Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade...

2

Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

to China (Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,127 - No Data...

3

Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

4

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

5

Kenai, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenai, Alaska: Energy Resources Kenai, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.5544444°, -151.2583333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5544444,"lon":-151.2583333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Kenai, AK Liquefied Natural Gas Exports Price to China (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's --...

7

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

8

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

9

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

10

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

11

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

12

U.S. Natural Gas Exports to Mexico  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

13

U.S. Liquefied Natural Gas Exports to Spain  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

14

U.S. Natural Gas Exports to Chile  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

15

U.S. Liquefied Natural Gas Exports to United Kingdom  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

16

U.S. Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

17

U.S. Natural Gas Exports to China  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

18

U.S. Liquefied Natural Gas Exports to India  

Annual Energy Outlook 2012 (EIA)

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

19

Kenai Winds Response to Request for Grant Applications  

E-Print Network (OSTI)

Kenai Winds LLC is pleased to respond the Alaska Energy Authority solicitation to assist with the realization of Renewable Energy Projects to be located within the State of Alaska. Our 15-18 Megawatt wind farm will be a landmark project for the State, one that brings significant public benefit and reinforces an important Kenai area industry. Our wind farm has been under development for nearly two years and we are beginning our Phase 3 efforts with an eye towards operation in the Summer of 2010. Our project is ideally located in a heavily industrial area, ensuring that the project will enhance the overall efficiency of the Alaska energy grid. By producing electric power where electric power is actually needed, we reduce the need for new construction of power lines, and we also reduce the energy losses associated with long distance and underwater transmission. The Kenai Winds plant is ready to move forward in Phase 3 immediately. We have consulted with permit authorities and local officials. Due to the siting adjacent to an operational refinery and a recently closed chemical plant, we reduce the need to disturb the natural environment of the area with the construction of supporting infrastructure. As part of our demonstrated public benefit, we intend to sell electric power to the Tesoro Kenai refinery, which is the

Attn Mr; Butch White

2008-01-01T23:59:59.000Z

20

Kenai Peninsula Borough, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenai Peninsula Borough, Alaska: Energy Resources Kenai Peninsula Borough, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.0858486°, -151.3822641° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.0858486,"lon":-151.3822641,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

22

U.S. Liquefied Natural Gas Exports to Spain  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

23

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

24

U.S. Natural Gas Exports to Chile  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

25

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

26

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

27

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

28

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

29

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

30

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

31

Sugar Land, TX -  

NLE Websites -- All DOE Office Websites (Extended Search)

Petroleum Engineering Alumnus Recognized by Secretary of Energy for Work at National Lab Sugar Land, TX - The National Energy Technology Laboratory is proud to announce that...

32

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

33

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

34

U.S. Natural Gas Exports to Chile  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

35

U.S. Liquefied Natural Gas Exports to Spain  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

36

Sugar Land, TX -  

NLE Websites -- All DOE Office Websites (Extended Search)

Alumnus Recognized by Secretary of Energy for Work at National Lab Sugar Land, TX - The National Energy Technology Laboratory is proud to announce that U.S. Air Force Academy...

37

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

38

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

39

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

40

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

42

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

43

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

44

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

45

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

46

Category:Amarillo, TX | Open Energy Information  

Open Energy Info (EERE)

Amarillo, TX Amarillo, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Amarillo, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Amarillo TX CPS Energy.png SVFullServiceRestauran... 62 KB SVHospital Amarillo TX CPS Energy.png SVHospital Amarillo TX... 66 KB SVLargeHotel Amarillo TX CPS Energy.png SVLargeHotel Amarillo ... 61 KB SVLargeOffice Amarillo TX CPS Energy.png SVLargeOffice Amarillo... 59 KB SVMediumOffice Amarillo TX CPS Energy.png SVMediumOffice Amarill... 62 KB SVMidriseApartment Amarillo TX CPS Energy.png SVMidriseApartment Ama... 61 KB SVOutPatient Amarillo TX CPS Energy.png SVOutPatient Amarillo ... 60 KB SVPrimarySchool Amarillo TX CPS Energy.png SVPrimarySchool Amaril... 61 KB SVQuickServiceRestaurant Amarillo TX CPS Energy.png

47

Category:Houston, TX | Open Energy Information  

Open Energy Info (EERE)

TX TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houston, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houston TX Entergy Texas Inc..png SVFullServiceRestauran... 73 KB SVHospital Houston TX Entergy Texas Inc..png SVHospital Houston TX ... 74 KB SVLargeHotel Houston TX Entergy Texas Inc..png SVLargeHotel Houston T... 74 KB SVLargeOffice Houston TX Entergy Texas Inc..png SVLargeOffice Houston ... 74 KB SVMediumOffice Houston TX Entergy Texas Inc..png SVMediumOffice Houston... 78 KB SVMidriseApartment Houston TX Entergy Texas Inc..png SVMidriseApartment Hou... 77 KB SVOutPatient Houston TX Entergy Texas Inc..png SVOutPatient Houston T... 75 KB SVPrimarySchool Houston TX Entergy Texas Inc..png

48

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

49

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

50

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

51

D&TX  

Office of Legacy Management (LM)

*. *. ( ARGONNE RATIONAL 1-Ci3ORATORY . 1 D&TX 7. my 19, 1349 70 t. Z. ROse at L, Em &=i*p~~4 DVur;uM hLl%L ?bvs -Lcs . FReti c. c. Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un !! 1 0 * the >rt &Fz=z d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS~~~ of Science a2 31~52-37 fo2 T&imcyyg c.=A+=< he-< - ,,a uas c:cgetes ALL 12, 1SL9. Z 0 sor;~~,-~-lioi! c.jme s 'm&-go& ~WC& c ",& d*cg&A c&.6 be ciS',&Ctti 03 2.q ZLS CC the 5iiUdi; 0~ eqt&-p*t ~-3 niq b the &-CT iq95, - < less Se&,-0~22 3 wels off tze b.ckm5n' ,e ueze t& 233 &,/zip fe pe*-se a?& coL&cs El5 less t&3 c. 5z/z fo- pcxabi beta-g+iis couxezs.

52

60-day waste compatibility safety issue and final results for 244-TX DCRT, grab samples TX-95-1, TX-95-2, and TX-95-3  

Science Conference Proceedings (OSTI)

Three grab samples (TX-95-1, TX-95-2, and TX-95-3) were taken from tank 241- TX-244 riser 8 on November 7, 1995 and received by the 222-S Laboratory on that same day. Samples TX-95-1 and TX-95-2 were designated as supernate liquids, and sample TX-95-3 was designated as a supernate/sludge. These samples were analyzed to support the waste compatibility safety program. Accuracy and precision criteria were met for all analyses. No notifications were required based on sample results. This document provides the analysis to support the waste compatibility safety program.

Esch, R.A.

1996-01-01T23:59:59.000Z

53

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

To Russia 1,895 0 0 0 0 0 2007-2012 Kenai, AK 1,895 0 0 0 0 2006-2011 To South Korea 0 0 2,735 11,809 9,143 0 2007-2012 Freeport, TX 0 0 2,735 2,861 6,242 2007-2011 Sabine...

54

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

To Russia 12.12 -- -- -- -- -- 2007-2012 Kenai, AK 12.12 -- -- -- -- 2006-2011 To South Korea -- -- 6.30 7.54 9.98 -- 2007-2012 Freeport, TX -- -- 6.30 8.09 10.89 2007-2011 Sabine...

55

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic...

56

Penitas, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico...

57

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico...

58

Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Exports to Mexico...

59

Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Exports...

60

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico...

62

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico...

63

Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million...

64

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports...

65

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

66

AOCS Official Method Tx 1a-66  

Science Conference Proceedings (OSTI)

Hydroxyl Value of Epoxidized Oils AOCS Official Method Tx 1a-66 Methods Downloads Methods Downloads DEFINITION The hydroxyl value is defined as the mg of potassium hydroxide equivalent to the hydroxyl content of 1

67

TX-100 manufacturing final project report.  

DOE Green Energy (OSTI)

This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

2007-11-01T23:59:59.000Z

68

Category:El Paso, TX | Open Energy Information  

Open Energy Info (EERE)

El Paso, TX El Paso, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "El Paso, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant El Paso TX CPS Energy.png SVFullServiceRestauran... 60 KB SVHospital El Paso TX CPS Energy.png SVHospital El Paso TX ... 65 KB SVLargeHotel El Paso TX CPS Energy.png SVLargeHotel El Paso T... 60 KB SVLargeOffice El Paso TX CPS Energy.png SVLargeOffice El Paso ... 59 KB SVMediumOffice El Paso TX CPS Energy.png SVMediumOffice El Paso... 62 KB SVMidriseApartment El Paso TX CPS Energy.png SVMidriseApartment El ... 60 KB SVOutPatient El Paso TX CPS Energy.png SVOutPatient El Paso T... 60 KB SVPrimarySchool El Paso TX CPS Energy.png SVPrimarySchool El Pas... 61 KB SVQuickServiceRestaurant El Paso TX CPS Energy.png

69

Response Robot Evaluation Exercise Disaster City, TX DAY 1 ...  

Science Conference Proceedings (OSTI)

Page 1. Response Robot Evaluation Exercise Disaster City, TX and Meeting of the ASTM International Committee on Homeland ...

2012-12-25T23:59:59.000Z

70

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

TX Website: www.netl.doe.gov Customer Service: 1-800-553-7681 Geomechanical Impacts of Shale Gas Activities Background During hydraulic fracturing of unconventional resources,...

71

DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09  

Office of Legacy Management (LM)

Sutton Steele and Steele Co - TX 09 Sutton Steele and Steele Co - TX 09 FUSRAP Considered Sites Site: SUTTON, STEELE & STEELE CO. (TX.09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sutton, Steele & Steele, Inc. TX.09-1 Location: Dallas , Texas TX.09-1 Evaluation Year: 1993 TX.09-2 Site Operations: Conducted operations to separate Uranium shot by means of air float tables and conducted research to air classify C-Liner and C-Special materials. TX.09-1 TX.09-3 TX.09-4 TX.09-5 Site Disposition: Eliminated - Potential for contamination considered remote TX.09-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium TX.09-4 TX.09-5 Radiological Survey(s): Health and Safety Monitoring TX.09-4 TX.09-5 Site Status: Eliminated from consideration under FUSRAP

72

CleanTX Foundation | Open Energy Information  

Open Energy Info (EERE)

CleanTX Foundation CleanTX Foundation Address 3925 W Braker Lane Place Austin, Texas Zip 78759 Region Texas Area Notes Promotes entrepreneurship in the field of clean technology, by providing educational forums, content, awareness and networking opportunities Website http://cleantx.org/ Coordinates 30.396989°, -97.735768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.396989,"lon":-97.735768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

74

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

75

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

76

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

77

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

78

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

79

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

80

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

82

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

83

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

84

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

85

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

86

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

87

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

88

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

89

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

90

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

91

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

92

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

93

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

94

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

95

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

96

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

97

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

98

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

99

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

100

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

102

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

103

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

104

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

105

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

106

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

107

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

108

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

109

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

110

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

111

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

112

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

113

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

114

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

115

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

116

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

117

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

118

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

119

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

120

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

122

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

123

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

124

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

125

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

126

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

127

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

128

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

129

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

130

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

131

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

132

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

133

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

134

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

135

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

136

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

137

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

138

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

139

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

140

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

142

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

143

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

144

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

145

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

146

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

147

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

148

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

149

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

150

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

151

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

152

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

153

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

154

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

155

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

156

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

157

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

158

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

159

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

160

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

162

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

163

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

164

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

165

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

166

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

167

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

168

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

169

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

170

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

171

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

172

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

173

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

174

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

175

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

176

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

177

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

178

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

179

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

180

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

182

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

183

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

184

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

185

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

186

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

187

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

188

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

189

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

190

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

191

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

192

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

193

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

194

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

195

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

196

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

197

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

198

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

199

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

200

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

202

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

203

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

204

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

205

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

206

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

207

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

208

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

209

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

210

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

211

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

212

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

213

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than

214

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliability and Durability of Materials Reliability and Durability of Materials and Components for SOFCs - Oak Ridge National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Oak Ridge National Laboratory's (ORNL) project was selected to acquire the fundamental

215

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Protection Coatings Based on a SOFC Protection Coatings Based on a Cost-Effective Aluminization Process- NexTech Materials Background To make solid oxide fuel cell (SOFC) systems easier to manufacture and reduce costs, less expensive stainless steels have been substituted into the stack design as alternatives to ceramic interconnects. Stainless has also been substituted for high-cost, nickel-based superalloys in balance of plant (BOP) components. For successful implementation of these steels, protective coatings are necessary to protect the air-facing metal surfaces from high-temperature corrosion/oxidation and chromium (Cr) volatilization. NexTech Materials Ltd. (NexTech) will develop an aluminide diffusion coating as a low- cost alternative to conventional aluminization processes and evaluate the ability of the

216

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Patricia Rawls Patricia Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Sankaran Sundaresan Principal Investigator Princeton University Department of Chemical Engineering Princeton, NJ 08544 609-258-4583 sundar@princeton.edu PROJECT DURATION Start Date 10/01/2011 End Date 09/30/2014 COST Total Project Value $420,366 DOE/Non-DOE Share $300,000 / $120,366 Implementation and Refinement

217

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol Economy Methanol Economy Background Fossil fuels such as coal, oil, and natural gas are composed of hydrocarbons with varying ratios of carbon and hydrogen. Consumption of hydrocarbons derived from fossil fuels is integral to modern day life in the U.S. Hydrocarbons are used as fuels and raw materials in the transportation sector and in many industrial production processes including chemicals, petrochemicals, plastics, pharmaceuticals, agrochemicals, and rubber.

218

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

Gasoline and Diesel Fuel Update (EIA)

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

219

,"Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

220

,"Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","172014" ,"Next...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

222

,"Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

223

,"El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","12122013"...

224

EDF Industrial Power Services (TX), LLC | Open Energy Information  

Open Energy Info (EERE)

Power Services (TX), LLC Power Services (TX), LLC Jump to: navigation, search Name EDF Industrial Power Services (TX), LLC Place Texas Utility Id 56315 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0394/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=EDF_Industrial_Power_Services_(TX),_LLC&oldid=410609" Categories: EIA Utility Companies and Aliases

225

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011...

226

Freeport, TX Exports to India Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to India Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

227

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

228

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

229

Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

230

Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

231

Freeport, TX Liquefied Natural Gas Imports from Yemen (Million...  

Annual Energy Outlook 2012 (EIA)

from Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108...

232

Freeport, TX Liquefied Natural Gas Imports From Peru (Million...  

Annual Energy Outlook 2012 (EIA)

From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262...

233

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt...  

Gasoline and Diesel Fuel Update (EIA)

Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 -...

234

Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...  

Gasoline and Diesel Fuel Update (EIA)

Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

235

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601...

236

Freeport, TX Liquefied Natural Gas Exports to South Korea (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157...

237

Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

238

Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

239

DOE - Office of Legacy Management -- Pantex Sewage Reservoir - TX 03  

Office of Legacy Management (LM)

Pantex Sewage Reservoir - TX 03 Pantex Sewage Reservoir - TX 03 FUSRAP Considered Sites Site: Pantex Sewage Reservoir (TX.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

240

Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

McAllen, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico...

242

McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico...

243

TEXAS TECH UNIVERSITY Lubbock, TX 79409-1108  

E-Print Network (OSTI)

TEXAS TECH UNIVERSITY Box 41108 Lubbock, TX 79409-1108 Name (as shown on your income tax return by the appropriate ownership type that applies to you or your business. I L *Texas Limited Partnership: SSN & Social Security Number (SSN) T *Texas Corporation Owners Name

Westfall, Peter H.

244

Double-contained receiver tank 244-TX, grab samples, 244TX-97-3 analytical results for the final report  

Science Conference Proceedings (OSTI)

This document is the final report for the double-contained receiver tank (DCRT) 244-TX grab samples. Three grabs samples were collected from riser 8 on May 29, 1997. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The analytical results are presented in a table.

Esch, R.A.

1997-08-13T23:59:59.000Z

245

AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK Energy Efficiency and Conservation Block Grant Program Location: Tribe AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Native Village of Napakiak proposes to renovate/retrofit two buildings (Health Clinic and Community Center [former Transportation Building]) to become more energy efficient. Energy efficiency retrofits would include improvements to lighting systems, supplemental loads, air distribution systems, and/or heating and cooling systems, insulation, and windows/doors. Conditions: None Categorical Exclusion(s) Applied: B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

246

AOCS Official Method Ak 5-01  

Science Conference Proceedings (OSTI)

Simultaneous Determination of Oil and Moisture Contents of Oilseeds Residues Pulsed Nuclear Magnetic Resonance Spectrometry AOCS Official Method Ak 5-01 Methods Methods and Analyses Analytical Chemistry Methods Downloads DEFINI

247

AOCS Official Method Ak 2-92  

Science Conference Proceedings (OSTI)

Determination of Chlorophyll Content in Rapeseed/Canola (Colza) by Spectrometry AOCS Official Method Ak 2-92 Methods Methods and Analyses Analytical Chemistry Methods Downloads DEFINITION This method, adopted fr

248

AOCS Official Method Ak 3-94  

Science Conference Proceedings (OSTI)

Oil Content of Oilseeds by Nuclear Magnetic Resonance AOCS Official Method Ak 3-94 Methods Methods and Analyses Analytical Chemistry Methods Downloads DEFINITION This method determines the oil content of rapesee

249

AOCS Official Method Ak 1-92  

Science Conference Proceedings (OSTI)

Determination of Glucosinolate Content in Rapeseed and Canola by HPLC AOCS Official Method Ak 1-92 Methods Methods and Analyses Analytical Chemistry Methods Downloads DEFINITION This method, adopted from Part 1

250

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

251

GRR/Section 8-TX-b - ERCOT Interconnection | Open Energy Information  

Open Energy Info (EERE)

8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection Process.pdf Click to View Fullscreen Regulations & Policies PUCT Substantive Rule 25.198 Triggers None specified Click "Edit With Form" above to add content 8-TX-b - ERCOT Interconnection Process.pdf 8-TX-b - ERCOT Interconnection Process.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the responsibility for

252

GRR/Section 3-TX-g - Lease of Relinquishment Act Lands | Open Energy  

Open Energy Info (EERE)

3-TX-g - Lease of Relinquishment Act Lands 3-TX-g - Lease of Relinquishment Act Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-g - Lease of Relinquishment Act Lands 03-TX-g - Lease of Relinquishment Act Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-g - Lease of Relinquishment Act Lands.pdf 03-TX-g - Lease of Relinquishment Act Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a geothermal lease on Relinquishment Act Lands in Texas. The Texas General Land Office (GLO) of Texas handles the leasing process on Relinquishment Act Lands through Title

253

Staubli TX-90XL robot qualification at the LLIHE.  

SciTech Connect

The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

Covert, Timothy Todd

2010-10-01T23:59:59.000Z

254

,"McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

255

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

21 15 12 8 9 12 1997-2013 21 15 12 8 9 12 1997-2013 To Brazil 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 6 9 8 5 8 7 2007-2013 Sweetgrass, MT 6 9 8 5 8 7 2012-2013 To Chile 0 0 0 0 0 0 2011-2013 Sabine Pass, LA 2011-2011 To China 0 0 0 0 0 0 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan 0 0 0 0 0 0 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 15 6 3 3 2 4 1997-2013 Nogales, AZ 10 6 3 3 2 4 2012-2013 Otay Mesa, CA 5 2011-2013 To Portugal 2012-2012 Sabine Pass, LA 2012-2012 To Russia 0 0 0 0 0 0 2007-2013 To South Korea 0 0 0 0 0 0 2009-2013 Freeport, TX

256

Modal testing of the TX-100 wind turbine blade.  

DOE Green Energy (OSTI)

This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine blades. The TX-100 blade design is unique in that it features a passive braking, force-shedding mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics. A specific aim of this test is to characterize the coupling between bending and torsional dynamics. The results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and mode shapes of the individual blades. The results of this report are expected to be used for model validation--the frequencies and mode shapes from the experimental analysis can be compared with those of a finite-element analysis. Damping values are included in the results of these tests to potentially improve the fidelity of numerical simulations, although numerical finite element models typically have no means of predicting structural damping characteristics. Thereafter, an additional objective of the test is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.

Reese, Sarah; Griffith, Daniel Todd; Casias, Miguel; Simmermacher, Todd William; Smith, Gregory A.

2006-05-01T23:59:59.000Z

257

GRR/Section 13-TX-a - State Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 13-TX-a - State Land Use Assessment GRR/Section 13-TX-a - State Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-TX-a - State Land Use Assessment 13-TX-a - State Land Use Assessment.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Open Beaches Act Dune Protection Act Beach Dune Rules Triggers None specified Click "Edit With Form" above to add content 13-TX-a - State Land Use Assessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas General Land Office (GLO) is in charge of making sure construction on the Texas coast that affects the beach and dunes is

258

GRR/Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land | Open  

Open Energy Info (EERE)

TX-e - Lease of Texas Parks & Wildlife Department Land TX-e - Lease of Texas Parks & Wildlife Department Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Texas Parks & Wildlife Department (TPWD) land in Texas. The Texas General Land Office manages

259

GRR/Section 3-TX-d - Lease of Permanent School Fund Land | Open Energy  

Open Energy Info (EERE)

3-TX-d - Lease of Permanent School Fund Land 3-TX-d - Lease of Permanent School Fund Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-d - Lease of Permanent School Fund Land 03-TX-d - Lease of Public School Fund Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-d - Lease of Public School Fund Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Public School Fund (PSF) lands in Texas. The Texas General Land Office (GLO) oversees the leasing process for PSF lands through Title 31 of the Texas Administrative Code

260

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

GRR/Section 3-TX-f - Lease of Land Trade Lands | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-TX-f - Lease of Land Trade Lands GRR/Section 3-TX-f - Lease of Land Trade Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-f - Lease of Land Trade Lands 03-TX-f - Lease of Land Trade Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-f - Lease of Land Trade Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Land Trade Lands in Texas. The Texas General Land Office (GLO) administers leases on Land Trade Lands through Title 31 of the Texas Administrative Code Section 155.42.

262

AOCS Recommended Practice Ak 4-95  

Science Conference Proceedings (OSTI)

Simultaneous Determination of Oil and Moisture Contents of Oilseeds Using Pulsed Nuclear Magnetic Resonance Spectrometry AOCS Recommended Practice Ak 4-95 Methods Methods and Analyses Analytical Chemistry Methods Downloads 339DD158D48E89A94ECC0763578B

263

CX-100 and TX-100 blade field tests.  

SciTech Connect

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

264

ORNL measurements at Hanford Waste Tank TX-118  

Science Conference Proceedings (OSTI)

A program of measurements and calculations to develop a method of measuring the fissionable material content of the large waste storage tanks at the Hanford, Washington, site is described in this report. These tanks contain radioactive waste from the processing of irradiated fuel elements from the plutonium-producing nuclear reactors at the Hanford site. Time correlation and noise analysis techniques, similar to those developed for and used in the Nuclear Weapons Identification System at the Y-12 Plant in Oak Ridge, Tennessee, will be used at the Hanford site. Both ``passive`` techniques to detect the neutrons emitted spontaneously from the waste in the tank and ``active`` techniques using AmBe and {sup 252}Cf neutron sources to induce fissions will be used. This work is divided into three major tasks: (1) development of high-sensitivity neutron detectors that can selectively count only neutrons in the high {gamma} radiation fields in the tanks, (2) Monte Carlo neutron transport calculations using both the KENO and MCNP codes to plan and analyze the measurements, and (3) the measurement of time-correlated neutrons by time and frequency analysis to distinguish spontaneous fission from sources inside the tanks. This report describes the development of the detector and its testing in radiation fields at the Radiation Calibration Facility at Oak Ridge National Laboratory and in tank TX-118 at the 200 W area at Westinghouse Hanford Company.

Koehler, P.E.; Mihalczo, J.T.

1995-02-01T23:59:59.000Z

265

GRR/Section 11-TX-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-TX-a - State Cultural Considerations Overview GRR/Section 11-TX-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-a - State Cultural Considerations Overview 11TXAStateCulturalConsiderationsOverview.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies NRC Ch. 191: Antiquities Code CCP Ch. 49: Inquests Upon Dead Bodies Triggers None specified Click "Edit With Form" above to add content 11TXAStateCulturalConsiderationsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered?

266

GRR/Section 3-TX-c - Highway Right of Way Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-c - Highway Right of Way Lease 3-TX-c - Highway Right of Way Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-c - Highway Right of Way Lease 03TXCEncroachmentIssues.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Texas Department of Transportation Regulations & Policies 43 TAC 21.600 43 TAC 21.603 43 TAC 21.606 Triggers None specified Click "Edit With Form" above to add content 03TXCEncroachmentIssues.pdf 03TXCEncroachmentIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure for obtaining a state highway asset lease in Texas. The Texas Department of Transportation (TxDOT) may lease any highway asset.

267

McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

268

GRR/Section 19-TX-b - New Water Right Process For Surface Water...  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of...

269

Mexico FL GA SC AL MS LA TX AR TN TN  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hurricanes on the Natural Gas Industry in the Gulf of Mexico Region Mexico FL GA SC AL MS LA TX AR TN TN Katrina - Cumulative wind > 39 mph Katrina - Cumulative wind > 73 mph...

270

GRR/Section 11-TX-c - Cultural Resource Discovery Process | Open Energy  

Open Energy Info (EERE)

-TX-c - Cultural Resource Discovery Process -TX-c - Cultural Resource Discovery Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-c - Cultural Resource Discovery Process 11TXCCulturalResourceDiscoveryProcess.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies Sec. 191: Antiquities Code Triggers None specified Click "Edit With Form" above to add content 11TXCCulturalResourceDiscoveryProcess.pdf 11TXCCulturalResourceDiscoveryProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-c.1 - Is the Project Located on State or Local Public Land? Before breaking ground at a project location on state or local public land,

271

EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Federal Loan Guarantee to Support Construction of the TX 12: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas Overview The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas. TXE is a subsidiary of Eastman Chemical Company (Eastman) and proposes to develop the Facility on a 417-acre parcel of land. The Facility would

272

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. Total 11.36 12.84 13.38 12.89 13.25 13.53 1997-2013 To Brazil -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 14.55 14.55 14.60 15.01 14.01 13.94 2007-2013 Sweetgrass, MT 14.55 14.55 14.60 15.01 14.01 13.94 2012-2013 To Chile -- -- -- -- -- -- 2011-2013 Sabine Pass, LA 2011-2011 To China -- -- -- -- -- -- 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan -- -- -- -- -- -- 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 10.13 10.36 10.40 9.91 9.77 12.81 1992-2013 Nogales, AZ 10.43 10.36 10.40 9.91 9.77 12.81 2012-2013

273

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY  

SciTech Connect

WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

Horton, Duane G.

2007-03-26T23:59:59.000Z

274

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

275

GRR/Section 3-TX-a - State Geothermal Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-a - State Geothermal Lease 3-TX-a - State Geothermal Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-a - State Geothermal Lease 03TXAStateGeothermalLease.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Texas Natural Resources Code 31 TAC 9.22 31 TAC 13.33 31 TAC 13.62 31 TAC 155.42 Triggers None specified Click "Edit With Form" above to add content 03TXAStateGeothermalLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a state geothermal lease from the state of Texas. The Texas General Land Office manages

276

GRR/Section 19-TX-a - Water Access and Water Issues Overview | Open Energy  

Open Energy Info (EERE)

9-TX-a - Water Access and Water Issues Overview 9-TX-a - Water Access and Water Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-a - Water Access and Water Issues Overview 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Flowchart Narrative In the late 1960's Texas transitioned its water law system, switching

277

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

278

GRR/Section 11-TX-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

1-TX-b - Human Remains Process 1-TX-b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-b - Human Remains Process 11TXBHumanRemainsProcess.pdf Click to View Fullscreen Regulations & Policies CCP Art. 49 Triggers None specified Click "Edit With Form" above to add content 11TXBHumanRemainsProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure a developer must follow when human remains are discovered on or near the project site. Local law enforcement must conduct an investigation into the death of the person, and is the

279

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

280

GRR/Section 7-TX-b - REC Generator | Open Energy Information  

Open Energy Info (EERE)

TX-b - REC Generator TX-b - REC Generator < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-b - REC Generator 07TXBRECGeneratorCertification.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies Goal for Renewable Energy, PUCT Substantive Rule 25.173 Triggers None specified Click "Edit With Form" above to add content 07TXBRECGeneratorCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the application and approval process for participating in the Renewable Energy Credit program in Texas.

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GRR/Section 19-TX-c - Surface Water Permit | Open Energy Information  

Open Energy Info (EERE)

19-TX-c - Surface Water Permit 19-TX-c - Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-c - Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 295 30 TAC 297 Triggers None specified Click "Edit With Form" above to add content 19TXCSurfaceWaterPermit.pdf 19TXCSurfaceWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water permits. Under, Tex. Water Code § 11, surface water permits

282

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

283

GRR/Section 14-TX-b - Texas NPDES Permitting Process | Open Energy  

Open Energy Info (EERE)

14-TX-b - Texas NPDES Permitting Process 14-TX-b - Texas NPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-b - Texas NPDES Permitting Process 14TXBTexasNPDESPermittingProcess (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies Tex. Water Code § 26.131(b) 16 TAC 3.8 Memorandum of Understanding between the RRC and the TCEQ 16 TAC 3.30 Triggers None specified Click "Edit With Form" above to add content 14TXBTexasNPDESPermittingProcess (4).pdf 14TXBTexasNPDESPermittingProcess (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

284

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

285

GRR/Section 8-TX-a - Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-TX-a - Transmission Siting GRR/Section 8-TX-a - Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-a - Transmission Siting 08TXATransmissionSiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive 25.83: Transmission Construction Reports PUCT Substantive Rule 25.101: Certification Criteria Triggers None specified Click "Edit With Form" above to add content 08TXATransmissionSiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Transmission siting is handled by the Public Utility Commission of Texas

286

GRR/Section 6-TX-a - Extra-Legal Vehicle Permitting Process | Open Energy  

Open Energy Info (EERE)

6-TX-a - Extra-Legal Vehicle Permitting Process 6-TX-a - Extra-Legal Vehicle Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-a - Extra-Legal Vehicle Permitting Process 06TXAExtraLegalVehiclePermittingProcess.pdf Click to View Fullscreen Contact Agencies Texas Department of Motor Vehicles Texas Department of Transportation Regulations & Policies Tex. Transportation Code § 621 Tex. Transportation Code § 622 Tex. Transportation Code § 623 43 TAC 219 Triggers None specified Click "Edit With Form" above to add content 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

287

GRR/Section 19-TX-d - Transfer of Surface Water Right | Open Energy  

Open Energy Info (EERE)

19-TX-d - Transfer of Surface Water Right 19-TX-d - Transfer of Surface Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-d - Transfer of Surface Water Right 19TXDTransferOfWaterRight.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 297.81 30 TAC 297.82 30 TAC 297.83 Triggers None specified Click "Edit With Form" above to add content 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Texas water law allows surface water rights to be transferred from one party to another. (Tex. Water Code § 11)

288

Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report  

Science Conference Proceedings (OSTI)

This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

Spatz, R.

2000-08-01T23:59:59.000Z

289

GRR/Section 12-TX-a - Flora and Fauna Considerations | Open Energy  

Open Energy Info (EERE)

TX-a - Flora and Fauna Considerations TX-a - Flora and Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-TX-a - Flora and Fauna Considerations 12TXAFloraAndFaunaConsiderations.pdf Click to View Fullscreen Contact Agencies Texas Parks and Wildlife Department Regulations & Policies Texas Parks and Wildlife Code § 68 31 TAC 65.175 31 TAC 65.176 31 TAC 65.173 Triggers None specified Click "Edit With Form" above to add content 12TXAFloraAndFaunaConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, no person may capture, trap, take, or kill, or attempt to

290

GRR/Section 14-TX-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-TX-a - Nonpoint Source Pollution GRR/Section 14-TX-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-a - Nonpoint Source Pollution 14TXANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Clean Water Act CWA §319(b) Triggers None specified Click "Edit With Form" above to add content 14TXANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas Nonpoint Source Management Program (Management Program) is required under the Clean Water Act(CWA), specifically CWA §319(b). The

291

GRR/Section 6-TX-b - Construction Storm Water Permitting Process | Open  

Open Energy Info (EERE)

6-TX-b - Construction Storm Water Permitting Process 6-TX-b - Construction Storm Water Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-b - Construction Storm Water Permitting Process 06TXBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality EPA Regulations & Policies TPDES Construction General Permit (TXR150000) 30 Texas Administrative Code 205 General Permits for Waste Discharges Texas Water Code 26.040 General Permits Clean Water Act Triggers None specified Click "Edit With Form" above to add content 06TXBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

292

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

293

GRR/Section 14-TX-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-TX-d - Section 401 Water Quality Certification 4-TX-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-d - Section 401 Water Quality Certification 14TXDSection401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Regulations & Policies 16 TAC 3.93 - RRC Water Quality Certification 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content 14TXDSection401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

294

GRR/Section 3-TX-b - Land Access | Open Energy Information  

Open Energy Info (EERE)

3-TX-b - Land Access 3-TX-b - Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-b - Land Access 03TXBLandAccess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Regulations & Policies Tex. Nat. Rec. Code Sec. 51.291(a) Tex. Nat. Rec. Code Sec. 33.111 Triggers None specified Click "Edit With Form" above to add content 03TXBLandAccess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of gaining access to certain types of land in Texas apart from the geothermal resource lease process.

295

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

296

GRR/Section 7-TX-a - Energy Facility Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-TX-a - Energy Facility Registration GRR/Section 7-TX-a - Energy Facility Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-a - Energy Facility Registration 07TXAEnergyFacilitySiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUC Substantive Rule 25.109: Registration of Power Generation Companies and Self-Generators Triggers None specified Click "Edit With Form" above to add content 07TXAEnergyFacilitySiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the necessary process for registering as an

297

GRR/Section 7-TX-c - Certificate of Convenience and Necessity | Open Energy  

Open Energy Info (EERE)

GRR/Section 7-TX-c - Certificate of Convenience and Necessity GRR/Section 7-TX-c - Certificate of Convenience and Necessity < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-c - Certificate of Convenience and Necessity 07TXCCertificateOfConvenienceAndNecessity.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 22 PUCT Substantive Rule 25.5 PUCT Substantive Rule 25.83 PUCT Substantive Rule 25.101 Public Utility Regulatory Act Triggers None specified Click "Edit With Form" above to add content 07TXCCertificateOfConvenienceAndNecessity.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

298

Ak-Chin Electric Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Ak-Chin Electric Utility Authority Ak-Chin Electric Utility Authority Jump to: navigation, search Name Ak-Chin Electric Utility Authority Place Arizona Utility Id 25866 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0815/kWh Industrial: $0.0550/kWh The following table contains monthly sales and revenue data for Ak-Chin Electric Utility Authority (Arizona).

299

Building Energy Software Tools Directory: AkWarm  

NLE Websites -- All DOE Office Websites (Extended Search)

AkWarm AkWarm AkWarm logo. Innovative, user-friendly, Windows-based software for home energy modeling. AkWarm is designed for weatherization assessment and the EPA Energy Star Home energy rating program. Features include: Graphical display of energy use by building component, improvement options analysis, design heat load, calculates CO2 emissions, and shows code compliance. Utility, weather data, and other libraries are maintained in a database library for easy updating. A separate database is available to archive all input and output data for detailed analysis of housing types, trends, amd energy use. Keywords home energy rating systems, home energy, residential modeling, weatherization Validation/Testing N/A Expertise Required Basic understanding of building construction, with a minimal level of

300

AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS Location: Tribe AK-TRIBE- CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Central Council of the Tlingit and Haida Indian Tribes of Alaska propose to conduct energy audits of tribally owned facilities. Specific retrofit activities will be determined based on the results of the audits, and these retrofit activities will be submitted for appropriate NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Texas AgriLife Research and Extension Center 17360 Coit Road, Dallas, TX 75252  

E-Print Network (OSTI)

Texas AgriLife Research and Extension Center 17360 Coit Road, Dallas, TX 75252 Fall Integrated Pest Management Seminar Melody Lee Texas Department of Agriculture -- Dallas Dr. Dotty Woodson Texas AgriLife Extension Service--Dallas Dr. Young-Ki Jo Texas AgriLife Extension Service -- College Station Dr. James Mc

Wilkins, Neal

302

GRR/Section 9-AK-a - State Environmental Process | Open Energy...  

Open Energy Info (EERE)

GRRSection 9-AK-a - State Environmental Process < GRR Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGRRSection9-AK-a-StateEnvironmentalP...

303

GRR/Section 13-AK-a - Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRRSection 13-AK-a - Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-AK-a -...

304

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

0.00-1.99 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1996 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1996 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: In 1996, consumption of natural gas for agricultural use

305

AK-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title AK-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC Location: Tribe AK-TRIBE- ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC AK American Recovery and Reinvestment Act: Proposed Action or Project Description: The Association of Village Council Presidents, Inc., (AVCP) proposes to renovate a steel-constructed building, built circa 1990 (First Avenue Building, US Survey 1002 Parcel 1, Lot 1), located in Bethel, Alaska, to an office building. Proposed building retrofits would include installation of an (EPA certified) wood-fired central boiler, a conventional (household size) energy efficient oil-fired boiler, a heat distribution

306

File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Jump to: navigation, search File File history File usage Metadata File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 16 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:17, 12 June 2013 Thumbnail for version as of 14:17, 12 June 2013 1,275 × 1,650 (16 KB) Apalazzo (Talk | contribs)

307

File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 46 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:50, 26 July 2013 Thumbnail for version as of 12:50, 26 July 2013 1,275 × 1,650 (46 KB) Apalazzo (Talk | contribs)

308

File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information  

Open Energy Info (EERE)

TX.pdf TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 442 KB, MIME type: application/pdf) Description Texas Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Texas External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:21, 27 December 2010 Thumbnail for version as of 16:21, 27 December 2010 1,650 × 1,275 (442 KB) MapBot (Talk | contribs) Automated bot upload

309

GRR/Section 15-TX-a - Air Permit - Permit to Construct | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-TX-a - Air Permit - Permit to Construct GRR/Section 15-TX-a - Air Permit - Permit to Construct < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-TX-a - Air Permit - Permit to Construct 15TXAAirPermitPermitToConstruct (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Title 30 of the Texas Administrative Code 30 TAC 116.114 30 TAC 39.418 30 TAC 39.604 30 TAC 39.605 30 TAC 39.409 30 TAC 116.136 30 TAC 55.254 30 TAC 116.136 30 TAC 116.137 Triggers None specified Click "Edit With Form" above to add content 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf Error creating thumbnail: Page number not in range.

310

File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy  

Open Energy Info (EERE)

-TX-g - Lease of Relinquishment Act Lands.pdf -TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 82 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:49, 29 July 2013 Thumbnail for version as of 11:49, 29 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs) 14:43, 26 July 2013 Thumbnail for version as of 14:43, 26 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs)

311

Ak-Chin Indian Community Biomass Feasiiblity Study  

Science Conference Proceedings (OSTI)

Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.

Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group

2005-12-31T23:59:59.000Z

312

GRR/Section 1-AK-a - Land Use Considerations | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GRRSection 1-AK-a - Land Use Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

313

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

Science Conference Proceedings (OSTI)

In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

314

File:INL-geothermal-ak.pdf | Open Energy Information  

Open Energy Info (EERE)

ak.pdf ak.pdf Jump to: navigation, search File File history File usage Alaska Geothermal Resources Size of this preview: 697 × 599 pixels. Other resolution: 698 × 600 pixels. Full resolution ‎(5,418 × 4,660 pixels, file size: 2.26 MB, MIME type: application/pdf) Description Alaska Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:21, 16 December 2010 Thumbnail for version as of 12:21, 16 December 2010 5,418 × 4,660 (2.26 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

315

Tank 241-TX-118, core 236 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-TX-118 push mode core segments collected between April 1, 1998 and April 13, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-118 Push Mode Core sampling and Analysis Plan (TSAP) (Benar, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al, 1995) and the Historical Model Evaluation Data Requirements (Historical DQO) (Sipson, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Benar, 1997). One sample exceeded the Total Alpha Activity (AT) analysis notification limit of 38.4{micro}Ci/g (based on a bulk density of 1.6), core 236 segment 1 lower half solids (S98T001524). Appropriate notifications were made. Plutonium 239/240 analysis was requested as a secondary analysis. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report.

ESCH, R.A.

1998-11-19T23:59:59.000Z

316

File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information  

Open Energy Info (EERE)

f - Lease of Land Trade Lands.pdf f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:54, 26 July 2013 Thumbnail for version as of 13:54, 26 July 2013 1,275 × 1,650 (42 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 3-TX-f - Lease of Land Trade Lands

317

GRR/Section 6-AK-a - Transportation | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-AK-a - Transportation GRR/Section 6-AK-a - Transportation < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-a - Transportation 06AKATransportationOversizeOverweight.pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities Regulations & Policies 17 AAC 25: Operations, Wheeled Vehicles Triggers None specified Click "Edit With Form" above to add content 06AKATransportationOversizeOverweight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 6-AK-a.1 to 6-AK-a.2 - Does the Load Exceed the Size or Weight Regulations for State Highway Transportation Established by 17 AAC 25?

318

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

319

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site  

SciTech Connect

A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

Hodges, Floyd N.; Chou, Charissa J.

2001-02-23T23:59:59.000Z

320

Application of CC at a Corporate Headquarters Facility in Dallas, TX  

E-Print Network (OSTI)

A corporate headquarters complex located in Dallas, TX consists of four buildings served by a central utility plant. The Continuous Commissioning (CC) process was applied to one building with approximately 688,000 square feet of primarily of data floor space. This building was identified as a candidate for the CC process because it consumed 58% of the 132 million kWh of electricity used by the complex in 2010 and had recently received several HVAC upgrades. CC is an ongoing process for existing buildings and central plant facilities to resolve operating problems, improve comfort, optimize energy use, and identify retrofits based on current building usage rather than original design intent [1]. The data floor optimization process consisted of three components: traditional commissioning activities, CC measure implementation, and low cost retrofits. Various M&V strategies were also utilized to quantify the resulting energy savings in a building whose energy use is dominated by data equipment load. Using six months of pre- and post- implementation HVAC equipment electrical service meter trend data, a savings of 948,700 kWh was achieved. When these savings are extrapolated to twelve months, this project is expected to reduce the 2010 HVAC electricity usage by 25% ($133,000). Once the central plant savings are included, the overall savings of this project is approximately $146,000/year.

Meline, K.; Kimla, J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lessons Learned from Continuous Commissioning of the Robert E. Johnson State Office Building, Austin, TX  

E-Print Network (OSTI)

The Robert E. Johnson State Office building is a 5-story, 303,389 square foot office building built in 2000 located in downtown Austin, TX. The original building design included a number of energy conservation measures that were incorporated into the final construction. During the investigation of the building, four energy conservation measures were identified, three of which deal with conventional HVAC systems. The fourth is related to the currently unutilized daylighting system which was one of the energy conservation measures of the original building design. Utilizing this system would lead to approximately 18.5% annual lighting energy savings or 5.6% annual whole building energy savings based on a DOE-2 simulation analysis. Three main lessons were learned from the experience with the Robert E. Johnson building: The traditional design-construction-operation team must include the energy conservation analysis team The entire building process should be reorganized to assure that complete information is provided and passed on from the energy conservation analysis team High performance buildings should be continuously monitored and analyzed

Bynum, J.; Claridge, D. E.

2008-09-22T23:59:59.000Z

322

File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open Energy  

Open Energy Info (EERE)

Land (1).pdf Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-d - Lease of Public School Fund Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:26, 29 July 2013 Thumbnail for version as of 11:26, 29 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) 13:47, 26 July 2013 Thumbnail for version as of 13:47, 26 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

323

TxDOT Goes Beyond Compliance by Purchasing 100% AFVs. EPAct Fleet Information and Regulations, State& Alternative Fuel Provider Program Success Story  

DOE Green Energy (OSTI)

Fact sheet features the challenges the Texas Department of Transportation (TxDOT) faced and overcame in complying to a Texas legislation that calls for the acquisition of only alternative fuel vehicles.

Not Available

2002-01-01T23:59:59.000Z

324

CALDERN, HCTOR. Narratives of Greater Mxico: Essays on Chicano Literary History, Genre, and Borders. Austin, TX: U of Texas P, 2004. 284 pp.  

E-Print Network (OSTI)

Borders. Austin, TX: U of Texas P, 2004. 284 pp. "There areEl New Paso and Ro Grande, Texas; Mxico; San Francisco andthe and cultural migrant Texas-Mexican farmworker community

Prez, Marisol

2005-01-01T23:59:59.000Z

325

To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration  

E-Print Network (OSTI)

LBNL-60978 To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX efficient than ASHRAE 90.1- 1999. The utility data from the first year's operation match well the analysis

326

GRR/Section 3-AK-c - Encroachment Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-AK-c - Encroachment Permit GRR/Section 3-AK-c - Encroachment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-c - Encroachment Permit 03AKCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities Regulations & Policies 17 AAC 10.011: Encroachments Authorized 17 AAC 10.012: Approval Requirements 17 AAC 15.011: Utility Permits Triggers None specified Click "Edit With Form" above to add content 03AKCEncroachmentOverview.pdf 03AKCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 3-AK-c.1 - Will the Developer Construct a Utility Within ADOT ROW or

327

One-sided Tauberian conditions for (A,k) summability method  

Science Conference Proceedings (OSTI)

In this paper, some one-sided Tauberian conditions for (A,k) summability method have been obtained. Keywords: (A ,k) summability, General control modulo, Moderate oscillation, Regularly generated sequence, Slow oscillation

?Brahim Anak; Mit Totur; Mehmet Dik

2010-03-01T23:59:59.000Z

328

GRR/Section 7-AK-a - Power Plant Siting and Construction | Open...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon GRRSection 7-AK-a - Power Plant Siting and Construction < GRR Jump to: navigation, search GRR-logo.png...

329

Results from ORNL Characterization of Zr02-500-AK2 - Surrogate TRISO Material  

Science Conference Proceedings (OSTI)

This document is a compilation of the characterization data for the TRISO-coated surrogate particle batch designated ZrO2-500-AK2 that was produced at Oak Ridge National Laboratory (ORNL) as part of the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The ZrO2-500-AK2 material contains nominally 500 {micro}m kernels of yttria-stabilized zirconia (YSZ) coated with all TRISO layers (buffer, inner pyrocarbon, silicon carbide, and outer pyrocarbon). The ZrO2-500-AK2 material was created for: (1) irradiation testing in the High Flux Isotope Reactor (HFIR) and (2) limited dissemination to laboratories as deemed appropriate to the AGR program. This material was created midway into a TRISO fuel development program to accommodate a sudden opportunity to perform irradiation testing on surrogate material. While the layer deposition processes were chosen based on the best technical understanding at the time, technical progress at ORNL has led to an evolution in the perceived optimal deposition conditions since the createion of ZrO2-500-AK2. Thus, ZrO2-500-AK2 contains a reasonable TRISO microstructure, but does differ significanly from currently produced TRISO surrogates and fuel at ORNL. In this document, characterization data of the ZrO2-500-AK2 surrogate includes: size, shape, coating thickness, and density.

Hunn, John D [ORNL; Kercher, Andrew K [ORNL

2005-06-01T23:59:59.000Z

330

Results from ORNL characterization of ZrO2-500-AK2 - surrogate TRISO material  

Science Conference Proceedings (OSTI)

This document is a compilation of the characterization data for the TRISO-coated surrogate particles designated ZrO2-500-AK2 that was produced at Oak Ridge National Laboratory (ORNL) as part of the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The ZrO2-500-AK2 material contains nominally 500 {micro}m kernels of yttria-stabilized zirconia (YSZ) coated with all TRISO layers (buffer, inner pyrocarbon, silicon carbide, and outer pyrocarbon). The ZrO2-500-AK2 material was created for: (1) irradiation testing in the High Flux Isotope Reactor (HFIR) and (2) limited dissemination to laboratories as deemed appropriate to the AGR program. This material was created midway into a TRISO fuel development program to accommodate a sudden opportunity to perform irradiation testing on surrogate material. While the layer deposition processes were chosen based on the best technical understanding at the time, technical progress at ORNL has led to an evolution in the perceived optimal deposition conditions since the creation of ZrO2-500-AK2. Thus, ZrO2-500-AK2 contains a reasonable TRISO microstructure, but does differ significantly from currently produced TRISO surrogates and fuel at ORNL. In this document, characterization data of the ZrO2-500-AK2 surrogate includes: size, shape, coating thickness, and density.

Kercher, Andrew K [ORNL; Hunn, John D [ORNL

2005-06-01T23:59:59.000Z

331

Anemometer Data (Wind Speed, Direction) for Ugashik, AK (2001 - 2002) |  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278290 Varnish cache server Anemometer Data (Wind Speed, Direction) for Ugashik, AK (2001 - 2002) Dataset Summary Description Wind data collected from Ugashik Traditional Village in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2001 through 2002, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp.

332

Anemometer Data (Wind Speed, Direction) for Tanana, AK (2001 - 2002) |  

Open Energy Info (EERE)

40 40 Varnish cache server Anemometer Data (Wind Speed, Direction) for Tanana, AK (2001 - 2002) Dataset Summary Description Wind data collected from Tanana Village in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2001 through 2002, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released November 09th, 2010 (4 years ago) Date Updated November 09th, 2010 (4 years ago)

333

Circuit Breaker Maintenance; Volume 1: Low-Voltage Circuit Breakers; Part 2: GE AK Models: Volume 1: Low-Voltage Circuit Breakers Pa rt 2: GE AK Models  

Science Conference Proceedings (OSTI)

This comprehensive guide will help utilities improve their maintenance of GE model AK circuit breakers. It consolidates industry guidelines, applicable standards, original equipment manufacturer recommendations, and hands-on experience relative to these circuit breakers. Ultimately, improved maintenance will increase reliability and reduce costs associated with corrective maintenance and equipment downtime.

1992-05-02T23:59:59.000Z

334

GRR/Section 7-AK-c - Certificate of Public Convenience and Necessity | Open  

Open Energy Info (EERE)

GRR/Section 7-AK-c - Certificate of Public Convenience and Necessity GRR/Section 7-AK-c - Certificate of Public Convenience and Necessity < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-AK-c - Certificate of Public Convenience and Necessity 07AKCCertificateOfPublicConvenienceAndNecessity.pdf Click to View Fullscreen Contact Agencies Regulatory Commission of Alaska Regulations & Policies AS 42.05.175: Timeline for Final Orders AS 42.05.221: Certificates Required AS 42.05.711: Exemptions 3 AAC 48.645: Application 3 AAC 48.648: Complete Applications 3 AAC 48.650: Incomplete Applications AAC Title 3 2012 Supplement Triggers None specified Click "Edit With Form" above to add content 07AKCCertificateOfPublicConvenienceAndNecessity.pdf Error creating thumbnail: Page number not in range.

335

GRR/Section 20-AK-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-AK-a - Well Abandonment Process 20-AK-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-AK-a - Well Abandonment Process 20AKAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Alaska Oil and Gas Conservation Commission Regulations & Policies 20 AAC 25.105 20 AAC 25.112 Triggers None specified Click "Edit With Form" above to add content 20AKAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for abandoning wells in the state of Alaska. The Alaska Oil and Gas Conservation Commission ("commission")

336

GRR/Section 6-AK-b - Construction Storm Water Permitting | Open Energy  

Open Energy Info (EERE)

GRR/Section 6-AK-b - Construction Storm Water Permitting GRR/Section 6-AK-b - Construction Storm Water Permitting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-b - Construction Storm Water Permitting 06AKBConstructionStormWaterPermitting (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies 18 AAC 72: Wastewater Treatment and Disposal Triggers None specified Click "Edit With Form" above to add content 06AKBConstructionStormWaterPermitting (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative From DEC Website: The goal of the Storm Water Program is to reduce or eliminate pollutants in

337

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-d - State Noncompetitive Mineral Leasing Process 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

338

GRR/Section 18-AK-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

8-AK-b - Hazardous Waste Permit Process 8-AK-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-b - Hazardous Waste Permit Process 18AKB - HazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies AS 46.03.302 18 AAC 60.020 Triggers None specified Click "Edit With Form" above to add content 18AKB - HazardousWastePermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation defers to the federal

339

GRR/Section 15-AK-c - Title V Operating Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-AK-c - Title V Operating Permit GRR/Section 15-AK-c - Title V Operating Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-c - Title V Operating Permit 15AKCTitleVOperatingPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies Alaska Statutes Alaska Administrative Code 18 AAC 50 Air Quality Control Triggers None specified Click "Edit With Form" above to add content 15AKCTitleVOperatingPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative One of the major initiatives Congress added to the Clean Air Act in 1990 is

340

GRR/Section 6-AK-c - Drinking Water Permit | Open Energy Information  

Open Energy Info (EERE)

6-AK-c - Drinking Water Permit 6-AK-c - Drinking Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-c - Drinking Water Permit 06AKCDrinkingWaterPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies 18 AAC 80 Drinking Water 40 CFR 141 40 CFR 142 40 CFR 143 Triggers None specified Click "Edit With Form" above to add content 06AKCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Alaska's drinking water program is monitored under the Alaska Department of Environmental Conservation. The type of permit required depends on the

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GRR/Section 9-AK-a - Alaska Environmental Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 9-AK-a - Alaska Environmental Process GRR/Section 9-AK-a - Alaska Environmental Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-AK-a - Alaska Environmental Process 09AKAStateEnvironmentalProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Regulations & Policies AS 38.05.035: Powers & Duties of ADNR Director AS 38.05.082: Leases for Shore Fisheries AS 38.05.115: Conditions of Sale AS 38.05.850: Permits AS 38.05.945: Notice AS 38.05.946: Hearings Triggers None specified Click "Edit With Form" above to add content 09AKAStateEnvironmentalProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

342

GRR/Section 14-AK-c - Alaska UIC Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-AK-c - Alaska UIC Permit GRR/Section 14-AK-c - Alaska UIC Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-c - Alaska UIC Permit 14AKCAlaskaUICPermit.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 14AKCAlaskaUICPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Underground Injection Control Permit is regulated by the Environmental Protection Agency. The EPA regulates Class V injection wells on Federal lands, many tribal lands, and in some states like Alaska. Injection wells are overseen by either a state or Tribal Agency or one of

343

GRR/Section 8-AK-a - Transmission | Open Energy Information  

Open Energy Info (EERE)

8-AK-a - Transmission 8-AK-a - Transmission < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-AK-a - Transmission 08AKATransmission.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 08AKATransmission.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Under the Alaska Public Utilities Regulatory Act, transmission is included in Alaska's regulation of public utilities. According to AS 42.05.990(5), "public utility" or "utility" includes every corporation whether public, cooperative, or otherwise, company, individual, or association of

344

GRR/Section 4-AK-c - Geothermal Exploration Permit | Open Energy  

Open Energy Info (EERE)

4-AK-c - Geothermal Exploration Permit 4-AK-c - Geothermal Exploration Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-c - Geothermal Exploration Permit 04AKCGeothermalExplorationPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKCGeothermalExplorationPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Natural Resources requires filing an application

345

GRR/Section 14-AK-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-AK-a - Nonpoint Source Pollution GRR/Section 14-AK-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-a - Nonpoint Source Pollution 14AKANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Alaska's Nonpoint Source Water Pollution Control Strategy is a statewide plan for protecting Alaska's natural resources from polluted runoff also

346

GRR/Section 19-AK-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-AK-a - Water Access and Water Rights Issues GRR/Section 19-AK-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-a - Water Access and Water Rights Issues 19AKAWaterAccessWaterRights.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKAWaterAccessWaterRights.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

347

GRR/Section 3-AK-b - Right of Ways (ROWs) | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-AK-b - Right of Ways (ROWs) GRR/Section 3-AK-b - Right of Ways (ROWs) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-b - Right of Ways (ROWs) 03AKBRightOfWaysROWs.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKBRightOfWaysROWs.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Division of Mining Land and Water (ML&W) oversees land use within the state and issues right of ways, easements or permit to use state

348

GRR/Section 3-AK-e - Land Use Permit | Open Energy Information  

Open Energy Info (EERE)

3-AK-e - Land Use Permit 3-AK-e - Land Use Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-e - Land Use Permit 03AKELandUsePermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKELandUsePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A land use permit in Alaska covers a number of uses of state land that are less invasive and do not require a full property interest such as a lease

349

DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Amchitka Island Test Center - AK 01 Amchitka Island Test Center - AK 01 FUSRAP Considered Sites Site: Amchitka Island Test Center (AK.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Amchitka Island Test Center Documents Related to Amchitka Island Test Center Draft Long-Term Surveillance Plan for the Amchitka Island, Alaska, Project Site (September 2013) An Assessment of the Reported Leakage of Anthropogenic Radionuclides From the Underground Nuclear Test Sites at Amchitka Island, Alaska, USA to the Surface Environment. Conceptual Site Models as a Tool in Evaluation Ecological health; The Case of the Department of Energys Amchitka Island Nuclear Test Site.

350

GRR/Section 11-AK-a - State Cultural Considerations | Open Energy  

Open Energy Info (EERE)

1-AK-a - State Cultural Considerations 1-AK-a - State Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-AK-a - State Cultural Considerations 11AKAStateCulturalConsiderations (2).pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Regulations & Policies AS 41.35.060: Power to Acquire AS 41.35.070: Preservation of Historic Resources AS 41.35.090: Notice AS 41.35.100: Excavation Triggers None specified Click "Edit With Form" above to add content 11AKAStateCulturalConsiderations (2).pdf 11AKAStateCulturalConsiderations (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative It is the policy of the State of Alaska to preserve and protect the

351

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process GRR/Section 3-AK-a - State Competitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-a - State Competitive Mineral Leasing Process 03AKAStateCompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKAStateCompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

352

GRR/Section 5-AK-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-AK-a - Drilling and Well Development GRR/Section 5-AK-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-AK-a - Drilling and Well Development 05AKADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Alaska Oil and Gas Conservation Commission Alaska Department of Natural Resources Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 05AKADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative All wells drilled in search or in support of the recovery of geothermal

353

GRR/Section 14-AK-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-AK-d - Section 401 Water Quality Certification GRR/Section 14-AK-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-d - Section 401 Water Quality Certification 14AKDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Alaska Water Quality Standards Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKDSection401WaterQualityCertification.pdf 14AKDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

354

GRR/Section 18-AK-c - Waste Disposal Permit Process | Open Energy  

Open Energy Info (EERE)

AK-c - Waste Disposal Permit Process AK-c - Waste Disposal Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-c - Waste Disposal Permit Process 18AKC - WasteDisposalPermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.110 Waste Disposal Permit Regulations 18 AAC 60.200 et seq Triggers None specified Click "Edit With Form" above to add content 18AKC - WasteDisposalPermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation (DEC) is responsible

355

GRR/Section 15-AK-a - Air Quality Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-AK-a - Air Quality Assessment Process GRR/Section 15-AK-a - Air Quality Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-a - Air Quality Assessment Process 15AKAAirQualityAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Statute Title 46 Alaska Administrative Code 18 AAC 50 Air Quality Regulations 40 CFR 71 Operating Permits Triggers None specified Click "Edit With Form" above to add content 15AKAAirQualityAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

356

GRR/Section 15-AK-b - Air Quality Minor Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-AK-b - Air Quality Minor Permit GRR/Section 15-AK-b - Air Quality Minor Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-b - Air Quality Minor Permit 15AKBAirQualityMinorPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Administrative Code 18 AAC 50 Air Quality Control Regulations 40 CFR Chapter I, Subchapter C - Air Programs Triggers None specified Click "Edit With Form" above to add content 15AKBAirQualityMinorPermit.pdf 15AKBAirQualityMinorPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The mission of the Air Permit Program is to protect the Alaskan environment

357

GRR/Section 18-AK-a - Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-AK-a - Storage Tank Registration GRR/Section 18-AK-a - Storage Tank Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-a - Storage Tank Registration 18AKA - StorageTankRegistration (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.380 As 46.03.385 18 AAC 78 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18AKA - StorageTankRegistration (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any project that requires installation or operation of a storage tank must

358

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit  

Open Energy Info (EERE)

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

359

GRR/Section 4-AK-b - Geophysical Exploration Permit | Open Energy  

Open Energy Info (EERE)

4-AK-b - Geophysical Exploration Permit 4-AK-b - Geophysical Exploration Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-b - Geophysical Exploration Permit 04AKBGeophysicalExplorationPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKBGeophysicalExplorationPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A Geophysical Exploration Permit is necessary for conducting seismic

360

GRR/Section 19-AK-b - Temporary Use of Water Permit | Open Energy  

Open Energy Info (EERE)

9-AK-b - Temporary Use of Water Permit 9-AK-b - Temporary Use of Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-b - Temporary Use of Water Permit 19AKBTemporaryUseOfWaterPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKBTemporaryUseOfWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment  

E-Print Network (OSTI)

The purpose of this study was to develop and test an optimization model that will provide a deployment plan of emission reduction technologies to reduce emissions from non-road equipment. The focus of the study was on the counties of Texas that have nonattainment (NA) and near-nonattainment (NNA) status. The objective of this research was to develop methodologies that will help to deploy emission reduction technologies for non-road equipment of TxDOT to reduce emissions in a cost effective and optimal manner. Three technologies were considered for deployment in this research, (1) hydrogen enrichment (HE), (2) selective catalytic reduction (SCR) and (3) fuel additive (FA). Combinations of technologies were also considered in the study, i.e. HE with FA, and SCR with FA. Two approaches were investigated in this research. The first approach was "Method 1" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties at the first stage. In the second stage the same technologies were deployed in the NNA counties with the remaining budget, if any. The second approach was called "Method 2" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties along with deploying only FA in the NNA counties at the first stage. Then with the remaining budget, SCR and HE were deployed in the NNA counties in the second stage. In each of these methods, 2 options were considered, i.e. maximizing NOx reduction with and without fuel economy consideration in the objective function. Thus, the four options investigated each having different mixes of emission reduction technologies include Case 1A: Method 1 with fuel economy consideration; Case 1B: Method 1 without fuel economy consideration; Case 2A: Method 2 with fuel economy consideration; and Case 2B: Method 2 without fuel economy consideration and were programmed with Visual C++ and ILOG CPLEX. These four options were tested for budget amounts ranging from $500 to $1,183,000 and the results obtained show that for a given budget one option representing a mix of technologies often performed better than others. This is conceivable because for a given budget the optimization model selects an affordable option considering the cost of technologies involved while at the same time maximum emission reduction, with and without fuel economy consideration, is achieved. Thus the alternative options described in this study will assist the decision makers to decide about the deployment preference of technologies. For a given budget, the decision maker can obtain the results for total NOx reduction, combined diesel economy and total combined benefit using the four models mentioned above. Based on their requirements and priorities, they can select the desired model and subsequently obtain the required deployment plan for deploying the emission reduction technologies in the NA and NNA counties.

Bari, Muhammad Ehsanul

2009-08-01T23:59:59.000Z

362

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 48,485 39,217 33,355 64,793 70,001 28,298 1985-2012 To Brazil 0 0 0 3,279 11,049 8,142 2007-2012 Freeport, TX 0 0 0 0 2,581 8,142 2007-2012 Sabine Pass, LA 0 0 0 3,279 8,468 0 2007-2012 To Canada 2 0 0 0 0 2 2007-2012 Buffalo, NY 2 0 0 0 2006-2010 Sweetgrass, MT 0 2 2011-2012 To Chile 0 0 0 0 2,910 0 2007-2012 Sabine Pass, LA 0 0 0 0 2,910 0 2007-2012 To China 0 0 0 0 6,201 0 2007-2012 Kenai, AK 0 0 0 0 1,127 0 2007-2012 Sabine Pass, LA 0 0 0 0 6,201 0 2007-2012 To India 0 0 0 2,873 12,542 3,004 2007-2012 Freeport, TX 0 0 0 2,873 5,993 3,004 2007-2012 Sabine Pass, LA 0 0 0 0 6,549 0 2007-2012 To Japan 2,822 2,741 5,037 2010-2012

363

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 6.23 7.69 8.40 9.53 10.54 12.82 1985-2012 To Brazil -- -- -- 7.50 11.40 11.19 2007-2012 Freeport, TX -- -- -- -- 12.74 11.19 2007-2012 Sabine Pass, LA -- -- -- 7.50 11.00 -- 2007-2012 To Canada 12.07 -- -- -- -- 13.29 2007-2012 Buffalo, NY 12.07 -- -- -- 2006-2010 Sweetgrass, MT -- 13.29 2011-2012 To Chile -- -- -- -- 13.91 -- 2007-2012 Sabine Pass, LA -- -- -- -- 13.91 -- 2007-2012 To China -- -- -- -- 12.25 -- 2007-2012 Kenai, AK -- -- -- -- 10.61 -- 2007-2012 Sabine Pass, LA -- -- -- -- 12.25 -- 2007-2012 To India -- -- -- 7.56 8.23 11.10 2007-2012 Freeport, TX -- -- -- 7.56 8.66 11.10 2007-2012 Sabine Pass, LA -- -- -- -- 7.85 -- 2007-2012

364

2004 Initial Assessments for the T and TX TY Tank Farm Field Investigation Report (FIR): Numerical Simulations  

SciTech Connect

In support of CH2M HILL Hanford Group, Inc.s (CHG) preparation of a Field Investigative Report (FIR) for the Hanford Site Single-Shell Tank Waste Management Area (WMA) T and TX-TY, a suite of numerical simulations of flow and solute transport was executed using the STOMP code to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the T and TX-TY WMA. The scope and parametric data for these simulations were defined by a modeling data package provided by CHG. This report documents the simulation involving 2-D cross sections through the T Tank and the TX-TY Tank Farm. Eight cases were carried out for the cross sections to simulate the effects of interim barrier, water line leak, inventory distribution, and surface recharge on water flow and the transport of long-lived radionuclides (i.e., technecium-99 and uranium) and chemicals (i.e., nitrate and chromium For simulations with barriers, it is assumed that an interim barrier is in place by the year 2010. It was also assumed that, for all simulations, as part of tank farm closure, a closure barrier was in place by the year 2040. The modeling considers the estimated inventories of contaminants within the vadose zone and calculates the associated risk. It assumes that no tanks will leak in the future. Initial conditions for contaminant concentration are provided as part of inventory estimates for uranium, technetium-99, nitrate, and chromium. For moisture flow modeling, Neumann boundary conditions are prescribed at the surface with the flux equal to the recharge rate estimate. For transport modeling, a zero flux boundary is prescribed at the surface for uranium, technetium-99, nitrate, and chromium. The western and eastern boundaries are assigned no-flux boundaries for both flow and transport. The water table boundary is prescribed by water table elevations and the unconfined aquifer hydraulic gradient. No-flux boundaries are used for the lower boundary. Numerical results were obtained for compliance at the WMA boundary, 200 Areas boundary, exclusion boundary beyond the 200 Areas, and the Columbia River (DOE-RL 2000). Streamtube/analytical models were used to route computed contaminant concentrations at the water table to the downstream compliance points. When the interim barrier was applied at 2010, the soil was desaturated gradually. The difference in saturation of the soil with and without the interim barrier was the largest at 2040, the time the closure barrier was applied. After this, the difference in saturation in the two cases became smaller with time. Generally, the solutes broke though faster if there was a water line leak. A relative small five-day leak (Case 4) had little effect on the peak concentration, while a large 20-yr leak (Case 3) increased the peak concentration significantly and reduced the solute travel in the vadose zone. The distribution of the inventory, either uniform or nonuniform, has little effect on peak arrival time; the peak concentrations of the conservative solutes varied by -6.9 to 0.2% for the T tank farm and by 11 to 49.4% for the TX tank farm. The reduction of the meteoric recharge before the barrier was applied led to less soil saturation, as expected, and thus longer solute travel time in the vadose zone and smaller peak fence line concentration. The effect on soil saturation lasted for about another 50 years after the barrier was applied at 2050. However, the reduced recharge rate affected the breakthough curve till the end of the simulation. The fence line concentrations at the year 3000 were always higher for cases with reduced natural recharge than for those of the base case, which indicates that the fundamental impact of the reduced natural recharge is a smoothing of the breakthrough concentrations at the compliance points.

Zhang, Z. F.; Freedman, Vicky L.; Waichler, Scott R.

2004-09-24T23:59:59.000Z

365

1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09  

U.S. Energy Information Administration (EIA) Indexed Site

STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial Power","Petroleum",1,20.4,18.99 1990,"AK","Combined Heat and Power, Industrial Power","All Sources",23,229.4,204.21 1990,"AK","Combined Heat and Power, Industrial Power","Natural Gas",28,159.32,136.67 1990,"AK","Combined Heat and Power, Industrial Power","Petroleum",8,68.28,65.86

366

GRR/Section 19-AK-c - Permit to Appropriate | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 19-AK-c - Permit to Appropriate < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-c - Permit to Appropriate 19AKCPermitToAppropriate.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKCPermitToAppropriate.pdf 19AKCPermitToAppropriate.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

367

File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

AK-CookInlet-Liquids.pdf AK-CookInlet-Liquids.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Liquids Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

368

GRR/Section 17-AK-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 17-AK-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-AK-a - Aesthetic Resource Assessment 17AKAAestheticResourceAssessment.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 17AKAAestheticResourceAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

369

GRR/Section 4-AK-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-AK-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-a - State Exploration Process 04AKAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

370

GRR/Section 12-AK-a - Flora & Fauna Considerations | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 12-AK-a - Flora & Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-AK-a - Flora & Fauna Considerations 12AKAFloraFaunaConsiderations (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Fish and Game Regulations & Policies AS 16.05.841: Fishways AS 16.05.871: Protection of Fish and Game AS 16.20: Conservation and Protection 5 AAC 95.011: Waters Important to Anadromous Fish Triggers None specified Click "Edit With Form" above to add content 12AKAFloraFaunaConsiderations (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

371

Anemometer Data (Wind Speed, Direction) for YKHC-Bethel, AK (2003 - 2004) |  

Open Energy Info (EERE)

YKHC-Bethel, AK (2003 - 2004) YKHC-Bethel, AK (2003 - 2004) Dataset Summary Description Wind data collected from YKHC - Bethel in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2003 through 2004, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released November 09th, 2010 (4 years ago) Date Updated November 09th, 2010 (4 years ago) Keywords wind wind direction wind speed

372

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW 03AKGUtilityPermitToConstructOnADOTROW (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities U S Army Corps of Engineers United States Coast Guard Bureau of Indian Affairs Bureau of Land Management Federal Aviation Administration Alaska Department of Natural Resources Regulations & Policies 11 AAC 195.010: Anadromous Fish 17 AAC 15.021: Application for Utility Permit Triggers None specified Click "Edit With Form" above to add content 03AKGUtilityPermitToConstructOnADOTROW (1).pdf

373

~tx410.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

THURSDAY, APRIL 2, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, SW, Washington, D.C., Ed Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN MICHAEL COHEN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG

374

~tx421.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

FRIDAY APRIL 3, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., Edward Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG JOHN PAUL DELEY, OIT

375

File:NREL-ak2-50m.pdf | Open Energy Information  

Open Energy Info (EERE)

ak2-50m.pdf ak2-50m.pdf Jump to: navigation, search File File history File usage Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.8 MB, MIME type: application/pdf) Title Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Description Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Sources National Renewable Energy Laboratory Related Technologies Wind Creation Date 2010/01/15 Extent State Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:46, 21 December 2010 Thumbnail for version as of 17:46, 21 December 2010 1,275 × 1,650 (1.8 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

376

File:NREL-ak-50m.pdf | Open Energy Information  

Open Energy Info (EERE)

ak-50m.pdf ak-50m.pdf Jump to: navigation, search File File history File usage Alaska Mainland Regions Annual Average Wind Speed at 50 Meters (PDF) Size of this preview: 776 × 599 pixels. Other resolution: 777 × 600 pixels. Full resolution ‎(1,647 × 1,272 pixels, file size: 6.1 MB, MIME type: application/pdf) Title Alaska Mainland Regions Annual Average Wind Speed at 50 Meters (PDF) Description Alaska Mainland Regions Annual Average Wind Speed at 50 Meters (PDF) Sources National Renewable Energy Laboratory Related Technologies Wind Creation Date 2010/01/15 Extent State Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:08, 21 December 2010 Thumbnail for version as of 15:08, 21 December 2010 1,647 × 1,272 (6.1 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

377

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY...

378

Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols  

DOE Green Energy (OSTI)

The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}--C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X is a S, Se, or Te, will be determined. The alkali component A, which is essential for C-O and C-C bond forming reactions leading to alcohols, will be highly dispersed on the TX{sub 2} surfaces by using chemical vapor deposition (CVD) and chemical complexation/anchoring (CCA) methods. Catalysts that have been prepared during this quarter include RuS{sub 2}, NbS{sub 2}, K/MoS{sub 2}, and K/Crown either/MoS{sub 2}. Catalysts tested include KOH/MoS{sub 2} and K/Crown ether/MoS{sub 2}. 9 refs., 10 figs., 2 tabs.

Klier, K.; Herman, R.G.; Brimer, A.; Richards, M.; Kieke, M.; Bastian, R.D.

1990-09-01T23:59:59.000Z

379

Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

2008-09-11T23:59:59.000Z

380

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performers ConocoPhillips Company, Houston TX and Anchorage AK ConocoPhillips Japan Oil, Gas and Metals National Corporation (JOGMEC), Japan JOGMEC...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

382

3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC.  

Office of Legacy Management (LM)

.I Y. ,J,.- i .I Y. ,J,.- i - 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC. POST OFFICE BOX X OAK RIOGE. TENNESSEE 37631 July 20, 1984 Ms. Gale P. Turi Division of Remedial Action Projects Office of Nuclear Energy U.S. Department of Energy MS - NE24 Washington, D.C. 20545 Dear Ms. Turi: Radfoloafcal Survey of the Guterl Steel Fad1 ftya 1 o&a As requested, a visit was made to the Guterl Steel facility (formerly Simonds Saw and Steel) on July 9, 1984 to determine if there have been significant changes in the radiological status of the facility since the last survey. In general, measurements made during this survey are con- sistent with those made during the 1977 survey (ORNL) and a follow-up survey in 1981 (FBD). Significant amounts of contaminated material are present in the rolling

383

Why Sequence Sinorhizobium meliloti strains AK83 and BL225C?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sinorhizobium meliloti Sinorhizobium meliloti strains AK83 and BL225C? Nitrogen is a crucial element for plant growth and makes up nearly 80 percent of the Earth's atmosphere. Unfortunately plants can't use atmospheric nitrogen unless it is converted into another form. Fertilizers can supply the needed nitrogen, but they are made using processes that contribute to the amount of greenhouse gases in the atmosphere. On the other hand, symbiotic nitrogen fixation done by bacteria such as Rhizobia residing in the soil or in the roots of plants bypasses the need for nitrogen fertilizers and allows farmers to plant crops in marginal lands that might not normally be used as such. Symbiotic nitrogen fixation contributes some 90 million tons of fixed nitrogen annually for legume crops such as soybeans, red clover and peas. S meliloti is a symbiotic

384

File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-AK-CookInlet-Gas.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time.

385

File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-AK-NorthSlope-BOE.pdf Jump to: navigation, search File File history File usage Alaskan North Slope By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 2.16 MB, MIME type: application/pdf) Description Alaskan North Slope By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

386

Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not identify the maximum vertical penetration of the tank related plumes. However, the more elevated portions of the electrical conductivity (EC) profile at probe hole C3830 currently resides at the bottom of a fine-grained thin lens in the Hanford H2 unit at 87 ft bgs. At C3831, we lack good sample coverage to ascertain whether the salt plume has significantly descended into the Cold Creek Unit. There is strong indication at probe hole C3832 that the saline plume has descended into the Cold Creek Unit. The profiles do collectively suggest that the deepest penetration of tank related fluids is found in probe hole C3832. The water potential data from 299-W10-27?s H2 unit, the unit where most of the contaminants reside in the TX probe holes, are consistent with a draining profile. Despite the evidence that elevated EC values may be present in all three probe holes to their depth of refusal, the concentrations of long-term risk drivers are not large. The inventories of potential contaminants of concern, nitrate, technetium-99, uranium, and chromium, are provided. In addition, in situ desorption Kd values for these contaminants are provided. For conservative modeling purposes, we recommend using Kd values of 0 mL/g for nitrate and technetium-99, a value of 1 mL/g for uranium, and 10 mL/g for chromium to represent the entire vadose zone profile from the bottoms of the tanks to the water table. These conservative Kd values along with the provided inventories in the vadose zone sediments obtained from the three probe holes can be used in long-term risk projections that rely on estimates of water recharge and vadose zone and aquifer transport calculations.

Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

2004-04-01T23:59:59.000Z

387

RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives  

SciTech Connect

The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. The DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.

Most, W. A.; Kehrman, R.; Gist, C.; Biedscheid, J.; Devarakonda, J.; Whitworth, J.

2002-02-26T23:59:59.000Z

388

New indices of geomagnetic activity at test: Comparing the correlation of the analogue ak index with the digital Ah and IHV  

E-Print Network (OSTI)

New indices of geomagnetic activity at test: Comparing the correlation of the analogue ak index Abstract We test here two recently proposed indices of geomagnetic activity, the Ah index and the IHV index, which are based on digitally available hourly geomagnetic measurements. We study their correlation

Mursula, Kalevi

389

~tx22C0.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

+ + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE McSLARROW ROY PERRY 202-234-4433 Neal R. Gross & Co., Inc. Page 2

390

~txF74.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEDNESDAY WEDNESDAY OCTOBER 19, 2011 + + + + + The Electricity Advisory Committee met in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 2:00 p.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings RALPH MASIELLO, KEMA RICH MEYER, National Rural Electric

391

ORISE "AK RlDGE lNSTlT"TE FOR SCIENCE AND EDUCATION  

Office of Legacy Management (LM)

t\i,;;; il.,. (' t\i,;;; il.,. (' . d ORISE "AK RlDGE lNSTlT"TE FOR SCIENCE AND EDUCATION August 1,200l Robert Atkin U.S. Department of Energy Oak Ridge Operations Office P.O. Box 2001 Oak Ridge, TN 3783 1 SUBJECT: CONTRACT NO. DE-AC05000R22750 FINAL REPORT-VERIFICATION SURVEY OF THE NEW BRUNSWICK LABORATORY SITE, NEW BRUNSWICK, NEW JERSEY Dear Mr. Atkin: The Environmental Survey and Site Assessment Program (ESSAP) of the Oak Ridge Institute for Science and Education (ORISE) conducted verification surveys at the New Brunswick Laboratory Site, located in the town of New Brunswick, New Jersey, during the period of August through November 1996. A draft report detailing the procedures and results of the survey was submitted to the U.S. Department of Energy

392

Top 100 Oil and Gas Fields for 2003  

U.S. Energy Information Administration (EIA)

65 seminole tx 1936 (51-100) 8.6 66 salt creek tx 1942 (51-100) 4.9 67 tarn ak 1991 (51-100) 12.6 68 green canyon blk 608 fg 2002 (51-100) 0.0

393

~txF7D.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THURSDAY THURSDAY OCTOBER 20, 2011 + + + + + The Electricity Advisory Committee met, in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 8:00 a.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair RICK BOWEN, Alcoa RALPH CAVANAGH, Natural Resources Defense Council THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings

394

Micro-Grids for Colonias (TX)  

Science Conference Proceedings (OSTI)

This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

2012-07-31T23:59:59.000Z

395

Freeport, TX LNG Imports from All Countries  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Imports by Point of Entry (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet)

396

TX, RRC District 6 Proved Nonproducing Reserves  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Includes only those ...

397

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

of clean energy systems (e.g., transport gasification, chemical looping). The application of these models will lead to a reduction in cost associated with the development...

398

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

information can be used as a basis to predict the bulk thermodynamic and kinetic material properties by force-field modeling, Monte Carlo simulation, and molecular...

399

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

with larger volume CO2 injection systems such as at Cranfield, MS. GEO-SEQ is a public-private research and development partnership that delivers the technology and information...

400

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment (CARE) Background The mission of the U.S. Department of EnergyNational Energy Technology Laboratory (DOENETL) Existing Plants, Emissions, & Capture (EPEC)...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to...

402

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

other areas such as energy harvesting and storage, petroleum refining, and industrial pollution control. Description Researchers at the University of Connecticut are developing a...

403

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Brian Dressel Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA...

404

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-Seq III Consortium: Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs Background Through its core research and development (R&D) program...

405

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

flow conditions and prevention of compaction damage in deepwater production in offshore environments. The increased use of foamed cement systems in high-stress environments...

406

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

complex settings, including ultra-deep formations, both onshore and offshore. Innovative exploration and production technologies are needed to effectively and economically access...

407

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Background Oxy-fuel combustion technology offers the benefits of zero-emission power generation coupled with economical carbon capture and storage. In order to boost cycle...

408

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies...

409

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

CFD simulations by accounting for particle size and density distribution in reacting multiphase flows, and developing predictive capability at the porous microstructure scale...

410

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

technique to estimate hydraulic conductance in pores. * Constructing and simulating a multiphase system with regular and irregular geometries. * Improve the fidelity of physics...

411

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

data sets to verify models that simulate CO2 trapping mechanisms in heterogeneous porous reservoirs at an intermediate to large scale. The basic processes of CO2 trapping...

412

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

and the Department of Chemical Engineering. Figure 2: Discussion of fluid flow in porous medium FE0002254, February 2013 * STORE developed a short course that discusses the...

413

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Collaborative (ZERT) have expertise in development of code to simulate multiphase flow through porous media and fracture networks, facilities and expertise for...

414

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

community (Figure 1). ISGS researchers are already committed to analyzing the environmental conditions (pressure and temperature) in the wells, and the chemical composition...

415

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will...

416

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective Exploration of New 760-Degrees- Celsius-Capability Steels for Coal Energy Background The Department of Energy (DOE) Crosscutting Research Program serves as a bridge...

417

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration: Educational Training and Research through Classroom, Field, and Laboratory Investigations Background Fundamental and applied research on carbon capture, utilization...

418

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fields in Wyoming: Monitoring, Verification, and Accounting Techniques for Determining Gas Transport and Caprock Integrity Background Increased attention is being placed on...

419

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

a method to produce industrial chemicals by mineralization of co 2 captured from fossil fuel combustion flue gas. the beneficial use of co 2 will reduce greenhouse gas emissions...

420

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

dissolutionprecipitation reactions and cracking. * Continuing the assessment of rate and natural peridotite carbonation in the field. Benefits The project will make a vital...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

processes that would occur during geologic storage of CO 2 . It uses parallel computation methods to allow rapid and efficient modeling assessment of CO 2 injection strategies and...

422

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

monitoring, verification, and accounting (MVA); geological related analytical tools; methods to interpret geophysical models; well completion and integrity for long-term CO2...

423

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

verification, and accounting (MVA); geological related analytical tools;methods to interpret geophysical models; well completion and integrity for long- term CO2...

424

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. Project Overview The ultimate goal of CCSI is to deliver...

425

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown,...

426

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent...

427

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

is supported by the Department of Energy, and the Department of Interior Bureau of Safety and Environmental Enforcement. Funding for this work has also been provided by...

428

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

of this lab-scale research effort is to characterize the effect of air composition on SOFC cathodes, as well as to propose and test degradation mitigation strategies. Specific...

429

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

of this goal will have significant impact for the nation given the size of the market, expected growth in energy demand, and the age of the existing power plant fleet....

430

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

overall goal of this project is to understand the role of cathode surface properties in SOFC performance. Project objectives are as follows: * Observe local electronic structure,...

431

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

300 hours) and crystallization characteristics. * Evaluate basic compatibility with other SOFC materials including flow and wetting. Accomplishments * Early on in this project it...

432

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

layer for lower Cr content stainless steel is thicker, which suggests that, for extended SOFC operation, at least 17 percent Cr is needed for alloys used in SOFCs. Benefits...

433

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

evolution to performance degradation * New tools were developed for examination of SOFC performance based on deconvolution of electrochemical impedance spectroscopy. *...

434

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

change. NETL GateCycle modeling evaluated a number of factors for their impact on thermal efficiency in a sub-critical single reheat pulverized coal power plant. The...

435

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

sandstone formations. * Examine the fundamental physics of how fluid flow in porous geologic media occurs. * Use the data to assist computer simulations of CO 2 injection...

436

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

blow out preventers, risers, etc. At present, there is NO accurate database for these fluid properties at extreme conditions associated with ultra-deep formations. As we have...

437

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Permian Basin Region of western Texas and southeastern New Mexico through an established technology transfer network, online capabilities, and a communications COST Total Project...

438

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Pittsburgh URS Corporation Virginia Tech Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current...

439

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

to provide comprehensive measurements of fuel flow conditions representative in modern gas turbine engines. This project is managed by the U.S. Department of Energy (DOE)...

440

Albany, OR * Archorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Schlumberger Carbon Services Spectra Energy Corporation Tenaska Taylorville, LLC Total Gas and Power Ventures USA, Inc. Vectren Corporation COST Total Project Value 28,948,987...

442

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

are porous permeable clastic or carbonate rocks that have contained fluids such as brine, oil, or gas in the natural void spaces of the rocks. Unconventional storage types include...

443

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

types are porous permeable clastic or carbonate rocks that have fluids such as brine, oil, or gas in the natural void spaces of the rocks. Unconventional storage types include...

444

Albany, OR * Archorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

common to CO 2 storage and other subsurface energy needs (e.g. shale gas, tight oil, deepwater and ultra- deepwater, and unconventional fossil resources). This set of...

445

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Laboratories CSX Gas Dart Oil & Gas Corporation Denbury Resources, Inc. Dominion Duke Energy Eastern Coal Council Edison Electric Institute Electric Power Research...

446

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

has been constructed and tested in static and dynamic scanning conditions in numerous field studies. The team is preparing to test and deploy the beta prototype which has...

447

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

1-800-553-7681 Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations Background The overall goal of the Department of Energy's (DOE) Carbon...

448

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

and 35 MPa, respectively, and higher. an integrated research approach that couples thermodynamic calculations and focused experiments will be used to identify Heas that will...

449

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Materials Science & Engineering Box 352120, University of Washington Seattle, WA 98195 206-685-8272 ohuchi@u.washington.edu PROJECT DURATION Start Date 09212011...

450

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a...

451

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

transgressive sandstone reservoirs deposited on unconformity surfaces during local subsidence. Other possibilities are porous carbonate units that have been exposed to...

452

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

02142 617-842-5569 bruno.marino@pem-carbon.com PARTNERS AXYS Technologies, Inc. Kansas City Plant Lawrence Berkeley National Laboratory (LBNL) LI-COR, Inc. Rutgers University...

453

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

the program. * Training modules for CO2 wellbore management issues, CO2 transportation, history of production in the Permian Basin, residual oil zones as a major CCUS target,...

454

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

will be subject to requirements of packaging for survivability, accuracy, low power consumption, portability, connectivity, and ease of manufacture, installation, and use. In...

455

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO 2 Geological Storage: Coupled Hydro-Chemo-Thermo-Mechanical Phenomena-From Pore-Scale Processes to Macroscale Implications Background Increased attention is being placed on...

456

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

tubing and main steam piping in coal-fired steam boilers, as well as in heat-recovery steam generators used in combined cycle plants. This has been done to try to eliminate the...

457

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fax: 406-994-5958 repasky@ece.montana.edu PARTNERS None Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Monitoring Background Fundamental and...

458

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

area aligns with the recommendations put forward in the SEAB Federal Research Report on Shale Gas, and efforts amongst Federal agencies to coordinate unconventional oil and gas...

459

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

as the horizontal drilling and multi-stage hydraulic fracturing used for shale gas and shale oil production, have potential to impact the environment. Because these new drilling...

460

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

storage. A key part of this effort is the integration of the project data from geologic mapping, waste injection wells, and field demonstrations in the western part of the...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Rank Coal to Gasifiers Background Gasification of coal or other solid feedstocks (wood waste, petcoke, etc.) is a clean way to generate electricity and produce or...

462

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

transport membrane (HTM) system separates H2 from coal-derived syngas after it has been produced via the water-gas shift (WGS) reaction, which is a key part of this process. The...

463

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

could be reduced and additional pore space freed up to sequester CO 2 . However, the produced formation water is typically of low quality (typically due to elevated total...

464

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO 2 Capture Background Fundamental and applied...

465

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

methods to interpret geophysical models; well completion and integrity for long-term CO2 storage; and CO2 capture. Project Description NETL is partnering with the University of...

466

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

This allows researchers to conduct a wider range of transient simulations and to impose a load profile on the turbine in the system. The addition of a dSpace simulator has expanded...

467

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

beneficial partnerships with industry, entrepreneurs, and other agencies. From nanotechnology and computer modeling to bench-scale testing and large-scale industrial process...

468

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S....

469

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

304-285-1379 stephen.zitney@netl.doe.gov Chris Guenther Director Computational Science Division Office of Research and Development 304-285-4483 chris.guenther@netl.doe.gov...

470

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Cr- and Pb-contaminated soils * Dredging spoils * Coal boiler bottom ash * Mineral wool Smelting * Primary Fe, Cr, Ni & Ti ores * Zn smelter wastes * Aluminum potliner *...

471

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

developed CCS technologies hold great promise to significantly reduce emissions from fossil fuels, but the engineering, economic, and environmental viability of these...

472

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide (co 2 ) emissions, and will help to maintain the nation's leadership in the export of gas turbine equipment. Project Description to date, the use of YaG materials as...

473

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

(3) improving efficiency of storage operations; and (4) developing Best Practices Manuals. These technologies will lead to future CO2 management for coal-based electric power...

474

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

(3) improving efficiency of storage operations; and (4) developing Best Practices Manuals. These technologies will lead to future CO 2 management for coal-based electric power...

475

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

the related industries of CO 2 injection for enhanced oil recovery (CO 2 -EOR), natural gas storage, and natural gas pipelines will help to define the risks expected to be...

476

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

useable products and fuels while reducing greenhouse gas (GHG) emissions. During photosynthesis, algae capture CO2 and sunlight to convert them into oxygen and biomass. Up to 99...

477

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Gas Shift Membrane Reactors Utilizing Novel, Non-precious Metal Mixed Matrix Membranes Background The U.S. Department of Energy (DOE) promotes development of novel hydrogen...

478

WDR-PK-AK-018  

SciTech Connect

Method - CES SOP-HW-P556 'Field and Bulk Gamma Analysis'. Detector - High-purity germanium, 40% relative efficiency. Calibration - The detector was calibrated on February 8, 2006 using a NIST-traceable sealed source, and the calibration was verified using an independent sealed source. Count Time and Geometry - The sample was counted for 20 minutes at 72 inches from the detector. A lead collimator was used to limit the field-of-view to the region of the sample. The drum was rotated 180 degrees halfway through the count time. Date and Location of Scans - June 1,2006 in Building 235 Room 1136. Spectral Analysis Spectra were analyzed with ORTEC GammaVision software. Matrix and geometry corrections were calculated using OR TEC Isotopic software. A background spectrum was measured at the counting location. No man-made radioactivity was observed in the background. Results were determined from the sample spectra without background subtraction. Minimum detectable activities were calculated by the Nureg 4.16 method. Results - Detected Pu-238, Pu-239, Am-241 and Am-243.

Hollister, R

2009-08-26T23:59:59.000Z

479

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO2 Sequestration Prediction, Simulation, and Monitoring...

480

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Southern North American Coal Corporation North Carolina Department of Commerce NRG Energy Nuclear Energy Institute Oak Ridge National Laboratory Old Dominion Electric Corporation...

Note: This page contains sample records for the topic "tx kenai ak" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

(DOE) Office of Fossil Energy (FE) provides a mechanism to conduct cooperative FE R&D projects between DOE and the HBCUOMI community. This program encourages private sector...

482

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

and hydrogen. The National Energy Technology Laboratory (NETL) is partnering with Viresco Energy, LLC (Viresco) to evaluate the Steam Hydro- gasification Reaction (SHR) process, a...

483

Albany, OR * Fairbanks, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

with advanced fossil-fuel based power production. NETL has teamed with the DOE's Ames Laboratory to develop tools capable of integrating materials design into the overall...

484

Oil and Gas Field Code Index  

U.S. Energy Information Administration (EIA)

000478 TX Cat 000479 TX Cattail Hollow 000480 TX Catto 000481 TX Cavallo West 000482 TX Cayman 000483 TX Cecile South 000484 TX Celery 000485 OK Centerpoint SW

485

C:\\ANNUAL\\VENTCHAP.V8\\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

4 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

486

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998...

487

C:\\ANNUAL\\VENTCHAP.V8\\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 15. Marketed Production of Natural Gas in the United States, 2001...

488

C:\\ANNUAL\\VENTCHAP.V8\\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

0 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy...

489

NGA98fin5.vp  

Annual Energy Outlook 2012 (EIA)

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

490

Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface  

Science Conference Proceedings (OSTI)

At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

Pawloski, G A

2012-04-25T23:59:59.000Z

491

TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Increases 860 980 1,064 798 1,129 2,390 1979-2011 Revision Decreases 1,900 854 1,684 1,456 882 1,133 1979-2011 Sales 1,198 1,895 191 273 219 964 2000-2011 Acquisitions 1,235...

492

TX, RRC District 1 Nonassociated Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,048 1,029 987 1,456 2,332 5,227 1979-2011 Adjustments 83 -6 113 5 -95 -42 1979-2011 Revision Increases 32 51 37 110 430 2,184 1979-2011 Revision Decreases 186 109 143 110 331 116...

493

TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

1979-2011 Adjustments 28 16 74 -105 56 -29 1979-2011 Revision Increases 401 445 324 456 419 355 1979-2011 Revision Decreases 454 444 491 338 288 225 1979-2011 Sales 412 565 70...

494

El Paso, TX Natural Gas Pipeline Exports to Mexico (Million ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011: 958: 860: 509: 487: 503: 482: 449: 452: 456: 531: 670: 1,024: 2012: 710: 783: 648: 505: 407: 432: 469: 490 ...

495

TX, RRC District 8 Associated-Dissolved Natural Gas Proved ...  

U.S. Energy Information Administration (EIA)

Area: Period: Annual : Download Series History: Definitions, Sources ... 51: 102: 285: 153: 2000-2011: Acquisitions: 148: 169: 189: 119: 805: 485: 2000-2011 ...

496

,"TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

497

,"TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

498

,"TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

499

,"TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

500

,"TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...