjustments 0 0 1 1 -3 35 2009-2014 Revision Increases 0 0 0 1 2 13 2009-2014 Revision Decreases 0 0 0 0 0 7 2009-2014 Sales 0 0 0 0 4 14 2009-2014 Acquisitions 0 0 0 2 0 3 2009-2014 Extensions 0 0 0 1 25 62 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 2 10

  5. TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves, Wet After Lease Separation 96 91 61 99 63 191 1979-2014 Adjustments 5 -1 11 97 -42 -8 1979-2014 Revision Increases 14 14 25 24 35 38 1979-2014 Revision Decreases 32 13 23 30 24 16 1979-2014 Sales 0 1 34 50 11 1 2000-2014 Acquisitions 0 1 4 4 2 114 2000-2014 Extensions 1 9 0 9 13 14 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 19 14 13 16 9 13

  6. TX, RRC District 4 Onshore Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    92 207 222 203 256 257 2009-2014 Adjustments -5 -3 7 46 83 -16 2009-2014 Revision Increases 20 109 54 22 32 27 2009-2014 Revision Decreases 19 15 133 103 78 30 2009-2014 Sales 5 2 14 21 10 5 2009-2014 Acquisitions 3 2 21 4 6 19 2009-2014 Extensions 7 39 96 54 43 31 2009-2014 New Field Discoveries 3 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 1 0 1 0 0 0 2009-2014 Estimated Production 14 15 17 21 23 25

  7. TX, RRC District 4 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,057 7,392 10,054 9,566 11,101 12,482 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 96 91 61 99 63 191 1979-2014 Dry Natural Gas 6,728 7,014 9,458 8,743 9,640 11,057

  8. TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Adjustments -94 38 434 892 803 -117 1979-2014 Revision Increases 798 1,129 2,390 1,032 1,007 1,651 1979-2014 Revision Decreases 1,456 882 1,133 2,238 1,693 872 1979-2014 Sales 273 219 964 552 477 570 2000-2014 Acquisitions 324 189 1,319 68 600 1,182 2000-2014 Extensions 530 984 1,543 1,263 2,264 938 1979-2014 New Field Discoveries 48 25 7 1 0 2 1979-2014 New Reservoir Discoveries in Old Fields 324 3 24 5 1 21 1979-2014

  9. TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 78 565 2,611 3,091 4,377 4,991 2007-2014 Adjustments 53 0 185 300 592 11 2009-2014 Revision Increases 0 66 792 253 174 335 2009-2014 Revision Decreases 0 12 295 1,160 819 300 2009-2014 Sales 0 0 75 0 0 20 2009-2014 Acquisitions 0 0 75 0 0 252 2009-2014 Extensions 0 459 1,506 1,392 1,655 717 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 30 0 12 0 0 0 2009-2014 Estimated Production 5 26 154 305 316 381

  10. TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 21 8 40 53 177 185 1979-2014 Adjustments 43 -12 7 8 -16 -30 1979-2014 Revision Increases 7 2 31 3 196 29 1979-2014 Revision Decreases 65 2 2 23 40 4 1979-2014 Sales 0 0 4 0 0 14 2000-2014 Acquisitions 0 0 4 20 0 41 2000-2014 Extensions 0 0 0 10 2 1 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 4 1 4 5 18 15

  11. TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    4 22 28 65 47 62 2009-2014 Adjustments -4 1 5 1 5 4 2009-2014 Revision Increases 5 3 8 11 1 3 2009-2014 Revision Decreases 1 3 3 3 22 7 2009-2014 Sales 0 0 6 0 0 19 2009-2014 Acquisitions 0 0 6 24 0 19 2009-2014 Extensions 1 0 0 9 4 21 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 3 3 4 5 6 6

  12. TX, RRC District 5 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 8 6 6 7 6 5 1979-2014 Adjustments 2 0 1 0 1 0 2009-2014 Revision Increases 1 0 1 3 0 1 2009-2014 Revision Decreases 0 1 1 1 1 1 2009-2014 Sales 0 0 4 0 0 0 2009-2014 Acquisitions 0 0 4 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 1 1 1

  13. TX, RRC District 5 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    22,623 24,694 28,187 17,640 19,531 18,155 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 21 8 40 53 177 185 1979-2014 Dry Natural Gas 22,343 24,363 27,843 17,331 19,280 17,880

  14. TX, RRC District 5 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Adjustments 130 65 646 -951 207 -46 1979-2014 Revision Increases 1,921 1,596 3,708 338 3,185 723 1979-2014 Revision Decreases 1,412 1,290 2,182 8,291 739 1,435 1979-2014 Sales 32 1 10,683 539 94 609 2000-2014 Acquisitions 281 5 10,823 274 581 1,207 2000-2014 Extensions 3,029 3,504 3,071 384 188 195 1979-2014 New Field Discoveries 0 0 2 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 3 24 0 1979-2014 Estimated

  15. TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 3,691 16,032 19,747 11,513 13,592 13,043 2007-2014 Adjustments 657 105 233 -516 -70 261 2009-2014 Revision Increases 928 643 3,094 30 2,922 475 2009-2014 Revision Decreases 587 405 1,405 6,895 334 434 2009-2014 Sales 5 0 5,772 191 32 0 2009-2014 Acquisitions 21 6 5,851 262 520 0 2009-2014 Extensions 2,223 3,045 2,980 332 182 171 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 19 0 2009-2014 Estimated Production 954 1,053 1,266

  16. TX, RRC District 6 Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 451 458 471 522 639 383 1979-2014 Adjustments 16 13 38 1 -53 28 1979-2014 Revision Increases 85 23 34 220 78 57 1979-2014 Revision Decreases 34 37 25 119 81 23 1979-2014 Sales 0 0 24 49 9 343 2000-2014 Acquisitions 0 4 19 18 47 60 2000-2014 Extensions 23 37 0 29 173 42 1979-2014 New Field Discoveries 0 0 1 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 51 33 30 49 38 77

  17. TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    24 240 232 252 267 299 2009-2014 Adjustments 3 3 16 18 -37 19 2009-2014 Revision Increases 38 45 38 17 35 62 2009-2014 Revision Decreases 29 29 43 31 26 27 2009-2014 Sales 3 5 28 18 13 94 2009-2014 Acquisitions 4 11 21 23 26 80 2009-2014 Extensions 8 9 6 30 49 12 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 18 18 18 19 19 20

  18. TX, RRC District 6 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 95 104 92 95 83 120 1979-2014 Adjustments 5 1 8 0 -11 3 2009-2014 Revision Increases 24 23 16 7 18 48 2009-2014 Revision Decreases 13 17 27 14 18 14 2009-2014 Sales 2 3 21 1 4 21 2009-2014 Acquisitions 4 8 13 4 4 24 2009-2014 Extensions 6 4 5 14 5 3 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 7 7 6 7 6 6

  19. TX, RRC District 6 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    13,257 15,416 15,995 11,726 12,192 12,023 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 12,806 14,958 15,524 11,204 11,553 11,640 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 451 458 471 522 639 383 1979-2014 Dry Natural Gas 12,795 14,886 15,480 11,340 11,655 11,516

  20. TX, RRC District 6 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 12,806 14,958 15,524 11,204 11,553 11,640 1979-2014 Adjustments 426 400 233 -1,035 322 -338 1979-2014 Revision Increases 1,801 2,732 5,023 1,960 2,107 2,009 1979-2014 Revision Decreases 2,271 2,739 5,621 5,261 1,387 1,206 1979-2014 Sales 370 523 4,045 251 440 536 2000-2014 Acquisitions 252 985 4,056 388 551 582 2000-2014 Extensions 1,708 2,213 1,726 984 255 545 1979-2014 New Field Discoveries 0 52 2 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 43 52 277 8 8 0

  1. TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production ,161 4,381 6,584 4,172 4,633 3,979 2007-2014 Adjustments 40 1,968 26 -225 564 -586 2009-2014 Revision Increases 422 1,206 2,322 999 513 774 2009-2014 Revision Decreases 8 1,319 1,860 2,907 283 708 2009-2014 Sales 0 88 879 2 4 76 2009-2014 Acquisitions 0 150 1,673 0 0 5 2009-2014 Extensions 541 1,520 1,303 209 80 207 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 21 2 0 0 0 0 2009-2014 Estimated Production 28 219 382 486 409 270

  2. TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 02 121 133 180 227 277 1979-2014 Adjustments -3 39 -27 66 -59 44 1979-2014 Revision Increases 16 9 39 23 161 30 1979-2014 Revision Decreases 4 14 12 22 34 5 1979-2014 Sales 0 0 0 1 0 0 2000-2014 Acquisitions 0 0 21 0 1 0 2000-2014 Extensions 37 0 6 0 0 4 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 2 0 1979-2014 Estimated Production 12 15 15 19 24 2

  3. TX, RRC District 7B Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    102 102 126 134 113 148 2009-2014 Adjustments 9 4 -3 5 -37 39 2009-2014 Revision Increases 7 9 16 19 24 23 2009-2014 Revision Decreases 7 3 3 5 8 17 2009-2014 Sales 0 0 2 1 0 1 2009-2014 Acquisitions 1 0 27 1 10 0 2009-2014 Extensions 1 0 0 0 1 3 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 10 10 11 11 11 12

  4. TX, RRC District 7B Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 5 4 5 4 3 4 1979-2014 Adjustments 1 0 1 2 -1 2 2009-2014 Revision Increases 1 1 1 0 1 0 2009-2014 Revision Decreases 1 1 1 2 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 1 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 1 1 1 1

  5. TX, RRC District 7B Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,424 2,625 3,887 3,363 3,267 2,695 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,322 2,504 3,754 3,183 3,040 2,418 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 102 121 133 180 227 277 1979-2014 Dry Natural Gas 2,077 2,242 3,305 2,943 2,787 2,290

  6. TX, RRC District 7B Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 2,322 2,504 3,754 3,183 3,040 2,418 1979-2014 Adjustments 106 48 -38 585 -44 -231 1979-2014 Revision Increases 152 295 417 24 313 209 1979-2014 Revision Decreases 221 256 393 1,101 227 413 1979-2014 Sales 577 3 803 162 21 2 2000-2014 Acquisitions 32 0 2,161 133 16 0 2000-2014 Extensions 335 258 122 234 3 5 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 60 0 1979-2014 Estimated Production 187 160 216 284 243 190

  7. TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 2,022 2,435 3,466 2,952 2,802 2,204 2007-2014 Adjustments 56 267 -193 567 -106 -258 2009-2014 Revision Increases 119 273 385 17 331 193 2009-2014 Revision Decreases 181 242 358 1,028 212 374 2009-2014 Sales 496 0 748 162 18 0 2009-2014 Acquisitions 24 0 2,011 130 16 0 2009-2014 Extensions 308 255 118 220 1 6 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 56 0 2009-2014 Estimated Production 145 140 184 258 218 165

  8. TX, RRC District 7C Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation ,706 1,930 2,379 3,076 3,401 4,659 1979-2014 Adjustments 13 41 -11 210 -78 218 1979-2014 Revision Increases 224 228 388 234 459 1,308 1979-2014 Revision Decreases 59 92 264 460 660 1,168 1979-2014 Sales 18 392 143 39 95 40 2000-2014 Acquisitions 56 338 301 84 133 296 2000-2014 Extensions 203 205 309 774 660 956 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 2 11 0 53 121 1 1979-2014 Estimated Production 97 115 131 159 215

  9. TX, RRC District 7C Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    509 618 672 891 964 1,298 2009-2014 Adjustments 35 -10 8 63 -23 30 2009-2014 Revision Increases 55 69 77 66 162 363 2009-2014 Revision Decreases 25 37 118 139 271 421 2009-2014 Sales 7 56 56 13 9 14 2009-2014 Acquisitions 25 83 62 30 21 155 2009-2014 Extensions 69 88 121 254 227 309 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 6 0 8 29 0 2009-2014 Estimated Production 32 34 40 50 63 8

  10. TX, RRC District 7C Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 34 42 23 28 19 22 1979-2014 Adjustments 5 -2 2 8 2 -1 2009-2014 Revision Increases 4 6 13 3 12 9 2009-2014 Revision Decreases 8 6 8 8 19 4 2009-2014 Sales 0 2 26 0 2 2 2009-2014 Acquisitions 1 2 1 1 0 3 2009-2014 Extensions 5 14 2 3 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 3 4 3 2 2 2

  11. TX, RRC District 7C Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    5,430 5,432 5,236 5,599 5,584 7,103 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,724 3,502 2,857 2,523 2,183 2,444 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,706 1,930 2,379 3,076 3,401 4,659 1979-2014 Dry Natural Gas 4,827 4,787 4,475 4,890 4,800 6,422

  12. TX, RRC District 7C Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 3,724 3,502 2,857 2,523 2,183 2,444 1979-2014 Adjustments 56 84 -184 408 -105 352 1979-2014 Revision Increases 175 380 412 248 347 177 1979-2014 Revision Decreases 444 714 564 814 374 134 1979-2014 Sales 83 261 161 57 56 663 2000-2014 Acquisitions 53 173 17 38 14 684 2000-2014 Extensions 93 358 48 37 0 1 1979-2014 New Field Discoveries 0 0 0 1 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 273 242 213 195 166 156

  13. TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 2010 2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 13 27 81 409 1,183 2010-2014 Adjustments 0 -1 1 -1 231 2010-2014 Revision Increases 0 13 20 217 232 2010-2014 Revision Decreases 0 19 9 42 104 2010-2014 Sales 0 0 0 0 1 2010-2014 Acquisitions 3 0 0 0 232 2010-2014 Extensions 0 21 44 166 295 2010-2014 New Field Discoveries 0 0 0 0 0 2010-2014 New Reservoir Discoveries in Old Fields 10 0 0 1 0 2010-2014 Estimated Production 0 0 2 13 111 2010

  14. TX, RRC District 8 Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 3,490 4,328 5,082 6,654 7,400 9,095 1979-2014 Adjustments 134 178 -357 339 148 58 1979-2014 Revision Increases 433 575 783 841 1,053 2,161 1979-2014 Revision Decreases 292 532 484 763 1,000 1,487 1979-2014 Sales 102 285 153 165 526 757 2000-2014 Acquisitions 119 805 485 686 545 770 2000-2014 Extensions 341 376 759 1,048 1,019 1,585 1979-2014 New Field Discoveries 1 0 4 8 0 0 1979-2014 New Reservoir Discoveries in Old Fields 25 2 1 2 26 38 1979-2014 Estimated Production

  15. TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    985 2,254 2,709 3,304 3,356 4,142 2009-2014 Adjustments 10 -93 75 69 33 -16 2009-2014 Revision Increases 201 273 309 401 383 948 2009-2014 Revision Decreases 99 149 235 339 471 554 2009-2014 Sales 63 116 125 78 321 232 2009-2014 Acquisitions 87 315 253 242 270 302 2009-2014 Extensions 202 196 332 500 375 605 2009-2014 New Field Discoveries 0 0 2 3 0 0 2009-2014 New Reservoir Discoveries in Old Fields 4 1 0 2 11 16 2009-2014 Estimated Production 121 158 156 205 228 283

  16. TX, RRC District 8 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 9 78 71 88 64 59 1979-2014 Adjustments 5 -3 1 1 -1 -23 2009-2014 Revision Increases 4 51 24 15 5 25 2009-2014 Revision Decreases 6 6 37 17 29 5 2009-2014 Sales 0 1 6 1 38 2 2009-2014 Acquisitions 7 16 10 4 13 0 2009-2014 Extensions 3 30 6 20 33 9 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 3 38 5 5 7 9

  17. TX, RRC District 8 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,440 8,105 8,088 8,963 9,715 11,575 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,950 3,777 3,006 2,309 2,315 2,480 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3,490 4,328 5,082 6,654 7,400 9,095 1979-2014 Dry Natural Gas 6,672 7,206 7,039 7,738 8,629 9,742

  18. TX, RRC District 8 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 3,950 3,777 3,006 2,309 2,315 2,480 1979-2014 Adjustments 150 229 -274 184 -127 9 1979-2014 Revision Increases 491 642 431 451 247 411 1979-2014 Revision Decreases 1,242 894 698 1,031 193 162 1979-2014 Sales 188 124 60 281 158 115 2000-2014 Acquisitions 97 48 69 74 103 147 2000-2014 Extensions 491 262 17 136 358 113 1979-2014 New Field Discoveries 1 0 0 0 0 1 1979-2014 New Reservoir Discoveries in Old Fields 3 0 0 0 3 0 1979-2014 Estimated Production 359 336 256 230 227 2

  19. TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 24 90 61 583 649 1,125 2007-2014 Adjustments -1 53 -79 249 -21 214 2009-2014 Revision Increases 2 20 45 19 121 138 2009-2014 Revision Decreases 22 0 12 47 112 309 2009-2014 Sales 0 0 0 19 50 8 2009-2014 Acquisitions 0 0 20 215 26 19 2009-2014 Extensions 0 0 2 126 161 500 2009-2014 New Field Discoveries 0 0 0 1 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 3 0 2009-2014 Estimated Production 3 7 5 22 62 78

  20. TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 246 1,170 1,258 1,260 1,315 1,304 1979-2014 Adjustments 76 -67 -12 13 12 2 1979-2014 Revision Increases 168 141 202 111 174 140 1979-2014 Revision Decreases 96 59 33 35 58 56 1979-2014 Sales 8 12 17 30 38 5 2000-2014 Acquisitions 17 4 34 25 43 6 2000-2014 Extensions 2 7 8 16 23 8 1979-2014 New Field Discoveries 0 0 0 1 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 1 1 0 0 1979-2014 Estimated Production 107 90 95 100 101 106

  1. TX, RRC District 8A Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    790 1,822 1,800 1,758 1,736 1,668 2009-2014 Adjustments 19 21 13 10 27 37 2009-2014 Revision Increases 172 181 115 103 97 78 2009-2014 Revision Decreases 15 66 90 66 54 63 2009-2014 Sales 8 23 70 60 57 36 2009-2014 Acquisitions 24 12 102 49 51 17 2009-2014 Extensions 4 15 14 17 21 7 2009-2014 New Field Discoveries 1 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 1 13 0 0 2009-2014 Estimated Production 111 108 107 108 107 108

  2. TX, RRC District 8A Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 10 32 13 14 9 5 1979-2014 Adjustments 1 -3 3 0 1 1 2009-2014 Revision Increases 0 30 1 6 1 0 2009-2014 Revision Decreases 1 6 23 1 1 5 2009-2014 Sales 0 0 0 5 6 0 2009-2014 Acquisitions 5 0 0 0 0 0 2009-2014 Extensions 0 1 1 2 1 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 1 1 1 0

  3. TX, RRC District 8A Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    1,289 1,228 1,289 1,280 1,338 1,328 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 43 58 31 20 23 24 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,246 1,170 1,258 1,260 1,315 1,304 1979-2014 Dry Natural Gas 1,218 1,164 1,226 1,214 1,269 1,257

  4. TX, RRC District 8A Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 43 58 31 20 23 24 1979-2014 Adjustments -1 20 -24 -11 5 5 1979-2014 Revision Increases 2 5 3 2 3 5 1979-2014 Revision Decreases 21 7 5 3 4 6 1979-2014 Sales 0 3 9 1 0 0 2000-2014 Acquisitions 1 0 9 3 1 0 2000-2014 Extensions 6 8 3 1 1 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 7 8 4 2 3 3

  5. TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 2012 2013 2014 View History Proved Reserves as of Dec. 31 0 0 10 2012-2014 Adjustments 0 0 123 2012-2014 Revision Increases 0 0 0 2012-2014 Revision Decreases 0 0 156 2012-2014 Sales 0 0 0 2012-2014 Acquisitions 0 0 0 2012-2014 Extensions 0 0 44 2012-2014 New Field Discoveries 0 0 0 2012-2014 New Reservoir Discoveries in Old Fields 0 0 0 2012-2014 Estimated Production 0 0 1 2012

  6. TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 422 585 957 1,161 1,093 1,477 1979-2014 Adjustments -76 11 -48 -88 36 342 1979-2014 Revision Increases 16 199 61 53 76 106 1979-2014 Revision Decreases 18 10 8 21 314 5 1979-2014 Sales 6 2 17 5 6 2 2000-2014 Acquisitions 69 4 27 24 0 0 2000-2014 Extensions 302 5 419 352 236 61 1979-2014 New Field Discoveries 0 0 11 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 23 44 73 111 96 118

  7. TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    49 155 181 177 195 209 2009-2014 Adjustments -24 13 -18 -7 37 20 2009-2014 Revision Increases 29 11 32 13 15 28 2009-2014 Revision Decreases 9 21 17 17 45 22 2009-2014 Sales 12 4 11 13 9 2 2009-2014 Acquisitions 22 10 22 11 15 4 2009-2014 Extensions 45 14 39 31 25 7 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 1 0 2009-2014 Estimated Production 15 17 21 22 21 21

  8. TX, RRC District 9 Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 5 21 26 19 24 15 1979-2014 Adjustments 1 0 1 -2 2 1 2009-2014 Revision Increases 11 3 6 2 7 1 2009-2014 Revision Decreases 5 7 5 2 4 7 2009-2014 Sales 0 2 4 5 0 2 2009-2014 Acquisitions 0 2 7 1 0 0 2009-2014 Extensions 2 2 2 1 2 1 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 1 0 2009-2014 Estimated Production 2 2 2 2 3 3

  9. TX, RRC District 9 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    11,522 13,172 10,920 9,682 10,040 9,760 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 422 585 957 1,161 1,093 1,477 1979-2014 Dry Natural Gas 10,904 12,464 10,115 8,894 9,195 8,791

  10. TX, RRC District 9 Nonassociated Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation 11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Adjustments 98 345 211 -609 407 102 1979-2014 Revision Increases 628 932 3,016 177 1,110 774 1979-2014 Revision Decreases 514 223 5,998 1,120 380 1,145 1979-2014 Sales 69 95 1,282 380 630 152 2000-2014 Acquisitions 21 44 1,519 282 20 0 2000-2014 Extensions 2,234 1,207 498 712 196 323 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 14 8 0 51 266 0 1979-2014 Estimated Production 702

  11. TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 10,756 12,573 10,276 9,260 9,580 9,074 2007-2014 Adjustments 179 533 42 -483 378 243 2009-2014 Revision Increases 580 1,044 3,005 200 1,092 800 2009-2014 Revision Decreases 469 191 5,864 1,111 616 1,141 2009-2014 Sales 53 83 1,259 381 629 150 2009-2014 Acquisitions 59 32 1,489 281 20 0 2009-2014 Extensions 2,389 1,199 891 1,054 431 381 2009-2014 New Field Discoveries 0 0 11 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 14 8 0 50 263 0 2009-2014 Estimated Production 643

  12. TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation 3 3 5 6 3 0 1981-2014 Adjustments -1 18 -1 9 -3 -1 1981-2014 Revision Increases 0 0 5 2 0 1 1981-2014 Revision Decreases 1 21 1 2 0 3 1981-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 4 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1981-2014 New Field Discoveries 0 0 0 0 0 0 1981-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1981-2014 Estimated Production 0 1 1 8 0 0 1981

  13. Best Practices Case Study: Imagine Homes - Stillwater Ranch, San Antonio, TX

    SciTech Connect (OSTI)

    none,

    2011-04-01

    This case study describes Imagine Homes, who met Builders Challenge criteria on more than 200 homes in San Antonio with rigid foam exterior sheathing, ducts and air handler in conditioned space in a spray-foam insulated attic, and high-efficiency HVAC, windows, and appliances.

  14. Rio Bravo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA 4.99 6.13 8.02 6.51 6.80 9.11 3.91 2010's 4.42 4.14 2.94 3.88 4.47 2.71 Thousand Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.58 4.26 4.13 4.36 4.44 4.69 4.56 4.22 4.03 3.68 3.34 3.32 2012 2.85 2.64 2.34 2.09 2.59 2.56 3.05 3.00 2.97 3.44 3.65 3.52 2013 3.52 3.44 4.02 4.31 4.25 4.03 3.77 3.58 3.80 3.80 3.74 4.31 2014 4.73 6.15 4.95 4.74

  15. Rio Grande, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 8,045 2015 15,984 17,668 21,372 22,842 23,041 24,529 29,766 30,441 29,787 31,090 29,995 34,452 2016 31,055 38,906

  16. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,096 4,366 5,682 7,739 7,085 7,322 6,867 4,309 3,565 3,941 3,724 6,098 2012 7,203 6,395 9,986 11,277 12,777 12,656 12,587 12,852 12,403 12,529 11,604 11,500 2013 12,364 10,749 12,263 12,320 13,026 12,678 12,542 12,790 11,100 10,410 9,480 8,619 2014 11,008 11,039 12,280 11,962 12,995 12,455 12,784 12,812 13,937 15,124 15,124 12,951 2015 12,494 10,114 11,377 12,397 14,689 15,053 15,779 16,165 15,423 15,404 14,585 14,568 2016 13,965 11,742

  17. TX, RRC District 1 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Adjustments -2 -15 -15 70 156 140 1979-2014 Revision Increases 4 29 119 335 488 702 1979-2014 Revision Decreases 3 16 64 215 172 397 1979-2014 Sales 0 0 10 5 82 42 2000-2014 Acquisitions 0 6 9 12 126 65 2000-2014 Extensions 14 148 601 1,599 771 902 1979-2014 New Field Discoveries 0 63 22 38 2 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 2 1 11 16 1979-2014 Estimated Production 6 15 31 110 249 36 Production

    0 0 0

  18. TX, RRC District 5 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    7,057 7,392 10,054 9,566 11,101 12,482 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 96 91 61 99 63 191 1979-2014 Dry Natural Gas 6,728 7,014 9,458 8,743 9,640 11,057 After Lease Separation

    6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Adjustments -94 38 434 892 803 -117 1979-2014 Revision Increases 798 1,129 2,390 1,032 1,007 1,651 1979-2014 Revision Decreases

  19. TX, RRC District 6 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    22,623 24,694 28,187 17,640 19,531 18,155 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 21 8 40 53 177 185 1979-2014 Dry Natural Gas 22,343 24,363 27,843 17,331 19,280 17,880 Lease Separation

    22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Adjustments 130 65 646 -951 207 -46 1979-2014 Revision Increases 1,921 1,596 3,708 338 3,185 723 1979-2014 Revision

  20. TX, RRC District 7B Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    13,257 15,416 15,995 11,726 12,192 12,023 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 12,806 14,958 15,524 11,204 11,553 11,640 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 451 458 471 522 639 383 1979-2014 Dry Natural Gas 12,795 14,886 15,480 11,340 11,655 11,516 Lease Separation

    12,806 14,958 15,524 11,204 11,553 11,640 1979-2014 Adjustments 426 400 233 -1,035 322 -338 1979-2014 Revision Increases 1,801 2,732 5,023 1,960 2,107 2,009

  1. TX, RRC District 7C Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    2,424 2,625 3,887 3,363 3,267 2,695 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,322 2,504 3,754 3,183 3,040 2,418 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 102 121 133 180 227 277 1979-2014 Dry Natural Gas 2,077 2,242 3,305 2,943 2,787 2,290 Lease Separation

    2,322 2,504 3,754 3,183 3,040 2,418 1979-2014 Adjustments 106 48 -38 585 -44 -231 1979-2014 Revision Increases 152 295 417 24 313 209 1979-2014 Revision Decreases 221 256 393 1,101

  2. TX, RRC District 8 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    5,430 5,432 5,236 5,599 5,584 7,103 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,724 3,502 2,857 2,523 2,183 2,444 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,706 1,930 2,379 3,076 3,401 4,659 1979-2014 Dry Natural Gas 4,827 4,787 4,475 4,890 4,800 6,422 Lease Separation

    3,724 3,502 2,857 2,523 2,183 2,444 1979-2014 Adjustments 56 84 -184 408 -105 352 1979-2014 Revision Increases 175 380 412 248 347 177 1979-2014 Revision Decreases 444 714

  3. TX, RRC District 8A Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    7,440 8,105 8,088 8,963 9,715 11,575 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,950 3,777 3,006 2,309 2,315 2,480 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3,490 4,328 5,082 6,654 7,400 9,095 1979-2014 Dry Natural Gas 6,672 7,206 7,039 7,738 8,629 9,742 Lease Separation

    3,950 3,777 3,006 2,309 2,315 2,480 1979-2014 Adjustments 150 229 -274 184 -127 9 1979-2014 Revision Increases 491 642 431 451 247 411 1979-2014 Revision Decreases 1,242

  4. TX, RRC District 9 Coalbed Methane Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    1,289 1,228 1,289 1,280 1,338 1,328 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 43 58 31 20 23 24 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,246 1,170 1,258 1,260 1,315 1,304 1979-2014 Dry Natural Gas 1,218 1,164 1,226 1,214 1,269 1,257 Lease Separation

    43 58 31 20 23 24 1979-2014 Adjustments -1 20 -24 -11 5 5 1979-2014 Revision Increases 2 5 3 2 3 5 1979-2014 Revision Decreases 21 7 5 3 4 6 1979-2014 Sales 0 3 9 1 0 0 2000-2014

  5. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 111 30,880 42,367 2000's 45,512 36,470 59,218 58,851 66,188 63,372 71,451 84,484 84,152 89,274 2010's 87,449 96,722 101,585 108,573 123,670 126,022

  6. Del Rio, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.74 10.76 8.20 2010's 5.92 5.53 4.33 4.69 5.35 3.59

  7. Del Rio, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5.49 5.62 5.33 5.68 6.08 5.89 5.68 5.52 5.52 5.50 4.97 5.40 2012 4.40 4.40 4.17 4.18 3.95 4.31 4.33 4.50 4.37 4.42 4.39 4.56 2013 4.54 4.56 4.58 4.93 5.24 5.14 4.63 4.48 4.50 4.44 4.52 4.71 2014 5.30 6.18 5.65 5.49 5.73 5.43 5.53 4.78 4.98 4.95 4.60 5.26 2015 4.02 3.79 3.72 3.59 3.47 3.77 3.76 3.81 3.60 3.48 3.03 3.20 2016 3.20 3.20

  8. Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 282 346 323 2010's 320 282 355 372 324 306

  9. Del Rio, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 28 26 28 23 14 18 24 25 25 24 20 26 2012 28 28 31 28 32 28 32 33 29 33 29 24 2013 32 26 32 33 32 30 29 35 33 1,335 30 26 2014 27 30 30 29 28 28 25 26 25 27 24 25 2015 20 21 28 22 23 26 25 27 28 29 30 25 2016 25 27

  10. Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 942 1,260 1,471 1,990 2000's 2,114 1,896 1,914 1,969 2,258 2,132 2,118 1,955 1,695 1,237 2010's 1,471 2,114 2,970 2,608 3,801 4,282

  11. El Paso, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.14 2.36 2.05 2.43 2000's 4.35 4.35 3.28 5.20 5.76 8.06 6.47 6.76 7.60 3.98 2010's 4.72 4.34 3.09 4.05 5.13 2.83

  12. El Paso, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4.67 5.14 4.18 4.52 4.43 4.75 4.70 4.44 4.13 3.68 3.49 3.87 2012 3.30 3.11 2.49 2.31 2.71 2.71 3.17 3.25 3.15 3.59 3.73 3.58 2013 3.68 3.57 4.00 4.37 4.21 4.01 3.96 3.76 3.91 4.02 4.01 4.94 2014 4.95 7.67 5.16 4.93 4.90 4.94 4.41 4.26 4.35 4.27 4.27 3.65 2015 3.19 3.05 2.80 2.80 3.05 2.87 2.95 2.85 2.77 2.52 2.25 2.14 2016 2.48 2.08

  13. El Paso, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,406 17,779 7,358 6,146 2000's 7,458 6,843 7,632 11,453 8,462 8,473 8,143 8,682 7,859 7,119 2010's 7,043 7,381 6,238 5,657 4,054 3,37

  14. El Paso, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 958 860 509 487 503 482 449 452 456 531 670 1,024 2012 710 783 648 505 407 432 469 490 383 409 493 510 2013 571 446 632 481 440 409 819 448 321 245 287 557 2014 507 623 636 492 393 153 165 153 121 123 267 422 2015 587 514 496 301 159 255 129 154 165 146 180 288 2016 387 15

  15. Freeport, TX LNG Imports (Price) from Norway (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 14.85 --

  16. Freeport, TX LNG Imports (Price) from Norway (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 14.85 14.85 2015

  17. Freeport, TX LNG Imports (Price) from Yemen (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 10.30 12.00 -- --

  18. Freeport, TX LNG Imports (Price) from Yemen (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 9.98 10.60 2012 12.00

  19. Freeport, TX Liquefied Natural Gas Exports Price to Brazil (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.74 11.19 -- 15.51 15.1

  20. Freeport, TX Liquefied Natural Gas Exports Price to Brazil (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12.74 2012 10.68 10.57 12.21 2014 15.51 2015 17.44 12.8

  1. Freeport, TX Natural Gas LNG Imports (Price) From Peru (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.44 7.38 -- -- --

  2. Freeport, TX Natural Gas LNG Imports (Price) From Peru (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6.92 7.25 7.96

  3. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 245 2010's 225 501 314 1,046 1,426 933

  4. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) from

    U.S. Energy Information Administration (EIA) Indexed Site

    Qatar (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- --

  5. Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) from

    U.S. Energy Information Administration (EIA) Indexed Site

    Qatar (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5.77 6.74 6.74 4.76 4.78

  6. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.16 2.54 2.13 2.04 2000's 3.26 2.46 3.39 5.61 5.87 -- -- -- -- 4.17 2010's -- -- 3.47 3.92 4.68 2.28

  7. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 3.12 3.52 3.68 3.64 2013 4.31 4.29 4.35 4.05 3.83 3.61 3.80 3.95 3.99 4.52 2014 4.98 6.18 5.17 5.01 4.90 4.90 4.47 4.20 4.22 4.22 4.22 4.19 2015 3.37 2.71 2.72 2.44 2.15 2016 2.25 2.09

  8. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,597 12,035 6,017 2,757 2000's 12,639 1,398 15,318 21,497 795 0 0 0 0 10 2010's 0 0 2,506 9,227 14,862 8,817

  9. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 392 1,937 10 168 2013 529 130 536 2,754 2,315 2,140 310 354 69 90 2014 110 1,240 1,287 324 1,309 2,247 2,249 2,115 1,959 574 574 872 2015 260 481 699 567 6,810 2016 7,327 6,090

  10. El Paso, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 958 860 509 487 503 482 449 452 456 531 670 1,024 2012 710 783 648 505 407 432 469 490 383 409 493 510 2013 571 446 632...

  11. TX, State Offshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    64 131 118 94 59 42 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 161 128 113 88 56 42 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3 3 ...

  12. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,489 2,977 1,206 NA 2000's NA NA 5,100 3,036 718 0 0 0 18,923 4,262 2010's 1,371 6,871 0 0 0

  13. Price Liquefied Freeport, TX Natural Gas Exports to India (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 7.82 9.57 2012 11.10

  14. Price of Freeport, TX Liquefied Natural Gas Exports Price to Turkey

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's

  15. Price of Freeport, TX Liquefied Natural Gas Exports Price to Turkey

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015

  16. Price of Freeport, TX Liquefied Natural Gas Exports to Egypt (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's

  17. Price of Freeport, TX Liquefied Natural Gas Exports to Egypt (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015

  18. Price of Freeport, TX Liquefied Natural Gas Exports to Mexico (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 13.45 --

  19. Price of Freeport, TX Liquefied Natural Gas Exports to Mexico (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 13.45

  20. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 13.83 4.51 2010's 6.96 9.27 10.53 14.85 13.88