Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

'Bugs' used to treat FGD wastewater  

SciTech Connect

Tough regulation of heavy metals may justify a bioreactor approach in addition to chemical treatment of FGD wastewater. Two of Duke Energy' coal-fired plants, Belews Creek and Allen (in North Carolina) have installed new biological reactor systems to increase selenium removal to levels not achievable by existing scrubber waste water systems. The ABMet system removes nitrate and selenium in a single step. Progress Energy has installed the system at Roxboro and Mayo Stations, also in North Carolina. 1 fig., 2 photos.

Blankinship, S.

2009-09-15T23:59:59.000Z

2

Use of Treated Municipal Wastewater as Power Plant Cooling System...  

NLE Websites -- All DOE Office Websites (Extended Search)

PA 15213-3890 412-268-2946 dzombak@cmu.edu Use of TreaTed MUnicipal WasTeWaTer as poWer planT cooling sysTeM MakeUp WaTer: TerTiary TreaTMenT VersUs expanded cheMical regiMen...

3

TW0076.book  

NLE Websites -- All DOE Office Websites (Extended Search)

have a 16-gage perforated galvanized steel shell and are filled with 3 in. of mineral wool, may be removed for servicing. Pratt & Whitney TW-0076 2-24 2.1.6.5 Intercooler...

4

TW0076.book  

NLE Websites -- All DOE Office Websites (Extended Search)

TW-0076 TW-0076 03 May 2002 Published by Business Development Technical Writing NEXT GENERATION TURBINE PROGRAM TECHNICAL PROGRESS REPORT FINAL REPORT PERIOD OF PERFORMANCE: 16 AUGUST 2000 TO 14 JUNE 2002 Prepared for National Energy Technology Center U.S. Department of Energy AAD Document Control M/S 921-107 P.O. Box 10940 Pittsburgh, PA 15236 Prepared under Contract DE-AC26-00NT40847 Prepared by Pratt & Whitney Advanced Engine Programs 400 Main Street East Hartford, CT 06108 DISCLAMER NOTICE THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY AN AGENCY OF THE U.S. GOVERNMENT. NEITHER THE U.S GOVERNMENT NOR ANY AGENCY THEREOF, NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OF IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS THAT

5

The use of hydrologically altered wetlands to treat wastewater in coastal Louisiana  

Science Conference Proceedings (OSTI)

Two major environmental problems currently affecting Louisiana are a high rate of coastal wetland loss and high levels of surface water pollution. The application of secondarily treated wastewater to wetlands is proposed to dealing with these problems. The benefits of wetland wastewater treatment include improved surface water quality, increased accretion rates to balance subsidence, improved plant productivity, and decreased capital outlays for conventional engineering treatment systems. Wetland treatment systems can be designed and operated to restore deteriorating wetlands to previous levels of productivity. Hydrologically altered wetlands in the Louisiana coastal zone are appropriate for receiving municipal and some industrial effluent. While the US EPA has determined that wetland wastewater treatment is effective in treating municipal effluent, it has discouraged the use of natural wetlands for this purpose. As a result, hydrologically altered wetlands in the Louisiana coastal zone are being neglected and ultimately lost, while scarce funds are used to construct artificial wetlands to treat municipal effluent. Effluent discharge to existing wetlands can be incorporated into a comprehensive management plan designed to increase sediment and nutrient input into subsiding wetlands in the Louisiana coastal zone. Secondarily treated effluent discharged from industrial and municipal facilities in the Louisiana coastal zone were reviewed for suitability for wetland wastewater treatment. Selection criteria for wetland treatment systems were developed for both dischargers and receiving wetlands. Designs for two potential case studies based on established selection criteria for wetland wastewater treatment systems are presented. An economic analysis of the four case studies indicates a high potential for financial savings when wetlands replace conventional engineering methods for tertiary treatment.

Breaux, A.M.

1992-01-01T23:59:59.000Z

6

Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants  

Science Conference Proceedings (OSTI)

This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

2009-06-30T23:59:59.000Z

7

TW Energy International | Open Energy Information  

Open Energy Info (EERE)

International Place Germany Sector Wind energy Product TW.Energy international is a joint venture between the two Hannover-based companies target GmbH and Windwrts Energie...

8

Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA  

E-Print Network (OSTI)

The hybrid Zero Valent Iron (hZVI) process is a novel chemical treatment platform that has shown great potential in our previous bench-scale tests for removing selenium, mercury and other pollutants from Flue Gas Desulfurization (FGD) wastewater. This integrated treatment system employs new iron chemistry to create highly reactive mixture of Fe^0, iron oxides (FeOx) and various forms of Fe (II) for the chemical transformation and mineralization of various heavy metals in water. To further evaluate and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system was capable of reducing the total selenium (of which most was selenate) in the FGD wastewater from over 2500 ppb to below 10 ppb and total mercury from over 100 ppb to below 0.01 ppb. This hZVI system reduced other toxic metals like Arsenic (III and V), Chromium (VI), Cadmium (II), Lead (II) and Copper (II) from ppm level to ppb level in a very short reaction time. The chemical consumption was estimated to be approximately 0.2-0.4 kg of ZVI per 1 m^3 of FGD water treated, which suggested the process economics could be very competitive. The success of the pilot test shows that the system is scalable for commercial application. The operational experience and knowledge gained from this field test could provide guidance to further improvement of technology for full scale applications. The hZVI technology can be commercialized to provide a cost-effective and reliable solution to the FGD wastewater and other metal-contaminated waste streams in various industries. This technology has the potential to help industries meet the most stringent environmental regulations for heavy metals and nutrients in wastewater treatment.

Peddi, Phani 1987-

2011-12-01T23:59:59.000Z

9

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

10

Application of a Multi-Criteria Decision Support Tool in Assessing the Feasibility of Implementing Treated Wastewater Reuse  

Science Conference Proceedings (OSTI)

Wastewater reuse is increasingly becoming an important component of water resources management in many countries. Planning of a sustainable wastewater reuse project involves multi-criteria that incorporate technical, economic, environmental and social ... Keywords: Decision Support Tool, Feasibility Assessment, Multi-Criteria Attributes, Wastewater Reuse

J.R. Adewumi, A.A. Ilemobade, J.E. van Zyl

2013-01-01T23:59:59.000Z

11

M TW T F_ SM TWTF 5  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Julyi 27," 2001 Julyi 27," 2001 Julhy 2001 August2001 M TW T F_ SM TWTF 5 1 2 34 567 1 2 3 4- .rnday 8 91011121314 5 6 7 8 91011 -15 16 17 18 19 20 21 . 12 13 14 15 16 17 18 22 23 24 25 26 27 28 19 20 21 22 23 24 25 29 30 31- 26 27 28 29 30 31 TaSk ad '_ .__________________ 0 _Getthe most out of Outook 98 - 800 900 1000_ _ 10:47am-11:02am Welcome to Calendar! - . 1100 _ 2 100 Notes 200 30o 4 oo 500 6 o Kipo i, 6 Knpowicz, Robert 1 DE039.Q136 2 F g52 68 July 30, 20 1 u ly 2001 0 Aug ust 20 01 |JUBly ^30U 2U 1 c M T W T F C M TW T F 1 2 3 4 5 6 - 12 34. 4londay 8 91011 121314 5 6 7 8 91011 -15 16 17 18 19 20 21 12 13 14 15 16 17 18 - 2223 24 25 26 27 28 19 20 21 22 23 24 25 2930 31 26 27 28 29 30 31 TaskPad 7 ~~~~~~am 7 "~'~~ 0_ 3 TO Q Taskdad 7___________________________ the mosoutof Outlook98

12

$2001 SM TW T F S SM TW T F S  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBBJ^ry~~ ^(ft0,~~~~~ '^fi~ ~July IBBJ^ry~~ ^(ft0,~~~~~ '^fi~ ~July 2001 August 2001 JUly 20, $2001 SM TW T F S SM TW T F S .Friday ~1 2 1234567 1234 Friday 8 91011121314 5 6 7 8 91011 15 16 17 18 19 20 21 12 13141516 17 18 22 23 24 25 26 27 28 19 20 2122 23 24 25 29 30 31 26 27 28 29 30 31 -- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T a sk P a d 7 am1 D 1 lTaskPad .8 00 9 00 _ I 100, 12 pm6 Notes 2 00 3 00 4 00 I - 5 00 Kelliler, Joseph 5 3/23/2002 26326 Jll~ I 7~ 23~ 200uy J uly 2001 August 2001 July 23,, 2001$ S M T W T F S SM TW T F S Mnl~ondawy 8 ~ 23 4 s 6 1 345 7 1234 Nionday 8 91011121314 5 6 7 8 91011 15 16 1718 19 20 21 12 13 14 15 16 17 18 22 23 24 25 26 27 28 19 20 21 22 23 24 25

13

Modeling of effluent COD in UAF reactor treating cyanide containing wastewater using artificial neural network approaches  

Science Conference Proceedings (OSTI)

In this study the performance of the upflow anaerobic filter (UAF) reactor treating cyanide was simulated using three different neural network techniques (ANNs) - multi-layer perceptron (MLP) neural network, radial basis neural network (RBNN), and generalized ... Keywords: Anaerobic treatment, Artificial neural networks, Cyanide, Inhibition, Modelling, Waste water treatment

Turan Yilmaz; Galip Seckin; Ahmet Yuceer

2010-07-01T23:59:59.000Z

14

Chemical oxidizers treat wastewater  

SciTech Connect

Based on the inherent benefits of these original oxidation systems, a second generation of advanced oxidation processes (AOPs) has emerged. These processes combine key features of the first generation technologies with more sophisticated advances in UV technology, such as the new pulsed plasma xenon flash lamp that emits high-energy, high-intensity UV light. Second generation systems can be equipped with a transmittance controller to prevent lamp fouling or scaling. The coupling of the first generation's technology with the new UV sources provides the rapid destruction of chlorinated and nonchlorinated hydrocarbons and humic acids from contaminated water. It also is effective in the treatment of organic laden gases from soil vapor extraction systems. AOPs may promote the oxidation (and subsequent removal) of heavy metals in water, though few data are available to verify the claim. The success of AOPs, including ozonation with UV light, hydrogen peroxide with UV light and advanced photolysis, is linked with their creation of hydroxyl-free radicals (OH[center dot]) that are effective in eliminating contaminants such as formaldehyde, chlorinated hydrocarbons and chlorinated solvents. Hydroxyl free-radicals are consumed in microsecond reactions and exhibit little substrate selectivity with the exception of halogenated alkanes such as chloroform. They can act as chain carriers. Given their power, hydroxyl free-radicals react with virtually all organic solutes more quickly (especially in water) than any other oxidants, except fluorine. There are projects that have found the combination of some AOPs to be the most efficient organic destruction techniques for the job. For example, one project successfully remediated groundwater contaminated with gasoline and Number 2 diesel through successive treatments of ozone and hydrogen peroxide with ultraviolet light, followed by granular activated carbon. 5 refs., 2 tabs.

Stephenson, F.A. (Dames Moore, Phoenix, AZ (United States))

1992-12-01T23:59:59.000Z

15

1.85 Water and Wastewater Treatment Engineering, Spring 2005  

E-Print Network (OSTI)

Theory and design of systems for treating industrial and municipal wastewater and potable water supplies. Methods for characterizing wastewater properties. Physical, chemical, and biological processes, including primary ...

Shanahan, Peter

16

Information; and Other Matters- Amount of Uranium in Liquid Waste Effluents, Treated Domestic Sanitary Wastewater Sampling, and Liquid Effluent Collection and  

E-Print Network (OSTI)

for the AES exemption request related to commencement of construction (Ref. 2). On October 15, 2009, AES submitted the response to the NRC RAIs related to commencement of construction (Ref. 3). Subsequently, the NRC requested additional information regarding the AES response. Enclosure 1.1 provides the AES response to the additional information regarding preconstrucion activities requested by the NRC. Enclosure 2.1 provides the markup pages of the EREF ER. On August 10, 2009, the NRC transmitted to AES RAIs regarding the EREF Environmental Report (ER) (Ref. 4). On September 9, 2009, AES submitted the response to the NRC ER RAIs (Ref. 5). Subsequently, the NRC requested additional information regarding other matters including the amount of uranium in liquid waste effluents, treated domestic sanitary wastewater sampling, and Liquid Effluent Collection and Treatment System evaporator sediment sampling. Enclosure 1.2 provides the AES response regarding the amount of uranium in liquid waste effluent. There are no markup pages to the EREF ER for this response. Enclosure 1.3 provides the AES response regarding treated domestic sanitary wastewater sampling. Enclosure 2.2 provides the markup pages of the EREF ER. Enclosure 1.4 provides the AES

Eagle Rock; Enrichment Facility

2009-01-01T23:59:59.000Z

17

S M TW T F S SM TWT F S  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

' - ' - S M TW T F S SM TWT F S 12 3 4 567 1 2345 ,May@°^i«^f 0Gi^ °"8 91011121314 6 78 9101112 M aB ynw WW 15 16 17 18 19 20 21 13 14 15 16 17 18 19 M ay 22 23 24 25 26 27 28 20 21 22 23 24 25 26 29 30 27 28 29 30 31 Monday. Apt 3C _- Thursday, May 03 Tuesday, May 01i_ Fnday, May ___ Wednesday. ay 021 oSatluay, May o Sunday, May O Hutto, Chase 1 2o6 4 DOE034-0018 hllag f -^ *May 2001 June2001 IMSa' y 07 - s M TW T F S S M TW T F S 1234 5 12 6 7 8 910 11 12 3 4 5 6 7 8 9 et-ayB W :~L.t~a3^ ~13 14 1516 17 18 19 10111213141516 filay .13 20 21 22 23 24 25 26 17 18 19 20 21 22 23 27 28 29 30 31 24 25 26 27 28 29 30 Monday, May 07 Thursday, May 1 , ___ Tuesday, May 0 ______ Friday, May 11 Weanesday, May 0o Saturday, May 1 ,_ _ __ Sunday, May 3 Huno, aase 1 2alw°5 DOE034-0019

18

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network (OSTI)

Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them.

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

19

The effect of sulfide inhibition and organic shock loading on anaerobic biofilm reactors treating a low-temperature, high-sulfate wastewater.  

E-Print Network (OSTI)

?? In order to assess the long-term treatment of sulfate- and carbon- rich wastewater at low temperatures, three anaerobic biofilm reactors were operated at 20C, (more)

McDonald, Heather Brown

2007-01-01T23:59:59.000Z

20

Wastewater Construction and Operation Permits (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe permit requirements for the construction and operation of facilities treating wastewater, and provide separation distances from other water sources.

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Treatability of emerging contaminants in wastewater treatment plants during wet weather flows.  

E-Print Network (OSTI)

??Municipal wastewater treatment plants have traditionally been designed to treat conventional pollutants found in sanitary wastewaters. However, many synthetic pollutants, such as pharmaceuticals and personal (more)

Goodson, Kenya L.

2013-01-01T23:59:59.000Z

22

Experimental laser wakefield acceleration scalings exceeding 100 TW  

Science Conference Proceedings (OSTI)

Understanding the scaling of laser wakefield acceleration (LWFA) is crucial to the design of potential future systems. A number of computational and theoretical studies have predicted scalings with laser power for various parameters, but experimental studies have typically been limited to small parameter ranges. Here, we detail extensive measurements of LWFA experiments conducted over a considerable range in power from 20 to 110 TW, which allows for a greater plasma density range and for a large number of data points. These measurements include scalings of the electron beam charge and maximum energy as functions of density as well as injection threshold density, beam charge, and total beam energy as functions of laser power. The observed scalings are consistent with theoretical understandings of operation in the bubble regime.

McGuffey, C.; Matsuoka, T.; Schumaker, W.; Dollar, F.; Zulick, C.; Chvykov, V.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kneip, S.; Najmudin, Z. [Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

2012-06-15T23:59:59.000Z

23

TW Hya: SPECTRAL VARIABILITY, X-RAYS, AND ACCRETION DIAGNOSTICS  

SciTech Connect

The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over {approx}17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the H{alpha} flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The H{alpha} emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H{alpha} and H{beta} lines is followed by He I ({lambda}5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of {approx}2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows {approx}2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Bessell, M. S. [Australian National Observatory, Mount Stromlo Observatory, Canberra, ACT 2611 (Australia); Bonanos, A. [Institute of Astronomy and Astrophysics, National Observatory of Athens, 15236 Athens (Greece); Crause, L. A. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Lawson, W. A. [School of Physical, Environmental, and Math Sciences, University of New South Wales, Canberra, ACT 2600 (Australia); Mallik, S. V. [Indian Institute of Astrophysics, Bangalore 560034 (India); Schuler, S. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States)

2012-05-01T23:59:59.000Z

24

LANL achieves milestone on path to zero wastewater discharge  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL achieves milestone on wastewater discharge LANL achieves milestone on wastewater discharge LANL achieves milestone on path to zero wastewater discharge Industrial wastewater will be recycled as the result of a long-term strategy to treat wastewater rather than discharging it into the environment. January 20, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email Improved compliance while recycling millions of gallons of industrial wastewater LOS ALAMOS, New Mexico, January 20, 2012-Millions of gallons of industrial wastewater will be recycled at Los Alamos National Laboratory as the result of a long-term strategy to treat wastewater rather than discharging it into the environment. The U. S. Environmental Protection Agency, which issues permits for

25

Treatment of Wastewater from Mineral Processing by using Algae.  

E-Print Network (OSTI)

??Nowadays, the utilisation of algae in industrial processes to produce useful compounds or to treat waste streams is of great interest. Industrial wastewaters such as (more)

Sprock, Stefan

2013-01-01T23:59:59.000Z

26

Application of constructed wetlands on wastewater treatment for ...  

Science Conference Proceedings (OSTI)

May 13, 2007 ... treating the aquaculture wastewater, examined the water quality condition of aquaculture .... and adjusted according to daily food intake. During...

27

Treatment and Disposal of Unanticipated 'Scavenger' Wastewater  

Science Conference Proceedings (OSTI)

The Savannah River Site often generates wastewater for disposal that is not included as a source to one of the site's wastewater treatment facilities that are permitted by the South Carolina Department of Health and Environmental Control. The techniques used by the SRS contract operator (Westinghouse Savannah River Company) to evaluate and treat this unanticipated 'scavenger' wastewater may benefit industries and municipalities who experience similar needs. Regulations require that scavenger wastewater be treated and not just diluted. Each of the pollutants that are present must meet effluent permit limitations and/or receiving stream water quality standards. if a scavenger wastewater is classified as 'hazardous' under the Resource Conservation and Recovery Act (RCRA) its disposal must comply with RCRA regulations. Westinghouse Savannah River Company obtained approval from SCDHEC to dispose of scavenger wastewater under specific conditions that are included within the SRS National Pollutant Discharge Elimination System permit. Scavenger wastewater is analyzed in a laboratory to determine its constituency. Pollutant values are entered into spreadsheets that calculate treatment plant removal capabilities and instream concentrations. Disposal rates are computed, ensuring compliance with regulatory requirements and protection of treatment system operating units. Appropriate records are maintained in the event of an audit.

Payne, W.L.

2003-09-15T23:59:59.000Z

28

Guiding of 35 TW laser pulses in ablative capillary discharge waveguides  

Science Conference Proceedings (OSTI)

An ablatively driven capillary discharge plasma waveguide has been used to demonstrate guiding of 30 fs, 35 TW laser pulses over distances up to 3 cm with incident intensity in excess of 4x10{sup 18} W/cm{sup 2}. The plasma density range over which good guiding was observed was 1-3x10{sup 18} cm{sup -3}. The quality of the laser spot at the exit mode was observed to be similar to that at the entrance and the transmitted energy was {approx}25% at input powers of 35 TW. The transmitted laser spectrum typically showed blueshifting due to ionization of carbon and hydrogen atoms in the capillary plasma by the high intensity laser pulse. The low plasma density regime in which these capillaries operate makes these devices attractive for use in single stage electron accelerators to multi-GeV energies driven by petawatt class laser systems.

McGuffey, C.; Matsuoka, T.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Levin, M.; Zigler, A. [Hebrew University, Jerusalem 91904 (Israel)

2009-11-15T23:59:59.000Z

29

SM TW T F S S M T W T F  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mardh 2001 Mardh 2001 February 09, 2001 SM TW T F S S M T W T F C^^-n'~~~.da.d 1 23 1 23 Friday 45 6 7 8910 4 S 6 7 8 910 11 12 13 14 15 16 17 11 12 13 14 15 16 17 18 19 20 21 22 23 24 18 19 20 21 22 23 24 25 26 27 28 226272829 30 31 800 __s^ ^ __,, _ _____ _ _ Noti Mee w/Gal Mars & Bob ipp - 5A10. 900 :Meet w/Coates, Gutteridge, N. Hebron, Knipp, sbjStategies for NE, 5A110. _00 500 .~ __ 300 6-00 _ -- Magwood, Wlliam 9 3/28/02 26812 DOE035-0040 February 2001 Marct 2001 February 10, 2001 5 M TW T F S SM TW T Sat a I ' 123 123 ~~~~Saturday~~ ~4 5 6 7 8 910 4 5 6 7 8 910 SaturdaIy , 11 12 1314 15 16 17 11 12 13 14 15 1617 18 19 20 21 22 23 24 18 19 20 21 22 23 24 25 26 27 28 25 26 27 28 29 30 31 Notes 7am 800 900 100 12n I00 20 0 300 400 5oo, 600 Magwood, William 10 3/28/02 26813DO

30

Methane Recovery and Energy Generation in Spent Wash Wastewater Treatment  

Science Conference Proceedings (OSTI)

The wastewater from distillation process has high organic content, which has to be treated to bring down the levels of COD and BOD to prescribed standards of environmental authorities. In this study, the organic wastewater from distillery also known ... Keywords: Methane recovery, spent wash, Greenhouse gases (GHG), upflow anaerobic slduge blanket (UASB), Clean Development Mechanism (CDM)

Wei-hua Yang; Li Wei; Sheng-nan Zhao; Jiang Dong

2009-07-01T23:59:59.000Z

31

Geochemical Determination of the Fate and Transport of Injected Fresh Wastewater to a Deep Saline Aquifer.  

E-Print Network (OSTI)

?? Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative (more)

Walsh, Virginia M

2012-01-01T23:59:59.000Z

32

Separation of Tritium from Wastewater  

Science Conference Proceedings (OSTI)

A proprietary tritium loading bed developed by Molecular Separations, Inc (MSI) has been shown to selectively load tritiated water as waters of hydration at near ambient temperatures. Tests conducted with a 126 {micro}C{sub 1} tritium/liter water standard mixture showed reductions to 25 {micro}C{sub 1}/L utilizing two, 2-meter long columns in series. Demonstration tests with Hanford Site wastewater samples indicate an approximate tritium concentration reduction from 0.3 {micro}C{sub 1}/L to 0.07 {micro}C{sub 1}/L for a series of two, 2-meter long stationary column beds Further reduction to less than 0.02 {micro}C{sub 1}/L, the current drinking water maximum contaminant level (MCL), is projected with additional bed media in series. Tritium can be removed from the loaded beds with a modest temperature increase and the beds can be reused Results of initial tests are presented and a moving bed process for treating large quantities of wastewaters is proposed. The moving bed separation process appears promising to treat existing large quantities of wastewater at various US Department of Energy (DOE) sites. The enriched tritium stream can be grouted for waste disposition. The separations system has also been shown to reduce tritium concentrations in nuclear reactor cooling water to levels that allow reuse. Energy requirements to reconstitute the loading beds and waste disposal costs for this process appear modest.

JEPPSON, D.W.

2000-01-25T23:59:59.000Z

33

Toward TW-Level, Hard X-Ray Pulses at LCLS  

Science Conference Proceedings (OSTI)

Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen; Wu, J,; /SLAC

2011-12-13T23:59:59.000Z

34

Above-60-MeV proton acceleration with a 150 TW laser system.  

Science Conference Proceedings (OSTI)

Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.

Sefkow, Adam B.; Atherton, Briggs W.; Geissel, Matthias; Schollmeier, Marius; Rambo, Patrick K.; Schwarz, Jens

2010-12-01T23:59:59.000Z

35

Treatment of Wood Preserving Wastewater  

E-Print Network (OSTI)

The wastewater produced by the wood preserving industry presents a difficult problem to treat economically. A review of the literature indicates the size of the industry has limited the pursuit of an orderly and economic solution. Atmospheric evaporation was one possible means of treatment which had not been studied to any great degree. Two bench scale evaporation units were employed to determine the fundamental relationships affecting wastewater quality during such treatment. In batch evaporation tests, it was repeatedly demonstrated that a constant rate of total organic carbon and chemical oxygen demand removal occurred as the wastewater was evaporated. A procedure for designing atmospheric evaporation ponds was developed and applied to a hypothetical wood preserving plant. From this example design estimates of equivalent hydrocarbon concentrations in the air downwind of the pond are made. Various other design considerations such as the input data, modifications to the design procedure, solids accumulation, and miscellaneous design aspects are discussed. A treatment scheme incorporating atmospheric evaporation ponds after chemical coagulation and settling is proposed.

Reynolds, T. D.; Shack, P. A.

1976-10-01T23:59:59.000Z

36

EVIDENCE FOR A SNOW LINE BEYOND THE TRANSITIONAL RADIUS IN THE TW Hya PROTOPLANETARY DISK  

SciTech Connect

We present an observational reconstruction of the radial water vapor content near the surface of the TW Hya transitional protoplanetary disk, and report the first localization of the snow line during this phase of disk evolution. The observations are comprised of Spitzer-IRS, Herschel-PACS, and Herschel-HIFI archival spectra. The abundance structure is retrieved by fitting a two-dimensional disk model to the available star+disk photometry and all observed H{sub 2}O lines, using a simple step-function parameterization of the water vapor content near the disk surface. We find that water vapor is abundant ({approx}10{sup -4} per H{sub 2}) in a narrow ring, located at the disk transition radius some 4 AU from the central star, but drops rapidly by several orders of magnitude beyond 4.2 AU over a scale length of no more than 0.5 AU. The inner disk (0.5-4 AU) is also dry, with an upper limit on the vertically averaged water abundance of 10{sup -6} per H{sub 2}. The water vapor peak occurs at a radius significantly more distant than that expected for a passive continuous disk around a 0.6 M{sub Sun} star, representing a volatile distribution in the TW Hya disk that bears strong similarities to that of the solar system. This is observational evidence for a snow line that moves outward with time in passive disks, with a dry inner disk that results either from gas giant formation or gas dissipation and a significant ice reservoir at large radii. The amount of water present near the snow line is sufficient to potentially catalyze the (further) formation of planetesimals and planets at distances beyond a few AU.

Zhang, K. [Division of Physics, Mathematics and Astronomy, MC 150-21, California Institute of Technology, Pasadena, CA 91125 (United States)] [Division of Physics, Mathematics and Astronomy, MC 150-21, California Institute of Technology, Pasadena, CA 91125 (United States); Pontoppidan, K. M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)] [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Salyk, C. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States)] [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Blake, G. A., E-mail: kzhang@caltech.edu [Division of Geological and Planetary Sciences, MC 150-21, California Institute of Technology, Pasadena, CA 91125 (United States)

2013-04-01T23:59:59.000Z

37

Evaluation of the pollution abatement technologies available for treatment of wastewater from oil shale processing  

SciTech Connect

A review covers the conventional and in-situ oil shale processing technologies and their status of development; the sources and characteristics of the wastewaters from oil shale retorting operation, from leaching of spent shale, from cooling tower and boiler blowdowns, from oil refining operations, from saline aquifer, and from minor sources, such as from air pollution control equipment, runoff from dust control, and sanitary wastewaters; and wastewater treatment methods applicable for treating wastewater from oil shale processes including physical, chemical, biological, and tertiary treatment methods and specific processes for removing specific pollutants (e.g., phenols, cyanides, heavy metals) from wastewaters. 31 references.

Sung, R.D.; Prien, C.H.

1977-01-01T23:59:59.000Z

38

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

39

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

40

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

42

Forecast of total nitrogen in wastewater treatment plants by means techniques of soft computing  

Science Conference Proceedings (OSTI)

Prediction in Wastewater Treatment Plants is an important purpose for decision-making. The complexity of the biological processes happening and, on the other hand, the uncertainty and incompleteness of the real data lead us to treat this problem modelling ... Keywords: environmental modelling, fuzzy systems, genetic algoritms, neural networks, soft computing, total nitrogen, wastewater treatment plant

Narcis Clara

2008-07-01T23:59:59.000Z

43

GRR/Section 18-ID-c - Wastewater Pretreatment Permit | Open Energy  

Open Energy Info (EERE)

8-ID-c - Wastewater Pretreatment Permit 8-ID-c - Wastewater Pretreatment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-c - Wastewater Pretreatment Permit 18IDCWastewaterPretreatmentPermit.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 18IDCWastewaterPretreatmentPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Industrial wastewater permits are issued at the local level. If wastewater is not discharged into a municipal sewer system, the nonpoint source and NPDES permit inquiries are sufficient. A common approach to wastewater treatment is to treat on-site. See Idaho's

44

Falmouth Wastewater | Open Energy Information  

Open Energy Info (EERE)

Wastewater Wastewater Jump to: navigation, search Name Falmouth Wastewater Facility Falmouth Wastewater Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Falmouth Wastewater Developer Falmouth Wastewater Energy Purchaser Falmouth Wastewater Location Falmouth MA Coordinates 41.566789°, -70.608791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.566789,"lon":-70.608791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Construction of Industrial Electron Beam Plant for Wastewater Treatment  

Science Conference Proceedings (OSTI)

A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

2004-10-06T23:59:59.000Z

46

Energy and air emission implications of a decentralized wastewater system  

NLE Websites -- All DOE Office Websites (Extended Search)

and air emission implications of a decentralized wastewater system and air emission implications of a decentralized wastewater system Title Energy and air emission implications of a decentralized wastewater system Publication Type Journal Article Year of Publication 2012 Authors Shehabi, Arman, Jennifer R. Stokes, and Arpad Horvath Journal Environmental Research Letters Volume 7 Issue 2 Abstract Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process.

47

Evaluation of Efficiency and Utilization Benefits from Trapezoidal Wire Aluminum Conductor Steel Reinforced (ACSR/TW) Conductor for High Voltage Transmission Lines  

Science Conference Proceedings (OSTI)

A trapezoidal wire (TW) aluminum conductor steel reinforced (ACSR/TW) conductor consists of a stranded steel core with one or more layers of trapezoidal shaped aluminum wires. The use of compact trapezoidal strands for a line results in a resistance reduction of 15-20 compared to a round wire ACSR conductor of the same diameter. If some increase in conductor diameter over the original is possible with limited tower structural reinforcement, the resistance reduction can be in excess of 20; and the increas...

2011-12-09T23:59:59.000Z

48

Flue gas desulfurization wastewater treatment primer  

SciTech Connect

Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

Higgins, T.E.; Sandy, A.T.; Givens, S.W.

2009-03-15T23:59:59.000Z

49

Transformation of Phosphorus Forms in the Construction Process of Phosphate Reduction System of Hypersaline and High-Phosphorus Wastewater  

Science Conference Proceedings (OSTI)

Transformation of phosphorus forms in the construction process of biological phosphate reduction system was discussed in treating saline and high-phosphorus pickled mustard tuber wastewater to resolve problems encountered with present phosphorus removal ... Keywords: hypersaline and high-phosphorus wastewater, phosphate reduction, phosphorus balance, phosphorus forms

Chen Yao; Zhou Jian; Long Teng-rui; Li Zhi-gan

2009-10-01T23:59:59.000Z

50

Treatment of Wine Distillery Wastewater Using an Anaerobic Moving Bed Biofilm Reactor with Low Density of Polyethylene Support  

Science Conference Proceedings (OSTI)

An anaerobic moving bed biofilm reactor filled with small and low density polyethylene support as biofilm carrier was operated to treat wine distillery wastewater for nearly 8 months. The support packed in the reactor is Bioflow 30 with density 0.92g/cm3 ... Keywords: Anaerobic digestion, moving bed biofilm reactor, low density polyethylene support, wine distillery wastewater

Chai Sheli; Rene Moletta

2010-03-01T23:59:59.000Z

51

Production of Biogas from Wastewaters of Food Processing Industries  

E-Print Network (OSTI)

An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied in Holland. Operations on wastewater from the processing of sugar beets have shown hydraulic retention times of less than 10 hours with reactor loadings of at least 10 Kg COD per m3 digester volume per day and purification efficiencies exceeding 90%. Biogas production is at a rate of about 1 therm (100000 BTU) per 10 Kg COD treated. A moderately sized (1000 m3) wastewater treatment plant processing the order of 10000 Kg COD per day will, therefore, produce the order of 1000 therms of energy per day while, at the same time, reducing the COD level in the effluent by an order of magnitude. The set of conditions required for efficient operation of this anaerobic process will be discussed. The process is unique in its mixed sludge bed approach allowing for tolerance of swings in Ph (6-8) at relatively low temperatures (32 C - 38 C) which can be readily achieved from most wastewater streams with little expenditure of additional energy. Sludge production is remarkably low, only about 5% of the COD loading, greatly alleviating disposal problems. These characteristics are conducive for the use of the anaerobic process to recover energy from a variety of wastewaters rich in carbohydrate-type substances as produced routinely as a by product of many types of food processing activities.

Sax, R. I.; Holtz, M.; Pette, K. C.

1980-01-01T23:59:59.000Z

52

Devising wastewater treatment strategies  

Science Conference Proceedings (OSTI)

Troubleshooting a waste water treatment system takes basic knowledge of how the process is designed to work, tools, and a few resources. This paper describes a Seven Steps Program employed fopr troubleshooting. A well-designed troubleshooting program should be comprehensive, thoroughly tested and constantly revisited to maintain a reliable and efficient wastewater treatment system. Such a method includes each of the integral components including biological, human, mechanical, and chemical. This total systems approach can result in improved system operation and better bottom line results.

Hornby, L.E.

1993-05-01T23:59:59.000Z

53

Portable wastewater flow meter  

DOE Patents (OSTI)

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

54

Portable wastewater flow meter  

DOE Patents (OSTI)

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

55

Simulation of the Bishop Steam Foam Pilot by T.W. Patzek and N.A. h4yhiil, Shell Development Co.  

E-Print Network (OSTI)

,.. SEW SPE 18786 Simulation of the Bishop Steam Foam Pilot by T.W. Patzek and N.A. h4yhiil, Shell a simple model of steam foam transport and apply it to the Shell Kern River Bishop pilot. The only an incremental 5.5 percent OOIP recovery due to steam foam and additional 3 percent OOIP due to infill wells

Patzek, Tadeusz W.

56

Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model  

SciTech Connect

This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

Steinwinder, T.; Gill, E.; Gerhardt, M.

2011-09-01T23:59:59.000Z

57

Municipal wastewater treatment with special reference to the central wastewater treatment plant in Poznan, Poland.  

E-Print Network (OSTI)

??Wastewater treatment is becoming a more critical topic due to diminishing water resources, increasing cost of disposing wastewater and also stricter measures and legislations set (more)

Orukpe, Otaigbe Stephen

2010-01-01T23:59:59.000Z

58

Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts  

SciTech Connect

Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

Brar, Satinder K., E-mail: satinder.brar@ete.inrs.c [INRS-ETE, Universite du Quebec, 490, Rue de la Couronne, Quebec, G1K 9A9 (Canada); Verma, Mausam [Department of Biological Engineering, Sexton Campus, Dalhousie University, Halifax, Nova Scotia, Canada B3J 2X4 (Canada); Tyagi, R.D. [INRS-ETE, Universite du Quebec, 490, Rue de la Couronne, Quebec, G1K 9A9 (Canada); Surampalli, R.Y. [US Environmental Protection Agency, P.O. Box 17-2141, Kansas City, KS 66117 (United States)

2010-03-15T23:59:59.000Z

59

Fischer-Tropsch Wastewater Utilization  

DOE Patents (OSTI)

The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

Shah, Lalit S. (Sugar Land, TX)

2003-03-18T23:59:59.000Z

60

Predictive Maintenance, Design, Construction, and Maintenance for Passive Treatment of Wastewaters and the PT2 Passive Treatment Planning Tool V1.0  

Science Conference Proceedings (OSTI)

This manual provides an approach to evaluating, designing, constructing, and maintaining passive treatment systems for select wastewater contaminants. It is intended for environmental managers and engineering design staff to assess the applicability of passive technologies to treat wastewater discharges. The manual's guidelines are a work-in-progress as the understanding of passive treatment increases with time. Readers are advised to seek expert advice when encountering wastewater conditions varying sig...

2002-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Treatment of Mixed Wastewater of Slaughterhouse Wastewater and Biogas Slurry with Pilot Contact Oxidation System  

Science Conference Proceedings (OSTI)

In this paper, a pilot contact oxidation system was used to different mixing ratio wastewater of slaughterhouse wastewater and biogas slurry. The results showed that when the mixing ratio of slaughterhouse wastewater and biogas slurry was 19:1 and the ... Keywords: contact oxidation process, slaughterhouse wastewater and biogas slurry, COD removal, ammonia removal

Peng Li; Qun-Hui Wang; Jie Zhang; Tian-Long Zheng; Juan Wang

2012-05-01T23:59:59.000Z

62

Onsite Wastewater Treatment Systems: Tablet Chlorination  

E-Print Network (OSTI)

Wastewater that is sprayed onto lawns must first be disinfected to prevent odors and remove disease-causing organisms. This publication explains how tablet chlorinators disinfect wastewater and gives tips on how to maintain them.

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

63

Treatment of biomass-gasification wastewater  

DOE Green Energy (OSTI)

Results obtained in innovative biological wastewater treatment process studies and a solvent extraction study are reported. (MHR)

Maxham, J.V.; Bell, N.E.

1980-09-01T23:59:59.000Z

64

Municipal Wastewater Characteristics of Sylhet City, Bangladesh  

E-Print Network (OSTI)

are essential to design wastewater treatment facilities inessential in the design and operation of collection, treatment, and disposal facilities

Alam, Raquibul; Ahmed, Mushtaq; Chowdhury, Md. Aktarul Islam; Nath, Suman Kanti

2006-01-01T23:59:59.000Z

65

Plants in constructed wetlands help to treat agricultural processing wastewater  

E-Print Network (OSTI)

5 days of sampling at winery A, inlet COD load- TABLE 2.Mean outlet chemical (COD) and biological (BOD 5 ) oxygen130,000 mg/l for about BOD 5 COD 2 days due to uncollected

Grismer, Mark E; Shepherd, Heather L

2011-01-01T23:59:59.000Z

66

Evaluation of treated wastewater for the production of Syngonium podophyllum  

E-Print Network (OSTI)

The objective of this research was to evaluate the use of reclaimed water for the irrigation of nursery and floral crops. On the first phase of the research, a survey of several sources of reclaimed water was done. The quality of waters surveyed differed widely. Total soluble solids (salinity) of waters surveyed was found in the range of 438 mg/l and 1978 mg/I. Therefore, classification of reclaimed water according to its salt content varied from extremely saline to non-saline. Trace elements did not represent a risk in any of the waters. In the second phase of the research, 5 combinations of reclaimed water with reverse osmosis water were evaluated on the irrigation of Syngonium podophyllum. There was a significant difference between treatments for the variables plant height, width, growth index, and quality. Fresh weight and dry weight of treatments were not significantly different. The control (100% reverse osmosis water) was the treatment with the highest growth yields. Treatment with the lowest growth yields was 1 00% reclaimed water. Electrical conductivity and pH of irrigation solution were significantly different within treatments and also varied overtime. In the third phase of the research, a 1: 1 combination of reclaimed water:reverse osmosis water with different fertility regimes was evaluated on the irrigation of Syngonium. Treatments were 1 00 mg/l N, 200 mg/l N, 300 mg/l N, and 400 mg/l N. Electrical conductivity of treatments at the beginning of the experiments were 1. 1 8 mS/cm, 1.87 mS/cm, 2.37 mS/cm, and 3.20 mS/cm. Results show significant difference for all parameters evaluated (plant height, width, growth index, and quality). Plants irrigated with the lowest fertility regime had the highest growth yield averages. Averages decreased as the fertility regime increased. In the last phase of the research, coliform levels were evaluated in growing medium of Syngonium plants and in the irrigation solution. Although reclaimed water used, coming from secondary effluent, was not disinfected, coliform colonies diminished to undetectable levels in a relatively short period of time (1-14 days).

Garza Morton, Jose Antonio

1995-01-01T23:59:59.000Z

67

Exxon sued for wastewater runoff  

SciTech Connect

A community activist group in Houston, Texans United, has filed a lawsuit against Exxon for allegedly dumping more than 2 billion gallons of untreated wastewater from its Baytown, TX complex into the Houston Ship Channel from 1989 to 1995. The suit asks that Exxon be ordered to comply with its federal operating permit and pay the state up to $25,000/day for more than 50 days of alleged violations. EPA is reviewing Exxon`s request to revise its permit. The group alleges that Exxon`s untreated process wastewater sometimes contains enough benzene to qualify as a hazardous waste. The Texas Natural Resource Conservation Commission has revised Exxon`s discharge permit to allow the release of pollutants during heavy rains. Exxon rejects the accusation and says it reports any wastewater discharge exceedance.

Cornitius, T.

1996-03-27T23:59:59.000Z

68

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

69

93rd Annual Water & Wastewater  

E-Print Network (OSTI)

and maintenance of wells. Small System Wastewater Presiding:Mark Gerard, KDHE Retired, Wamego, Kan. Jerry Grant.m. Production Maintenance Management PaulCrocker,BoardofPublicUtilities,KansasCity,Kan. 2:00 p.m. Refreshment.m.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $50 Asset Management (9:00 a.m.­4:30 p

Peterson, Blake R.

70

2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Michael G. Lewis

2012-02-01T23:59:59.000Z

71

2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of special compliance conditions Discussion of the facilitys environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Mike lewis

2011-02-01T23:59:59.000Z

72

The Impact of Advanced Wastewater Treatment Technologies and Wastewater Strength on the Energy Consumption of Large Wastewater Treatment Plants.  

E-Print Network (OSTI)

??Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the (more)

Newell, Timothy Stephen

2012-01-01T23:59:59.000Z

73

Simultaneous Biohydrogen Production and Wastewater Treatment in Continuous Stirred Tank Reactor (CSTR) Using Beet Sugar Wastewater  

Science Conference Proceedings (OSTI)

Biohydrogen production with simultaneous wastewater treatment was studied in continuous stirred-tank reactor (CSTR) using beet sugar wastewater as substrate. Aerobic activated sludge was used as parent inoculum to startup the bioreactor. The reactor ... Keywords: bio-hydrogen production, environmental pollution, Treatment, beet sugar wastewater

Gefu Zhu; Chaoxiang Liu; Guihua Xu; Jianzheng Li; Yanli Gao; Lijun Chen; Haichen Liu

2009-10-01T23:59:59.000Z

74

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network (OSTI)

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 Abstract The Anaerobic Digestion Model N°1 (ADM1., 2005). Anaerobic digestion process involves many interactions between species that may not all have

75

Design and study of a risk management criterion for an unstable anaerobic wastewater  

E-Print Network (OSTI)

an unstable biological process used for wastewater treat- ment. This anaerobic digestion ecosystem can have steady-state to another. This is especially the case for the anaerobic digestion process: a more and more There exists numerous dynamical models for anaerobic digestion, from the basic ones considering only one

Bernard, Olivier

76

Anaerobic Baffled Reactor (ABR) for Alkali-minimization Dyeing-printing Wastewater Biodegradation  

Science Conference Proceedings (OSTI)

The performance of the laboratory scale anaerobic baffled reactor (ABR) was investigated by the use of granular sludge to treat alkali-minimization and dyeing-printing wastewater (ADW-water). The experiment showed that the start-up of reactor was completed ... Keywords: ABR, ADW-water, Granular sludge, UV254, VFA

Qijun Zhong; Bo Yang

2012-05-01T23:59:59.000Z

77

FAILURE ANALYSIS: WASTEWATER DRUM BULGING  

DOE Green Energy (OSTI)

A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

Vormelker, P

2008-09-15T23:59:59.000Z

78

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

79

Onsite Wastewater Treatment Systems: Liquid Chlorination  

E-Print Network (OSTI)

This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment.

Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

2008-10-23T23:59:59.000Z

80

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Shale Process Wastewater," in Analysis of Waters Associated with Alternate Fuel Production,shale during In in-situ processes, retort water its production

Fox, J.P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Oil Shale Process Wastewater," in Analysis of Waters Associated with Alternate Fuel Production,oil and shale during In in-situ processes, retort water its production

Fox, J.P.

2010-01-01T23:59:59.000Z

82

ENERGY STAR Score for Wastewater Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

1 to 100 percentile ranking of performance, relative to the national population. Property Types. The ENERGY STAR score for wastewater treatment plants applies to primary,...

83

Energy Efficiency Strategies for Municipal Wastewater Treatment...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Municipal Wastewater Treatment Facilities J. Daw and K. Hallett National Renewable Energy Laboratory J. DeWolfe and I. Venner Malcolm Pirnie, the Water Division of ARCADIS...

84

FGD wastewater treatment still has a way to go  

SciTech Connect

The power industry should jointly address questions about FGD water treatment and share the lessons it has learned so far. The article describes a scheme developed by CH2M Hill to treat FGD wastewater and remove heavy metals. The process desaturates the waste water of sulfates and removes the bulk of the insoluble suspended solids prior to tertiary treatment of heavy metals using a chemical/physical treatment process. Additional treatment could be provided (for example, anoxic biological treatment) for selenium, nitrates and organics. 2 figs.

Higgins, T.; Givens, S.; Sandy, T. [CH2M Hill (United States)

2008-01-15T23:59:59.000Z

85

Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection  

E-Print Network (OSTI)

Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a UV light disinfection system, and how to maintain such a system.

Lesikar, Bruce J.

2008-10-02T23:59:59.000Z

86

Wastewater Reuse as Cooling-Tower Makeup  

Science Conference Proceedings (OSTI)

As many parts of the United States begin to face shortages, utilities will look for reliable new water sources. Focusing on the use of wastewater as makeup to cooling towers, this report describes commercially available wastewater treatments for power plant applications and highlights the need for research to control biologic slime and phosphate scale formation.

1987-09-02T23:59:59.000Z

87

ENERGY STAR Score for Wastewater Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

!! !! July 2013 ENERGY STAR Score for Wastewater Treatment Plants in the United States Page 1 ENERGY STAR Score for Wastewater Treatment Plants in the United States Technical Reference OVERVIEW ! The ENERGY STAR Score for Wastewater Treatment Plants applies to primary, secondary, and advanced treatment facilities with or without nutrient removal capacity. The objective of the ENERGY STAR score is to provide a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. To identify the aspects of building activity that are significant drivers of energy

88

A Drop in the Bucket: Ten Years of Government Spending on Water and Wastewater Infrastructure in Texas Colonias  

E-Print Network (OSTI)

Since 1989, the United States Federal Government and the State of Texas have targeted water and wastewater infrastructure development spending in the colonias to improve access to safe, reliable and adequate water supplies and wastewater service. Prior to widespread installation of piped, treated water infrastructure, waterborne illnesses attained levels only seen in developing countries. Despite the hundreds of millions of dollars that have been spent since 1989 on water and wastewater infrastructure improvements, roughly a quarter of colonias still lacked basic access to water and wastewater services. Previous research and assessments of where this government spending has been targeted have not evaluated all four largest funding sources together or demonstrated the impacts of water and wastewater infrastructure spending on either public health or the local economy. This report evaluates the first of these problems by analyzing government spending of these funding sources from 1996 to 2006 in Cameron, Hidalgo, and Starr counties. The report provides the history and context of the Texas colonia problem, discusses who provides water and wastewater services to the colonias, and describes the make-up of federal and state financial assistance to the colonias to develop their water and wastewater infrastructure. Conventional understandings of where government spending is going, for what, and to whom, are challenged by the data and analysis. Analysis results indicate greater spending on wastewater infrastructure improvements than water service in addition to greater allocation to municipal systems that extended service into colonia areas historically operated by water service corporations. Further research may build on this data as well as regional economic and epidemiological data to determine outcomes of the spending in quantitative terms using various impact assessment methodologies. This report concludes with a discussion of impact assessment.

Rapier, Richard Edward

2009-12-01T23:59:59.000Z

89

Sandusky Wastewater Treatment | Open Energy Information  

Open Energy Info (EERE)

Treatment Treatment Jump to: navigation, search Name Sandusky Wastewater Treatment Facility Sandusky Wastewater Treatment Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sandusky Wastewater Treatment Energy Purchaser Sandusky Wastewater Treatment Location Sandusky OH Coordinates 41.452091°, -82.723523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.452091,"lon":-82.723523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Power Plant Wastewater Treatment Technology Review Report  

Science Conference Proceedings (OSTI)

Assessing power plant water management options means screening an increasing number of wastewater treatment technologies. This report provides engineers with detailed information on treatment process performance, economics, and applications to complete rapid, yet meaningful, technology screening evaluations.

1997-01-01T23:59:59.000Z

91

Optimization of wastewater stabilization ponds in Honduras  

E-Print Network (OSTI)

During the academic year of 2008-2009, three Master of Engineering students from the Department of Civil and Environmental Engineering at the Massachusetts Institute of Technology (MIT) conducted a study of wastewater ...

Kullen, Lisa

2009-01-01T23:59:59.000Z

92

Wastewater sludge management options for Honduras  

E-Print Network (OSTI)

Sludge management is a fundamental area of concern across wastewater treatment systems in Honduras. The lack of timely sludge removal has led to declining plant performance in many facilities throughout the country. In ...

Bhattacharya, Mahua, M. Eng. Massachusetts Institute of Technology.

2009-01-01T23:59:59.000Z

93

Water and Wastewater Technology Demonstration Projects  

Science Conference Proceedings (OSTI)

This project was funded jointly by the Electric Power Research Institute (EPRI), Southern California Edison (SCE), and the California Energy Commission (CEC), with project management by SCE. The primary objective was to identify and develop technologies that could help California's water/wastewater industry reduce the cost of water and wastewater treatment and improve the overall operation at treatment facilities. Metropolitan Water District (MWD) and Orange County Water District (OCWD) were commissioned...

2002-07-15T23:59:59.000Z

94

Maximizing Wastewater Reduction for the Process Industries  

Science Conference Proceedings (OSTI)

This study provides an overview of water and wastewater management practices in the U.S. process industries. The focus is on the chemical and petroleum industries and their methods for maximizing wastewater reduction and zero discharge. However, it also covers end-of-pipe treatment, since water reduction and zero discharge practices have evolved from end-of-pipe treatment practices. The resulting report is a comprehensive reference developed to help utilities and energy service providers understand and f...

1999-12-20T23:59:59.000Z

95

Wastewater treatment plant instrumentation handbook. Final report  

Science Conference Proceedings (OSTI)

Instruments are required for proper operation of wastewater plants. To be of use the instruments must be operable and maintainable. This requires care in the selection, application and installation of instruments and control equipment. Contents of the handbook address the how-to of designing and applying instrumentation and controls for waste treatment operations. Special focus is given to problems, causes and solutions. The handbook covers instruments, valves and pumps commonly used in wastewater plants.

Manross, R.C.

1985-09-01T23:59:59.000Z

96

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network (OSTI)

on a wastewater electricity distribution system capacityon a wastewater electricity distribution system capacityof electricity generation, transmission, distribution and

Lewis, Glen

2010-01-01T23:59:59.000Z

97

Wastewater heat recovery method and apparatus  

DOE Patents (OSTI)

This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, J.W.

1991-01-01T23:59:59.000Z

98

Current Practices: Solid Waste Management from Zero Liquid Discharge (ZLD) Wastewater Treatment  

Science Conference Proceedings (OSTI)

A study was conducted to identify current practices used by power plants to manage their solid waste residuals from zero liquid discharge (ZLD) operations treating flue gas desulfurization (FGD) wastewater. Because there are such few FGD ZLD systems in operation not only in the United States but also worldwide, the study scope was expanded to include non-FGD ZLD operations, as well. Only two of the seven facilities interviewed in this study operate ZLDs on FGD water; therefore, much of the current ...

2012-12-31T23:59:59.000Z

99

Program on Technology Innovation: Biotechnological Approaches to Removing Boron from Electric Utility Wastewater  

Science Conference Proceedings (OSTI)

Coal-based electric power generation faces compliance difficulties with respect to boron (B) contamination. Concentrations of B in coal-combustion byproduct electric utility effluents commonly range from 30 to 120 ppm; there is a critical need for cost-effective technologies to treat and remove B from these effluents to levels around 1.7ppm. Wetland treatment systems offer significant operational and maintenance cost savings over chemical treatment alternatives for wastewater discharges from ...

2012-11-28T23:59:59.000Z

100

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Green Energy (OSTI)

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

Tiernan, Joan E. (Novato, CA)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

102

Pre-treatment of Dye Wastewater by Electrolysis Technology  

Science Conference Proceedings (OSTI)

Presentation Title, Pre-treatment of Dye Wastewater by Electrolysis Technology .... Application in High Temperature Thermochemical Hydrogen Production.

103

Removal of Natural Steroid Hormones from Wastewater Using  

E-Print Network (OSTI)

itdoesnotcontainsaltsandthesurfactantthatitdoescontain haslowosmoticpressure.Yet,furtherinvestigationsofscaling effects by surfactants at high of ultrafiltration as pretreatment to reverse osmosis in wastewater reuseandseawaterdesalinationapplications

104

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

05CH11231. References EPRI, Energy Audit Manual for Water/Research Institute, Energy Audit Manual for Water/Wastewater

Thompson, Lisa

2008-01-01T23:59:59.000Z

105

Wastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singapore  

E-Print Network (OSTI)

Wastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized ...

Foley, Kevin John

2010-01-01T23:59:59.000Z

106

Effect of Trace Elements on Anaerobic Digestion of Coking Wastewater  

Science Conference Proceedings (OSTI)

The pretreatment of coking wastewater using ASBR was conducted at 35? in this paper. The addition of trace elements to the anaerobic reactor has positive effect on the anaerobic treatment of coking wastewater, but too much or too little of it will ... Keywords: trace elements, anaerobic digestion, coking wastewater

Yu-ying Li; Bing Li

2009-10-01T23:59:59.000Z

107

Wastewater treatment: New insight provided by interactive multiobjective optimization  

Science Conference Proceedings (OSTI)

In this paper, we describe a new interactive tool developed for wastewater treatment plant design. The tool is aimed at supporting the designer in designing new wastewater treatment plants as well as optimizing the performance of already available plants. ... Keywords: Decision support, IND-NIMBUS, Interactive methods, Multicriteria optimization, Simulation-based optimization, Wastewater treatment planning

Jussi Hakanen; Kaisa Miettinen; Kristian Sahlstedt

2011-05-01T23:59:59.000Z

108

Argumentation-based framework for industrial wastewater discharges management  

Science Conference Proceedings (OSTI)

The daily operation of wastewater treatment plants (WWTPs) in unitary sewer systems of industrialized areas is of special concern. Severe problems can occur due to the characteristics of incoming flow. In order to avoid decision that leads to hazardous ... Keywords: Agents, Argumentation, Industrial discharge management, River basin management, Urban wastewater system, Wastewater treatment plant (WWTP)

M. Aulinas; P. Tolchinsky; C. Turon; M. Poch; U. Corts

2012-03-01T23:59:59.000Z

109

Assessment of oil shale retort wastewater treatment and control technology: phases I and II. Final report, May 1979-March 1980  

SciTech Connect

Oil shale retorting is a synthetic fuel production technology on the verge of commercialization in the United States. In order to ensure that the emerging oil shale industry will have minimal adverse effects upon surface and/or groundwater where recoverable reserves of oil shale are found, demonstrated technologies to upgrade oil shale wastewaters must be available to developers. To this end, the U.S. Environmental Protection Agency has contracted with Monsanto Research Corporation to conduct a three-year, five-phase study to: (1) summarize known information concerning oil shale retort wastewater sources and characteristics; (2) identify potentially applicable control technologies capable of treating the identified wastewater streams; and (3) design, construct, and operate pilot-plant facilities to evaluate the selected technologies. This report presents results of Phases I and II, in which literature and other information sources were surveyed to obtain relevant data about oil shale retorting technologies, wastewater sources and characteristics, potential wastewater uses, and potentially applicable treatment technologies. As a result of the study, data gaps were identified, and recommendations for bench-scale treatability studies were made.

Klieve, J.R.; Rawlinss, G.D.; Hoeflein, J.R.

1981-04-01T23:59:59.000Z

110

Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas  

Science Conference Proceedings (OSTI)

This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion that the following conditions are not present, nor of concern at the proposed site on Pantex Plant, and no further analysis was conducted: (1) State or national parks, forests, or other conservation areas; (2) Wild and scenic rivers; (3) Natural resources, such as timber, range, soils, minerals; (4) Properties of historic, archeological, or architectural significance; (5) Native American concerns; (6) Minority and low-income populations; and (7) Prime or unique farmland. In this document, DOE describes the proposed action and a reasonable range of alternatives to the proposed action, including the ''No-Action'' alternative. The proposed action cited in the ''U.S. Department of Energy Application for a Texas Pollutant Discharge Elimination System Permit Modifying Permit to Dispose of Waste, No. 02296,'' December 1998, included the construction of a new wastewater treatment facility, a new irrigation storage pond, and the conversion of the current wastewater treatment facility into an irrigation storage pond. Although a permit modification application has been filed, if a decision on this EA necessitates it, an amendment to the permit application would be made. The permit application would be required for any of the alternatives and the filing does not preclude or predetermine selection of an alternative considered by this EA. This permit change would allow Pantex to land-dispose treated wastewater by irrigating agricultural land. This construction for the proposed action would include designing two new lagoons for wastewater treatment. One of the lagoons could function as a facultative lagoon for treatment of wastewater. The second lagoon would serve as an irrigation storage impoundment (storage pond), with the alternative use as a facultative lagoon if the first lagoon is out of service for any reason. The new facultative lagoon and irrigation water storage pond would be sited outside of the 100-year flood plain. The existing WWTF lagoon would be used as a storage pond for treated wastewater effluent for irrigation water, as needed. The two new lagoons would be li

N /A

1999-05-27T23:59:59.000Z

111

K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN  

Science Conference Proceedings (OSTI)

This paper will discuss the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource Conservation and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. The incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (blow down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinerator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 7.95 to 17 cubic meters per hour (m3/hr) (35 to 75 gallons per minute; gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, micro-filtration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper will include details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water. (authors)

Beck, Ch.A. [Senior Project Manager, Golder Associates Inc. (United Kingdom); Tiepel, E.W. [Principal, Golder Associates Inc. (United Kingdom); Swientoniewski, M.D. [P.E. Senior Project Engineer, Bechtel Jacobs Company LLC (United States); Crow, K.R. [P.E., Project Manager, CDM (United States)

2008-07-01T23:59:59.000Z

112

K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN  

SciTech Connect

This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

Swientoniewski M.D.

2008-02-24T23:59:59.000Z

113

Management of Process Wastewater at Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

A confluence of drivers is causing utilities to consider closing ash ponds and converting to dry ash handling. These drivers include wastewater discharge regulations on salinity, chlorides, nutrients, and metals, as well as solid waste regulations resulting from concerns with pond safety. Because ash ponds at many sites receive a variety of wastewaters, even if a plant converts to dry ash handling and thereby reduces or eliminates ash sluice water, other wastewater streams will still require treatment. E...

2012-04-30T23:59:59.000Z

114

L AREA WASTEWATER STORAGE DRUM EVALUATION  

DOE Green Energy (OSTI)

This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

2007-11-30T23:59:59.000Z

115

Rules Governing Water and Wastewater Operator Certification (Tennessee) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules Governing Water and Wastewater Operator Certification Rules Governing Water and Wastewater Operator Certification (Tennessee) Rules Governing Water and Wastewater Operator Certification (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Rules Governing Water and Wastewater Operator Certification are

116

Unique process combination decontaminates mixed wastewater at Rocky Flats  

Science Conference Proceedings (OSTI)

This paper describes the Sitewide Water Treatment Facility (SWTF) used to process environmental remediation wastewaters found at the Rocky Flats Environmental Technology Site.

Kelso, William J.; Cirillo, J. Russ

1999-08-01T23:59:59.000Z

117

Solid-Liquid Separation of Animal Manure and Wastewater  

E-Print Network (OSTI)

Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators.

Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

1999-10-19T23:59:59.000Z

118

EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

119

Energy recovery at Chi?in?u wastewater treatment plant.  

E-Print Network (OSTI)

?? Possibilities for energy recovery from sludge at Chi?in?u wastewater treatment plant have been investigated and evaluated. One way of recovering energy from sludge is (more)

Graan, Daniel

2010-01-01T23:59:59.000Z

120

Membrane Research for Water and Wastewater Treatment  

Science Conference Proceedings (OSTI)

This document summarizes two research projects involving the use of membranes in water treatment: o Technologies for Improving Water Desalination -- The objectives of this study were to compare capacitive deionization (CDI) with carbon aerogel and reverse osmosis (RO) for salinity reduction using conventional treatment, conventional treatment with ozone and biologically active filters, and microfiltration as the pretreatment step. o Membrane Pretreatment of Reclaimed Wastewater for Reverse Osmosis Desali...

2001-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Achieving very low mercury levels in refinery wastewater by membrane filtration.  

Science Conference Proceedings (OSTI)

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

2012-05-15T23:59:59.000Z

122

Two-phase anaerobic digestion within a solid waste/wastewater integrated management system  

SciTech Connect

A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.

De Gioannis, G. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy); Diaz, L.F. [CalRecovery, Inc., 2454 Stanwell Drive, Concord, California 94520 (United States); Muntoni, A. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy)], E-mail: amuntoni@unica.it; Pisanu, A. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy)

2008-07-01T23:59:59.000Z

123

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Patents (OSTI)

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

Tiernan, Joan E. (38 Clay Ct., Novato, CA 94947)

1991-01-01T23:59:59.000Z

124

Coal conversion wastewater treatment by catalytic oxidation in supercritical water  

SciTech Connect

Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, the authors examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2}O{sub 3}. They used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which they can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that the authors could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, they performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2}, which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of phenoxy radicals, which then react in the fluid phase by the same mechanism operative for non-catalytic SCWO of phenol. The rates of phenol disappearance and CO{sub 2} formation are sensitive to the phenol and O{sub 2} concentrations, but independent of the water density. Power-law rate expressions were developed to correlate the catalytic kinetics. The catalytic kinetics were also consistent with a Langmuir-Hinshelwood rate law derived from a dual-site mechanism comprising the following steps: reversible adsorption of phenol on one type of catalytic site, reversible dissociative adsorption of oxygen on a different type of site, and irreversible, rate-determining surface reaction between adsorbed phenol and adsorbed oxygen.

Phillip E. Savage

1999-10-20T23:59:59.000Z

125

COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER  

SciTech Connect

Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2} O{sub 3}. We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2} , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of phenoxy radicals, which then react in the fluid phase by the same mechanism operative for non-catalytic SCWO of phenol. The rates of phenol disappearance and CO{sub 2} formation are sensitive to the phenol and O{sub 2} concentrations, but independent of the water density. Power-law rate expressions were developed to correlate the catalytic kinetics. The catalytic kinetics were also consistent with a Langmuir-Hinshelwood rate law derived from a dual-site mechanism comprising the following steps: reversible adsorption of phenol on one type of catalytic site, reversible dissociative adsorption of oxygen on a different type of site, and irreversible, rate-determining surface reaction between adsorbed phenol and adsorbed oxygen.

Phillip E. Savage

1999-10-18T23:59:59.000Z

126

Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida  

DOE Green Energy (OSTI)

A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

Starr, R.C.; Green, T.S.; Hull, L.C.

2001-02-28T23:59:59.000Z

127

Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida  

Science Conference Proceedings (OSTI)

A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles

2001-02-01T23:59:59.000Z

128

Design optimization of wastewater collection networks by PSO  

Science Conference Proceedings (OSTI)

Optimal design of wastewater collection networks is addressed in this paper by making use of the so-called PSO (Particle Swarm Optimization) technique. This already popular evolutionary technique is adapted for dealing both with continuous and discrete ... Keywords: Dynamic programming, Evolutionary method, Optimal design, Particle Swarm Optimization, Wastewater collection networks

Joaqun Izquierdo; Idel Montalvo; Rafael Prez; Vicente S. Fuertes

2008-08-01T23:59:59.000Z

129

Process state estimation in a wastewater biological treatment  

Science Conference Proceedings (OSTI)

Using clustering techniques for data classification is very common. In this paper a Self-Organizing Map model is used to carry out an estimation of the process state in a wastewater biological treatment using clustering algorithms and validation indexes. ... Keywords: biological treatment, chemical oxygen demand, clustering, self-organizing mapping, validation, wastewater

Ivn Machh; Hilario Lpez; Antonio Robles

2005-07-01T23:59:59.000Z

130

Model-based optimisation of Wastewater Treatment Plants design  

Science Conference Proceedings (OSTI)

This paper presents the mathematical basis and some illustrative examples of a model-based decision-making method for the automatic calculation of optimum design parameters in modern Wastewater Treatment Plants (WWTP). The starting point of the proposed ... Keywords: Mathematical modelling, Optimum design, Wastewater Treatment Plants

A. Rivas; I. Irizar; E. Ayesa

2008-04-01T23:59:59.000Z

131

Treatment of biomass gasification wastewaters using reverse osmosis  

DOE Green Energy (OSTI)

Reverse osmosis (RO) was evaluated as a treatment technology for the removal of organics from biomass gasification wastewaters (BGW) generated from an experimental biomass gasifier at Texas Tech University. Wastewaters were characteristically high in chemical oxygen demand (COD) with initial values ranging from 32,000 to 68,000 mg/1. Since RO is normally considered a complementary treatment technology, wastewaters were pretreated by biological or wet air oxidation (WAO) processes. One set of experiments were run using untreated wastewaters to compare membrane performance with those experiments using pretreated wastewaters. Experiments were run for 8 to 10 hrs using UOP's TFC-85 membrane operating at 700 psig and 18 to 20/sup 0/C. This membrane is similar to the NS-100, a membrane known for being effective in the separation of organics from solution. Separation of organics from solution was determined by COD removal. Removal percentages for biologically pretreated wastewaters averaged 98% except for one group of runs averaging 69% removal. This exception was probably due to the presence of milk solids in the feed. Use of RO on WAO pretreated wastewaters and unpretreated feeds resulted in 90% COD removal. Membrane degradation was observed when using full-strength and WAO pretreated feeds, but not when using feeds that had undergone biological pretreatment. Color removal was computed for the majority of experiments completed. Overall, 99 to 100% of the total color was removed from BGW feeds, values which coincide with those reported in the literature for other wastewaters.

Petty, S.E.; Eliason, S.D.; Laegreid, M.M.

1981-09-01T23:59:59.000Z

132

Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities  

SciTech Connect

Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

2012-01-01T23:59:59.000Z

133

Economic analysis of municipal wastewater utilization for thermoelectric power production  

Science Conference Proceedings (OSTI)

The thermoelectric power industry in the U.S. uses a large amount of freshwater. The large water demand is increasingly a problem, especially for new power plant development, as availability of freshwater for new uses diminishes in the United States. Reusing non-traditional water sources, such as treated municipal wastewater, provides one option to mitigate freshwater usage in the thermoelectric power industry. The amount of freshwater withdrawal that can be displaced with non-traditional water sources at a particular location requires evaluation of the water management and treatment requirements, considering the quality and abundance of the non-traditional water sources. This paper presents the development of an integrated costing model to assess the impact of degraded water treatment, as well as the implications of increased tube scaling in the main condenser. The model developed herein is used to perform case studies of various treatment, condenser cleaning and condenser configurations to provide insight into the ramifications of degraded water use in the cooling loops of thermoelectric power plants. Further, this paper lays the groundwork for the integration of relationships between degraded water quality, scaling characteristics and volatile emission within a recirculating cooling loop model.

Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Theregowda, R.; Dzombak, D.; Miller, D.

2011-01-01T23:59:59.000Z

134

Wastewater Regulations for National Pollutant Discharge Elimination System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Regulations for National Pollutant Discharge Elimination Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential

135

Treatment of biomass-gasification wastewaters by wet-air oxidation  

DOE Green Energy (OSTI)

Production of synthetic natural gas from gasification of biomass results in the generation of a high-strength wastewater that is difficult to treat by conventional means. This study investigated the use of wet air oxidation (WAO) as a treatment method for these wastewaters. A literature review was conducted to identify the suitability of WAO for the treatment of high-strength industrial wastewaters and to determine typical operating conditions for such treatment. Data presented in the literature showed that WAO should be suitable for treatment. Data presented in the literature showed that WAO should be suitable for treatment of biomass gasification wastewaters (BGW), and a laboratory treatability study was designed. BGW, having an initial chemical oxygen demand (COD) of 30,800 mg/1 and initial color of 183,000 APHA units, was treated in a laboratory autoclave for 20, 40, 60, 120, and 180 min at temperatures and pressures of 150/sup 0/C, 5.1 MPa (750 psi); 200/sup 0/C, 6.9 MPa (1000 psi); 250/sup 0/C, 10.3 MPa (1500 psi); and 300/sup 0/C, 13.8 MPa (2000 psi). Maximum COD removals of 0% for the 150/sup 0/C, 5.2 MPa (750 psi) runs; 40% for the 200/sup 0/C, 6.9 MPa (1000 psi) runs, 55% for the 250/sup 0/C, 10.3 MPa (1500 psi) runs; and 85% for the 300/sup 0/C, 13.8 MPa (2000 psi) runs were measured. Maximum color removals for these respective runs were 56%, 82%, 97%, and 99%. Initial removal rates of COD and color were observed to increase with reaction temperature. The experimental results suggest that oxidation of BGW organics by WAO occurs in a stepwise fashion with large organic molecules first being hydrolyzed and then partially oxidized to low molecular weight intermediates. Complete oxidation of these intermediates is more difficult and most easily accomplished at high reaction temperatures. The best application of WAO to treatment of BGW appears to be as a pretreatment to biological treatment and it is recommended that this application be investigated.

English, C.J.

1981-09-01T23:59:59.000Z

136

2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT  

Science Conference Proceedings (OSTI)

Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.

LUECK KJ; GENESSE DJ; STEGEN GE

2009-02-26T23:59:59.000Z

137

Metro Wastewater Reclamation District Biomass Facility | Open Energy  

Open Energy Info (EERE)

Wastewater Reclamation District Biomass Facility Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation District Sector Biomass Facility Type Non-Fossil Waste Location Adams County, Colorado Coordinates 39.8398269°, -104.1930918° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8398269,"lon":-104.1930918,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Fourche Creek Wastewater Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Fourche Creek Wastewater Biomass Facility Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type Non-Fossil Waste Location Pulaski County, Arkansas Coordinates 34.7538615°, -92.2236667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7538615,"lon":-92.2236667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Water Distribution and Wastewater Systems Operators (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) Water Distribution and Wastewater Systems Operators (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health

140

Why Sequence the Microbial Community from a Wastewater Treatment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Microbial Community from a Wastewater Treatment Plant? The goal of this project is to get a concise picture of the capacity of a complete complex microbial community in a...

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stabilization of a nonlinear anaerobic wastewater treatment model  

Science Conference Proceedings (OSTI)

A nonlinear anaerobic digester model of wastewater treatment plants is considered. The stabilizability of the dynamic system is studied and a continuous stabilizing feedback, depending only on an on-line measurable variable, is proposed. Computer simulations ...

Neli S. Dimitrova; Mikhail I. Krastanov

2005-06-01T23:59:59.000Z

142

Chemically enhanced primary treatment of wastewater in Honduran Imhoff tanks  

E-Print Network (OSTI)

Imhoff tanks represent approximately 40% of the wastewater treatment infrastructure in Honduras. This thesis evaluates the usage of solid aluminum sulfate as a means to achieving national effluent regulations in Imhoff ...

Mikelonis, Anne M. (Anne Marie)

2008-01-01T23:59:59.000Z

143

Middle east crisis has varied effect on wastewater utilities  

Science Conference Proceedings (OSTI)

The jump in oil prices that followed Iraq's invasion of Kuwait in early August of 1990 was felt throughout the US economy. The authors particularly discuss the impact of the Middle East Crisis as it relates to wastewater utilities.

Nichols, A.B.

1990-10-01T23:59:59.000Z

144

Life-cycle assessment of wastewater treatment plants  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

145

Nutritional Status of some Aromatic Plants Grown to Produce Volatile Oils under Treated Municipal Wastewater irrigation  

E-Print Network (OSTI)

any reduction in quantity and quality of volatile oils.on the quantity and quality of the essential oil for fiveon the quantity and quality of the essential oil of five

Khalifa, Ramadan Khalifa Mohamed

2009-01-01T23:59:59.000Z

146

Flue Gas Desulfurization (FGD) Wastewater Characterization and Management: 2007 Update  

Science Conference Proceedings (OSTI)

Tightened air regulations on acid-gas-forming emissions are leading more electric utilities to install flue gas desulfurization (FGD) systems, typically wet scrubbers. However, there are challenges associated with such decisions in terms of utility wastewater management. Volatile metals, such as selenium and mercury, are better captured in wet scrubber systems than in electrostatic precipitators and may be present at higher concentrations in utility wastewater systems. This report is designed to help pow...

2008-03-31T23:59:59.000Z

147

Anaerobic Digestion of Food Waste?recycling Wastewater  

Science Conference Proceedings (OSTI)

Food waste?recycling (FWR) wastewater was evaluated as feedstock for two?stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two?stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 1025 days. In the acidogenic reactor

Gyuseong Han; Seung Gu Shin; Juntaek Lim; Minho Jo; Seokhwan Hwang

2010-01-01T23:59:59.000Z

148

Food service establishment wastewater characterization and management practice evaluation  

E-Print Network (OSTI)

Food service establishments that use onsite wastewater treatment systems are experiencing hydraulic and organic overloading of pretreatment systems and/or drain fields. Design guidelines for these systems are typically provided in State regulations and based on residential hydraulic applications. For the purposes of this research, hydraulic loading indicates the daily flow of water directed to the wastewater system. Organic loading refers to the composition of the wastewater as quantified by five-day biochemical oxygen demand (BOD5), total fats, oils and greases (FOG), and total suspended solids (TSS). The first part of this study included an analysis of the central tendencies of analytical data of four wastewater parameters from 28 restaurants representing a broad spectrum of restaurant types. Field sampling consisted of two sets of grab samples collected from each restaurant for six consecutive days at approximately the same time each day. These sets were collected approximately two weeks apart. The numerical data included BOD5, FOG, and TSS. The fourth parameter evaluated was daily flow. Data exploration and statistical analyses of the numerical data from the 28 restaurants was performed with the standard gamma probability distribution model in ExcelTM and used to determine inferences of the analytical data. The analysis shows higher hydraulic and organic values for restaurant wastewater than residential wastewater. The second part of the study included a statistical analysis of restaurant management practices and primary cuisine types and their influence on BOD5, FOG, TSS, and daily flow to determine if management practices and/or cuisine types may be influencing wastewater composition and flow. A self-reporting survey was utilized to collect management practice and cuisine type information. Survey response information and analytical data were entered into an ExcelTM spreadsheet and subsequently incorporated into SASTM statistical software for statistical analysis. Analysis indicated that the number of seats in a restaurant, use of self-serve salad bars, and primary cuisine types are statistically significant indicators of wastewater characteristics.

Garza, Octavio Armando

2004-12-01T23:59:59.000Z

149

Water and Wastewater Industries: Characteristics and Energy Management Opportunities  

Science Conference Proceedings (OSTI)

The use of electricity for water and wastewater treatment is increasing due to demands for increased service and new regulations for upgraded treatment. Options available to control the electricity costs may consist of technological changes, improved management, and participation in electric utility sponsored energy management programs. This report provides electric utility planning, marketing, and customer service staff with a practical tool to better understand the water and wastewater industries and t...

1996-09-01T23:59:59.000Z

150

Arsenic and Selenium Treatment Technology Summary for Power Plant Wastewaters  

Science Conference Proceedings (OSTI)

This report summarizes the most suitable technologies available for the removal of arsenic and selenium from power plant wastewaters. The information stems from literature searches and the authors' experience in wastewater treatment systems from generally non-power plant sources since there are limited operating experiences for power plant applications. The report lists existing and potential technologies that meet the treatment goals of reducing arsenic and selenium to the levels set for U.S. En...

2004-11-03T23:59:59.000Z

151

Conneaut Wastewater Facility Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wastewater Facility Wind Turbine Wastewater Facility Wind Turbine Jump to: navigation, search Name Conneaut Wastewater Facility Wind Turbine Facility Conneaut Wastewater Facility Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Conneaut Wastewater Facility Developer NexGen Energy Partners Energy Purchaser Conneaut Wastewater Facility Location Conneaut OH Coordinates 41.968223°, -80.552268° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.968223,"lon":-80.552268,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Applying a Modified Triad Approach to Investigate Wastewater lines  

Science Conference Proceedings (OSTI)

Approximately 20 miles of wastewater lines are below grade at an active military Base. This piping network feeds or fed domestic or industrial wastewater treatment plants on the Base. Past wastewater line investigations indicated potential contaminant releases to soil and groundwater. Further environmental assessment was recommended to characterize the lines because of possible releases. A Remedial Investigation (RI) using random sampling or use of sampling points spaced at predetermined distances along the entire length of the wastewater lines, however, would be inefficient and cost prohibitive. To accomplish RI goals efficiently and within budget, a modified Triad approach was used to design a defensible sampling and analysis plan and perform the investigation. The RI task was successfully executed and resulted in a reduced fieldwork schedule, and sampling and analytical costs. Results indicated that no major releases occurred at the biased sampling points. It was reasonably extrapolated that since releases did not occur at the most likely locations, then the entire length of a particular wastewater line segment was unlikely to have contaminated soil or groundwater and was recommended for no further action. A determination of no further action was recommended for the majority of the waste lines after completing the investigation. The modified Triad approach was successful and a similar approach could be applied to investigate wastewater lines on other United States Department of Defense or Department of Energy facilities. (authors)

Pawlowicz, R.; Urizar, L. [Bechtel National, Inc., 1230 Columbia St., Suite 400, San Diego, CA 92101 (United States); Blanchard, S. [Brown and Caldwell, 9665 Chesapeake Drive, Suite 201, San Diego, CA 92123 (United States); Jacobsen, K. [Naval Facilities Engineering Command, Southwest 1220 Pacific Highway, San Diego, CA 92132 (United States); Scholfield, J. [EarthTech, 841 Bishop St., Suite 500, Honolulu, HI 96813 (United States)

2006-07-01T23:59:59.000Z

153

Denitrification rates in a wastewater-irrigated forest soil in New Zealand  

SciTech Connect

Denitrification is considered to be an important N removal process in land-based wastewater treatment systems, although in situ denitrification rates have rarely been reported. The authors investigated the contribution of denitrification to N removal in a land treatment system by measuring in situ denitrification rates for 12 mo in a Monterey pine (Pinus radiata D. Don) forest irrigated with tertiary-treated wastewater. The variability of denitrification rates was investigated using a nested field design that divided the land treatment system into four spatial components (irrigation block, topographic position, field site, and sample plot) and two temporal components (sample period, sample day). Denitrification was measured using undisturbed soil cores collected daily, for six consecutive days on 21 occasions throughout the year. Soil moisture content, NO{sub 3} concentration, available C, denitrifying enzyme activity, and temperature also were measured. The annual denitrification rate in the irrigated soil was 2.4 kg N ha{sup {minus}1} yr{sup {minus}1}, and only slightly higher than the unirrigated soil. Temporal effects contributed more than spatial effects to the overall variation in denitrification rates. Multiple regression analysis showed that soil factors could only explain 29% of the variation in denitrification rates. Soil water-filled porosity was low in the land treatment system, and less than the critical threshold value determined in a laboratory study. The authors concluded that denitrification in this land treatment system studied was limited by excessive aeration in the free-draining soils.

Barton, L.; McLay, C.D.A.; Schipper, L.A.; Smith, C.T.

1999-12-01T23:59:59.000Z

154

Energy production from food industry wastewaters using bioelectrochemical cells  

Science Conference Proceedings (OSTI)

Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

Hamilton, Choo Yieng [ORNL

2009-01-01T23:59:59.000Z

155

Rules for the Discharge of Non-Sanitary Wastewater and Other...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Discharge of Non-Sanitary Wastewater and Other Fluids To or Below the Ground Surface (Rhode Island) Rules for the Discharge of Non-Sanitary Wastewater and Other Fluids To...

156

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network (OSTI)

Environmental Protection Agency, Office of Wastewater Management.Environmental Protection Agency, Office of Water, Office of Wastewater Management.Management Fact Sheet: Energy Conservation. U.S. Environmental Protection Agency, Office

Lewis, Glen

2010-01-01T23:59:59.000Z

157

Ammonium estimation in a biological wastewater plant using feedforward neural networks  

Science Conference Proceedings (OSTI)

Mathematical models are normally used to calculate the component concentrations in biological wastewater treatment. However, this work deals with the wastewater from a coke plant and it implies inhibition effects between components which do not permit ...

Hilario Lpez Garca; Ivn Machn Gonzlez

2006-08-01T23:59:59.000Z

158

Embedded Network Sensing of Moisture and Nitrate Propagation During Irrigation with Reclaimed Wastewater  

E-Print Network (OSTI)

operation, thus optimizing discharge of nitrate-laden wastewater. rain gauge D ata acquisition a nd wireless

2004-01-01T23:59:59.000Z

159

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine innocent alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

160

Opportunities for Automated Demand Response in Wastewater Treatment  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Automated Demand Response in Wastewater Treatment Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study Title Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study Publication Type Report LBNL Report Number LBNL-6056E Year of Publication 2012 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2012 Publisher CEC/LBNL Keywords market sectors, technologies Abstract This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities.

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modeling trihalomethane formation potential from wastewater chlorination. Master's thesis  

Science Conference Proceedings (OSTI)

The deletion of federally mandated fecal coliform limits has led many states to review and modify their wastewater disinfection requirements. One issue in analyzing wastewater disinfection is the discharge of potentially carcinogenic halogenated organics formed during the chlorination process. This research investigates the formation of one class of the halogenated organics, the trihalomethanes. The applicability of using drinking water trihalomethane formation models for use with wastewater effluent is examined. Three models are compared for predictive capability by using measured trihalomethane values from previous research data. The results show that a previously developed model is applicable for use based on assumptions stated. Results provide environmental managers with worst case predictions for a range of wastewater treatment plant (WWTP) parameters. Predictions indicate that trihalomethane formation from the chlorination of wastewater is typically lower than the Safe Drinking Water Act trihalomethane standard of 100 ug/L. The worst case model predictions reach, and in certain extreme cases, pass the standard of 100 ug/L. This level of trihalomethanes formed is minimized if aeration of the receiving bodies of water occurs. Based on this research, the risk of forming trihalomethanes as disinfection by-products from chlorination do not outweigh the benefits gained from proper chlorine disinfection of effluent.

McCormick, C.A.

1994-09-01T23:59:59.000Z

162

Wastewaters at SRS where heavy metals are a potential problem  

SciTech Connect

The principal objective of this report is to identify and prioritize heavy metal-containing wastewaters at the Savannah River Site (SRS) in terms of their suitability for testing of and clean-up by a novel bioremediation process being developed by SRTC. This process involves the use of algal biomass for sequestering heavy metal and radionuclides from wastewaters. Two categories of SRS wastewaters were considered for this investigation: (1) waste sites (primarily non-contained wastes managed by Environmental Restoration), and (2) waste streams (primarily contained wastes managed by Waste Management). An attempt was made to evaluate all sources of both categories of waste throughout the site so that rational decisions could be made with regard to selecting the most appropriate wastewaters for present study and potential future treatment. The investigation included a review of information on surface and/or groundwater associated with all known SRS waste sites, as well as waters associated with all known SRS waste streams. Following the initial review, wastewaters known or suspected to contain potentially problematic concentrations of one or more of the toxic metals were given further consideration.

Wilde, E.W.; Radway, J.C.

1994-11-01T23:59:59.000Z

163

Case Studies to Evaluate Flue Gas Desulfurization Wastewater Physical/Chemical Treatment Performance  

Science Conference Proceedings (OSTI)

This study focuses on physical/chemical wastewater treatment technologies used to remove trace metals from flue gas desulphurization (FGD) wastewater. The scope of this study includes FGD wastewater treatment for trace metals.BackgroundThe United States Environmental Protection Agency (EPA) is currently revising the Effluent Limitations Guidelines (ELGs) for the steam electric power generating industry. The Electric Power Research Institute (EPRI) provided ...

2013-12-23T23:59:59.000Z

164

Model-free control based on reinforcement learning for a wastewater treatment problem  

Science Conference Proceedings (OSTI)

This article presents a proposal, based on the model-free learning control (MFLC) approach, for the control of the advanced oxidation process in wastewater plants. This is prompted by the fact that many organic pollutants in industrial wastewaters are ... Keywords: Intelligent control, Oxidation-reduction potential, Wastewater treatment plants

S. Syafiie; F. Tadeo; E. Martinez; T. Alvarez

2011-01-01T23:59:59.000Z

165

The Treatment of Livestock Wastewater by Three Step Series Constructed Rapid Infiltration  

Science Conference Proceedings (OSTI)

Constructed Rapid Infiltration system (CRI) is anew type of wastewater land disposal technique based on the traditional wastewater Rapid Infiltration. This paper was study on three step series CRI for removal of pollutants by using preparation of the ... Keywords: constructed rapid infiltration system, three step series, piggery wastewater, oxygen recovery

Kang Ai-bin; Chen Hong-han

2011-02-01T23:59:59.000Z

166

An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet  

E-Print Network (OSTI)

and manages the problem. Keywords Anaerobic digestion, automation, control, fault detection and isolationAn integrated system to remote monitor and control anaerobic wastewater treatment plants through of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment

Bernard, Olivier

167

A fuzzy logic based system for heavy metals loaded wastewaters monitoring  

Science Conference Proceedings (OSTI)

The paper presents a fuzzy logic based system for wastewater quality monitoring with the purpose of attenuating the environmental impact of the heavy metals loaded wastewaters. The proposed method offers an improvement over the traditionally modelling ... Keywords: environmental indices, fuzzy logic, fuzzy rules, wastewater quality monitoring

Daniel Dunea; Mihaela Oprea

2010-04-01T23:59:59.000Z

168

Studies on the Extraction of Phenol from the Wastewater of Multi-generation System  

Science Conference Proceedings (OSTI)

Recovery of phenol from the wastewater produced in the multi-cogeneration system has been studied. Based on the experimental results and theoretical analysis, butyl acetate was selected as the extractant and 99.95% of the volatile phenols in the wastewater ... Keywords: phenol, solvent extraction, wastewater, multigeneration system, recycle

Zhenjing Shi; Mengxiang Fang; Chunguang Zhou; Qinghui Wang; Zhongyang Luo

2011-02-01T23:59:59.000Z

169

Water/Wastewater Engineering Report (Storm Sewer/Infiltration Sanitary Sewage Separation-M1 Model)  

E-Print Network (OSTI)

In some cities, the municipal sewer system collects both storm water and sanitary sewage in the same pipes. During dry weather these sewers carry all the sanitary sewage to the wastewater treatment plant for treatment. However, when rainstorms or snow melt increase the amount of runoff, the combined flow of sanitary sewage and storm water can exceed the capacity of the sewer system, which can cause serious problems like the storm water and sewage mix are discharged untreated into the river or the sewage backs up into streets and basement. Storm water treated in the sewage treatment plant also causes unnecessary energy use. Sewer systems can also have unintended ground water entering the network, which occurs because of hydraulic pressure on the buried sewer lines infiltration. Therefore, separating the storm water/infiltration and sanitary sewage reduces the possibility of sewage discharge during heavy rain periods, and saves energy.

Liu, Z.; Brumbelow, K.; Haberl, J. S.

2006-10-30T23:59:59.000Z

170

Life Cycle Environmental and Cost Impacts of Dairy Wastewater Treatment Using Algae Brendan Higgins, Dr. Alissa Kendall  

E-Print Network (OSTI)

displacement. The cost of wastewater treatment using the ATS was estimated to be $1.23 per m3 wastewater Wastewater Processing Algae Processing Biogas Processing Equipment and Material Data Sources Fixed filmLife Cycle Environmental and Cost Impacts of Dairy Wastewater Treatment Using Algae Brendan Higgins

California at Davis, University of

171

Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process  

DOE Green Energy (OSTI)

A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

English, C.J.; Petty, S.E.; Sklarew, D.S.

1983-02-01T23:59:59.000Z

172

GRR/Section 18-HI-c - Wastewater Treatment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-HI-c - Wastewater Treatment GRR/Section 18-HI-c - Wastewater Treatment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-c - Wastewater Treatment 18HIC - WastewaterTreatment (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch Regulations & Policies HRS 11-62 HRS 342D Triggers None specified Click "Edit With Form" above to add content 18HIC - WastewaterTreatment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Wastewater Treatment Permit The Wastewater Branch administers the statewide engineering and financial functions relating to water pollution control,

173

GRR/Section 14-OR-f - Onsite Wastewater Management | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-f - Onsite Wastewater Management GRR/Section 14-OR-f - Onsite Wastewater Management < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-f - Onsite Wastewater Management 14ORFOnsiteWastewaterManagementSepticSystems.pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-071: Onsite Wastewater Treatment Systems OAR 340-073: DEQ Construction Standards Triggers None specified Click "Edit With Form" above to add content 14ORFOnsiteWastewaterManagementSepticSystems.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Over 30% of Oregonians dispose of wastewater from their homes and

174

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

E-Print Network (OSTI)

and have significant electricity demand during utility peakoperates at an average electricity demand of 1.3 MW, withalso has a high electricity demand. In many wastewater

Thompson, Lisa

2010-01-01T23:59:59.000Z

175

Design of a 50 TW/20 J chirped-Pulse Amplification Laser for High-Energy-Density Plasma Physics Experiments at the Nevada Terawatt Facility of the University of Nevada  

DOE Green Energy (OSTI)

We have developed a conceptual design for a 50 TW/20 J short-pulse laser for performing high-energy-density plasma physics experiments at the Nevada Terawatt Facility of the University of Nevada, Reno. The purpose of the laser is to develop proton and x-ray radiography techniques, to use these techniques to study z-pinch plasmas, and to study deposition of intense laser energy into both magnetized and unmagnetized plasmas. Our design uses a commercial diode-pumped Nd:glass oscillator to generate 3-nJ. 200-fs mode-locked pulses at 1059 m. An all-reflective grating stretcher increases pulse duration to 1.1 ns. A two-stage chirped-pulse optical parametric amplifier (OPCPA) using BBO crystals boosts pulse energy to 12 mJ. A chain using mixed silicate-phosphate Nd:glass increases pulse energy to 85 J while narrowing bandwidth to 7.4 nm (FWHM). About 50 J is split off to the laser target chamber to generate plasma while the remaining energy is directed to a roof-mirror pulse compressor, where two 21 cm x 42 cm gold gratings recompress pulses to {approx}350 fs. A 30-cm-focal-length off-axis parabolic reflector (OAP) focuses {approx}20 J onto target, producing an irradiance of 10{sup 19} W/cm{sup 2} in a 10-{micro}m-diameter spot. This paper describes planned plasma experiments, system performance requirements, the laser design, and the target area design.

Erlandson, A C; Astanovitskiy, A; Batie, S; Bauer, B; Bayramian, A; Caird, J A; Cowan, T; Ebbers, C; Fuchs, J; Faretto, H; Glassman, J; Ivanov, V; LeGalloudec, B; LeGalloudec, N; Letzring, S; Payne, S; Stuart, B

2003-09-07T23:59:59.000Z

176

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Facility Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Gilbane Building Company Developer Narragansett Bay Commission Energy Purchaser Field's Point Location Providence RI Coordinates 41.79260859°, -71.3896966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79260859,"lon":-71.3896966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

Science Conference Proceedings (OSTI)

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

178

Characterization and Biological Treatment of O-Nitrobenzaldehyde Manufacturing Wastewater  

Science Conference Proceedings (OSTI)

O-nitrobenzaldehyde (ONBA) manufacturing wastewater not only contains significant amount of oil-like substance, but also high salinity, total nitrogen (TN) content and concentration of dissolved organics resulting in high COD load. Oil-like substance ... Keywords: o-nitrobenzaldehyde, sludge age, hydraulic residence time, design equation

Yu Fang-Bo; Guan Li-Bo; Zhou Shan; Li Shun-Peng

2009-07-01T23:59:59.000Z

179

Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts  

E-Print Network (OSTI)

This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available, and factors to consider when choosing a service provider.

Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

2008-10-23T23:59:59.000Z

180

2724-W laundry wastewater stream-specific report  

SciTech Connect

The proposed wastestream designation for the 2742-W Laundry wastewater wastestream is that this stream is not a dangerous waste, pursuant to the Washington (State) Administration Code (WAC) 173-303, Dangerous Waste Regulations. A combination of process knowledge and sampling data was used to make this determination. 19 refs., 4 figs., 8 tabs.

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Optimiziing the laboratory monitoring of biological wastewater-purification systems  

SciTech Connect

Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

S.V. Gerasimov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

182

Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities  

E-Print Network (OSTI)

"Depending on the level and type of treatment, municipal wastewater treatment (WWT) can be an energy intensive process, constituting a major cost for the municipal governments. According to a 1993 study wastewater treatment plants consume close to 1% of the electrical power in Northern and Central California. Activated sludge is the most common method for wastewater treatment, and at the same time the most energy intensive process. New energy efficient technologies can help reduce energy consumption of these processes, while improving the treatment effectiveness. Energy efficient technologies can be implemented in retrofit, expansion as well as new construction. This paper details the application of energy efficient technologies in retrofit as well as new construction projects, outlining significant opportunities for energy efficiency and conservation as well as demand response in various types of WWT facilities. This is based on detailed assessments of over 10 wastewater treatment plants in Northern California. The results show that energy savings in the range of 15,000 kWh per year to over 3.2 million kWh per year with paybacks in the range of 1.7 years to 8.9 years are readily achievable in retrofit projects. Application of energy efficient technologies in new construction can be most beneficial in the lifetime of the plant, which usually exceeds 30 years. Based on our experience in evaluation of design by others in energy efficiency design assistance of 7 plants, energy efficiency opportunities in new construction will be elaborated. This paper will discuss common energy efficient practices in new construction and outline additional opportunities that can help further improve energy efficiency of new construction projects. Finally, based on a recent survey, wastewater treatment plants have excellent opportunities for demand response. In Northern California, several WWT plants have participated and greatly benefited from demand response opportunities. Opportunities for demand response based on detailed assessment of 10 plants will be discussed."

Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

2009-05-01T23:59:59.000Z

183

Method of treating depression  

DOE Patents (OSTI)

Methods for treatment of depression-related mood disorders in mammals, particularly humans are disclosed. The methods of the invention include administration of compounds capable of enhancing glutamate transporter activity in the brain of mammals suffering from depression. ATP-sensitive K.sup.+ channel openers and .beta.-lactam antibiotics are used to enhance glutamate transport and to treat depression-related mood disorders and depressive symptoms.

Henn, Fritz (East Patchogue, NY)

2012-01-24T23:59:59.000Z

184

Method of treating depression  

DOE Patents (OSTI)

Methods for treatment of depression-related mood disorders in mammals, particularly humans are disclosed. The methods of the invention include administration of compounds capable of enhancing glutamate transporter activity in the brain of mammals suffering from depression. ATP-sensitive K.sup.+ channel openers and .beta.-lactam antibiotics are used to enhance glutamate transport and to treat depression-related mood disorders and depressive symptoms.

Henn, Fritz

2013-04-09T23:59:59.000Z

185

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

186

2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

Meachum, Teresa Ray; Lewis, Michael George

2002-02-01T23:59:59.000Z

187

2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

Meachum, T.R.; Lewis, M.G.

2002-02-15T23:59:59.000Z

188

Energy consumption, conservation and recovery in municipal wastewater treatment: an overview  

SciTech Connect

The potentials for energy consumption, conservation, and recovery at municipal wastewater treatment plants are relatively small compared to the national energy figures. Nevertheless they are significant, particularly to local owners and operators. Estimates of energy consumption, as well as opportunities for conservation and energy recovery in municipal wastewater treatment operations, are reviewed. The relationship between energy conservation and aquaculture based wastewater treatment systems is also introduced. Finally, current DOE activities in this area are presented.

Bender, M F

1979-01-01T23:59:59.000Z

189

MHK Projects/Bonnybrook Wastewater Facility Project 1 | Open Energy  

Open Energy Info (EERE)

Bonnybrook Wastewater Facility Project 1 Bonnybrook Wastewater Facility Project 1 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0097,"lon":-114.02,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

190

MHK Projects/Bonnybrook Wastewater Facility Project 2 | Open Energy  

Open Energy Info (EERE)

Bonnybrook Wastewater Facility Project 2 Bonnybrook Wastewater Facility Project 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.0097,"lon":-114.02,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

191

Management of Biological Materials in Wastewater from Research & Development Facilities  

SciTech Connect

PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

2011-04-01T23:59:59.000Z

192

Reduce Overhead, Implement Energy Efficiency in Water/Wastewater  

E-Print Network (OSTI)

Through the Focus on Energy program in the State of Wisconsin we have been able to identify savings for industries in their water/wastewater treatment or distribution systems. Modifications required to realize savings resulted in reduced energy consumption and reduced cost to industry. Reduced cost is a pleasant benefit when the cost of utility bills comes off the bottom line and if the industry is working on a 5 percent margin the actual value of the savings could be considered to be 20 times its actual savings. Modifications can be made in wastewater treatment applications by adjusting dissolved oxygen (DO) levels in treatment process, modifying aeration system blowers, changing diffusers, and considering a DO automatic control system. In water systems, changes in pump operations by not throttling valves for control, adding variable speed drives to constant speed operations, and reducing pressure on systems where it will not adversely impact the process.

Cantwell, J. C.

2007-01-01T23:59:59.000Z

193

Implementing Energy Efficiency in Wastewater to Reduce Costs  

E-Print Network (OSTI)

In the industrial world creating a quality product at minimum cost is the goal. In this environment all expenses are scrutinized, when they are part of the manufacturing process. However, even at the most conscientious facility the wastewater system is often overlooked, just plain accepted as is. At many locations facility personnel are completely unaware of utility costs but more importantly they are not aware of their energy consumption. The Wisconsin Focus on Energy Industrial Program has surveyed and assessed many municipal and industrial wastewater systems across the state, identified opportunities to save energy and assisted in implementing energy efficiency modifications without adversely impacting the quality of the treatment system or the manufacturing process. In many instances not only did the energy efficiency modification result in reduced energy consumption and costs, it also reduced maintenance and down time while improving effluent quality. Most of the opportunities that were implemented were installed while the manufacturing operations remained in operation.

Cantwell, J. C.

2008-01-01T23:59:59.000Z

194

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network (OSTI)

wastewater energy and environmental parameters, tariffs, andenergy and environmental parameters correlated with weather and tariffenergy and environmental parameters correlated with weather and tariff

Lewis, Glen

2010-01-01T23:59:59.000Z

195

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network (OSTI)

and Automated Demand Response in Wastewater TreatmentProcessing Industry Demand Response Participation: A Scopingand Open Automated Demand Response. Lawrence Berkeley

Lewis, Glen

2010-01-01T23:59:59.000Z

196

Pretreatment of Pulp Mill Wastewater Treatment Residues to Improve Their Anaerobic Digestion.  

E-Print Network (OSTI)

??Anaerobic digestion of excess biological wastewater treatment sludge (WAS) from pulp mills has the potential to reduce disposal costs and to generate energy through biogas (more)

Wood, Nicholas

2009-01-01T23:59:59.000Z

197

Total organic carbon (TOC) and chemical oxygen demand (COD) - Monitoring of organic pollutants in wastewater.  

E-Print Network (OSTI)

?? Total organic carbon (TOC) and chemical oxygen demand (COD) are two methods used for measuring organic pollutants in wastewater. Both methods are widely used (more)

Hodzic, Elvisa

2011-01-01T23:59:59.000Z

198

Numerical Simulation of an Open Channel Ultraviolet Waste-water Disinfection Reactor.  

E-Print Network (OSTI)

??The disinfection characteristics of an open channel ultra-violet (UV) wastewater disinfection reactor are investigated using a computational fluid dynamics (CFD) model. The model is based (more)

Saha, Rajib Kumar

2013-01-01T23:59:59.000Z

199

Removal and Utilization of Wastewater Nutrients for Algae Biomass and Biofuels.  

E-Print Network (OSTI)

??The Logan City Environmental Department operates a facility that consists of 460 acres of fairly shallow lagoons (~ 5'deep) for biological wastewater treatment that meets (more)

Griffiths, Erick W.

2009-01-01T23:59:59.000Z

200

Lipid Productivity of Algae Grown on Dairy Wastewater as a Possible Feedstock for Biodiesel.  

E-Print Network (OSTI)

??The objective of this thesis is to develop a biological wastewater treatment system that utilizes algal growth to simultaneously create renewable energy in the form (more)

Woertz, Ian C

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Algal Biofilm Production and Harvesting System for Wastewater Treatment with Biofuels By-Products.  

E-Print Network (OSTI)

?? Excess nitrogen and phosphorus in discharged wastewaters can lead to downstream eutrophication, ecosystem damage, and impaired water quality that may affect human health. Chemical-based (more)

Christenson, Logan

2011-01-01T23:59:59.000Z

202

Ozone Alternative Disinfection Study for a Large-Scale Wastewater Treatment Plant  

Science Conference Proceedings (OSTI)

This report describes a feasibility study for the use of an ozonation disinfection system for the treatment of wastewater in the Passaic Valley.

1999-12-06T23:59:59.000Z

203

Carbon Dioxide and Hydrogen Sulfide Emission Factors Applicable to Wastewater Wet Wells.  

E-Print Network (OSTI)

??Transport of wastewater in sewer networks causes potential problems associated with gases which include ammonia, carbon dioxide, carbon monoxide, hydrogen sulfide and methane, in regard (more)

Mudragaddam, Madhuri

2010-01-01T23:59:59.000Z

204

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network (OSTI)

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500 (more)

Guo, Chenghong.

2011-01-01T23:59:59.000Z

205

Treatment of biomass gasification wastewaters using liquid-liquid extraction  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) investigated liquid-liquid extraction as a treatment method for biomass gasification wastewaters (BGW). Distribution coefficients for chemical oxygen demand (COD) removal were determined for the following solvents: methylisobutyl ketone (MIBK), n-butyl acetate, n-butanol, MIBK/n-butyl acetate (50:50 vol), MIBK/n-butanol (50:50 vol), tri-butyl phosphate, tri-n-octyl phosphine oxide (TOPO)/MIBK (10:90 wt), TOPO/kerosene (10:90 wt), kerosene, and toluene. The best distribution coefficient of 1.3 was given by n-butanol. Chemical analysis of the wastewater by gas chromatography (GC) showed acetic acid and propionic acid concentrations of about 4000 mg/1. Methanol, ethanol, and acetone were identified in trace amounts. These five compounds accounted for 45% of the measured COD of 29,000 mg/1. Because of the presence of carboxylic acids, pH was expected to affect extraction of the wastewater. At low pH the acids should be in the acidic form, which increased extraction by MIBK. Extraction by n-butanol was increased at high pH, where the acids should be in the ionic form.

Bell, N.E.

1981-09-01T23:59:59.000Z

206

Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction  

DOE Green Energy (OSTI)

The broad range of processing conditions involved in direct biomass liquefaction lead to a variety of product properties. The aqueous byproduct streams have received limited analyses because priority has been placed on analysis of the complex organic liquid product. The range of organic contaminants carried in the aqueous byproducts directly correlates with the quantity and quality of contaminants in the liquid oil product. The data in the literature gives a general indication of the types and amounts of components expected in biomass liquefaction wastewater; however, the data is insufficient to prepare a general model that predicts the wastewater composition from any given liquefaction process. Such a model would be useful in predicting the amount of water that would be soluble in a given oil and the level of dissolved water at which a second aqueous-rich phase would separate from the oil. Both biological and thermochemical processes have proposed for wastewater treatment, but no treatment process has been tested. Aerobic and anaerobic biological systems as well as oxidative and catalytic reforming thermochemical systems should be considered.

Elliott, D.C.

1992-05-01T23:59:59.000Z

207

Evaluation of ultrafiltration membranes for treating low-level radioactive contaminated liquid waste  

SciTech Connect

A series of experiments were performed on Waste Disposal Facility (WD) influent using Romicon hollow fiber ultrafiltration modules with molecular weight cutoffs ranging from 2000 to 80,000. The rejection of conductivity was low in most cases. The rejection of radioactivity ranged from 90 to 98%, depending on the membrane type and on the feed concentration. Typical product activity ranged from 7 to 100 dis/min/ml of alpha radiation. Experiments were also performed on alpha-contaminated laundry wastewater. Results ranged from 98 to >99.8%, depending on the membrane type. This yielded a product concentration of less than 0.1 dis/min/ml of alpha radiation. Tests on PP-Building decontamination water yielded rejections of 85 to 88% alpha radiation depending on the membrane type. These experiments show that the ability to remove radioactivity by membrane is a function of the contents of the waste stream because the radioactivity in the wastewater is in various forms: ionic, polymeric, colloidal, and absorbed onto suspended solids. Although removal of suspended or colloidal material is very high, removal of ionic material is not as effective. Alpha-contaminated laundry wastewater proved to be the easiest to decontaminate, whereas the low-level PP-Building decontamination water proved to be the most difficult to decontaminate. Decontamination of the WD influent, a combined waste stream, varied considerably from day to day because of its constantly changing makeup. The WD influent was also treated with various substances, such as polyelectrolytes, complexing agents, and coagulants, to determine if these additives would aid in the removal of radioactive material from the various wastewaters by complexing the ionic species. At the present time, none of the additives evaluated has had much effect; but experiments are continuing.

Koenst, J.W.; Roberts, R.C.

1978-03-31T23:59:59.000Z

208

Review: Data-derived soft-sensors for biological wastewater treatment plants: An overview  

Science Conference Proceedings (OSTI)

This paper surveys and discusses the application of data-derived soft-sensing techniques in biological wastewater treatment plants. Emphasis is given to an extensive overview of the current status and to the specific challenges and potential that allow ... Keywords: Data-driven models, Soft-sensors, Wastewater treatment, Water quality monitoring

Henri Haimi, Michela Mulas, Francesco Corona, Riku Vahala

2013-09-01T23:59:59.000Z

209

Integrated Fault Detection and Isolation: Application to a Winery's Wastewater Treatment Plant  

Science Conference Proceedings (OSTI)

In this paper, an integrated object-oriented fuzzy logic fault detection and isolation (FDI) module for a biological wastewater treatment process is presented. The defined FDI strategy and the software implementation are detailed. Using experimental ... Keywords: anaerobic digestion, fuzzy logic, object-oriented programming, on-line fault detection and isolation (FDI), wastewater treatment

Antoine Genovesi; Jrme Harmand; Jean-Philippe Steyer

2000-07-01T23:59:59.000Z

210

Advanced On-Site Wastewater Treatment and Management Market Study: Volume 2: State Reports  

Science Conference Proceedings (OSTI)

This report is comprised of summaries of the status of on-site and small community wastewater systems in each state in the United States. The summaries provide an excellent general reference for further research into the status of each state's on-site wastewater systems.

2000-09-27T23:59:59.000Z

211

The Reactive Light Yellow Dye Wastewater Treatment by Sewage Sludge-Based Activated Carbon  

Science Conference Proceedings (OSTI)

The paper is aim to discuss the dye wastewater treatment by sewage sludge-based adsorbent. The adsorbent derived from sewage sludge, which produced through phosphoric acid-microwave method, and commercia activated carbon (ACC) were tested in the process ... Keywords: Sewage Sludge-based Activated Carbon (ACSS), the Reactive Light Yellow, Dye Wastewater, Adsorption

Yang Lijun; Dai Qunwei

2011-02-01T23:59:59.000Z

212

Literature analysis of anaerobic wastewater treatment in China from 1998 to 2008  

Science Conference Proceedings (OSTI)

Based on the bibliometric method, this paper analyzes statistically the research papers on anaerobic wastewater treatment in China collected by China Journal Whole-length Database of National Knowledge Infrastructure (CNKI) published during the period ... Keywords: anaerobic treatment, bibliometric method, literature, wastewater

Liu Min; Huang Zhan-bin; Huang Zhen

2010-03-01T23:59:59.000Z

213

Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants  

Science Conference Proceedings (OSTI)

Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process. Due to the low accuracy and unstable performance of the traditional effluent ... Keywords: Wastewater treatment process, effluent quality prediction, extreme learning machine, genetic algorithm, selective ensemble model

Li-Jie Zhao; Tian-You Chai; De-Cheng Yuan

2012-12-01T23:59:59.000Z

214

Distributed digital processing and closed loop computer control of wastewater treatment  

Science Conference Proceedings (OSTI)

The application of digital computer control to municipal wastewater treatment processes is steadily gaining popularity. Within the next few years this mode of control is expected to become a standard feature of larger wastewater treatment plants. The ... Keywords: Closed loop systems, PID control, computer application, computer control, digital control, direct digital control, ecology, feedback, feedforward, water pollution

Bipin Mishra

1980-01-01T23:59:59.000Z

215

Scenario analysis for the role of sanitation infrastructures in integrated urban wastewater management  

Science Conference Proceedings (OSTI)

Traditionally, the sanitation infrastructures of most of the Urban Wastewater Systems (UWSs) have been managed individually, without considering the many relationships among the sewer systems, Wastewater Treatment Plants (WWTPs) and receiving waters. ... Keywords: Ammonia concentration, Catchment, Expert knowledge, Management scenarios, Model integration, Sanitation infrastructure control, Water Framework Directive, Water quality

F. Devesa; J. Comas; C. Turon; A. Freix; F. Carrasco; M. Poch

2009-03-01T23:59:59.000Z

216

Aeration control and parameter soft estimation for a wastewater treatment plant using a neurogenetic design  

Science Conference Proceedings (OSTI)

Biochemical oxygen demand and chemical oxygen demand are the most important parameters for wastewater management and planning, which represents the oxygen consumption from degradation of organic material. Insufficient levels of dissolved oxygen prevent ... Keywords: aeration optimal control, artificial neural networks, genetic algorithms, wastewater process

Javier Fernandez de Canete; Pablo del Saz-Orozco; Inmaculada Garcia-Moral

2011-06-01T23:59:59.000Z

217

Prediction analysis of a wastewater treatment system using a Bayesian network  

Science Conference Proceedings (OSTI)

Wastewater treatment is a complicated dynamic process, the effectiveness of which is affected by microbial, chemical, and physical factors. At present, predicting the effluent quality of wastewater treatment systems is difficult because of complex biological ... Keywords: Bayesian network, Inference, Modified sequencing batch reactor, Prediction analysis

Dan Li; Hai Zhen Yang; Xiao Feng Liang

2013-02-01T23:59:59.000Z

218

Evaluating the environmental impact of coal-fired power plants through wastewater pollutant vector  

Science Conference Proceedings (OSTI)

Reliable and safe operation of a coal-fired power plant is strongly linked to freshwater resources, and environmental problems related to water source and wastewater discharging are challenging the power plant operation. This study deals with an evaluation ... Keywords: coal-fired power plant, environmental impact, pollutant vector, wastewater

Nikos E. Mastorakis; Andreea Jeles; Cornelia A. Bulucea; Carmen A. Bulucea; Constantin Brindusa

2011-07-01T23:59:59.000Z

219

Study on Further Treatment of Coal Coking Wastewater by Ultrasound Wave, Fenton's Reagent and Coagulation  

Science Conference Proceedings (OSTI)

The study on further treatment of coal coking wastewater by ultrasound wave, Fenton's reagent and coagulation was carried out in this paper at the first time, Furthermore, this paper discussed the optimum cooperative reaction condition of their combined ... Keywords: ultrasound wave, coke plant wastewater, Fenton reagent, coagulation

Jun Shi; Liangbo Zhang

2009-10-01T23:59:59.000Z

220

Bioreactors: Wastewater treatment. (Latest citations from the Life Sciences Collection database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the use of bioreactors for wastewater treatment. References to stirred tank, photobio, biofilm, oxidizing, composting, fluidized bed, porous membrane, and plate column reactors are presented. Applications in municipal, food processing, chemical, agricultural, mining, and oil-refining wastewater treatment are reviewed. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

Teresa R. Meachum

2004-02-01T23:59:59.000Z

222

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, T.R.; Lewis, M.G.

2003-02-20T23:59:59.000Z

223

1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters  

Science Conference Proceedings (OSTI)

This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order.

Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

1997-07-24T23:59:59.000Z

224

Source Characterization and Pretreatment Evaluation of Pharmaceuticals and Personal Care Products in Healthcare Facility Wastewater  

E-Print Network (OSTI)

Healthcare facility wastewaters are a potentially important and under characterized source of pharmaceuticals and personal care products to the environment. In this study the composition and magnitude of pharmaceuticals and personal care products (PPCPs) released into a single municipalitys wastewater system from a hospital, a nursing care facility, an assisted living facility and an independent living facility are presented for 54 pharmaceuticals, 8 hormones and 31 Alkylphenol ethoxylates (APEOs). Chemical oxidation using molecular ozone and advanced oxidation processes (AOPs) (UV-hydrogen peroxide, Fentons Reagent, and Photo Fentons Reagent) were screened and evaluated as potential treatment technologies for removal of APEOs in water and wastewater. In this research, APEOs were found to be dominant PPCP class out of 94 individual analytes measured, accounting for more than 65% of the total mass loading observed leaving the healthcare facility wastewater. Seventy one out of the total measured PPCPs were detected in wastewater from at least one of the facilities. Healthcare facility wastewater are the source of PPCPs to the environment; however, their contribution to the total magnitude of PPCPs in municipal wastewater and the surrounding environment will be determined by the relative flow contribution of wastewater released from the facility to the municipal sewer network. Molecular ozone and advanced oxidation processes were observed to remove APEOs from analyzed water matrices; however, understanding the product formation during the oxidation process is important before concluding a suitable treatment process. Molecular ozone reacted selectively with the double bond in the APEO while AOPs reaction was non selective oxidation. During the AOPs, OH formation rate and scavenging rate constant of wastewater was found to be the factors governing the oxidation process. Thus, the research carried out informs a risk management decisions concerning the prevalence of PPCPs in the wastewater and use of oxidation systems as a treatment technologies for removal of PPCPs.

Nagarnaik, Pranav Mukund

2011-05-01T23:59:59.000Z

225

DEVELOPMENT OF CHEMICAL REDUCTION AND AIR STRIPPING PROCESSES TO REMOVE MERCURY FROM WASTEWATER  

SciTech Connect

This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

Jackson, D.; Looney, B.; Craig, B.; Thompson, M.; Kmetz, T.

2013-07-10T23:59:59.000Z

226

SEPARATION OF HEAVY METALS: REMOVAL FROM INDUSTRIAL WASTEWATERS  

Office of Scientific and Technical Information (OSTI)

SEPARATION SEPARATION OF HEAVY METALS: REMOVAL FROM INDUSTRIAL WASTEWATERS AND CONTAMINATED SOIL* Robert W. Peters + and Linda Shem Energy Systems Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 Abstract This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and

227

Arsenic and Selenium Speciation in Fly Ash and Wastewater  

Science Conference Proceedings (OSTI)

The objective of the work is to predict As and Se behavior in pond wastewater based on coal and power plant characteristics so that utilities will have tools for selection of coals (and blends) that will allow them to meet applicable water quality regulations in the ash pond discharge. Arsenic and selenium were chosen as the focus of this work because the behavior of arsenic and selenium is not well correlated with pH in ash pond water, but with speciation of these oxyanions in the fly ash. Furthermore, ...

2005-03-28T23:59:59.000Z

228

Drying radioactive wastewater salts using a thin film dryer  

SciTech Connect

This paper describes the operational experience in drying brines generated at a radioactive wastewater treatment facility. The brines are composed of aqueous ammonium sulfate/sodium sulfate and aqueous sodium nitrate/sodium sulfate, The brine feeds receive pretreatment to preclude dryer bridging and fouling. The dryer products are a distillate and a powder. The dryer is a vertical thin film type consisting of a steam heated cylinder with rotor. Maintenance on the dryer has been minimal. Although many operability problems have had to be overcome, dryer performance can now be said to be highly reliable.

Scully, D.E.

1998-03-19T23:59:59.000Z

229

Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction  

DOE Green Energy (OSTI)

Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

Elliott, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1992-04-01T23:59:59.000Z

230

Prurigo pigmentosa treated with doxycycline  

E-Print Network (OSTI)

to minocycline [ 2 ]. Doxycycline has been reported to besuccessfully with doxycycline. References 1. Nagashima M.pigmentosa treated with doxycycline Tugba Rezan Ekmekci,

Ekmekci, Tugba Rezan; Altunay, Ilknur Kivanc; Koslu, Adem

2006-01-01T23:59:59.000Z

231

System for treating produced water  

DOE Patents (OSTI)

A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

Sullivan, Enid J. (Los Alamos, NM); Katz, Lynn (Austin, TX); Kinney, Kerry (Austin, TX); Bowman, Robert S. (Lemitar, NM); Kwon, Soondong (Kyungbuk, KR)

2010-08-03T23:59:59.000Z

232

Energy efficiency in municipal wastewater treatment plants: Technology assessment  

SciTech Connect

The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

1995-11-01T23:59:59.000Z

233

Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater  

SciTech Connect

TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

Terry Yost; Paul Pier; Gregory Brodie

2007-12-31T23:59:59.000Z

234

Treated Wastewater for Irrigated Agriculture in the Jordan Valley - Analysing Water allocation and Willingness to Pay for reused water.  

E-Print Network (OSTI)

??Jordan Valley is an important regional supplier of crops where much of the freshwater resources are consumed. A Water Reuse Index shows that there is (more)

Alfarra, Amani

2010-01-01T23:59:59.000Z

235

Heat treating of manufactured components  

DOE Patents (OSTI)

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

Ripley, Edward B. (Knoxville, TN)

2012-05-22T23:59:59.000Z

236

Upgrading of TREAT experimental capabilities  

Science Conference Proceedings (OSTI)

The TREAT facility at the Argonne National Laboratory site in the Idaho National Engineering Laboratory is being upgraded to provide capabilities for fast-reactor-safety transient experiments not possible at any other experimental facility. Principal TREAT Upgrade (TU) goal is provision for 37-pin size experiments on energetics of core-disruptive accidents (CDA) in fast breeder reactor cores with moderate sodium void coefficients. this goal requires a significant enhancement of the capabilities of the TREAT facility, specifically including reactor control, hardened neutron spectrum incident on the test sample, and enlarged building. The upgraded facility will retain the capability for small-size experiments of the types currently being performed in TREAT. Reactor building and crane upgrading have been completed. TU schedules call for the components of the upgraded reactor system to be finished in 1984, including upgraded TREAT fuel and control system, and expanded coverage by the hodoscope fuel-motion diagnostics system.

Dickerman, C.E.; Rose, D.; Bhattacharyya, S.K.

1982-01-01T23:59:59.000Z

237

Waste-water characterization survey, Little Rock AFB, Arizona. Final report, 11-24 July 1988  

Science Conference Proceedings (OSTI)

The AFOEHL conducted a waste-water characterization survey at Little Rock AFB from 11 to 24 Jul 88. The scope of the survey included characterizing the major sanitary discharges on base and determining whether the waste-water being discharged to the Jacksonville Wastewater Treatment plant violated limits for biochemical oxygen demand and total suspended solids. A total of 26 sampling sites were evaluated. Analytical results showed that discharge standards for biological oxygen demand and total suspended solids were not being exceeded by Little Rock AFB.

Scott, S.P.

1989-05-01T23:59:59.000Z

238

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

SciTech Connect

This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

2010-08-20T23:59:59.000Z

239

Saving Energy at 24/7 Wastewater Treatment Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy at 24/7 Wastewater Treatment Plant Energy at 24/7 Wastewater Treatment Plant Saving Energy at 24/7 Wastewater Treatment Plant July 29, 2010 - 4:11pm Addthis How does it work? Longview, Texas received $781,900 in Recovery Act funding. Co-generation power plant to save 16,571 kWh annually. Local utility to provide the city $150 rebate for every kW of peak demand reduced. In the city of Longview, Texas, the wastewater treatment facility uses more electricity than any other public building. Making investments to permanently cut energy costs at the plant is important for this East Texas city of approximately 77,000. "Our city has felt the effects of the recession. Several companies have laid 100-200 folks off and many are still waiting to be hired back," said Shawn Raney, a safety specialist with the Longview city government. "The

240

Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed  

E-Print Network (OSTI)

Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

Walker, Kent B. (Kent Bramwell)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mechanical Freeze/Thaw and Freeze Concentration of Water and Wastewater Residuals  

Science Conference Proceedings (OSTI)

Water and wastewater treatment plants generate water residuals that must be disposed of in accordance with environmental regulations. This report analyzes the use of mechanical freeze/thaw and freeze concentration processes to reduce the volume of these residuals.

2003-11-06T23:59:59.000Z

242

The role of SCADA in developing a lean enterprise for municipal wastewater operations  

E-Print Network (OSTI)

Central to optimizing a wastewater system's operations is the collection of alarm and operational data from various remote locations throughout a municipality, hence the basic need for supervisory control and data acquisition ...

Prutz, Stanley J

2005-01-01T23:59:59.000Z

243

Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry  

E-Print Network (OSTI)

Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

Scampini, Amanda C

2010-01-01T23:59:59.000Z

244

Wastewater treatment in the oil-shale industry  

SciTech Connect

Because of the stringent state and federal standards governing the discharge of wastes into local waters and the limited water supplies in this area, an oil shale industry will probably reuse process effluents to the maximum extent possible and evaporate the residuals. Therefore, discharge of effluents into surface and ground waters may not be necessary. This paper reviews the subject of wastewater treatment for an oil shale industry and identifies key issues and research priorities that must be resolved before a large-scale commercial industry can be developed. It focuses on treatment of the waters unique to an oil shale industry: retort water, gas condensate, and mine water. Each presents a unique set of challenges.

Fox, J.P.; Phillips, T.E.

1980-08-01T23:59:59.000Z

245

System of treating flue gas  

DOE Patents (OSTI)

A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

Ziegler, D.L.

1975-12-01T23:59:59.000Z

246

Fluoride-containing wastewater converted to synthetic fluorspar  

Science Conference Proceedings (OSTI)

In the manufacture of uranium hexafluoride, sulfur hexafluoride, iodine pentafluoride, and antimony pentafluoride, the Allied Corporation's Metropolis Works (Metropolis, IL) generates approximately 250,000 gpd of process wastewater which contains substantial amounts of soluble fluoride. Most of the wastewater is also acidic. Alkaline waste and hydrated lime (calcium hydroxide) in a pair of neutralizers are used to precipitate the soluble fluoride as calcium fluoride. Due to the alkalinity, the material is considered a hazardous waste. The limited availability of land suitable for the construction of impoundment basins and the potential for eventual seepage from the basins presented a challenge to the management and technical staff at the Metropolis Works situation on-site. Efforts were directed toward developing a process to convert the calcium fluoride waste into a useful product. Excess lime waste could be converted to 90% CaF/sub 2/ by neutralizing the lime with hydrofluoric acid. The 90% CaF/sub 2/, closely resembling fluorspar, would be able to be used directly at other Allied plants as a substitute for natural fluorspar in the production of anhydrous hydrofluoric (AHF) acid. Engineering efforts to design a full-scale plant for the recovery of CaF/sub 2/ began in mid-1980. Construction of the plant begin in July, 1981. Since startup in mid-1982, the full scale recovery plant has been in continuous operation. Design capacity is 8000 tons/yr of synthetic fluorspar. The synthetic fluorspar is directly replacing an equivalent amount of imported natural fluorspar in the production of anhydrous hydrofluoric acid. Total cost to construct the CaF/sub 2/ recovery plant was $4.3 million. Currently realized cost savings of about $1 million/yr give the project an expected payback period of under five years.

Cipolla, A.J.; Shields, E.J.; Wickersham, C.P.; Toy, D.A.

1985-11-01T23:59:59.000Z

247

National Research Needs Conference Proceedings: Risk-Based Decision Making for Onsite Wastewater Treatment  

Science Conference Proceedings (OSTI)

On May 19-20, 2000, the Research Needs Conference for "Risk-Based Decision Making for Onsite Wastewater Treatment" was convened in St. Louis, Missouri. The conference, funded by the U.S. Environmental Protection Agency (EPA), was the culmination of an eighteen-month-long effort by the National Decentralized Water Resources Capacity Development Project (NDWRCDP) to assist onsite wastewater leadership in identifying critical research gaps in the field. The five "White Papers" included in this volume of Pro...

2001-03-15T23:59:59.000Z

248

Treatment Technology Summary For Critical Pollutants of Concern in Power Plant Wastewaters  

Science Conference Proceedings (OSTI)

This report summarizes the most promising technologies available for the removal of aluminum, arsenic, boron, copper, mercury and selenium from power plant FGD wastewaters. Remediation of the high chloride levels in FGD waters is also discussed. The information for this technology summary stems from literature searches, technology supplier and vendor interviews and the authors' experience in power plant and other wastewater treatment systems. The report lists existing and potential technologies that meet...

2007-01-30T23:59:59.000Z

249

Wastewater Subsurface Drip Distribution: Peer-Reviewed Guidelines for Design, Operation, and Maintenance  

Science Conference Proceedings (OSTI)

Subsurface drip distribution is the most efficient method currently available for application and subsurface dispersal of wastewater to soil. Because it is so effective, drip distribution represents a viable option for wastewater disposal and reuse for all soil types. The technology is commonly used at sites where point source discharges and National Pollutant Discharge Elimination System (NPDES) permits are not appropriate due to environmental sensitivity of receiving streams. It is also commonly used a...

2004-03-15T23:59:59.000Z

250

Emissions of volatile and potentially toxic organic compounds from waste-water treatment plants and collection systems (Phase 2). Volume 3. Waste-water treatment-plant emissions. Experimental phase. Final report  

SciTech Connect

Volume 3 describes the measurements and experimental data obtained to assess emissions from various points within a POTW. Included are a discussion of sampling methods development, emissions studies of activated carbon bed odor control units located at various points of a large municipal wastewater treatment plant and its collection system, upwind/downwind sampling from an activated sludge aeration basins at a large municipal wastewater treatment plant, and preliminary studies of haloform formation as a result of chlorination of wastewater.

Chang, D.P.Y.; Guensler, R.; Kim, J.O.; Chou, T.L.; Uyeminami, D.

1991-08-01T23:59:59.000Z

251

Renewable Energy in Water and Wastewater Treatment Applications; Period of Performance: April 1, 2001--September 1, 2001  

Science Conference Proceedings (OSTI)

This guidebook will help readers understand where and how renewable energy technologies can be used for water and wastewater treatment applications. It is specifically designed for rural and small urban center water supply and wastewater treatment applications. This guidebook also provides basic information for selecting water resources and for various kinds of commercially available water supply and wastewater treatment technologies and power sources currently in the market.

Argaw, N.

2003-06-01T23:59:59.000Z

252

Simultaneous removal of COD and ammonia from high-strength wastewater in a three-phase fluidized bed reactor.  

E-Print Network (OSTI)

??A major challenge of environmental engineering is the efficient treatment of wastewater containing high concentrations of chemical oxygen demand (COD) and ammonia. This work addresses (more)

Wan, Li

2006-01-01T23:59:59.000Z

253

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

state.aspx? id=124. California Energy Commission. (2000). "pubs/fuelcell.pdf. California Energy Commission (2003).Wastewater Treatment. California Energy Commission (2003).

Lekov, Alex

2010-01-01T23:59:59.000Z

254

Biofuel potential, nitrogen utilization, and growth rates of two green algae isolated from a wastewater treatment facility.  

E-Print Network (OSTI)

??Nitrogen removal from wastewater by algae provides the additional benefit of producing lipids for biofuel and biomass for anaerobic digestion. As ammonium is the renewable (more)

Eustance, Everett O'Brien.

2011-01-01T23:59:59.000Z

255

National and Regional Water and Wastewater Rates For Use in Cost-Benefit Models and Evaluations of Water Efficiency Programs  

E-Print Network (OSTI)

2006 California Water Rate Survey. 2006. Black & VeatchRegional Water and Wastewater Rates For Use in Cost-Benefit5 Calculated Marginal Rates for

Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

2008-01-01T23:59:59.000Z

256

Uniformity of wastewater dispersal using subsurface drip emitters  

E-Print Network (OSTI)

An on-site wastewater treatment project site with two separate drip fields produced data on emitter flow rates and uniformity after 6 years of operation. The site served a two-bedroom residence in Weslaco, Texas, with treatment through a septic tank and subsurface flow constructed wetland. Filtration was accomplished with a small sand filter and screen filter. Results represent a worst-case scenario because the air relief valves were improperly installed and maintenance on the system was lacking. A pressure compensating (PC) emitter (Netafim Bioline 2.30 L/hr) and a pressure dependent (PD) emitter (Aqua-Drip 3.79 L/hr) were evaluated. When new, the PC emitters produced a mean discharge of 2.33 L/hr with a manufacturing coefficient of 0.043. The PD emitters, when new, produced a mean discharge of 4.30 L/hr and a manufacturing coefficient of variation of 0.016. The testing protocol was verified with the collection of data on new emitters. Two individual drip fields contained PC emitters (Netafim Bioline 3.50 L/hr) and PD emitters (Aqua-Drip 2.35 L/hr). The PC emitters were installed in a 200 m continuous length of tubing and the PD emitters were installed with ten individual lines of 15.24 m connected with a supply and return header. Wastewater with an average BOD? of 23 mg/L was applied to two drip fields for 6 years. Emitter flow rates for 313 PC emitters were reduced to a mean discharge of 0.95 L/hr with a coefficient of variation of 0.74 and the 251 PD emitters were reduced to a mean discharge of 1.52 L/hr with a coefficient of variation of 0.35. Two shock chlorination treatments with chlorine concentrations of 500 mg/L and 1000 mg/L were used to increase the emitter's flow rate. Sixty PC and 61 PD emitters were evaluated. The initial average flow rate of the PC emitters was 0.818 L/hr. Average flow rates for the PC emitters increased significantly to 0.859 L/hr and 0.954 L/hr following the 500 mg/L and 1000 mg/L shock chlorination treatments, respectively. The initial flow rate of the PD emitters was 1.54 L/hr. The field flushing cycle represented an increase in flow rate to 1.60 L/hr. The shock chlorination treatments increased the average flow rate to 1.71 L/hr and 1.77 L/hr following the 500 mg/L and 1000 mg/L treatments respectively. All increases in mean discharge were statistically significant. Uniformity and over-application of wastewater were evaluated by analyzing the soil profile on a 1.22 m grid over the entire drain field. Statistical uniformity was 48.1 percent and 71.4 percent for the PC and PD emitters, respectively. The uniformity coefficient resulted in similar results with 70.1 percent for the PC emitters and 85.6 percent for the PD emitters. PC and PD fields caused an over-application of 55.3 percent and 58.5 percent of the field area, respectively.

Persyn, Russell Alan

2000-01-01T23:59:59.000Z

257

Driving Water and Wastewater Utilities to More Sustainable Energy Management  

E-Print Network (OSTI)

The Water Environment Federation (WEF) and industry leaders have identified the need for an energy roadmap to guide utilities of all sizes down the road to sustainable energy management through increased renewable energy production, energy conservation and focus on overall energy management. This roadmap leverages the framework developed in the electric power sector to move to smart grid technology: the smart grid maturity model (SGMM). The basis of this material originated at a workshop of water and power industry leaders convened by WEF in North Carolina, in March 2012. Case studies were analyzed from successful utilities in Austria, Holland, Australia, and the United States. High level, strategic best practices were identified and organized into topic areas, which define the level of progression (enable, integrate and optimize) towards achieving energy sustainability. The WEF energy roadmap is intended to guide utilities of all sizes as they progress towards becoming the treatment plants of the future. While it is not practical for all wastewater treatment plants to become energy positive or neutral, all can take steps towards increasing energy sustainability. Financial viability for energy management sustainability is crucial for success. Finding alternative financial models such as Energy Services Performance Contracts (ESPC) is a good option to accomplish energy management goals in a timely and financially responsible method.

Ferrel, L.; Liner, B.

2013-01-01T23:59:59.000Z

258

Combination gas producing and waste-water disposal well  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, Raymond M. (McKeesport, PA)

1984-01-01T23:59:59.000Z

259

Waste-water characterization survey, Barksdale AFB, Louisiana. Final report  

Science Conference Proceedings (OSTI)

The USAFOEHL conducted an on-site waste-water-quality survey at Barksdale AFB, LA from 14 to 28 March 1988 at the request of the 2nd Strategic Hospital/SGPB. The survey was requested to resolve a 1 October 1987 EPA Region VI 30-day administrative order. All samples were analyzed for pH, chemical oxygen demand (COD), conductivity, total suspended solids (TSS) and oil and grease. Samples taken from industrial areas were selectively analyzed for purgeable halocarbons, purgeable aromatics, total recoverable phenols (EPA Method 420), phenols (EPA Method 604), fluorides, surfactants (MBAS), characteristic hazardous waste and metals by the ICP metals screen. Lift stations (buildings 4725 and 3455) and NPDES site 003 were also analyzed for biochemical oxygen demand (BOD). Sampling results were evaluated against the following criteria: (1) Bossier City, Louisiana Wastewater Permit Standard BC0022; (2) Pretreatment Standards for Existing Sources, 40 CFR Part 433 - Metal finishing point source category; (3) NPDES Permit LA0007293 for Mack's Bayou.

Zimmer, A.T.

1988-11-01T23:59:59.000Z

260

Ecological surveys of the proposed high explosives wastewater treatment facility region  

SciTech Connect

Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

Haarmann, T.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Volatile organic compound emissions from usaf wastewater treatment plants in ozone nonattainment areas. Master's thesis  

Science Conference Proceedings (OSTI)

In accordance with the 1990 Clean Air Act Amendments (CAAA), this research conducts an evaluation of the potential emission of volatile organic compounds (VOCs) from selected Air Force wastewater treatment plants. Using a conservative mass balance analysis and process specific simulation models, volatile organic emission estimates are calculated for four individual facilities--Edwards AFB, Luke AFB, McGuire AFB, and McClellan AFB--which represent a cross section of the current inventory of USAF wastewater plants in ozone nonattainment areas. From these calculations, maximum facility emissions are determined which represent the upper limit for the potential VOC emissions from these wastewater plants. Based on the calculated emission estimates, each selected wastewater facility is evaluated as a potential major stationary source of volatile organic emissions under both Title I of the 1990 CAAA and the plant's governing Clean Air Act state implementation plan. Next, the potential impact of the specific volatile organics being emitted is discussed in terms of their relative reactivity and individual contribution to tropospheric ozone formation. Finally, a relative comparison is made between the estimated VOC emissions for the selected wastewater facilities and the total VOC emissions for their respective host installations.

Ouellette, B.A.

1994-09-01T23:59:59.000Z

262

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

Science Conference Proceedings (OSTI)

Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

2009-09-09T23:59:59.000Z

263

Method for treating liquid wastes  

DOE Patents (OSTI)

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

Katti, Kattesh V. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Singh, Prahlad (Columbia, MO); Ketring, Alan R. (Columbia, MO)

1995-01-01T23:59:59.000Z

264

Method for treating liquid wastes  

DOE Patents (OSTI)

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

1995-12-26T23:59:59.000Z

265

Treated Wood Planted Post Study  

Science Conference Proceedings (OSTI)

This Technical Update describes the interim results of a planted post study currently under way at the Austin Cary Memorial Forest (ACMF), operated by The University of Florida, in Gainesville. The purpose of this research is to examine the effectiveness of commercially available prevention methods to reduce preservative migration from treated wood poles, compare the migration of constituents of various wood treatments, and assess the environmental impacts and performance of untreated chestnut.

2009-11-12T23:59:59.000Z

266

Effluent Quality Prediction of Wastewater Treatment Plant Based on Fuzzy-Rough Sets and Artificial Neural Networks  

Science Conference Proceedings (OSTI)

Effluent ammonia-nitrogen (NH3-N), chemical oxygen demand (COD) and total nitrogen (TN) removals are the most common environmental and process performance indicator for all types of wastewater treatment plants (WWTPs). In this paper, a soft computing ... Keywords: neural network, fuzzy rough sets, input variable selection, wastewater treatment, prediction, soft computing

Fei Luo; Ren-hui Yu; Yu-ge Xu; Yan Li

2009-08-01T23:59:59.000Z

267

A case history of a coal gasification wastewater cooling tower at the Great Plains coal gasification project  

SciTech Connect

This paper describes the conceptual process design of the Great Plains cooling water system, the fouling history of the cooling tower, and the results of the design modifications. In addition, general design guidelines for future wastewater reuse cooling towers are recommended. By following these guidelines, design engineers can minimize the risk of fouling that could impair a wastewater cooling tower's thermal performance.

Crocker, B.R.; Bromel, M.C.; Pontbriand, M.W.

1987-01-01T23:59:59.000Z

268

2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation  

SciTech Connect

The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

Meachum, Teresa Ray; Michael G. Lewis

2003-02-01T23:59:59.000Z

269

Decision support methodology using rule-based reasoning coupled to non-parametric measurement for industrial wastewater network management  

Science Conference Proceedings (OSTI)

EU water framework directive [Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy, Official Journal L 327, 22/12/2000 p. 0001-0073] encourages ... Keywords: Decision support methodology (DSM), Industrial wastewater network, UV spectra, Variability, WWTP, Wastewater quality controls

E. Dupuit; M. F. Pouet; O. Thomas; J. Bourgois

2007-08-01T23:59:59.000Z

270

Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment  

Science Conference Proceedings (OSTI)

Moving Bed Biofilm Reactor (MBBR) technology is a suitable option for up-grading and retro-fitting wastewater treatment plants. Although being introduced in late 80s, design and operational guidelines of MBBR are mainly based on empirical approaches. ... Keywords: MBBR, Modelling, Municipal wastewater, Respirometry, Storage

Martina Ferrai; Giuseppe Guglielmi; Gianni Andreottola

2010-05-01T23:59:59.000Z

271

Determination of Baselines for Evaluation and Promotion of Energy Efficiency in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Wastewater treatment plants are one of the largest energy consumers managed by the public sector. As plants expand in the future to accommodate population growth, energy requirements will substantially increase. Thus, implementation of energy efficient technologies is crucial in reducing national energy consumption. A detailed understanding of the current industry standards (baselines) is needed to estimate the energy savings potential for advanced state-of-the-art technologies and to provide incentives for application of the new technologies in retrofit and new construction projects. This paper summarizes the process BASE Energy, Inc. (BASE) went through to establish baselines to compare the energy performance of potential energy efficient technologies in the wastewater treatment industry that can be applied to energy efficiency programs available for wastewater treatment plants.

Chow, S. A.; Ganji, A. R.; Fok, S.

2009-05-01T23:59:59.000Z

272

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

273

ENERGY STAR Score for Wastewater Treatment Plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Wastewater Treatment Plants Wastewater Treatment Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

274

Water/Wastewater Engineering Report (High Efficiency Pump/Motor Replacement - M2 Model)  

E-Print Network (OSTI)

Pumping water or wastewater is the largest use of electricity for a municipal water supply or wastewater treatment plant. Increasing the overall efficiency of the pumping system can achieve significant energy savings. Overall pump system efficiency depends on the efficiency of the motor, the pump, and the design of the piping layout. The model developed in this document focuses on improvements mostly to the pumping system rather than a municipal piping system. Furthermore, this model primarily addresses electric motor-driven pumps, and does not include the pumps driven with gasoline or diesel engines.

Liu, Z.; Brumbelow, K.; Haberl, J. S.

2006-10-30T23:59:59.000Z

275

mhbai@sinica.edu.tw, kchen@iis.sinica.edu.tw, jschang@cs.nthu.edu.tw WordNet (word  

E-Print Network (OSTI)

] WordNet "plant" WordNet "plant, works, industrial plant" (power plant/) WordNet [Diab et al 2 evaporation tank evaporation/ tank/ wind-wave tank wind-wave/ tank/ wave tank wave/ tank

276

Wastewater characterization survey, Cannon Air Force Base, New Mexico. Final report, 28 September 1992-9 October 1992  

Science Conference Proceedings (OSTI)

A wastewater characterization survey was conducted at Cannon AFB, New Mexico, from 28 September 1992 - 9 October 1992 by personnel from the Water Quality Branch of Armstrong Laboratory. Extensive sampling of the wastewater lagoon influent, effluent, and sludge was conducted. In addition, 9 industrial sites were sampled in the industrial areas of the base. The average influent biochemical oxygen demand (BOD) was 197 milligrams per liter (mg/1) and the average chemical oxygen demand (COD) was 436 mg/1. The lagoons removed 63% of the BOD in the wastewater. Low levels of metals were found, but levels of oils and greases, chloride, sulfate, solids, nitrogen, and phosphorus were higher than typical of weak wastewater levels. Selenium levels in the wastewater were higher than allowed by New Mexico Water Quality Regulations for irrigation. The new wastewater treatment plant to be built must comply with New Mexico standards for discharges of water into or below the surface of the ground.... Wastewater characterization, Cannon AFB, New Mexico, Selenium, Irrigation, Lagoon, Biochemical oxygen demand, Chemical oxygen demand.

McCoy, R.P.

1993-05-01T23:59:59.000Z

277

Multi-criteria analysis of wastewater treatment plant design and control scenarios under uncertainty  

Science Conference Proceedings (OSTI)

Wastewater treatment plant control and monitoring can help to achieve good effluent quality, in a complex, highly non-linear process. The Benchmark Simulation Model no. 2 (BSM2) is a useful tool to competitively evaluate plant-wide control on a long-term ... Keywords: Activated sludge model, Anaerobic digestion, Anoxic volume, BSM2, Cascade controller, Monte Carlo simulation, Multi-criteria assessment

L. Benedetti; B. De Baets; I. Nopens; P. A. Vanrolleghem

2010-05-01T23:59:59.000Z

278

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

DOE Green Energy (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

279

A selection framework for infrastructure condition monitoring technologies in water and wastewater networks  

Science Conference Proceedings (OSTI)

The global water sector faces significant challenges to maintain secure and reliable service provision in the context of ageing infrastructure, urban growth, and with investment capacity constrained by user affordability. As part of an on-going effort ... Keywords: Asset management, Condition monitoring, Intelligent Networks, Pipe networks, Water/wastewater

P. Davis; E. Sullivan; D. Marlow; D. Marney

2013-05-01T23:59:59.000Z

280

Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment  

SciTech Connect

The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

Oji, L.N.

1999-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Role of fly ash in the removal of organic pollutants from wastewater  

Science Conference Proceedings (OSTI)

Fly ash, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various organic pollutants from wastewater. The wastewater contains various types of phenolic compounds, such as chloro, nitro, amino, and other substituted compounds. Various types of pesticides, such as lindane, malathion, carbofuran, etc., and dyes, such as, methylene blue, crystal violet, malachite green, etc., are also present in the wastewater. These contaminants pollute the water stream. These organic pollutants, such as phenolic compounds, pesticides, and dyes, etc., can be removed very effectively using fly ash as adsorbent. This article presents a detailed review on the role of fly ash in the removal of organic pollutants from wastewater. Adsorption of various pollutants using fly ash has been reviewed. The adsorption mechanism and other influencing factors, favorable conditions, and competitive ions, etc., on the adsorption process have also been discussed in this paper. It is evident from the review that fly ash has demonstrated good removal capabilities for various organic compounds. 171 refs., 3 figs., 5 tabs.

M. Ahmaruzzaman [National Institute of Technology, Silchar (India). Department of Chemistry

2009-03-15T23:59:59.000Z

282

Application of RBF Network Based on Immune Algorithm to Predicting of Wastewater Treatment  

Science Conference Proceedings (OSTI)

Wastewater treatment is a nonlinear, time-varing and time- delay process. It is difficult to establish exact mathematic model. A novel radial basis function (RBF) neural network model based on immune algorithm (IA) is presented in this paper. It combines ...

Hongtao Ye; Fei Luo; Yuge Xu

2009-05-01T23:59:59.000Z

283

Study on Processing Condition of Submerged Rotating MBR for Wastewater Treatment  

Science Conference Proceedings (OSTI)

A submerged rotating membrane bioreactor (SRMBR), with a rotatable, rounded, flat-sheet Poly(vinyldiene fluoride) (PVDF) membrane module fixed on the hollow axes and moved by an electromotor, was used for wastewater reclamation. The efficiencies of SRMBR, ... Keywords: Submerged rotating MBR, rotation speed, permeate flux, PVDF flat-sheet composite membrane

Danying Zuo; Hongjun Li

2009-10-01T23:59:59.000Z

284

Effect of loading rate variation on soybean protein wastewater treatment by UASB reactor  

Science Conference Proceedings (OSTI)

In order to improve the efficiency and evaluate the feasibility of anaerobic digestion for treatment of soybean protein wastewater. The stability and performance of the Up?Flow Anaerobic Sludge Blanket (UASB) process was investigated at different organic loading rates (OLRS) and hydraulic retention times over 200 days. When chemical oxygen demand (COD) reached maximum

Yi Sun; Yongfeng Li; Zi?rui Guo; An?ying Jiao; Wei Han; Chuan?ping Yang

2010-01-01T23:59:59.000Z

285

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process  

E-Print Network (OSTI)

. The dynamics of this process are the ones of standard anaerobic digestion, and depend on the type of organic is devoted to the description of the model of the specific anaerobic digestion processA dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater

286

SewerSnort: A drifting sensor for in situ Wastewater Collection System gas monitoring  

Science Conference Proceedings (OSTI)

Biochemical reactions that occur in sewer pipes produce a considerable amount of hydrogen sulfide gas (H"2S corrosive and poisonous), methane gas (CH"4 explosive and a major climate change contributor), carbon dioxide (CO"2 a major climate change contributor), ... Keywords: Biochemical process, Electrochemical gas sensor, Mobile sensing, Received signal strength indicator based localization, Wastewater Collection System

Jung Soo Lim, Jihyoung Kim, Jonathan Friedman, Uichin Lee, Luiz Vieira, Diego Rosso, Mario Gerla, Mani B. Srivastava

2013-06-01T23:59:59.000Z

287

Flue Gas Desulfurization Scrubber Maintenance Guide: Wastewater Treatment and Gypsum Handling Area  

Science Conference Proceedings (OSTI)

The Flue Gas Desulfurization Scrubber Maintenance Guide: Wastewater Treatment and Gypsum Handling Area provides fossil plant maintenance personnel with current maintenance information on these systems. This guide will assist plant maintenance personnel in improving the reliability and reducing the maintenance costs for these areas of their scrubber system.

2009-12-23T23:59:59.000Z

288

Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)  

E-Print Network (OSTI)

for the first time. Bioelectrochemical treatability was evaluated relative to oxygen demand. MECs were-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1 ± 0.2 A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal

289

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network (OSTI)

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

290

Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater  

E-Print Network (OSTI)

Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

Shawabkeh, Reyad A.

291

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network (OSTI)

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge to concentrations in Marcellus Shale produced waters. Nonetheless, 226 Ra levels in stream sediments (544-8759 Bq

Jackson, Robert B.

292

Wastewater treatment: Dye and pigment industry. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning treatment of wastewater containing dyes and pigments. The citations discuss the of dyes and pigments in wastewater treatment systems, biodegradation of dyes, absorption and adsorption processes to remove dyes from wastewater, environmental effects from the disposal of dye-containing wastes, and methods of analysis for dyes in waste streams. Treatment methods such as ozonation, reverse osmosis, activated charcoal filtration, activated sludge, electrochemical treatments, thermal treatments, simple filtration, and absorption media are included. (Contains a minimum of 112 citations and includes a subject term index and title list.)

Not Available

1993-03-01T23:59:59.000Z

293

2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of compliance conditions and activities Discussion of the facilitys environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

Mike Lewis

2013-02-01T23:59:59.000Z

294

Metabolic Prosthesis for Treating Ischemic Diseases  

ORNL researchers have developed a new approach for treating ischemic diseases that will deliver oxygen directly to affected tissues by electrolysis of body fluids. Numerous treatments currently exist or have been proposed for treating ischemic ...

295

Treating water-reactive wastes  

DOE Green Energy (OSTI)

Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated.

Lussiez, G.W.

1993-01-01T23:59:59.000Z

296

Treating water-reactive wastes  

DOE Green Energy (OSTI)

Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated.

Lussiez, G.W.

1993-05-01T23:59:59.000Z

297

METHOD FOR TREATING GRAPHITE PRODUCT  

DOE Patents (OSTI)

A method is described for treating a carbon body with a carbonyl consisting of nickel, iron, and mixtures thereof. The carbonyl is decomposed in a non-oxidizing atmosphere into a mixture of the metal and carbon monoxide on the surface of a carbon body heated to above the decomposition point of the carbonyl. The temperature is increased of the carbon body to an elevated temperature above the point at which a liquid eutectic mixture of the metal and carbon of the carbon body is formed at the surface and below that at which substantial carburization occurs. The elevated temperature is maintained whereby the liquid mixture flows over the surface of the carbon body. The carbon body is cooled below the decomposition temperature of the carbonyl of the metal and to a temperature suitable for forming the carbonyl of the metal. The carbon body is then contacted with carbon monoxide at the carbonyl-forming temperature, whereby carbonyl of the metal is formed in and on the carbon body. The carbonyl is removed from the carbon body by gasifying the carbonyl. (AEC)

Gurinsky, D.H.

1961-08-01T23:59:59.000Z

298

Method of treating waste water  

DOE Patents (OSTI)

A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

Deininger, James P. (Colorado Springs, CO); Chatfield, Linda K. (Colorado Springs, CO)

1995-01-01T23:59:59.000Z

299

Method of treating waste water  

DOE Patents (OSTI)

A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

Deininger, J. Paul (Colorado Springs, CO); Chatfield, Linda K. (Colorado Springs, CO)

1991-01-01T23:59:59.000Z

300

Electrochemical degradation characteristics of refractory organic pollutants in coking wastewater on multiwall carbon nanotube-modified electrode  

Science Conference Proceedings (OSTI)

The multiwall carbon nanotube-mollified electrode (MWCNT-ME) was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical ...

Yan Wang; Shujing Sun; Guifu Ding; Hong Wang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant  

SciTech Connect

This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

Not Available

2005-12-01T23:59:59.000Z

302

Evaluation of the Origin of Dissolved Organic Carbon and the Treatability of Mercury in Flue Gas Desulfurization Wastewater  

Science Conference Proceedings (OSTI)

Regulations for reducing the dissolved mercury (Hg) concentrations in wastewater discharged by electric generating power plants are becoming more stringent via federal regulatory limits proposed by the EPA and regulatory limits set by select states. Data obtained in a previous EPRI study conducted in 2009 suggested a potential negative impact of dissolved organic carbon (DOC) and iodide concentrations present in flue gas desulfurization (FGD) wastewater on mercury treatability (EPRI report 1019867). ...

2013-12-17T23:59:59.000Z

303

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

DOE Green Energy (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

304

Wei-Ting So () 985402001@cc.ncu.edu.tw  

E-Print Network (OSTI)

Pro- cessing Advances in Wireless Communica- tions, pp. 565-569, July 2008. [8] U. Toseef, M. A. Khan. Islam and A. Z. Kou- zani, "Peak to Average Power Ratio Analysis for LTE Systems," IEEE 2nd. on Wire- less Communication, Vol. 8, pp.2161-2165, May 2009. [6] M. Wang, Z. Zhong and Q. Liu, "Resource

Jiang, Jehn-Ruey

305

Wen-Hsien Li () whli@phy.ncu.edu.tw  

E-Print Network (OSTI)

Trench ManillaTrench 8.2cm/yr Okinawa Trough SlateBelt Foothills Eurasian Plate LuzonArc North 100 km

Chen, Yang-Yuan

306

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

SciTech Connect

This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

2009-04-01T23:59:59.000Z

307

Ocean current observations near McMurdo Station, Antarctica from 1991 to 1993: Relation to wastewater discharge dispersal  

SciTech Connect

Analyses of ocean currents in the vicinity of McMurdo Station, Antarctica, are relevant to the transport and dispersal of wastewater from the McMurdo Station sewage outfall pipe. Observations of ocean currents during the initial phases of this study have been presented by Howington and McFeters. These studies, using coliform bacterial counts as an indicator of dispersion of the wastewater plume and current meters to measure flow patterns, indicated that dispersal of the plume by local currents does not effectively remove the plume from the vicinity of McMurdo Sound, under the present outfall pipe location. Moreover, these studies suggest that, although the flow pattern is generally consistent with transport of the plume away from McMurdo Station, episodes of current reversal are sufficient to transport the wastewater plume along the shore toward the southeast, eventually overlapping the seawater intake area near the McMurdo jetty. Several concerns included (a) impacts of wastewater inputs to nearshore benthic and pelagic habitats adjacent to McMurdo Station, (b) effects of wastewater input to the McMurdo Station fresh water intake source, and (c) reduction in human impacts on the McMurdo Sound ecosystem. These concerns motivated studies to characterize nearshore currents more extensively in relation to dispersal of the wastewater plume. This report discusses analysis results of current observations from November 1992 to November 1993.

Barry, J.P. [J. P. Consulting, Monterey, CA (United States)

1994-08-01T23:59:59.000Z

308

Hanford Treats Record Amount of Groundwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 13, 2011 September 13, 2011 Hanford Treats Record Amount of Groundwater RICHLAND, Wash. - Workers have treated more than 800 million gallons of groundwater at the Hanford Site so far this year, a record annual amount. Last year, workers with DOE contractor CH2M HILL Plateau Remediation Company treated 600 mil- lion gallons of groundwater at the site. "It's great to know the amount of treated groundwater is increasing. We are meeting our goals, which means we are protecting the Columbia River," said Bill Barrett, CH2M HILL director of pump and treat operations and maintenance. American Recovery and Reinvestment Act work to expand Hanford's capacity for treating contami- nated groundwater led to the 2011 record amount. The Recovery Act funded the installation of more

309

APPLICATIONS OF LAYERED DOUBLE HYDROXIDES IN REMOVING OXYANIONS FROM OIL REFINING AND COAL MINING WASTEWATER  

SciTech Connect

Western Research Institute (WRI), in conjunction with the U.S. Department of Energy (DOE), conducted a study of using the layered double hydroxides (LDH) as filter material to remove microorganisms, large biological molecules, certain anions and toxic oxyanions from various waste streams, including wastewater from refineries. Results demonstrate that LDH has a high adsorbing capability to those compounds with negative surface charge. Constituents studied include model bacteria, viruses, arsenic, selenium, vanadium, diesel range hydrocarbons, methyl tert-butyl ether (MTBE), mixed petroleum constituents, humic materials and anions. This project also attempted to modify the physical structure of LDH for the application as a filtration material. Flow characterizations of the modified LDH materials were also investigated. Results to date indicate that LDH is a cost-effective new material to be used for wastewater treatment, especially for the treatment of anions and oxyanions.

Song Jin; Paul Fallgren

2006-03-01T23:59:59.000Z

310

Hanford Treats Record Amount of Groundwater  

Energy.gov (U.S. Department of Energy (DOE))

Workers have treated more than 800 million gallons of groundwater at the Hanford Site so far this year, a record annual amount.

311

Industry Strategic Executive Overview: Highlights of the Municipal Wastewater Treatment Market  

Science Conference Proceedings (OSTI)

The wastewater industry represents significant opportunities for both load growth and energy efficiency in the coming years, but it is also an industry struggling with tremendous pressures. Increasingly strict regulations on water quality and the disposal of biosolids (sludge) are forcing plants to upgrade and add new processes and new technologies. The industry is also dealing with an infrastructure that is beginning to age and funding prospects that are not nearly as positive as they once were. At the ...

2000-12-04T23:59:59.000Z

312

Laboratory Evaluation of Novel Trace Element Removal Technologies for Wet FGD Wastewater  

Science Conference Proceedings (OSTI)

Wet flue gas desulfurization (FGD) systems can remove a wide range of trace elements, such as mercury, selenium, arsenic, and others from the flue gas. Some trace elements leave the FGD system with solid byproduct streams, but a portion generally leaves as dissolved species in the FGD chloride purge stream. The U.S. Environmental Protection Agency (EPA) effluent limitation guidelines and state or local regulations generally limit the quantities of these trace species in wastewater discharges from ...

2012-12-31T23:59:59.000Z

313

Long-Term Performance of a Passive Wastewater Treatment System: The Albright Project  

Science Conference Proceedings (OSTI)

The Albright passive wastewater treatment system, which receives alkaline leachate from a closed coal combustion by-product landfill, has operated continuously for 19 years. It has undergone two major upgrades to incorporate new passive technologies. Monitoring parameters have included pH, alkalinity, acidity, aluminum, iron, manganese, nickel, zinc, total dissolved solids, and total suspended solids, along with several other trace metals present at very low concentrations. This report summarizes the his...

2007-11-12T23:59:59.000Z

314

Water Research 39 (2005) 49614968 Electricity generation from swine wastewater using microbial  

E-Print Network (OSTI)

chemical oxygen demand (SCOD) (maximum power density of 45 mW/m2 ). More extensive tests with a single-chambered air cathode MFC produced a maximum power density with the animal wastewater of 261 mW/m2 (200 O, with a maximum power density of Pmax ¼ 225 mW=m2 (fixed 1000 O resistor) and half-saturation concentration of Ks

315

Wastewater recycling and heat reclamation at the Red Lion Central Laundry, Portland, Oregon  

SciTech Connect

This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges, reductions in water heating energy, and potential reductions in water treatment chemicals. This report provides an economic analysis of the impact of capital investment, daily consumption, and local utility rates on the payback period.

Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

1996-09-01T23:59:59.000Z

316

Performance Evaluation of a Radial Deionization System for Flue Gas Desulfurization Wastewater Treatment  

Science Conference Proceedings (OSTI)

The U. S. Environmental Protection Agencys proposed effluent limitation guidelines for steam electric power generating units could affect not only how power plants use water but also how they discharge it. The revised guidelines propose discharge limits for selenium, mercury, arsenic, and nitrite/nitrate in flue gas desulfurization (FGD) wastewater. Final rule approval is expected by the middle of 2014. Additional regulation of these contaminants and other constituents may occur through ...

2013-12-23T23:59:59.000Z

317

Supplemental Power for the town of Browning Waste-Water Treatment Facility  

DOE Green Energy (OSTI)

This project has not been without a few, which were worked out and at the time of this report continue to be worked on with the installation of two new Trace Technologies invertors and a rebuilt one with new technology inside. For the most part when the system has worked it produced power that was used within the wastewater system as was the purpose of this project.

William Morris; Dennis Fitzpatrick

2005-12-20T23:59:59.000Z

318

Electricity Use and Management in the Municipal Water Supply and Wastewater Industries  

Science Conference Proceedings (OSTI)

The use of electricity for water and wastewater treatment is increasing due to demands for expanded service capacity and new regulations for upgraded treatment. Options available to control the electricity costs include technological changes, improved management, and participation in electric utility sponsored energy management programs. Appropriate options for a specific system will vary depending on the system characteristics, availability of electric utility programs to assist the water and ...

2013-11-26T23:59:59.000Z

319

Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater  

Science Conference Proceedings (OSTI)

A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity of outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed wetland treatment system are repositories for As, Hg, and Se and the bioavailability of these elements decreased after deposition, the pilot-scale constructed wetland treatment system contributed significantly to mitigation of risks to aquatic life from these elements.

John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert; Meg Iannacone

2005-09-01T23:59:59.000Z

320

File:Individual wastewater permit packet s-7.pdf | Open Energy Information  

Open Energy Info (EERE)

Individual wastewater permit packet s-7.pdf Individual wastewater permit packet s-7.pdf Jump to: navigation, search File File history File usage File:Individual wastewater permit packet s-7.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 423 KB, MIME type: application/pdf, 33 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:34, 24 October 2012 Thumbnail for version as of 09:34, 24 October 2012 1,275 × 1,650, 33 pages (423 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment  

SciTech Connect

The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater. -- Graphical abstract: The morphologies of the titanates depend deeply on the concentration of NaOH. With increasing NaOH concentration, three different formation mechanisms were proposed. The application of these titanate nanostructures in the wastewater treatment was studied. Display Omitted Research highlights: {yields} Effect of NaOH concentration on the structures of various titanates was reported. {yields} Three different formation mechanisms were presented with increasing NaOH concentration. {yields} Various titanates were used as adsorbents/photocatalysts in wastewater treatment.

Huang Jiquan [Key Lab of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate school of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049 (China); Cao Yongge, E-mail: caoyongge@fjirsm.ac.c [Key Lab of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Deng Zhonghua; Tong Hao [Key Lab of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

2011-03-15T23:59:59.000Z

322

ROLE OF TOXICITY ASSESSMENT AND MONITORING IN MANAGING THE RECOVERY OF A WASTEWATER RECEIVING STREAM  

Science Conference Proceedings (OSTI)

We evaluate the roles of a long-term comprehensive toxicity assessment and monitoring program in management and for ecological recovery of a freshwater receiving stream impacted by industrial discharges and legacy contamination. National Pollution Discharge Elimination Permit (NPDES)-driven whole effluent toxicity (WET) tests using Ceriodaphnia and fathead minnows were conducted for more than twenty years to characterize wastewaters at the US National Nuclear Security Agency s Y-12 National Security Complex in Oak Ridge, Tennessee. Ambient toxicity tests also were conducted to assess water samples from EFPC, the stream receiving the wastewater discharges. The ambient tests were conducted as part of an extensive biological monitoring program that included routine surveys of fish, invertebrate and periphyton communities. WET testing, associated toxicant identification evaluations (TIEs), and ambient toxicity monitoring were instrumental in identifying toxicants and their sources at the Y-12 Complex, guiding modifications to wastewater treatment procedures, and assessing the success of various pollution-abatement actions. Through time, as requirements changed and water quality improved, the toxicity monitoring program became more focused. Ambient testing with Ceriodaphnia and fathead minnow larvae also was supplemented with less-standardized but more-sensitive alternative laboratory and in situ bioassays. The Y-12 Complex biological monitoring experience demonstrates the significant roles effluent and ambient toxicity testing can have in controlling and managing toxic discharges to receiving waters. It also emphasizes the value of supplementing WET and standardized ambient toxicity tests with alternative laboratory and in situ toxicity tests tailored to address specific problems.

Greeley Jr, Mark Stephen [ORNL; Kszos, Lynn A [ORNL; Stewart, Arthur J [ORNL; Smith, John G [ORNL

2011-01-01T23:59:59.000Z

323

Anaerobic Co-digestion of Chicken Processing Wastewater and Crude Glycerol from Biodiesel  

E-Print Network (OSTI)

The main objective of this thesis was to study the anaerobic digestion (AD) of wastewater from a chicken processing facility and of crude glycerol from local biodiesel operations. The AD of these substrates was conducted in bench-scale reactors operated in the batch mode at 35C. The secondary objective was to evaluate two sources of glycerol as co-substrates for AD to determine if different processing methods for the glycerol had an effect on CH? production. The biogas yields were higher for co-digestion than for digestion of wastewater alone, with average yields at 1 atmosphere and 0C of 0.555 and 0.540 L (g VS added)?, respectively. Another set of results showed that the glycerol from an on-farm biodiesel operation had a CH? yield of 0.702 L (g VS added)?, and the glycerol from an industrial/commercial biodiesel operation had a CH? yield of 0.375 L (g VS added)?. Therefore, the farm glycerol likely had more carbon content than industrial glycerol. It was believed that the farm glycerol had more impurities, such as free fatty acids, biodiesel and methanol. In conclusion, anaerobic co-digestion of chicken processing wastewater and crude glycerol was successfully applied to produce biogas rich in CH?.

Foucault, Lucas Jose

2011-08-01T23:59:59.000Z

324

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

DOE Green Energy (OSTI)

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

325

Management Practices for Used Treated Wood  

Science Conference Proceedings (OSTI)

Pentachlorophenol, creosote, and other chemicals are used to preserve poles, crossarms, and railroad ties for the electric, telecommunications, and railroad industries. Each year, millions of pieces of treated wood are retired. This report provides information on current and potential options for management of used treated wood.

1995-08-02T23:59:59.000Z

326

Building Energy Software Tools Directory: TREAT  

NLE Websites -- All DOE Office Websites (Extended Search)

TREAT TREAT TREAT logo. Performs hourly simulations for single family, multifamily, and mobile homes. Comprehensive analysis tool includes tools for retrofitting heating and cooling systems, building envelopes (insulation and infiltration), windows and doors, hot water, ventilation, lighting and appliances, and more. Weather normalizes utility bills for comparison to performance of model. Highly accurate calculations which consider waste heat (baseload), solar heat gain, and fully interacted energy savings calculations. Create individual energy improvements or packages of interactive improvements. Also performs load sizing. Generates XML file for upload to online database tracking systems. Complies with HERS BESTEST. Approved by the U.S. Department of Energy for use in Weatherization Assistance Programs. Screen

327

Building Energy Software Tools Directory: TREAT  

NLE Websites -- All DOE Office Websites (Extended Search)

TREAT TREAT TREAT logo. Performs hourly simulations for single family, multifamily, and mobile homes. Comprehensive analysis tool includes tools for retrofitting heating and cooling systems, building envelopes (insulation and infiltration), windows and doors, hot water, ventilation, lighting and appliances, and more. Weather normalizes utility bills for comparison to performance of model. Highly accurate calculations which consider waste heat (baseload), solar heat gain, and fully interacted energy savings calculations. Create individual energy improvements or packages of interactive improvements. Also performs load sizing. Generates XML file for upload to online database tracking systems. Complies with HERS BESTEST. Approved by the U.S. Department of Energy for use in Weatherization Assistance Programs. Screen

328

Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances  

Science Conference Proceedings (OSTI)

In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

2006-08-01T23:59:59.000Z

329

National and Regional Water and Wastewater Rates For Use inCost-Benefit Models and Evaluations of Water Efficiency Programs  

Science Conference Proceedings (OSTI)

Calculating the benefits and costs of water conservation orefficiency programs requires knowing the marginal cost of the water andwastewater saved by those programs. Developing an accurate picture of thepotential cost savings from water conservation requires knowing the costof the last few units of water consumed or wastewater released, becausethose are the units that would be saved by increased water efficiency.This report describes the data we obtained on water and wastewater ratesand costs, data gaps we identified, and other issues related to using thedata to estimate the cost savings that might accrue from waterconservation programs. We identified three water and wastewater ratesources. Of these, we recommend using Raftelis Financial Corporation(RFC) because it: a) has the most comprehensive national coverage; and b)provides greatest detail on rates to calculate marginal rates. The figurebelow shows the regional variation in water rates for a range ofconsumption blocks. Figure 1A Marginal Rates of Water Blocks by Regionfrom RFC 2004Water and wastewater rates are rising faster than the rateof inflation. For example, from 1996 to 2004 the average water rateincreased 39.5 percent, average wastewater rate increased 37.8 percent,the CPI (All Urban) increased 20.1 percent, and the CPI (Water andSewerage Maintenance) increased 31.1 percent. On average, annualincreases were 4.3 percent for water and 4.1 percent for wastewater,compared to 2.3 percent for the All Urban CPI and 3.7 percent for the CPIfor water and sewerage maintenance. If trends in rates for water andwastewater rates continue, water-efficient products will become morevaluable and more cost-effective.

Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

2006-09-01T23:59:59.000Z

330

Evaluation of operating characteristics for a chabazite zeolite system for treatment of process wastewater at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

Laboratory and pilot-scale testing were performed for development and design of a chabazite zeolite ion-exchange system to replace existing treatment systems at the Process Waste Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL). The process wastewater treatment systems at ORNL need upgrading to improve efficiency, reduce waste generation, and remove greater quantities of contaminants from the wastewater. Previous study indicated that replacement of the existing PWTP systems with an ion-exchange system using chabazite zeolite will satisfy these upgrade objectives. Pilot-scale testing of the zeolite system was performed using a commercially available ion-exchange system to evaluate physical operating characteristics and to validate smaller-scale column test results. Results of this test program indicate that (1) spent zeolite can be sluiced easily and completely from a commercially designed vessel, (2) clarification followed by granular anthracite prefilters is adequate pretreatment for the zeolite system, and (3) the length of the mass transfer zone was comparable with that obtained in smaller-scale column tests. Laboratory studies were performed to determine the loading capacity of the zeolite for selected heavy metals. These test results indicated fairly effective removal of silver, cadmium, copper, mercury, nickel, lead, and zinc from simple water solutions. Heavy-metals data collected during pilot-scale testing of actual wastewater indicated marginal removal of iron, copper, and zinc. Reduced effectiveness for other heavy metals during pilot testing can be attributed to the presence of interfering cations and the relatively short zeolite/wastewater contact time. Flocculating agents (polyelectrolytes) were tested for pretreatment of wastewater prior to the zeolite flow-through column system. Several commercially available polyelectrolytes were effective in flocculation and settling of suspended solids in process wastewater.

Kent, T.E.; Perona, J.J.; Jennings, H.L.; Lucero, A.J.; Taylor, P.A.

1998-02-01T23:59:59.000Z

331

Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

332

Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1  

Science Conference Proceedings (OSTI)

The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation.

Storm, S.J.

1994-11-08T23:59:59.000Z

333

Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes  

DOE Patents (OSTI)

The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

2002-05-28T23:59:59.000Z

334

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

335

Evaluation of land disposal and underground injection of shale oil wastewaters  

DOE Green Energy (OSTI)

Results indicate that the salinity of retort water, the principal wastewater generated by shale oil recovery operations, will be too high in most cases for irrigation of cover crops needed for effective stabilization by land disposal. Furthermore, large storage lagoons would be required to hold the retort water during the long winters encountered in the oil shale regions of Colorado, Wyoming and Utah. Land disposal cannot be carried out during prolonged periods of freezing weather. Additional problems which may arise with land disposal include air pollution from volatile constituents and groundwater pollution from refractory organics and dissolved salts in the retort water. Pretreatment requirements include the removal of ammonia which is present at toxic concentrations in retort water. Underground injection of retort water may be permitted in regions possessing favorable geological characteristics. It is anticipated that this method would be used as a last resort where effective or resonably priced treatment technology is not available. Regulatory restraints are expected to limit the use of underground injection for disposal of highly polluted shale oil wastewaters. Proving the confinement of injected wastes, a frequently difficult and expensive task, will be required to assure protection of drinking water resources.

Mercer, B.W.; Campbell, A.C.; Wakamiya, W.

1979-05-01T23:59:59.000Z

336

Application of the Analytic Hierarchy Process and the Analytic Network Process for the assessment of different wastewater treatment systems  

Science Conference Proceedings (OSTI)

Multicriteria analyses (MCAs) are used to make comparative assessments of alternative projects or heterogeneous measures and allow several criteria to be taken into account simultaneously in a complex situation. The paper shows the application of different ... Keywords: Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Sustainability assessment, decision support systems (DSS), wastewater treatment (WWT) technologies

Marta Bottero; Elena Comino; Vincenzo Riggio

2011-10-01T23:59:59.000Z

337

Tech-economic Analysis on Anoxic/Oxic Membrane Bioreactor (A/O-MBR) for Domestic Wastewater Treatment  

Science Conference Proceedings (OSTI)

With the project of sewage treatment in Qingdao Liuting International Airport as the case, through the analysis on pollutant removal effect, effluent quality, investment and costs, feasibility of A/O-MBR process is comprehensively studied from such two ... Keywords: A/O-MBR, wastewater treatment, techeconomic analysis

Zhiqiang Liu; Junying Wang; Chengpeng Wang

2010-03-01T23:59:59.000Z

338

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

DOE Green Energy (OSTI)

The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

339

Compositions and methods for treating nuclear fuel  

SciTech Connect

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

2013-08-13T23:59:59.000Z

340

A CHEMICAL METHOD OF TREATING FISSIONABLE MATERIAL  

DOE Patents (OSTI)

One step of a process for separating plutonium from uranium and fission products is presented. A nitric acid solution containing these constituents is treated with formic acid to reduce simultaneously the plutonium to a valence state of not greater than +4 and destroy and eliminate the excess nitric acid.

Olson, C.M.

1959-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Knowledge and Use of Heat Treating Procedures to Analyze the ...  

Science Conference Proceedings (OSTI)

The alloy would have been heat treated ? solution treated and aged ? to obtain ... Failure Analysis of an ERW Welded Pipe that Burst during Pressure Testing.

342

Method for treating beta-spodumene ceramics  

DOE Patents (OSTI)

A vapor-phase method for treating a beta-spodumene ceramic article to achieve a substitution of exchangeable hydrogen ions for the lithium present in the beta-spodumene crystals, wherein a barrier between the ceramic article and the source of exchangeable hydrogen ions is maintained in order to prevent lithium contamination of the hydrogen ion source and to generate highly recoverable lithium salts, is provided.

Day, J. Paul (Big Flats, NY); Hickman, David L. (Big Flats, NY)

1994-09-27T23:59:59.000Z

343

Treating nahcolite containing formations and saline zones  

Science Conference Proceedings (OSTI)

A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

Vinegar, Harold J

2013-06-11T23:59:59.000Z

344

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

345

Federal involvement in: municipal wastewater treatment plant sludge energy recovery and conservation  

DOE Green Energy (OSTI)

The results are presented of a study concerning federal involvement in municipal wastewater treatment plant (MWWTP) sludge energy recovery and conservation. The objectives of the study were to: determine and report the major agency programs and related MWWTP sludge energy recovery and conservation projects; determine and summarize the coordination efforts between federal agencies involved in MWWTP sludge; and recommend future U.S. Energy Research and Development Administration (ERDA) involvement in MWWTP sludge energy recovery and conservation projects. Specific federal agencies designated for surveying include ERDA, EPA, USDA, Bureau of Mines, National Science Foundation, and National Commission on Water Quality. Past (post-1966), present, and planned federal involvement in MWWTP sludge energy recovery and conservation, research and development, demonstration, and study projects were considered.

None

1977-06-01T23:59:59.000Z

346

Using rotating biological contactors for the treatment of coal gasification wastewaters  

Science Conference Proceedings (OSTI)

The objective of this research was to determine the treatability of University of North Dakota Energy Research Centers (UNDERC's) and Great Plains' coal gasification wastewaters using a bench scale four stage rotating biological contactor (RBC). The treatability testing included an evaluation of organic removal rates in the first stage and the overall rates in the last three stages using the Stover-Kincannon model. Nitrification was evaluated at various loading rates. Stage 1 accounted for most of the removal of alcohols, fatty acids, phenol, and thiocyanate from both UNDERC stripped gas liquor (SGL) and for alcohols and fatty acid removal from the Great Plains (GP) SGL. The 2, 3 and 4 stages accomplished very little additional organic removal in either system. Biodegradable organic removals remained high in the first stage of the GP SGL test run despite anaerobic conditions in the first stage. 5 refs., 12 figs., 6 tabs.

Turner, C.D.; Wernberg, K.

1986-01-01T23:59:59.000Z

347

Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment  

DOE Green Energy (OSTI)

Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinic red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

van Hullenbusch, Eric; /Marne la Vallee U.; Farges, Francois; /Stanford U., Geo. Environ. Sci. /Museum Natl. Hist. Natur., Paris; Lenz, Markus; Lens, Piet; /Wageningen U.; Brown, Gordon E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

2006-12-13T23:59:59.000Z

348

The Determination of Deuterium and Tritium in Effluent Wastewater by Pulsed Nuclear Magnetic Resonance Spectroscopy  

SciTech Connect

A pulsed nuclear magnetic resonance (NMR) procedure was developed for the quantitative determination of deuterium and tritium in radioactive, effluent, wastewater to aid in the design of an efficient combined electrolytic/catalytic exchange system for the recovery of these hydrogen isotopes. The deuterium and tritium NMR signals were observed at 9.210 and 45.7 MHz, respectively. Ten different effluent water samples were analyzed for deuterium and tritium to establish base-line data for the preparation of standard reference samples. The hydrogen isotope concentrations ranged from 0.11 to 2.40 g deuterium and from 2.0 to 21.0 mg tritium per liter of processed sample. The standard deviation of the hydrogen isotope determinations is +- 0.017 g deuterium and +- 0.06 mg tritium per liter of processed effluent water. In the future, the effectiveness of specially prepared and analyzed (calorimetry) effluent samples as tritium standards will be investigated.

Attalla, A.; Birkbeck, J. C.

1985-04-01T23:59:59.000Z

349

Removal of cadmium and chromium from a pretreated wastewater with reverse osmosis. Master's thesis  

Science Conference Proceedings (OSTI)

The purpose of this research project was to investigate the removals of cadmium(II) and chromium(VI) from a simulated wastewater by reverse osmosis (RO). The project was one very focused aspect of a major U.S. Navy multi-year research project aimed at achieving zero-discharge from its Industrial Wastewater Treatment Plants. The effects of varied operating conditions on the performance of a thin-film composite brackish water RO membrane were investigated: feed solutions of 1000, 2000, and 3000 mg/l NaCl; 2000 mg/l NaCl at pH 5, 6 and 7; and background feed composition solutions of NaCl and Na2SO4 at four different mix ratios. The effects of temperature in the range of 20 to 36 C, and operating pressures of 400, 300 and 200 psi were also investigated. In nearly all cases metal concentrations were 10 mg/l; a 100 mg/l test was also performed. Typical RO behaviors were observed with water and solute permeation. Both water permeation and solute passage decreased with time due to membrane compaction. On the other hand, water permeation increased with applied pressure. The best rejections for the metals were obtained in feed solutions of sodium chloride and sodium sulfate. A maximum rejection of 99.9 percent was observed for cadmium(II) at a feed solution mole fraction of approximately 0.95 sodium sulfate and a pH of 6. The highest chromium(VI) rejection observed was 99.1 percent at a 0.5 mole fraction of sodium sulfate and pH of 6.

Zapp, K.M.

1992-05-01T23:59:59.000Z

350

Financial and economic determinants of collective action: The case of wastewater management  

SciTech Connect

Where public environmental funds support development of wastewater infrastructure, funding institutions ensure the economic use of funds, while the beneficiaries minimize their own costs. In rural areas, there is often a choice between decentralized or centralized (multi-village) systems: if the centralized system is most economic, then only this system is eligible for public funding. However, its implementation requires a voluntary cooperation of the concerned communities, who need to organize themselves to develop and run the infrastructure. The paper analyzes the social determinants of collaboration in a generic case study, using the following variables: method of (economic) assessment, modeled by the social discount rate, funding policy, modeled by the funding rate, and users' self-organization, modeled by cost sharing. In a borderline situation, where the centralized system turns out to be most economic, but this assessment is contingent on the assessment method, collective action may fail: the advantages of collective action from funding are too small to outweigh organizational deficiencies. Considering in this situation sanitation as a human right, authors recommend using innovative forms of organization and, if these fail, reassessing either the amount of funding or the eligibility for funding of more acceptable alternatives. - Highlights: Black-Right-Pointing-Pointer A generic case study models collective action and funding in wastewater management. Black-Right-Pointing-Pointer Determinants of success: economic assessment, funding policy and self-organization. Black-Right-Pointing-Pointer Success indicators: conflict rate, funds needed to make cost shares fair. Black-Right-Pointing-Pointer Method for analyzing centralized vs. decentralized disputes. Black-Right-Pointing-Pointer If collective action has less benefits, innovative cost sharing may ensure success.

Brunner, Norbert, E-mail: norbert.brunner@cemds.org [Center for Environmental Management and Decision Support, Gregor Mendel Str. 33, A-1180 Vienna (Austria); Starkl, Markus, E-mail: markus.starkl@boku.ac.at [Competence Centre for Decision-Aid in Environmental Management, University of Natural Resources and Life Sciences/DIB, Gregor Mendel Strasse 33, 1180 Wien (Austria)

2012-01-15T23:59:59.000Z

351

Supplemental Power for the town of Browning Waste-Water Treatment Facility  

Science Conference Proceedings (OSTI)

This final report is issued for the "Supplemental power for the Town of Browning waste-water treatment facility" under the Field Verification Program for Small Wind Turbines Grant. The grant application was submitted on April 16, 1999 wherein the full description of this project is outlined. The project was initially designed to test the Bergy small wind turbines, 10 kW, applicability to residential and commercial applications. The objectives of the project were the following: 1. To verify the performance of the BWC Excel-S/E model wind turbine in an operational application in the fierce winds and severe weather conditions of the Class V winds of the Blackfeet Indian Reservation of Northern Montana. 2. To open up the Blackfeet reservation and northern Montana, to government sponsored, regionally distributed wind generation programs. 3. To examine the natural partnership of wind/electric with water pumping and water purification applications whose requirements parallel the variably available nature of energy produced by wind. 4. To provide data and hands-on experience to citizens, scientists, political leaders, utility operators and Tribal planners with regard to the potential uses of small-capacity, distributed-array wind turbines on the Blackfeet Reservation and in other areas of northern Montana. This project has not been without a few, which were worked out and at the time of this report continue to be worked on with the installation of two new Trace Technologies invertors and a rebuilt one with new technology inside. For the most part when the system has worked it produced power that was used within the wastewater system as was the purpose of this project.

William Morris; Dennis Fitzpatrick

2005-12-20T23:59:59.000Z

352

Comparison of small mammal species diversity near wastewater outfalls, natural streams, and dry canyons  

SciTech Connect

A wide range of plant and wildlife species utilizes water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to compare nocturnal small mammal communities at wet areas created by wastewater outfalls with communities in naturally created wet and dry areas. Thirteen locations within LANL boundaries were selected for small mammal mark-recapture trapping. Three of these locations lacked surface water sources and were classified as {open_quotes}dry,{close_quotes} while seven sites were associated with wastewater outfalls ({open_quotes}outfall{close_quotes} sites), and three were located near natural sources of surface water ({open_quotes}natural{close_quotes} sites). Data was collected on site type (dry, outfall or natural), location, species trapped, and the tag number of each individual captured. This data was used to calculate mean number of species, percent capture rate, and species diversity at each type of site. When data from each type of site was pooled, there were no significant differences in these variables between dry, outfall, and natural types. However, when data from individual sites was compared, tests revealed significant differences. All sites in natural areas were significantly higher than dry areas in daily mean number of species, percent capture rate, and species diversity. Most outfall sites were significantly higher than dry areas in all three variables tested. When volume of water from each outfall site was considered, these data indicated that the number of species, percent capture rate, and species diversity of nocturnal small mammals were directly related to the volume of water at a given outfall.

Raymer, D.F. [Los Alamos National Lab., NM (United States); Biggs, J.R. [Ewing Technical Design, Inc., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

353

Selenium Removal by Iron Cementation from a Coal-Fired Power Plant Flue Gas Desulfurization Wastewater in a Continuous Flow System-- a Pilot Study  

Science Conference Proceedings (OSTI)

This technical update describes work funded by the Electric Power Research Institute (EPRI) and performed by MSE Technology Applications, Inc. (MSE) at a coal-fired power plant burning Powder River Basin (PRB) coal (identified in this report as Plant E). This work was based on encouraging results obtained during previous EPRI-funded work on flue gas desulfurization (FGD) wastewater treatability testing by MSE, which focused on selenium removal from a variety of FGD wastewater sources. The results from th...

2009-07-29T23:59:59.000Z

354

PROCESS FOR TREATING VOLATILE METAL FLUORIDES  

DOE Patents (OSTI)

This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.

Rudge, A.J.; Lowe, A.J.

1957-10-01T23:59:59.000Z

355

Process for treating alkaline wastes for vitrification  

DOE Patents (OSTI)

According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

Hsu, Chia-lin W.

1994-01-01T23:59:59.000Z

356

Method for treating materials for solidification  

DOE Patents (OSTI)

A method for treating materials such as wastes for solidification to form a solid, substantially nonleachable product. Addition of reactive silica rather than ordinary silica to the material when bringing the initial molar ratio of its silica constituent to a desired ratio within a preselected range increases the solubility and retention of the materials in the solidified matrix. Materials include hazardous, radioactive, mixed, and heavy metal species. Amounts of other constituents of the material, in addition to its silica content are also added so that the molar ratio of each of these constituents is within the preselected ranges for the final solidified product. The mixture is then solidified by cement solidification or vitrification. The method can be used to treat a variety of wastes, including but not limited to spent filter aids from waste water treatment, waste sludges, combinations of spent filter aids and waste sludges, combinations of supernate and waste sludges, incinerator ash, incinerator offgas blowdown, combinations of incinerator ash and offgas blowdown, cementitious wastes and contaminated soils.

Jantzen, Carol M. (Aiken, SC); Pickett, John B. (Aiken, SC); Martin, Hollis L. (N. Augusta, SC)

1995-01-01T23:59:59.000Z

357

Cultural Resource Investigation for the Materials and Fuels Complex Wastewater System Upgrade at the Idaho National Laboratory  

SciTech Connect

The Materials and Fuels Complex (MFC) located in Bingham County at the Idaho National Laboratory (INL) in southeastern Idaho is considering several alternatives to upgrade wastewater systems to meet future needs at the facility. In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, archaeological field surveys, and coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by the proposed construction and to provide recommendations to protect any resources listed or eligible for listing on the National Register of Historic Places. These investigations showed that one National Register-eligible archaeological site is located on the boundary of the area of potential effects for the wastewater upgrade. This report outlines protective measures to help ensure that this resource is not adversely affected by construction.

Brenda R. Pace; Julie B raun Williams; Hollie Gilbert; Dino Lowrey; Julie Brizzee

2010-05-01T23:59:59.000Z

358

Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling  

SciTech Connect

In the nitrification basins of wastewater treatment plants, deterioration of the concrete surface can occur due to acid attack caused by a nitrifying biofilm covering the concrete. To identify the mechanism of deterioration, concrete cubes of different composition were suspended in an aerated nitrification basin of a wastewater treatment plant for two years and analyzed afterwards. The microstructural investigation reveals that not only dissolution of hydrates takes place, but that calcite precipitation close to the surface occurs leading to the formation of a dense layer. The degree of deterioration of the different cubes correlates with the CaO content of the different cements used. Cements which contain a high fraction of CaO form more calcite offering a better protection against the acid attack. The presence of slag, which lowers the amount CaO in the cement, leads to a faster deterioration of the concrete than observed for samples produced with pure OPC.

Leemann, A., E-mail: andreas.leemann@empa.c [Empa, Duebendorf (Switzerland); Lothenbach, B.; Hoffmann, C. [Empa, Duebendorf (Switzerland)

2010-08-15T23:59:59.000Z

359

Users guide: simulation model for ammunition plants; prediction of wastewater characteristics and impact of reuse/recycle. Final report  

Science Conference Proceedings (OSTI)

This report describes the algorithm and details the operating instructions required for an ammunition plant process model developed for DARCOM environmental personnel. The model was created to define the impact of increased ammunition production on the quantity and quality of the effluents discharged from the plants. It also allows assessment of the impact of recycle/reuse of wastewaters on final effluent quality. This model may be accessed through the Environmental Technical Information System.

Railsback, S.; Messenger, M.; Webster, R.D.; Bandy, J.T.

1983-06-01T23:59:59.000Z

360

Biological Treatment of Ammonia-Rich Wastewaters by Natural Microbial Communities in the ATOXIC/ASSET Purification System  

Science Conference Proceedings (OSTI)

Analyses of bacterial and archaeal 16S rRNA genes along with high throughput 454 pyrosequencing technology were used to identify microbial communities present at a novel passive wastewater treatment system designed to remove ammonium, nitrate, and heavy metals from fossil plant effluents. Seasonal changes in microbial community composition were observed, however significant (p=0.001) changes were detected in bacterial and archaeal communities consistent with ammonium removal throughout the treatment systems. Phylogenetic analysis of 16S rRNA gene sequences revealed presence of potential ammonium-oxidizing bacteria (AOB), Nitrosomonas, Nitrosococcus, Planctomycetes, and OD1. Other bacteria, such as Nitrospira, Nitrococcus, Nitrobacter, Thiobacillus, -Proteobacteria, Firmicutes, Acidobacteria, which play roles in nitrification and denitrification, were also detected. The relative abundance of the potential ammonium-oxidizing archaea (AOA) (Thermoprotei within the phylum Crenarchaeota) increased with ammonium availability at the splitter box and zero-valent iron extraction trenches even though AOB removed half of the ammonium in the trickling filters at the beginning of the treatment system. The microbial community removed the ammonium from the wastewater within both pilot-scale treatment systems, thus the treatment system components provided an effective environment for the treatment of ammonium enriched wastewater from coal burning power plants equipped with selective catalytic reducers for nitrogen oxide removal.

Vishnivetskaya, Tatiana A [ORNL; Fisher, L. Suzanne [Tennessee Valley Authority (TVA); Brodie, Greg A [Tennessee Valley Authority (TVA); Phelps, Tommy Joe [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2012-02-01T23:59:59.000Z

362

2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facilitys environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2013-02-01T23:59:59.000Z

363

Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels  

DOE Green Energy (OSTI)

The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

Not Available

1980-05-01T23:59:59.000Z

364

Process and system for treating waste water  

DOE Patents (OSTI)

A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

Olesen, Douglas E. (Kennewick, WA); Shuckrow, Alan J. (Pasco, WA)

1978-01-01T23:59:59.000Z

365

Electrotechnologies in Metal Heat Treating Systems -- Marketing Kit  

Science Conference Proceedings (OSTI)

Due to the increased demand for lighter and stronger materials and assemblies, the practice of heat treating to improve material mechanical properties is expected to expand to an even greater number of end products. This heat treating marketing kit is designed to help utility sales and marketing personnel perform a progressive analysis of electrotechnology applications in heat treating systems. The kit is designed for utility personnel who have limited knowledge of the heat treating industry and for indu...

2000-07-27T23:59:59.000Z

366

Bio-composite Nonwoven Media Based on Chitosan and Empty Fruit Bunches for Wastewater Application  

SciTech Connect

Fibrous filter media in the form of non-woven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Lignocellulosic such as empty fruit bunches have potential to be used as a low cost filter media as they represent unused resources, widely available and are environmentally friendly. Laboratory filtration tests were performed to investigate the potential application of empty fruit bunches that enriched with chitosan as a fiber filter media to remove suspended solids, oil and grease, and organics in terms of chemical oxygen demand from palm oil mill effluent. The present paper studies the effect of chitosan concentration on the filter media performance. Bench-scaled experiment results indicated that pre-treatment using the fiber filtration system removed up to 67.3% of total suspended solid, 65.1% of oil and grease and 46.1% of chemical oxygen demand. The results show that the lignocellulosic fiber filter could be a potential technology for primary wastewater treatment.

Sadikin, Aziatul Niza; Nawawi, Mohd Ghazali Mohd; Othman, Norasikin

2011-01-17T23:59:59.000Z

367

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

368

A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants  

SciTech Connect

The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

2012-11-15T23:59:59.000Z

369

Development and testing of a wastewater recycler and heater. Final report  

SciTech Connect

The results of this program have demonstrated the feasibility of an automatic and self-contained appliance that can recover and store usable hot water from waste laundry water, using essentially the same amount of energy as an equivalent-capacity water heater. It has been shown by extended evaluation tests with a waste stream of real laundry water that this unit is capable of recovering sterile hot water at a steady state rate of 22.7 liters/hour (6 gph) with a specific energy draw of 79 watt-hours/liter (299 watt-hours/gal), without the use of any expendable chemicals. It has also been shown by extended evaluation tests with a feed that simulates hospital wastewater preconcentrated by ultrafiltration and reverse osmosis that this unit can increase the solids concentration of a waste water from less than 2% to at least 29.3%. The results of a manufacturing cost analysis have shown that a conservative annual cost (that is, a maximum annual cost) of this appliance is $717 per year. Economic feasibility therefore is not demonstrable at present on a large scale. However, should water cost increase or the cost of the appliance decrease, a viable demand for household water recovery with the appliance would be possible.

Guarino, V.J.; Bambenek, R.A.

1976-12-01T23:59:59.000Z

370

Process for treating alkaline wastes for vitrification  

DOE Patents (OSTI)

A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

Hsu, Chia-lin W. (Augusta, GA)

1995-01-01T23:59:59.000Z

371

Nitric acid requirement for treating sludge  

DOE Green Energy (OSTI)

The hydroxylamine nitrate (HAN) precipitate hydrolysis process produces sufficient oxidant (nitrate) such that the resulting blend of formic acid treated sludge and the aqueous product from hydrolysis (PHA) produces a melter feed of acceptable redox (i.e. Fe+2/Total Fe <0.33). With implementation of Late Washing (to reduce the nitrite content of the tetraphenyborate slurry produced during In-Tank Precipitation to 0.01M or less), HAN is no longer required during hydrolysis. As a result, the nitrate content of the melter feed will be reduced greater than an order-of-magnitude and the resulting melter feed produced will be too reducing. If formic acid treatment of the sludge is retained, it will be necessary to trim the melter feed with an oxidant to attain a proper redox. Rather than trimming the melter feed with an oxidant subsequent to the SRAT cycle in which formic acid is used to acidify the sludge, the Savannah River Technology Center (SRTC) has recommended this be accomplished by conversion to nitric acid addition to the Sludge Receipt and Adjustment Tank (SRAT) in place of formic acid (1). This memorandum specifies the stoichiometric bases for determining the nitric acid requirement for the SRAT.

Hsu, C.W.

1992-09-04T23:59:59.000Z

372

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of special compliance conditions Discussion of the facilitys environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

373

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David Frederick

2012-02-01T23:59:59.000Z

374

Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1992--February 24, 1993  

SciTech Connect

During the first quarter of the above contract, all the elements of Task 1 were completed. The first quarterly report presented an overview of a wetland and its increasing use in industrial wastewater treatment. An idealized, reaction engineering description of wetlands was presented to demonstrate how the various processes that occur in a wetland can be modeled. Previous work on the use of wetlands to remove BOD, TSS, Phosphorus and Nitrogen was reviewed. Recent literature on the application of wetland technology to the treatment of petroleum-related wastewater was critically evaluated and an outline of the research plans for the first year was delineated. Further, our literature search (nominally completed under Task 1) unearthed more recent studies (some unpublished) and a summary was included in the second quarterly report. In the second quarterly report, results of our efforts on the construction of a laboratory-type wetland were also reported. Initial studies on the use of wetland amendments such as modified-clays and algae cells were presented and discussed. Adsorption of heavy metal ions, Cu{sup 2+} and Cr(VI) onto soils drawn from the laboratory-type wetland built as a part of this contract has been undertaken and these results are presented and discussed in this quarterly report. A number of studies on the design and preparation of modified-clays for the adsorption of Cr(VI) and {beta}-naphthoic acid (NA) has been carried out during this quarter and these are also described and discussed in this report. The choice of {beta}-naphthoic acid (NA) as an ionogenic organic compound was made on the basis of a recent personal communication to the Project Director that NA is a major contaminant in many oil and gas well wastewaters.

Kadlec, R.H.; Srinivasan, K.R.

1993-04-02T23:59:59.000Z

375

Importance of denitrification to the efficiency of waste-water treatment in forested wetlands. Project completion report  

SciTech Connect

Wastewater, even after secondary treatment, typically contains high concentrations of nutrients that can cause eutrophication of receiving waters and deterioration of water quality. Therefore, there has been much interest in the use of natural wetlands as a simple and energy-efficient means of removing nutrients from wastewater and improving water quality. The utilization of a wetland for tertiary treatment of wastewater is based on the ability of the wetland to act as a nutrient sink. One of the most important processes in wetland ecosystems that influences their capacity as a nitrogen sink is the gaseous exchange of nitrogen with the atmosphere known as denitrification. Since denitrification represents a loss of nitrogen to the atmosphere, the mechanism tends to be most favorable for the removal of nitrogen. The objectives of the research project were to (1) determine the temporal and spatial ambient rates of denitrification and compare these rates to those of sediments amended with increased concentrations of nitrate comparable to concentrations of total nitrogen in the sewage effluent to be discharged; and (2) determine the proportion of total denitrification that can be attributed to direct utilization of nitrate loaded into the wetland, as compared to nitrate produced via nitrification within the wetland. Although nitrate is readily denitrified, short-term incubation rates are relatively low which is attributed to the presently low nitrate concentrations and subsequent reduced denitrifying microbial population in the wetland sediments. Nitrate concentrations varied seasonally associated with increased flooding during spring. Rates of nitrification coupled with denitrification were investigated with nitrogen-15 isotopes. Nitrification is limited in the wetland sedments; therefore, controls the rate of total nitrogen loss from the system.

Twilley, R.R.; Boustany, R.G.

1990-09-01T23:59:59.000Z

376

Environmental Assessment for the centralization and upgrading of the sanitary wastewater system at the Savannah River Site  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment for the proposed centralization and upgrading of the sanitary wastewater system on the Savannah River Site (SRS), near Aiken, proposed action is not a major Federal action significantly affecting the South Carolina. Based on the analyses in the EA, DOE has determined that the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact and Floodplain Statement of Findings.

Not Available

1993-09-01T23:59:59.000Z

377

Exploitation of olive mill wastewater and liquid cow manure for biogas production  

SciTech Connect

Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {sup o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.

Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina; Zafiri, Constantina [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., GR 26500 Patras (Greece); Kornaros, Michael, E-mail: kornaros@chemeng.upatras.g [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., GR 26500 Patras (Greece)

2010-10-15T23:59:59.000Z

378

Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

Ansley, Shannon L.

2002-02-20T23:59:59.000Z

379

Injection Molding of Tungsten Powder Treated by Jet Mill  

Science Conference Proceedings (OSTI)

Tungsten powder was firstly treated by jet mill, resulting in the improvement of ... and Welding Conditions of Monopile and Transition for Offshore Wind Plant.

380

skin infection with tenosynovitis successfully treated with doxycycline  

E-Print Network (OSTI)

successfully treated with doxycycline Filipa Osorio MD 1 ,to monotherapy with doxycycline in spite of severe handitraconazole and started doxycycline 100mg BID. Meanwhile,

Osorio, Filipa; Magina, Sofia; Carvalho, Teresa; Goncalves, Maria Helena; Azevedo, Filomena

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Adsorbent-treated cat cracked gasoline in motor fuels  

SciTech Connect

A methof is described for supressing carburetor deposit formation of motor fuels containing untreated cat cracked gasoline by blending adsorbent-treated cat cracked gasoline into the motor fuel. Up to about 50 percent by weight of the total composition is adsorbent treated cat cracked gasoline, but preferably from about 5 to about 25 percent by weight of the total composition is adsorbent treated cat cracked gasoline. In a preferred embodiment a standard reference fuel capable of providing a predetermined level of carburetor deposit formation is provided by the addition of either adsorbent-treated cat cracked gasoline, untreated cat cracked gasoline, or aromatic amines to a base fuel.

Thomas, S.P.

1980-09-30T23:59:59.000Z

382

Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge  

Science Conference Proceedings (OSTI)

The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G. (U. South Australia); (EPA); (Monash)

2013-01-14T23:59:59.000Z

383

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

DOE Green Energy (OSTI)

A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

384

Brief paper: Fuzzy control of the activated sludge wastewater treatment process  

Science Conference Proceedings (OSTI)

The activated sludge process is a commonly used method for treating sewage and waste waters. It is characterised by a lack of relevant instrumentation, control goals that are not always clearly stated, the use of qualitative information in decision making ... Keywords: Computer control, control system synthesis, controllers, fuzzy control, process control, water pollution, water resources

R. M. Tong; M. B. Beck; A. Latten

1980-11-01T23:59:59.000Z

385

Emissions of volatile and potentially toxic organic compounds from waste-water treatment plants and collection systems (Phase 2). Volume 1. Project summaries. Final report  

SciTech Connect

The objectives of the Phase II research project on emission of potentially toxic organic compounds (PTOCs) from wastewater treatment plants were fivefold: (1) assessment of the importance of gaseous emissions from municipal wastewater collection systems; (2) resolution of the discrepancy between the measured and estimated emissions (Phase I), from the Joint Water Pollution Control Plant (JWPCP) operated by the County Sanitation Districts of Los Angeles County (CSDLAC); (3) determination of airborne concentrations of PTOCS immediately downwind of an activated sludge aeration process at the City of Los Angeles' Hyperion Treatment Plant (HTP); (4) a modeling assessment of the effects of transient loading on emissions during preliminary and primary treatment at a typical municipal wastewater treatment plant (MWTP); (5) a preliminary investigation of effects of chlorination practices on haloform production. Volume 1, for which the abstract was prepared, contains a summary of results from each project; Volume 2 contains the discussion regarding the modeling of collection system emissions; Volume 3 addresses methods development and field sampling efforts at the JWPCP and HTP, data on emissions from a mechanically ventilated sewer and results of some preliminary haloform formation studies in wastewaters; and Volume 4 discusses aspects of the emissions modeling problem.

Chang, D.P.Y.; Schroeder, E.D.; Corsi, R.L.; Guensler, R.; Meyerhofer, J.A.

1991-08-01T23:59:59.000Z

386

Development and application of an integrated ecological modelling framework to analyze the impact of wastewater discharges on the ecological water quality of rivers  

Science Conference Proceedings (OSTI)

Modelling is an effective tool to investigate the ecological state of water resources. In developing countries, the impact of sanitation infrastructures (e.g. wastewater treatment plants) is typically assessed considering the achievement of legal physicochemical ... Keywords: Habitat suitability models, Information-theoretic approach, Integrated ecological modelling, MIKE 11, Multi-model inference

Javier E. Holguin-Gonzalez, Gert Everaert, Pieter Boets, Alberto Galvis, Peter L. M. Goethals

2013-10-01T23:59:59.000Z

387

Formal verification of wastewater treatment processes using events detected from continuous signals by means of artificial neural networks. Case study: SBR plant  

Science Conference Proceedings (OSTI)

This paper proposes a modular architecture for the analysis and the validation of wastewater treatment processes. An algorithm using neural networks is used to extract the relevant qualitative patterns, such as ''apexes'', ''knees'' and ''steps'', from ... Keywords: Artificial neural networks, Business process management, Event detection, Intelligent systems, Rule-based management system, SBR

Luca Luccarini; Gianni Luigi Bragadin; Gabriele Colombini; Maurizio Mancini; Paola Mello; Marco Montali; Davide Sottara

2010-05-01T23:59:59.000Z

388

Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant  

E-Print Network (OSTI)

Biodegradation of petroleum hydrocarbon can be an effective treatment method applied to control oil pollution in both fresh water and marine environments. Hydrocarbon degraders, both indigenous and exogenous, are responsible for utilizing petroleum hydrocarbon as their substrate for growth and energy, thereby degrading them. Biodegradation of hydrocarbons is often enhanced by bioaugmentation and biostimulation depending on the contaminated environment and the competence of the hydrocarbon degraders present. An evaluation of the performance of the biological treatment of petroleum hydrocarbon by the hydrocarbon degrading microbes at the Brayton Fire School??s 4 million gallon per day (MGD) wastewater treatment plant was the main research objective. Samples were taken for two seasons, winter (Nov 03 ?? Jan 03) and summer (Jun 04 ?? Aug 04), from each of the four treatment units: the inlet tank, equalization tank, aeration tank and the outfall tank. The population of aliphatic hydrocarbon degraders were enumerated and nutrient availability in the system were used to evaluate the effectiveness of on-going bioaugmentation and biostimulation. Monitoring of general effluent parameters was conducted to evaluate the treatment plant??s removal efficiency and to determine if effluent discharge was in compliance with the TCEQ permit. The aeration tank is an activated sludge system with no recycling. Hydrocarbon degraders are supplied at a constant rate with additional nutrient supplement. There was a significant decrease in the population of microbes that was originally fed to the system and the quantity resident in the aeration tank. Nutrient levels in the aeration tank were insufficient for the concentration of hydrocarbon degraders, even after the application of dog food as a biostimulant. The use of dog food is not recommended as a nutrient supplement. Adding dog food increases the nitrogen and phosphorus concentration in the aeration tank but the amount of carbon being added with the dog food increases the total chemical oxygen demand (COD) and biochemical oxygen demand (BOD). An increase in the concentration of total COD and BOD further increases the nitrogen and phosphorus requirement in the system. The main objective of supplying adequate nutrients to the hydrocarbon degraders would never be achieved as there would be an additional demand of nutrients to degrade the added carbon source. This research study was conducted to identify the drawbacks in the treatment plant which needs further investigation to improve efficiency.

Basu, Pradipta Ranjan

2006-05-01T23:59:59.000Z

389

Letter to the editor/Shell treats LPG  

SciTech Connect

In response to an article on the MALAPROP process Shell International Petroleum Mij. B.V. notes that Shell's Adip process has gained a solid position world-wide in economically treating very large amounts of LPG for the removal of hydrogen sulfide and carbonyl sulfide. Most Shell refineries are equipped with the Adip process, which cumulatively treates approx. 7000 tons/day of LPG. Middle East LPG facilities designed for the Arabian American Oil Co. treat 30,000 tons/day, and an additional 16,000 will come on stream in Jan. 1983. The removal of carbonyl sulfide to a few parts-per-million is easy.

1979-10-01T23:59:59.000Z

390

Hanford Site Treating Record Amount of Contaminated Groundwater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Treating Record Amount of Contaminated Groundwater Hanford Site Treating Record Amount of Contaminated Groundwater Hanford Site Treating Record Amount of Contaminated Groundwater July 15, 2013 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov Tania Reyes, CHPRC (509) 373-6828 Tania_Reyes@rl.gov Department of Energy goal for fiscal year 2013 met early Note: Photos and graphics are available for downloading on our website link: http://ow.ly/mO5cT RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CH2M HILL) has exceeded this year's goal for treating 1.4 billion gallons of contaminated groundwater at the Hanford Site in Washington state. "In the last few years, DOE built three new groundwater treatment facilities, and now we are seeing the results," said Briant Charboneau,

391

Hanford Site Treating Record Amount of Contaminated Groundwater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treating Record Amount of Contaminated Groundwater Treating Record Amount of Contaminated Groundwater Hanford Site Treating Record Amount of Contaminated Groundwater July 15, 2013 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov Tania Reyes, CHPRC (509) 373-6828 Tania_Reyes@rl.gov Department of Energy goal for fiscal year 2013 met early Note: Photos and graphics are available for downloading on our website link: http://ow.ly/mO5cT RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CH2M HILL) has exceeded this year's goal for treating 1.4 billion gallons of contaminated groundwater at the Hanford Site in Washington state. "In the last few years, DOE built three new groundwater treatment facilities, and now we are seeing the results," said Briant Charboneau,

392

200 Area treated effluent disposal facility operational test report  

Science Conference Proceedings (OSTI)

This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-03-01T23:59:59.000Z

393

A container for heat treating materials in microwave ovens  

DOE Patents (OSTI)

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

1988-01-26T23:59:59.000Z

394

Chromated copper arsenate (CCA) has been used to treat lumber...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Chemical Structure of Arsenic and Chromium in Chromated Copper Arsenate (CCA) Treated Wood Peter S. Nico 1 , Scott E. Fendorf 2 , Yvette W. Lowney 3 , Stewart E. Holm 4 , and...

395

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

DOE Green Energy (OSTI)

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

396

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

397

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

398

Space reactor fuel element testing in upgraded TREAT  

DOE Green Energy (OSTI)

The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

1993-05-01T23:59:59.000Z

399

Space reactor fuel element testing in upgraded TREAT  

DOE Green Energy (OSTI)

The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

1993-01-14T23:59:59.000Z

400

Container for heat treating materials in microwave ovens  

DOE Patents (OSTI)

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Kimrey, Jr., Harold D. (Knoxville, TN); Mills, James E. (Knoxville, TN)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced On-Site Wastewater Treatment and Management Market Study: Volume 1: Assessment of Short-Term Opportunities and Long-Run Pot ential  

Science Conference Proceedings (OSTI)

On-site septic systems have traditionally been considered a temporary solution on the way to sewering. However, the elimination of federal grants for sewers and wastewater treatment plants has brought a new awareness of the high costs and the sometimes adverse environmental consequences of centralized point discharges. At the same time, advances in on-site technologies, including such systems as low-flow water conservation, watertight septic tanks with screens, sand filtration, disinfection, remote monit...

2000-09-27T23:59:59.000Z

402

Pilot-Scale Demonstration of Hybrid Zero-Valent Iron Water Treatment Technology: Removing Trace Metals from Flue Gas Desulfurization (FGD) Wastewater  

Science Conference Proceedings (OSTI)

In previous laboratory- and field bench-scale tests, the hybrid zero-valent iron (hZVI) process had been demonstrated capable of removing selenium, mercury, nitrates, and other pollutants from flue gas desulfurization (FGD) wastewater. By incorporating zero-valent iron (ZVI) with magnetite and certain Fe(II) species, the hZVI technology creates a highly reactive mixture that can transform and immobilize various trace metals, oxyanions, and other impurities from aqueous streams. To further evaluate ...

2013-04-09T23:59:59.000Z

403

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond  

Science Conference Proceedings (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Discussion of the facilitys environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

mike lewis

2011-02-01T23:59:59.000Z

404

Area 2 Photo Skid Wastewater Pit corrective action decision document Corrective Action Unit Number 332: Part 1, and Closure report: Part 2  

SciTech Connect

The Area 2 Photo Skid Wastewater Pit, Corrective Action Site (CAS) Number 02-42-03, the only CAS in Corrective Action Unit (CAU) Number 332, has been identified as a source of unquantified, uncontrolled, and unpermitted wastewater discharge. The Photo Skid was used for photographic processing of film for projects related to weapons testing, using Kodak RA4 and GPX film processing facilities for black and white and color photographs. The CAU is located in Area 2 of the Nevada Test Site, Nye County, Nevada. The CAS consists of one unlined pit which received discharged photographic process wastewater from 1984 to 1991. The Corrective Action Decision Document (CADD) and the Closure Report (CR) have been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CADD and the CR for this CAS have been combined because sample data collected during the site investigation do not exceed regulatory limits established during the Data Quality Objectives (DQO) process. The purpose of the CADD and the CR is to justify why no corrective action is necessary at the CAU based on process knowledge and the results of the corrective action investigation and to request closure of the CAU. This document contains Part 1 of the CADD and Part 2 of the CR.

NONE

1997-06-20T23:59:59.000Z

405

516-2007 FAX: 572-4038 E-mail: nthunews@my.nthu.edu.tw  

E-Print Network (OSTI)

/11( ) I170 11/13( ) AM9-12 - ( ) I180 11/18( ) #12;2008 DIY & IELTS Jas Huang/ Rita Chang Q&A / 2008

Huang, Haimei

406

Surveillance of South Belridge Diatomite T.W. Patzek, Shell Western E&P Inc.  

E-Print Network (OSTI)

)computer-assisted monitoring of injection pressures and rates, (2) online databases with well tests. Full-scale water injection in Phases IA (direct pattern) and IB (staggered pattern) dual-string wells m). Well 552-33 began free-flowing just after injection was started in 552NR-LS at 1500 BWPD (238 m3

Patzek, Tadeusz W.

407

cfchou@phys.sinica.edu.tw Global Warming -Lohachara Island by Robert Clemenzi  

E-Print Network (OSTI)

. Chicago #12; > #12;#12; #12; #12; #12; 10 % #12;#12;#12;#12;Ocean Wave Power The Geysers San Francisco, CA Solar power plants III-VII at Kramer Junction, CA #12; #12; #12

Chen, Yang-Yuan

408

Advances in X-Band TW Accelerator Structures Operating in the 100 MV/M Regime  

SciTech Connect

A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for three years. The major outcome has been the demonstration of stable 100 MV/m gradient operation of a number of CLIC prototype structures. These structures were fabricated using the technology developed from 1994 to 2004 for the GLC/NLC linear collider initiative. One of the goals has been to refine the essential parameters and fabrication procedures needed to realize such a high gradient routinely. Another goal has been to develop structures with stronger dipole mode damping than those for GLC/NLC. The latter requires that the surface temperature rise during the pulse be higher, which may increase the breakdown rate. One structure with heavy damping has been RF processed and another is nearly finished. The breakdown rates of these structures were found to be higher by two orders of magnitude compared to those with equivalent acceleration mode parameters but without the damping features. This paper presents these results together with some of the earlier results from non-damped structures.

Higo, Toshiyasu; /KEK, Tsukuba; Higashi, Yasuo; /KEK, Tsukuba; Matsumoto, Shuji; /KEK, Tsukuba; Yokoyama, Kazue; /KEK, Tsukuba; Adolphsen, Chris; /SLAC; Dolgashev, Valery; /SLAC; Jensen, Aaron; /SLAC; Laurent, Lisa; /SLAC; Tantawi, Sami; /SLAC; Wang, Faya; /SLAC; Wang, Juwen; /SLAC; Dobert, Steffen; /CERN; Grudiev, Alexej; /CERN; Riddone, Germana; /CERN; Wuensch, Walter; /CERN; Zennaro, Riccardo; /CERN

2012-07-05T23:59:59.000Z

409

Hanford's 200 West Pump and Treat System Garners Worldwide Attention |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

200 West Pump and Treat System Garners Worldwide 200 West Pump and Treat System Garners Worldwide Attention Hanford's 200 West Pump and Treat System Garners Worldwide Attention August 27, 2013 - 12:00pm Addthis The award recognized CH2M HILL for its excellence in the international water industry. CH2M HILL’s Water Business Group's International Client Sector Director Peter Nicol accepted the award from Global Water Awards Speaker and former Mexican President Vicente Fox. The award recognized CH2M HILL for its excellence in the international water industry. CH2M HILL's Water Business Group's International Client Sector Director Peter Nicol accepted the award from Global Water Awards Speaker and former Mexican President Vicente Fox. The 200 West Pump and Treat System design and construction teams utilized energy efficient and sustainable design elements, including recycled steal. This photo shows the system’s processing equipment. Approximately 539 tons, or 5 percent, of the steel used in construction was recycled.

410

200 Area treated effluent disposal facility operational test specification  

Science Conference Proceedings (OSTI)

This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-01-12T23:59:59.000Z

411

300 Area treated effluent disposal facility operating specifications document  

Science Conference Proceedings (OSTI)

These specifications deal with the release of treated water into the Columbia River via the TEDF submerged outfall. Specific limits are set for contaminants to be discharged in NPDES permit WA-002591-7. This section contains the operating ranges that will be used to best meet the permit limits.

Olander, A.R.

1994-10-01T23:59:59.000Z

412

200 Area treated effluent disposal facility operational test specification  

Science Conference Proceedings (OSTI)

This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-02-02T23:59:59.000Z

413

Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities  

SciTech Connect

This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments.

Ulmer, F.J.

1995-02-06T23:59:59.000Z

414

Hydrogen Storage Properties of the Tetrahydrofuran Treated Magnesium  

DOE Green Energy (OSTI)

The electronic structure, crystalline feature and morphology of the tetrahydrofuran (THF) treated magnesium, along with its hydriding and dehydriding properties have been investigated. The THF treated magnesium absorbs 6.3 wt per cent hydrogen at 723K and 3.5 MPa. After hydrogenation, in addition to the expected MgH2, a new less-stable hydride phase appears at 673K, but not at a lower temperature. Desorption produces 5.5 wt per cent hydrogen at 723K against a back pressure of 1.3 Pa after 20 cycles of hydriding-dehydriding. The THF treatment improves the kinetics of hydrogen absorption and desorption significantly. From 723K to 623K, the THF treated Mg demonstrates acceptable reaction rates. XPS studies show that tetrahydrofuran treatment causes the electronic energy state of the magnesium surface atoms to change, but the XRD studies show the crystal structure remains unchanged. Metallographic observation of the bulk hydrides of THF treated magnesium reveal they are poly-crystalline wi th the wide-spreading slip bands and twins within the crystals, indicating the phase transformation upon hydriding causes serious stress and distortion. It appears this microstructural deformation explains the much higher energy requirements (higher pressure and temperature) for magnesium hydrogenation than the simple lattice expansion that accompany hydrogen uptake for LaNi5 and FeTi.

AU, MING

2004-05-25T23:59:59.000Z

415

Contribution of thiosulfate to COD and BOD in oil shale process wastewater  

SciTech Connect

Thiosulfate accounted for a significant portion of the chemical oxygen demand (COD) (7 to 20%) and biochemical oxygen demand (BOD) (14 to 41%) of the four oil shale process waters studied. As such, accurate measurement of the thiosulfate oxygen demand of retort water is critical in assessing its environmental impacts on receiving waters and in designing biological treatment systems to treat it. The contribution of thiosulfate to the COD of oil shale retort waters can be accurately measured in a standard COD test. The BOD of thiosulfate in retort water is more difficult to determine and may require the development of a special thiosulfate acclimated seed. Thiosulfate recovery of a known thiosulfate spike ranged from 92 to 100% in the COD test and from 64 to 119% in the BOD test. Considerable variability in recovery was found between the process waters studied. When determining the BOD of oil shale process waters, care must be taken to insure a viable population of thiosulfate oxidizing bacteria.

Wong, A. L.; Mercer, B. W.

1979-01-01T23:59:59.000Z

416

Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like  

DOE Patents (OSTI)

The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

Smith, D.D.; Hiller, J.M.

1998-02-24T23:59:59.000Z

417

Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like  

DOE Patents (OSTI)

The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

Smith, Douglas D. (Knoxville, TN); Hiller, John M. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

418

Demonstration of constructed wetlands for treatment of municipal wastewaters, monitoring report for the period, March 1988--October 1989  

SciTech Connect

To evaluate the constructed wetland technology, the Tennessee Valley Authority (TVA) implemented a municipal wastewater demonstration project in western Kentucky. Using combined city, State, and TVA appropriated funds, three constructed wetland systems were built at Benton, Hardin, and Pembroke, Kentucky. Demonstration objectives include evaluating relative advantages and disadvantages of these types of systems; determining permit compliance ability; developing, evaluating, and improving basic design and operation criteria; evaluating cost effectiveness; and transferring technology to users and regulators. A demonstration monitoring project was implemented with a partnership of funds from the Environmental Protection Agency (EPA) Region IV, other EPA funds through the National Small Flows Clearinghouse (NSFC), and TVA appropriations. TVA is managing the project in cooperation with an interagency team consisting of EPA, Kentucky Division of Water and NSFC. This report, which supersedes the first monitoring report (Choate, et. al., 1989) of these demonstration projects, describes each constructed wetland system, its status, and summarizes monitoring data and plans for each system. 5 refs., 30 figs., 26 tabs.

Choate, K.D.; Watson, J.T.; Steiner, G.R.

1990-08-01T23:59:59.000Z

419

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

420

Utilization of surface-treated rubber particles from waste tires  

SciTech Connect

During a 12-month program, the author successfully demonstrated commercial applications for surface-treated rubber particles in two major markets: footwear (shoe soles and components) and urethane-foam carpet underlay (padding). In these markets, he has clearly demonstrated the ease of using R-4080 and R-4030 surface-treated rubber particles in existing manufacturing plants and processes and have shown that the material meets or exceeds existing standards for performance, quality, and cost-effectiveness. To produce R-4080 and R-4030, vulcanized rubber, whole-tire material is finely ground to particles of nominal 80 and mesh size respectively. Surface treatment is achieved by reacting these rubber particles with chlorine gas. In this report, the author describes the actual test and evaluations of the participant companies, and identifies other potential end uses.

Smith, F.G. [Argonne National Lab., IL (United States). Energy Systems Div.]|[Environmental Technologies Alternatives, Inc., Lima, OH (United States)

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ca(OH)[sub 2]-treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

Sugama, Toshifumi.

1990-06-26T23:59:59.000Z

422

Ca(OH)[sub 2]-treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

Sugama, Toshifumi.

1989-04-18T23:59:59.000Z

423

Ca(OH).sub.2 -treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

Sugama, Toshifumi (Mastic Beach, NY)

1989-01-01T23:59:59.000Z

424

Ca(OH).sub.2 -treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

Sugama, Toshifumi (Mastic Beach, NY)

1990-01-01T23:59:59.000Z

425

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

Barnes, Charles M. (Idaho Falls, ID); Shapiro, Carolyn (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

426

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

Barnes, C.M.; Shapiro, C.

1997-11-25T23:59:59.000Z

427

Irregular spacing of heat sources for treating hydrocarbon containing formations  

SciTech Connect

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

428

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

429

Intensive archaeological survey of the proposed Central Sanitary Wastewater Treatment Facility, Savannah River Site, Aiken and Barnwell Counties, South Carolina  

SciTech Connect

The project area for the proposed Central Sanitary Wastewater Treatment Facility on the Savannah River Site includes a six-acre tract along Fourmile Branch and 18 mi of trunk line corridors. Archaeological investigations of the six-acre parcel resulted in the discovery of one small prehistoric site designated 38AK465. This cultural resource does not have the potential to add significantly to archaeological knowledge of human occupation in the region. The Savannah River Archaeological Research Program (SRARP) therefore recommends that 38AK465 is not eligible for nomination to the National Register of Historic Places (NRHP) and further recommends a determination of no effect. Archaeological survey along the trunk line corridors implicated previously recorded sites 38AK92, 38AK145, 38AK415, 38AK417, 38AK419, and 38AK436. Past disturbance from construction had severely disturbed 38AK92 and no archaeological evidence of 38AK145, 38AK419, and 38AK436 was recovered during survey. Lacking further evidence for the existence of these sites, the SRARP recommends that 38AK92, 38AK145, 38AK419, and 38AK436 are not eligible for nomination to the NRHP and thus warrant a determination of no effect. Two of these sites, 38Ak415 and 38AK417, required further investigation to evaluate their archaeological significance. Both of the sites have the potential to yield significant data on the prehistoric period occupation of the Aiken Plateau and the SRARP recommends that they are eligible for nomination to the NRHP. The Savannah River Archaeological Research Program recommends that adverse effects to sites 38AK415 and 38AK417 from proposed construction can be mitigated through avoidance.

Stephenson, D.K.; Sassaman, K.E.

1993-11-01T23:59:59.000Z

430

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

Barnes, C.M.; Shapiro, C.

1995-12-31T23:59:59.000Z

431

Method for treating a nuclear process off-gas stream  

DOE Patents (OSTI)

Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

1984-01-01T23:59:59.000Z

432

Environmental Impacts of Preservative-Treated Wood Conference  

E-Print Network (OSTI)

This article was written and prepared by U.S. Government employees on official time, For decades chromated copper arsenate (CCA) was the primary preservative for treated wood used in residential construction. However, recent label changes submitted by CCA registrants will withdraw CCA from most residential applications. This action has increased interest in arsenic-free preservative systems that have been standardized by the American Wood Preservers Association. These include acid copper chromate (ACC), alkaline copper quat (ACQ), copper azole (CBA-A and CA-B), copper citrate (CC), copper dimethyldithiocarbamate (CDDC), and copper HDO (CX-A). All of these CCA alternatives rely on copper as their primary biocide, although some have co-biocides to help prevent attack by copper-tolerant fungi. They have appearance and handling properties similar to CCA and are likely to be readily accepted by consumers. Prior studies indicate that these CCA alternatives release preservative components into the environment at a rate greater than or equal to that of CCA, but because these components have lower mammalian toxicity they are less likely to cause concern in residential applications. As the treated wood industry evolves it is probable that a wider range of types and retentions of wood preservatives will become available, with the treatment more closely tailored to a specific type of construction application.

Stan Lebow

2004-01-01T23:59:59.000Z

433

Development of a Pulp Process Treating Contaminated HEPA Filters (III)  

SciTech Connect

The Pulp Process (PP) Treatment option was conceived as a replacement for the current Filter Leaching System (FLS). The FLS has operated at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory since 1995 to treat radioactive, mixed waste HEPA filters. In recent years, the FLS has exhibited difficulty in removing mercury from the HEPA filters as the concentration of mercury in the spent HEPA filters has increased. The FLS leaches and washes the whole filter without any preparation or modification. The filter media and the trapped calcine particles are confined in a heavy filter housing that contributes to poor mixing zones around the edges of the filter, low media permeability, channeling of the liquid through cracks and tears in the filter media, and liquid retention between leach and rinse cycles. In the PP, the filter media and the trapped calcine particles are separated from the filter housing and treated as a pulp, taking advantage of improved contact with the leach solution that cannot be achieved when the media is still in the HEPA filter housing. In addition to removing the mercury more effectively, the PP generates less volume of liquid waste, requires a shorter leach cycle time, and possesses the versatility for treating filters of different sizes. A series of tests have been performed in the laboratory to demonstrate the advantages of the PP concept. These tests compare the PP with the FLS under controlled conditions that simulate the current operating parameters. A prior study using blended feed, a mixture of shredded clean HEPA filter media and non-radioactive calcine particles, indicated that the PP would significantly increases the calcine dissolution percentages. In this study, hazardous-metal contaminated HEPA filter media was studied. The results of side-by-side tests indicated that the PP increased the mercury removal percentage by 80% and might be a solution to the mercury removal problem encountered by the current FLS. A patent application has been filed for the PP and the patent is pending. In order to validate the PP and collect information for engineering design and economical feasibility studies, pilot plant scale tests are planned.

Hu, J. S.; Ramer, J.; Argyle, M. D.; Demmer, R. L.

2002-02-28T23:59:59.000Z

434

Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. 1: Batch sorption-elution studies  

Science Conference Proceedings (OSTI)

Boron removal was studied using N-glucamine-type resins Diaion CRB 02 and Purolite S 108. The resin Diaion CRB 02 exhibited a higher sorption capacity for boron removal from 0.01 M H{sub 3}BO{sub 3} solution than did Purolite S 108. The presence of calcium, sodium, and chloride ions did not make a large interference on boron removal by both Diaion CRB 02 and Purolite S 108 resins. The sorption behavior of these two chelating resins obeyed the Langmuir isotherm model. Kinetic tests were performed to find the mass transfer mechanism of the sorption process of boron by Diaion CRB 02 resin. Five kinetic models were applied to fit the kinetic data obtained by using glucamine type-resin Diaion CRB 02. The results showed that the rate-determining step is particle diffusion for boron removal by Diaion CRB 02. The quantitative stripping of boron from both chelating resins was obtained with either 0.05 M H{sub 2}SO{sub 4} or 0.1 M HCl solutions. Boron in wastewater of the Kizildere geothermal field was effectively removed by both Diaion CRB 02 and Purolite S 108 resins. Preliminary column tests showed that Diaion CRB 02 is a potential resin for column removal of boron from wastewater of a geothermal power plant.

Badruk, M. [MTA, Izmir (Turkey)] [MTA, Izmir (Turkey); Kabay, N.; Demircioglu, M. [Ege Univ., Izmir (Turkey). Dept. of Mineral Engineering] [Ege Univ., Izmir (Turkey). Dept. of Mineral Engineering; Mordogan, H.; Ipekoglu, U. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Mineral Engineering] [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Mineral Engineering

1999-09-01T23:59:59.000Z

435

Method of thermochemically treating silicon carbide fibers derived from polymers  

SciTech Connect

A method is described of thermochemically treating polymeric-derived silicon carbide fiber comprising the step of: annealing a silicon carbide fiber derived from organosilicon polymeric precursors said fiber further including at least: (1) excess carbon and oxygen, (2) excess silicon and oxygen, or (3) nitrogen, at a temperature between 800 C and 1,800 C, thus outgassing from said silicon carbide fiber at least one member selected from the group consisting of nitrogen, silicon monoxide and carbon monoxide, in intimate contact with carbon particles and in the presence of a gas capable of reacting in the presence of said carbon particles and said silicon carbide fiber, with products and byproducts formed as a result of said outgassing to form silicon carbide, so that said annealing step provides an annealed fiber wherein at least said silicon of the silicon carbide at said modified surface of said annealed fiber was originally present in said fiber prior to said annealing step.

Wallace, J.S.; Bender, B.A.; Schrodt, D.

1993-07-27T23:59:59.000Z

436

Solution mining systems and methods for treating hydrocarbon containing formations  

Science Conference Proceedings (OSTI)

A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); de Rouffignac, Eric Pierre (Rijswijk, NL); Schoeling, Lanny Gene (Katy, TX)

2009-07-14T23:59:59.000Z

437

Cogeneration systems and processes for treating hydrocarbon containing formations  

Science Conference Proceedings (OSTI)

A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

2009-12-29T23:59:59.000Z

438

Method for heat treating iron-nickel-chromium alloy  

DOE Patents (OSTI)

A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a bimodal distribution of gamma prime phase within a network of dislocations, the alloy consisting essentially of about 25% to 45% nickel, 10% to 16% chromium, 1.5% to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025.degree. C. to 1075.degree. C. for 2-5 minutes, cold-worked about 20% to 60%, aged at a temperature of about 775.degree. C. for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650.degree. C. to 700.degree. C. for 2 hours followed by an air-cool.

Merrick, Howard F. (Suffern, NY); Korenko, Michael K. (Rockville, MD)

1982-01-01T23:59:59.000Z

439

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

440

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "tw treated wastewater" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

442

16S rRNA-Based Tag Pyrosequencing of Complex Food and Wastewater Environments: Microbial Diversity and Dynamics  

E-Print Network (OSTI)

Environmental microbiology has traditionally been performed using culture-based methods. However, in the last few decades, the emergence of molecular methods has changed the field considerably. The latest development in this area has been the introduction of next-generation sequencing, including pyrosequencing. These technologies allow the massively parallel sequencing of millions of DNA strands and represent a major development in sequencing technologies. The purpose of this study was to use both pyrosequencing and traditional culture-based techniques to investigate the diversity and dynamics of bacterial populations within milk and untreated sewage sludge samples. Pasteurized and raw milk samples were collected from grocery stores and dairies within Texas. Milk samples were analyzed by plating, pyrosequencing, and an assay for the presence of cell-cell signaling molecules. Samples were processed, stored, and then evaluated again for spoilage microflora. The results of this study showed that raw milk had a considerably higher bacterial load, more diversity between samples, and a significantly higher concentration of pathogens than pasteurized milk. Additionally, this study provided evidence for varying spoilage microflora between raw and pasteurized milk, as well as evidence for the production of cell-cell signaling molecules by bacterial organisms involved in milk spoilage. Four samplings of untreated sewage sludge were collected from wastewater treatment plants in seven different municipalities across the United States. Samples were subjected to quantification of selected bacterial organisms by culture and a pyrosequencing analysis was performed on extracted community DNA. The results of this study showed that untreated sewage sludge is inhabited by a huge diversity of microorganisms and that certain municipalities may have distinct bacterial populations that are conserved over time. Additionally, this study provided some evidence for seasonal differences in several of the major bacterial phyla. Lastly, this study emphasized the challenges of comparing results obtained by culture and pyrosequencing. In conclusion, this study showed that both milk and sewage are highly diverse, dynamic environments that can contain organisms of public health concern. The use of both culture-based methods and pyrosequencing in this study proved a complementary approach, providing a more comprehensive picture of both microbial environments.

McElhany, Katherine

2010-12-01T23:59:59.000Z

443

Transcriptional analysis of the healing response of wounded nerves treated with collagen and silicone tubes  

E-Print Network (OSTI)

This study examines the transcriptional differences between nerve wounds treated with silicone tubes and those treated with collagen nerve regeneration templates. The primary motivation for the study is to test the hypothesis ...

Wong, Matthew Q

2008-01-01T23:59:59.000Z

444

Idaho Site Taps Old World Process to Treat Nuclear Waste | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste September 9, 2013 - 12:00pm Addthis The Idaho site's sodium...

445

R&D 100 Award -- TREAT with SUNREL (TM) Energy Analysis Software  

SciTech Connect

Factsheet about the 2005 R&D Award for TREAT with SUNREL Energy Analysis Software for home energy audits.

2005-10-01T23:59:59.000Z

446

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

Ernest F. Stine Jr; Steven T. Downey

2002-08-14T23:59:59.000Z

447

Assessment of treated vs untreated oil spills. Final report  

Science Conference Proceedings (OSTI)

The results of a series of studies conducted to determine the practicability and feasibility of using dispersants to mitigate the impact of an oil spill on the environment are described. The method of approach is holistic in that it combines the physical, chemical, microbial and macro-fauna response to a spill treated with dispersants and compares this with spills that are left untreated. The program integrates mathematical, laboratory, meso-scale (three 20 foot high by three feet in diameter tanks, in-situ experiments and analyses to determine if the use of dispersants is an effective oil spill control agent. In summary, it appears viable to use dispersants as determined on a case by case basis. The case for using dispersants has to be based on whether or not their use will mitigate the environmental impact of the spill. In the case of an open ocean spill that is being driven into a rich inter-tidal community, the use of dispersants could greatly reduce the environmental impact. Even in the highly productive George's Bank area at the height of the cod spawning season, the impact of the use of dispersants is well within the limits of natural variability when the threshold toxicity level is assumed to be as low as 100 ppB, a level which is often found in the open ocean. Thus, it appears that dispersants can and should be used when it is evident that their use will mitigate the impacts of the spill. Their use in areas where there is poor circulation and therefore little possibility of rapid dilution is more questionable and should be a subject of future studies.

Wilson, M.P.

1981-02-01T23:59:59.000Z

448

Innovative approach for restoring coastal wetlands using treated drill cuttings  

SciTech Connect

The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.

Veil, J. A.; Hocking, E. K.

1999-11-02T23:59:59.000Z

449

Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

450

Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation  

SciTech Connect

A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recovery to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.

Feng, D.C.; Yu, Z.J.; Chen, Y.; Qian, Y. [South China University of Technology, Ghangzhou (China). School of Chemical Engineering

2009-06-15T23:59:59.000Z

451

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

Ernie F. Stine

2002-08-14T23:59:59.000Z

452

Congestive heart failure: treat the disease, not the symptom: return to normalcy/Part II--the experimental approach.  

E-Print Network (OSTI)

Number: Title: Congestive heart failure: treat the diseaseinvited) TITLE: Congestive heart failure: treat the diseasetreatment of congestive heart failure due to post-infarction

Buckberg, Gerald D

2007-01-01T23:59:59.000Z

453

Methods of treating parkinson's disease using viral vectors  

DOE Patents (OSTI)

Methods of delivering viral vectors, particularly recombinant AAV virions, to the CNS are provided. Also provided are methods of treating Parkinson's Disease.

Bankiewicz, Krys (Garrett Park, MD); Cunningham, Janet (Alameda, CA)

2009-05-19T23:59:59.000Z

454

NREL: Awards and Honors - R&D 100 Award: TREAT with SUNREL(tm...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Tools) with SUNREL(tm). TREAT with SUNREL is a comprehensive energy analysis tool that models building energy consumption and identifies the most cost effective energy...