National Library of Energy BETA

Sample records for turbulent circular jet

  1. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect (OSTI)

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energys Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  2. Impulsively started incompressible turbulent jet

    SciTech Connect (OSTI)

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  3. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect (OSTI)

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  4. PDF Study of Round Turbulent Condensing Jet using GPU Hardware...

    Office of Scientific and Technical Information (OSTI)

    Conference: PDF Study of Round Turbulent Condensing Jet using GPU Hardware. Citation Details In-Document Search Title: PDF Study of Round Turbulent Condensing Jet using GPU ...

  5. The deterministic chaos and random noise in turbulent jet

    SciTech Connect (OSTI)

    Yao, Tian-Liang; Liu, Hai-Feng Xu, Jian-Liang; Li, Wei-Feng

    2014-06-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.

  6. Numerical calculation of two-phase turbulent jets

    SciTech Connect (OSTI)

    Saif, A.A.

    1995-05-01

    Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.

  7. Oscillations of a Turbulent Jet Incident Upon an Edge

    SciTech Connect (OSTI)

    J.C. Lin; D. Rockwell

    2000-09-19

    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  8. DNS of a turbulent lifted DME jet flame

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  9. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  10. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect (OSTI)

    Bhler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18?100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  11. Impingement heat transfer within arrays of circular jets including the effect of crossflow

    SciTech Connect (OSTI)

    Matsumoto, Ryosuke; Ishihara, Isao; Yabe, Toshiaki; Ikeda, Keita; Kikkawa, Shinzo; Senda, Mamoru

    1999-07-01

    The purpose of this work is to investigate the heat transfer and the flow characteristics for the arrays of impingement jets taking into consideration the effect of the crossflow. In this experiment, two types of the crossflow schemes, referred to as the minimum crossflow and the maximum crossflow by the Obot et al. (1987), were examined. In the case of the maximum crossflow, the exhaust air was restricted by the side wall to leave through one side of the jet array. In the case of the minimum crossflow, the side wall was removed, and the exhaust air flowed away through all four edges of the jet array. To examine the flow pattern of the exhaust air, the flow visualization by the smoke flow was carried out. The air after impinging to the target surface was entrained into the downstream adjacent jet. The exhaust air was discharged to the outside of array through two ways: One was that the air was discharged to outside by entraining into the downstream adjacent jet. The other was that the exhaust air was discharged along the endwall surface on the mid-span of adjacent jets. The thermosensitive liquid crystal sheet was applied to measure the temperature distributions and to obtain the local heat transfer coefficients on the impingement surface. The local Nusselt number distribution for the maximum crossflow was hardly decreased in the downstream rows, although the velocity of the exhaust air increased. In the downstream row, however, the distribution of the local Nusselt number is non-circular shape because of the exhaust air. The averaged Nusselt number for the maximum crossflow was slightly lower than that in the case of minimum crossflow.

  12. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  13. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect (OSTI)

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  14. Structure of turbulent hydrogen jet diffusion flames with or without swirl

    SciTech Connect (OSTI)

    Takahashi, Fumiaki; Vangsness, M.D.; Durbin, M.D.; Schmoll, W.J.

    1995-12-31

    The aerodynamic and thermal structure of double-concentric turbulent hydrogen jet diffusion flames with or without swirl has been investigated using three-component laser-Doppler velocimetry (LDV) and coherent anti-Stokes Raman spectroscopy. The LDV data were conditionally sampled upon the origin of the fluid (jet, annulus, or external) to avoid the velocity-bias problem and to gain more detailed information on the turbulent structure. As the mean jet velocity was increased, the turbulent flame zone shifted inward and the thermal layer became thinner, whereas swirl created a radial velocity even at the annulus air exit, thereby shifting the flame zone outward and broadening the thermal layer. The probability-density functions (pdf) of velocity components,m their 21 moments (up to fourth order), temperature pdf, mean, and root-mean-square fluctuation temperature were determined at numerous radial locations at seven axial heights in the near field (<26.5 jet diameters). The data can be used to validate computational models.

  15. TiO{sub 2} Film Deposition by Atmospheric Thermal Plasma CVD Using Laminar and Turbulence Plasma Jets

    SciTech Connect (OSTI)

    Ando, Yasutaka; Tobe, Shogo [Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Tahara, Hirokazu [Osaka Institute of Technology, 5-16-1 Omiya, Asahi-Ku, Osaka 535-8585 (Japan)

    2008-02-21

    In this study, to provide continuous plasma atmosphere on the substrate surface in the case of atmospheric thermal plasma CVD, TiO{sub 2} film deposition by thermal plasma CVD using laminar plasma jet was carried out. For comparison, the film deposition using turbulence plasma jet was conducted as well. Consequently, transition of the plasma jet from laminar to turbulent occurred on the condition of over 3.5 1/min in Ar working gas flow rate and the plasma jet became turbulent on the condition of over 10 1/min. In the case of the turbulent plasma jet use, anatase rich titanium oxide film could be obtained though plasma jet could not contact with the surface of the substrate continuously even on the condition that feedstock material was injected into the plasma jet. On the other hand,, in the case of laminar gas flow rate, the plasma jet could contact with the substrate continuously without melt down of the substrate during film deposition. Besides, titanium oxide film could be obtained even in the case of the laminar plasma jet use. From these results, this technique was thought to have high potential for atmospheric thermal plasma CVD.

  16. Flow, Mixing and Combustion of Transient Turbulent Gaseous Jets in Confined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cylindrical Geometries | Argonne Leadership Computing Facility Flow, Mixing and Combustion of Transient Turbulent Gaseous Jets in Confined Cylindrical Geometries PI Name: Christos Frouzakis PI Email: frouzakis@lav.mavt.ethz.ch Institution: Swiss Federal Institute of Technology Zurich (ETHZ) Allocation Program: ESP Year: 2015 Research Domain: Engineering Tier 2 Code Development Project Numerical Methods/Algorithms Direct numerical simulations for this project will be based on the open source

  17. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    SciTech Connect (OSTI)

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model

  18. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  19. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane air jet flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methaneair chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methaneair mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmorethe boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.less

  20. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect (OSTI)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  1. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect (OSTI)

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Programs aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  2. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect (OSTI)

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  3. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significantmore » asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.« less

  4. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    SciTech Connect (OSTI)

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.

  5. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal to s3¯.« less

  6. The effect of turbulence on the stability of liquid jets and the resulting droplet size distributions. Third quarterly technical report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Mansour, A.; Chigier, N.

    1993-12-01

    Laminar and turbulent columns of liquids issuing from capillary tubes were studied in order to determine the effects of turbulence on the stability of liquid jets and to establish the influence of liquid turbulence on droplet size distributions after breakup. Two capillary tubes were chosen with diameters D{sub 1}=3.0mm and D{sub 2}=1.2mm; jet Reynolds numbers were 1000--30000, and 400--7200. For water injection into stagnant air, stability curve is bounded by a laminar portion, where a jet radius and {delta}{sub o} initial disturbance amplitude, and a fully developed turbulent portion characterized by high initial disturbance amplitude (ln(a/{delta}{sub o,T}) {approximately} 4.85). In the transition region, ln(a/{delta}{sub o}) is not single valued; it decreases with increasing Reynolds number. In absence of aerodynamic effects, turbulent jets are as stable as laminar jets. For this breakup mode turbulence propagates initial disturbances with amplitudes orders of magnitude larger than laminar jets ({delta}{sub o,T}=28{times}10{sup 6} {delta}{sub o,L}). Growth rates of initial disturbances are same for both laminar and turbulent columns with theoretical Weber values. Droplet size distribution is bi-modal; the number ratio of large (> D/2), to small (< D/2) droplets is 3 and independent of Reynolds number. For laminar flow optimum wavelength ({lambda}{sub opt}) corresponding to fastest growing disturbance is equal to 4.45D, exactly the theoretical Weber value. For turbulent flow conditions, the turbulent column segments. Typically, segments with lengths of one to several wavelengths, detach from the liquid jet. The long ligaments contract under the action of surface tension, resulting in droplet sizes larger than predicted by Rayleigh and Weber. For turbulent flow conditions, {lambda}{sub opt} = 9.2D, about 2 times the optimum Weber wavelength.

  7. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse

  8. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    SciTech Connect (OSTI)

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suetal.(Combust. Flame, vol.144 (3), 2006, pp.494512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the

  9. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    SciTech Connect (OSTI)

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both

  10. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization aremore » located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen

  11. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    SciTech Connect (OSTI)

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that

  12. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    SciTech Connect (OSTI)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

    2012-01-01

    Turbulent CO/H{sub 2}/N{sub 2} (syngas) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k? turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulencechemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  13. Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube

    SciTech Connect (OSTI)

    Yu-ting, Wu; Bin, Liu; Chong-fang, Ma; Hang, Guo [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-10-15

    In order to understand the heat transfer characteristics of molten salt and testify the validity of the well-known empirical convective heat transfer correlations, experimental study on transition convective heat transfer with molten salt in a circular tube was conducted. Molten salt circulations were realized and operated in a specially designed system over 1000 h. The average forced convective heat transfer coefficients of molten salt were determined by least-squares method based on the measured data of flow rates and temperatures. Finally, a heat transfer correlation of transition flow with molten salt in a circular tube was obtained and good agreement was observed between the experimental data of molten salt and the well-known correlations presented by Hausen and Gnielinski, respectively. (author)

  14. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    SciTech Connect (OSTI)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  15. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  16. Three dimensional analysis of turbulent steam jets in enclosed structures : a CFD approach.

    SciTech Connect (OSTI)

    Ishii, M.; NguyenLe, Q.

    1999-04-20

    This paper compares the three-dimensional numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. The temperature and pressure data of a steam blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric simplified Boiling Water Reactor. A three step approach was used to analyze the steam jet behavior. First, a 1-Dimensional, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Second, 2-Dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. Finally, 3-Dimensional model of the PUMA drywell was created with the boundary conditions based on experimental measurements. The results of the 1-D and 2-D models were reported in the previous meeting. This paper discusses in detail the formulation and the results of the 3-Dimensional PHOENICS model of the PUMA drywell. It is found that the 3-D CFD solutions compared extremely well with the measured data.

  17. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

    SciTech Connect (OSTI)

    Kearney, Sean P.; Guildenbecher, Daniel Robert; Winters, Caroline; Farias, Paul Abraham; Grasser, Thomas W.; Hewson, John C.

    2015-09-01

    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

  18. Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

    2006-12-01

    This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

  19. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH{sub 2}O in a piloted premixed jet flame

    SciTech Connect (OSTI)

    Li, Z.S.; Li, B.; Sun, Z.W.; Alden, M. [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Bai, X.S. [Division of Fluid Mechanics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2010-06-15

    High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH{sub 2}O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 {mu}m and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH{sub 2}O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH{sub 2}O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH{sub 2}O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH{sub 2}O from the reaction zones to the preheat zone. The CH{sub 2}O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH{sub 2}O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O{sub 2} and CO{sub 2} in the inner-layer of the

  20. Modification of vortex dynamics and transport properties of transitional axisymmetric jets using zero-net-mass-flux actuation

    SciTech Connect (OSTI)

    nder, Asim; Meyers, Johan

    2014-07-15

    We study the near field of a zero-net-mass-flux (ZNMF) actuated round jet using direct numerical simulations. The Reynolds number of the jet Re{sub D} = 2000 and three ZNMF actuators are used, evenly distributed over a circle, and directed towards the main jet. The actuators are triggered in phase, and have a relatively low momentum coefficient of C{sub ?} = 0.0049 each. We study four different control frequencies with Strouhal numbers ranging from St{sub D} = 0.165 to St{sub D} = 1.32; next to that, also two uncontrolled baseline cases are included in the study. We find that this type of ZNMF actuation leads to strong deformations of the near-field jet region that are very similar to those observed for non-circular jets. At the end of the jet's potential core (x/D = 5), the jet-column cross section is deformed into a hexagram-like geometry that results from strong modifications of the vortex structures. Two mechanisms lead to these modifications, i.e., (i) self-deformation of the jet's primary vortex rings started by distortions in their azimuthal curvature by the actuation, and (ii) production of side jets by the development and subsequent detachment of secondary streamwise vortex pairs. Further downstream (x/D = 10), the jet transforms into a triangular pattern, as the sharp corner regions of the hexagram entrain fluid and spread. We further investigate the global characteristics of the actuated jets. In particular when using the jet preferred frequency, i.e., St{sub D} = 0.33, parameters such as entrainment, centerline decay rate, and mean turbulent kinetic energy are significantly increased. Furthermore, high frequency actuation, i.e., St{sub D} = 1.32, is found to suppress the mechanisms leading to large scale structure growth and turbulent kinetic energy production. The simulations further include a passive scalar equation, and passive scalar mixing is also quantified and visualized.

  1. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  2. DNS/LES of Complex Turbulent Flows | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autoignition of a turbulent hydrogen jet injected into hot oxygen Autoignition of a turbulent hydrogen jet injected into hot oxygen. The green isocontours illustrate the turbulent structures in the fuel, the blue isocontours show the HO2 radical (an important precursor to autoignition), and the orange isosurfaces illustrate temperature. Credit: Rajapadiyan Asaithambi and Krishnan Mahesh, University of Minnesota DNS/LES of Complex Turbulent Flows PI Name: Krishnan Mahesh PI Email: mahesh@umn.edu

  3. Fuzzy jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Here, collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet taggingmore » variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  4. Evaporation of water with single and multiple impinging air jets

    SciTech Connect (OSTI)

    Trabold, T.A.; Obot, N.T. )

    1991-08-01

    An experimental investigation of impingement water evaporation under a single jet and arrays of circular jets was made. The parametric study included the effects of jet Reynolds number and standoff spacing for both single and multiple jets, as well as surface-to-nozzle diameter ratio and fractional nozzle open area for single and multiple jets, respectively. The nozzle exit temperature of the air jet, about the same as that of the laboratory, was 3-6C higher than that of the evaporating water. Predictive equations are provided for mass transfer coefficient in terms of the flow and geometric conditions.

  5. Increasing jet entrainment, mixing and spreading

    DOE Patents [OSTI]

    Farrington, Robert B.

    1994-01-01

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  6. Increasing jet entrainment, mixing and spreading

    DOE Patents [OSTI]

    Farrington, R.B.

    1994-08-16

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

  7. Circular free-electron laser

    DOE Patents [OSTI]

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  8. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect (OSTI)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  9. Turbulent combustion

    SciTech Connect (OSTI)

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  10. Turbulence-chemistry interactions in reacting flows

    SciTech Connect (OSTI)

    Barlow, R.S.; Carter, C.D.

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  11. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect (OSTI)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  12. CIRCULAR CAVITY SLOT ANTENNA

    DOE Patents [OSTI]

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  13. Heat transfer and flow of an impinged plate with an elliptic jet

    SciTech Connect (OSTI)

    Matsuda, Shoichi; Yaga, Minoru; Oyakawa, Kenyu

    1999-07-01

    The time and spatial temperature profiles on a jet impingement plate were measured using an infrared radiometer with a two-dimensional array of Indium-Antimony (In Sb) sensors for various nozzle exit-to-plate spaces for when the jet being issued from an elliptic nozzle impinges on the target plate. The isotherms of infrared images as well as heat transfer coefficients were obtained by measurement data. The heat transfer coefficients were also measured by using thermocouples. In order to compare the isotherms and heat transfer contours with flow patterns, the flows on the plate were visualized by the oil-film method, and the velocity and the turbulence intensity were measured by a hot wire anemometer. The phenomena of axes switching which are caused by the differences in self-induced velocity in non-circular vortices and have been the typical behaviors of free jets were observed on the impingement plate. The distribution of the isotherm and iso-heat transfer coefficients for the center portion were shorted in the major direction with an increase of the space between nozzle exit and impingement plate and elongated in the minor direction. The isotherms from the infrared image corresponded closely to the distribution of iso-heat transfer coefficients by using thermocouples. The shapes of flow patterns also corresponded to both the shape of the isotherms and the iso-heat transfer contours. In the twice length of nozzle diameter downstream from nozzle exit, the oil film pattern was elongated in the major axis direction for the center portion, which corresponded to both the lower temperature and higher heat transfer coefficient.

  14. New perspectives on superparameterization for geophysical turbulence

    SciTech Connect (OSTI)

    Majda, Andrew J.; Grooms, Ian

    2014-08-15

    This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse spacetime superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for eddy-permitting mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.

  15. Circular chemiresistors for microchemical sensors

    DOE Patents [OSTI]

    Ho, Clifford K.

    2007-03-13

    A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.

  16. Temperature and species-concentration measurements in turbulent flames by the CARS technique

    SciTech Connect (OSTI)

    Goss, L.P.; Schreiber, P.W.; Switzer, G.L.; Trump, D.D.

    1983-09-01

    Simultaneous temperature and N/sub 2/-concentration data have been obtained employing a 10-Hz coherent anti-stokes Raman spectroscopy system on two propane-air turbulent-jet diffusion flames with Reynolds numbers of 2000 and 6000. Average values, probability density functions, and correlation plots show reasonable trends for both centerline and radial profiles of the turbulent flames.

  17. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  18. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  19. Nuclear spin circular dichroism

    SciTech Connect (OSTI)

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  20. Direct numerical simulation of turbulent reacting flows

    SciTech Connect (OSTI)

    Chen, J.H.

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  1. NO concentration imaging in turbulent nonpremixed flames

    SciTech Connect (OSTI)

    Schefer, R.W.

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  2. Turbulent Nonpremixed Flames (TNF): Experimental Data Archives and Computational Submodels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In the 1990s an international collaboration formed around a series of workshops that became known collectively as the International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames (TNF). An online library, hosted by Sandia National Laboratory (California) was established that provides data sets and submodels or "mechanisms" for the study of turbulence-chemistry interactions in turbulent nonpremixed and partially premixed combustion. Data are organized by flame types: simple jet flames, piloted jet flames, bluff body flames, and swirl flames. These data sets provide a means for collaborative comparisons of both measured and simulated/modeled research results and also assist scientists in determining priorities for further research. More than 20 data sets or databases are available from this website, along with various downloadable files of chemical mechanisms. The website also provides an extensive bibliography and the proceedings of the workshops themselves from 1996 through 2012. Information continues to be added to this collection.

  3. Timewise morphology of turbulent diffusion flame by means of image processing

    SciTech Connect (OSTI)

    Torii, Shuichi; Yano, Toshiaki; Tsuchino, Fumihiro

    1999-07-01

    An experimental study is performed to investigate the dynamic behavior of jet diffusion flames from a vertical circular nozzle. A real-time image processing on slow-motion video recording using the high-speed video camera is employed to clarify the flame morphology. Emphasis is placed on the timewise variation of the flame length, H, the peripheral distance of the flame, L, and the projected area of the flame contour, S, based on the RGB values of the flame. Here, RGB implies the three primary colors, i.e., red, green and blue, respectively. Propane is used as fuel and a burner tube of 2.40 mm inside diameter is employed here. It is found from the study that (1) a real-time color image processing with the aid of a slow-motion video recording discriminates the flame shape and discloses the flame behavior with time, (2) H, L and S vary periodically with time, and (3) the time-averaged value of L{sup 2}/S and its turbulence intensity, which is defined here, are intensified with an increase in the Reynolds number.

  4. Gas-flow measurements in a jet flame using cross-correlation of high speed particle-images

    SciTech Connect (OSTI)

    Shioji, Masahiro; Kawasaki, Kiyoshi; Kawanabe, Hiroshi; Ikegami, Makoto

    1999-07-01

    Time changes of a two-dimensional distribution of velocities in a methane jet flame and a nitrogen jet are measured by cross-correlation particle image velocimetry (PIV). The mean velocity and the intensity of turbulence are obtained and compared with those measured by HWA in order to ascertain the accuracy of PIV. Furthermore, the effect of combustion on turbulence characteristics is discussed based on the deformation of eddies with time change and distribution of time and spatial scales.

  5. Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets

    SciTech Connect (OSTI)

    Li Qing; Zhu Ximing; Li Jiangtao; Pu Yikang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2010-02-15

    In the experiment of plasma jets generated in a tube dielectric barrier discharge configuration, three distinguishable modes, namely, laminar, transition, and turbulent jet modes, have been identified. Flows of helium, neon, and argon gases shared the hydrodynamic law when their plasma jets spraying into ambient air of atmospheric pressure and room temperature. Aiming to reveal the basic processes, we propose that plasma jet length is mainly determined by reactions involving metastable atoms. These processes are responsible for the variation in plasma jet length versus gas flow rate and working gas species. To investigate this proposal in detail, we have obtained three significant experimental results, i.e., (1) the plasma jet lengths of helium, neon, and argon are different; (2) the plasma jet length of krypton slightly changes with gas flow rate, with three modes indistinguishable; and (3) there are large differences between optical emission spectra of helium, neon, argon, and krypton flow gases. These observations are in good agreement with our proposal.

  6. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    SciTech Connect (OSTI)

    Pease, Leonard F.; Bamberger, Judith A.; Minette, Michael J.

    2015-08-01

    satisfies these criteria when vigorous breakthrough is achieved, not all available data follow the free jet profile for the central upwell, particularly at lower nozzle velocities. Alternative flow regimes are considered and new models for cloud height, “cavern height,” and the rate of jet penetration (jet celerity) are benchmarked against data to anchor scaling analyses. This analytical modeling effort to provide a technical basis for scaling PJM mixed vessels has significant implications for vessel mixing, because jet physics underlies “cavern” height, cloud height, and the volume of mixing considerations. A new four-parameter cloud height model compares favorably to experimental results. This model is predictive of breakthrough in 8 ft vessel tests with the two-part simulant. Analysis of the upwell in the presence of yield stresses finds evidence of expanding turbulent jets, confined turbulent jets, and confined laminar flows. For each, the critical elevation at which jet momentum depletes is predicted, which compare favorably to experimental cavern height data. Partially coupled momentum and energy balances suggest that these are limiting cases of a gradual transition from a turbulent expanding flow to a confined laminar flow. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing (i.e., breakthrough with slow peripheral mixing). Consideration of jet celerity shows that the rate of jet penetration is a governing consideration in breakthrough to the surface. Estimates of the volume of mixing are presented. This analysis shows that flow along the vessel wall is sluggish such that the central upwell governs the volume of mixing. This analysis of the central upwell alone lays essential groundwork for complete analysis of mode three mixing and estimates of hydrogen release rates from first principles.

  7. Plasmoid Instabilities Mediated Three-Dimensional Magnetohydrodynamic Turbulent Reconnection

    SciTech Connect (OSTI)

    Huang, Yi-min; Guo, Fan

    2015-07-21

    After some introductory remarks on fast reconnection in resistive MHD due to plasmoid instability, oblique tearing modes in 3D, and previous studies on 3D turbulent reconnection, the subject is presented under the following topics: 3D simulation setup, time evolution of the 3D simulation, comparison with Sweet-Parker and 2D plasmoid reconnection, and diagnostics of the turbulent state (decomposition of mean fields and fluctuations, power spectra of energy fluctuations, structure function and eddy anisotropy with respect to local magnetic field). Three primary conclusions were reached: (1) The results suggest that 3D plasmoid instabilities can lead to self-generated turbulent reconnection (evidence of energy cascade and development of inertial range, energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence); (2) The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets (conventional MHD turbulence theories or phenomenologies may not be applicable – e.g. scale-dependent anisotropy as predicted by Goldreich & Sridhar is not found); (3) 3D turbulent reconnection is different from 2D plasmoid-dominated reconnection in many aspects. However, in fully developed state, reconnection rates in 2D and 3D are comparable — this result needs to be further checked in higher S.

  8. Radiosonde measurements of turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence detection on aerial platforms using orientation sensors R. Giles Harrison, Robin J. Hogan, George W. Rogers, Alyssa M. Heath and Keri A. Nicoll Department of Meteorology University of Reading, UK r.g.harrison@reading.ac.uk 2 "Bumpiness" (or turbulence), still remains an aircraft hazard, even at cruising altitudes How can in-situ direct position and orientation sensing can be used to detect turbulence affecting aerial platforms? * Investigated using balloon platforms,

  9. Federal Acquisition Circular 2005-58

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of Federal Acquisition Circular 2005-58 which makes miscellaneous changes to the Federal Acquisition Regulation. The Circular was published in the Federal Register on April 18, 2012 at 77 FR 23363.

  10. Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Furthermore, combined spontaneous Raman spectroscopy, Rayleigh scatter, and OHCO-laser-induced fluorescence measurements have been used to quantify in situ turbulent flame mixture ...

  11. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    SciTech Connect (OSTI)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.

  12. Federal Acquisition Circular 2005-52

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of rules incorporated in the FAR by Federal Acquisition Circular 2005-52.

  13. ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY

    SciTech Connect (OSTI)

    Zhang, Xi; Showman, Adam P.

    2014-06-10

    A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when the internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.

  14. Experimental study on confined two-phase jets

    SciTech Connect (OSTI)

    Levy, Y.; Albagli, D. )

    1991-09-01

    The basic mixing phenomena in confined, coaxial, particle-laden turbulent flows are studied within the scope of ram combustor research activities. Cold-flow experiments in a relatively simple configuration of confined, coaxial two-phase jets provided both qualitative and quantitative insight on the multiphase mixing process. Pressure, tracer gas concentration, and two-phase velocity measurements revealed that unacceptably long ram combustors are needed for complete confined jet mixing. Comparison of the experimental results with a previous numerical simulation displayed a very good agreement, indicating the potential of the experimental facility for validation of computational parametric studies. 38 refs.

  15. Fully Developed Turbulent Mixing in an Annular Sector

    SciTech Connect (OSTI)

    Lim, Hyun-Kyung; Zhou, Yijie; de Almeida, Valmor F; Glimm, James G

    2014-01-01

    We review recent progress on the characterization of turbulent mixing fluid flow and relate these ideas to high-speed, two-phase Couette flow with application to mixing in a centrifugal contactor. The general ideas are more broadly applicable and have been applied to the study of Rayleigh-Taylor and Richtmyer-Meshkov fluid mixing, combustion in the engine of a scram jet and the analysis of inertial confinement pellet simulations.

  16. Interpretation of extragalactic jets

    SciTech Connect (OSTI)

    Norman, M.L.

    1985-01-01

    The nature of extragalatic radio jets is modeled. The basic hypothesis of these models is that extragalatic jets are outflows of matter which can be described within the framework of fluid dynamics and that the outflows are essentially continuous. The discussion is limited to the interpretation of large-scale (i.e., kiloparsec-scale) jets. The central problem is to infer the physical parameters of the jets from observed distributions of total and polarized intensity and angle of polarization as a function of frequency. 60 refs., 6 figs.

  17. Jets in QCD

    SciTech Connect (OSTI)

    Seymour, M.H.

    1996-02-01

    Many analyses at the collider utilize the hadronic jets that are the footprints of QCD partons. These are used both to study the QCD processes themselves and increasingly as tools to study other physics, for example top mass reconstruction. However, jets are not fundamental degrees of freedom in the theory, so we need an {ital operational} {ital jet} {ital definition} and {ital reliable} {ital methods} {ital to} {ital calculate} {ital their} {ital properties}. This talk covers both of these important areas of jet physics. {copyright} {ital 1996 American Institute of Physics.}

  18. Injury and mortality of juvenile salmon entrained in a submerged jet entering still water

    SciTech Connect (OSTI)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.; Johnson, Gary E.

    2010-05-21

    Juvenile salmon can be injured and killed when they pass through hydroelectric turbines and other downstream passage alternatives. The hydraulic conditions in these complex environments that pose a risk to the health of fish include turbulent shear flows, collisions with hydraulic structures, cavitation, and rapid change of pressure. Improvements in the understating of the biological responses of juvenile salmon in turbulent shear flows can reduce salmon injury and mortality. In a series of studies, juvenile fall Chinook salmon (Oncorhynchus tshawythscha) were exposed to turbulent shear flows in two mechanisms: 1) the slow-fish-to-fast-water mechanism, where test fish were introduced into a turbulent jet from slow-moving water through an introduction tube placed just outside the edge of the jet; 2) the fast-fish-to-slow-water mechanism, where test fish were carried by the fast-moving water of a submerged turbulent jet into the slow-moving water of a flume. All fish exposures to the water jet were recorded by two high-speed, high-resolution cameras. Motion-tracking analysis was then performed on the digital videos to quantify associated kinematic and dynamic parameters. The main results for the slow-fish-to-fast-water mechanism were described in Deng et al (2005). This chapter will discuss the test results of the fast-fish-to-slow-water mechanism and compare the results of the two mechanisms.

  19. BOUndary Plasma Turbulence

    Energy Science and Technology Software Center (OSTI)

    2008-01-25

    BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less

  20. Observations of Edge Turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edge Turbulence near the X-point of Alcator C-Mod APS-2007 (1) J.L. Terry, S.J. Zweben*, B. LaBombard, I. Cziegler, O. Grulke + , D.P. Stotler* MIT - Plasma Science and Fusion...

  1. Terascale Direct Numerical Simulations of Turbulent Combustion: Capabilities and Limits (PReSS Talk)

    SciTech Connect (OSTI)

    Yoo, Chun Sang

    2009-03-26

    The rapid growth in computational capabilities has provided great opportunities for direct numerical simulations (DNS) of turbulent combustion, a type of simulations without any turbulence model. With the help of terascale high performance supercomputing (HPC) resources, we are now able to provide fundamental insight into turbulence-chemistry interaction in simple laboratory-scale turbulent flames with detailed chemistry using three-dimensional (3D) DNS. However, the actual domain size of 3D-DNS is still limited within {approx} O(10 cm{sup 3}) due to its tremendously high grid resolution required to resolve the smallest turbulent length scale as well as flame structures. Moreover, 3D-DNS will require more computing powers to investigate next-generation engines, of which operating conditions will be characterized by higher pressures, lower temperatures, and higher levels of dilution. In this talk, I will discuss the capabilities and limits of DNS of turbulent combustion and present some results of ignition/extinction characteristics of a highly diluted hydrogen flame counter-flowing against heated air. The results of our recent 3D-DNS of a spatially-developing turbulent lifted hydrogen jet flame in heated coflow will also be presented. The 3D-DNS was performed at a jet Reynolds number of 11,000 with {approx} 1 billion grid points, which required 3.5 million CPU hours on Cray XT3/XT4 at Oak Ridge National Laboratories.

  2. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  3. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  4. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  5. Circular permutant GFP insertion folding reporters

    DOE Patents [OSTI]

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  6. Federal Acquisition Circular 2005-53

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of Federal Acquisition Circular 2005-53 which makes miscellaneous changes to the Federal Acquisition Regulation.

  7. Federal Acquisition Circular 2005-39

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of Federal Acquisition Circular 2005-39 which makes miscellaneous changes to the Federal Acquisition Regulation.

  8. Federal Acquisition Circular 2005-48

    Broader source: Energy.gov [DOE]

    Federal Acquisition Circular 2005-48 was issued December 30, 2010, 75 FR 82565. It concludes 4 separate rulemakings which are described in the attached summary sheet.

  9. Federal Acquisition Circular 2005-47

    Broader source: Energy.gov [DOE]

    Federal Acquisition Circular 2005-47 was issued December 13, 2010, 75 FR 77721. It concludes 7 separate rulemakings which are described in the attached summary sheet.

  10. Studies of the effects of curvature on dilution jet mixing

    SciTech Connect (OSTI)

    Holdeman, J.D.; Srinivasan, Ram: Reynolds, R.S.; White, C.D. Allied-Signal Aerospace Co., Phoenix, AZ )

    1992-02-01

    An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow. 27 refs.

  11. Angular Scaling In Jets

    SciTech Connect (OSTI)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  12. Federal Acquisition Circular 2005-56

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of Federal Acquisition Circular 2005-56 which makes miscellaneous changes to the Federal Acquisition Regulation. The Circular was published in the Federal Register on March 2, 2012 at 77 FR 12912 and 12913.

  13. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    SciTech Connect (OSTI)

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide

  14. A spray-suppression model for turbulent combustion

    SciTech Connect (OSTI)

    DESJARDIN,PAUL E.; TIESZEN,SHELDON R.; GRITZO,LOUIS A.

    2000-02-14

    A spray-suppression model that captures the effects of liquid suppressant on a turbulent combusting flow is developed and applied to a turbulent diffusion flame with water spray suppression. The spray submodel is based on a stochastic separated flow approach that accounts for the transport and evaporation of liquid droplets. Flame extinguishment is accounted for by using a perfectly stirred reactor (PSR) submodel of turbulent combustion. PSR pre-calculations of flame extinction times are determined using CHEMKIN and are compared to local turbulent time scales of the flow to determine if local flame extinguishment has occurred. The PSR flame extinguishment and spray submodels are incorporated into Sandia's flow fire simulation code, VULCAN, and cases are run for the water spray suppression studies of McCaffrey for turbulent hydrogen-air jet diffusion flames. Predictions of flame temperature decrease and suppression efficiency are compared to experimental data as a function of water mass loading using three assumed values of drop sizes. The results show that the suppression efficiency is highly dependent on the initial droplet size for a given mass loading. A predicted optimal suppression efficiency was observed for the smallest class of droplets while the larger drops show increasing suppression efficiency with increasing mass loading for the range of mass loadings considered. Qualitative agreement to the experiment of suppression efficiency is encouraging, however quantitative agreement is limited due to the uncertainties in the boundary conditions of the experimental data for the water spray.

  15. Modeling jet and outflow feedback during star cluster formation

    SciTech Connect (OSTI)

    Federrath, Christoph; Schrn, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ?1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ?1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ? three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  16. Identifying Turbulent Structures through Topological Segmentation

    SciTech Connect (OSTI)

    Bremer, Peer-Timo; Gruber, Andrea; Bennett, Janine C.; Gyulassy, Attila; Kolla, Hemanth; Chen, Jacqueline H.; Grout, Ray W.

    2016-01-01

    A new method of extracting vortical structures from a turbulent flow is proposed whereby topological segmentation of an indicator function scalar field is used to identify the regions of influence of the individual vortices. This addresses a long-standing challenge in vector field topological analysis: indicator functions commonly used produce a scalar field based on the local velocity vector field; reconstructing regions of influence for a particular structure requires selecting a threshold to define vortex extent. In practice, the same threshold is rarely meaningful throughout a given flow. By also considering the topology of the indicator field function, the characteristics of vortex strength and extent can be separated and the ambiguity in the choice of the threshold reduced. The proposed approach is able to identify several types of vortices observed in a jet in cross-flow configuration simultaneously where no single threshold value for a selection of common indicator functions appears able to identify all of these vortex types.

  17. EPISODIC JETS AS THE CENTRAL ENGINE OF GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Yuan Feng; Zhang Bing E-mail: zhang@physics.unlv.edu

    2012-09-20

    Most gamma-ray bursts (GRBs) have erratic light curves, which demand that the GRB central engine launches an episodic outflow. Recent Fermi observations of some GRBs indicate a lack of the thermal photosphere component as predicted by the baryonic fireball model, which suggests a magnetic origin of GRBs. Given that powerful episodic jets have been observed along with continuous jets in other astrophysical black hole systems, here we propose an intrinsically episodic, magnetically dominated jet model for the GRB central engine. Accumulation and eruption of free magnetic energy in the corona of a differentially rotating, turbulent accretion flow around a hyperaccreting black hole lead to ejections of episodic, magnetically dominated plasma blobs. These blobs are accelerated magnetically, collide with each other at large radii, trigger rapid magnetic reconnection and turbulence, efficient particle acceleration, and radiation, and power the observed episodic prompt gamma-ray emission from GRBs.

  18. Charged Particle Optics in Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Charged Particle Optics in Circular Higgs Factory Citation Details In-Document Search Title: Charged Particle Optics in Circular Higgs Factory You are accessing a ...

  19. Interface and process for enhanced transmission of non-circular ion beams between stages at unequal pressure

    DOE Patents [OSTI]

    Tang, Keqi; Shvartsburg, Alexandre A.; Smith, Richard D.

    2008-03-04

    The invention discloses a new interface with non-circular conductance limit aperture(s) useful for effective transmission of non-circular ion beams between stages with different gas pressure. In particular, the invention provides an improved coupling of field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of planar or side-to-side geometry to downstream stages such as mass spectrometry or ion mobility spectrometry. In this case, the non-circular aperture is rectangular; other geometries may be optimum in other applications. In the preferred embodiment, the non-circular aperture interface is followed by an electrodynamic ion funnel that may focus wide ion beams of any shape into tight circular beams with virtually no losses. The jet disrupter element of the funnel may also have a non-circular geometry, matching the shape of arriving ion beam. The improved sensitivity of planar FAIMS/MS has been demonstrated in experiments using a non-contiguous elongated aperture but other embodiments (e.g., with a contiguous slit aperture) may be preferable, especially in conjunction with an ion funnel operated at high pressures.

  20. SHOCK CORRUGATION BY RAYLEIGH-TAYLOR INSTABILITY IN GAMMA-RAY BURST AFTERGLOW JETS

    SciTech Connect (OSTI)

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2014-08-10

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  1. Federal Acquisition Regulation Federal Acquisition Circular 2005...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Regulation Federal Acquisition Circular 2005-86 Summary of Rules FAC 2005-86 Item Subject FAR Case I Definition of "Multiple-Award Contract" 2015-019 II Sole Source ...

  2. Federal Acquisition Circular 2005-37

    Office of Energy Efficiency and Renewable Energy (EERE)

    Federal Acquisition Circular 2005-37, which makes miscellaneous changes to the Federal Acquisition Regulation, was published in the October 14,2009, issue of the Federal Register. A summary of the changes is attached.

  3. B-jets and z + b-jets at CDF

    SciTech Connect (OSTI)

    Jeans, Daniel; /Rome U.

    2006-06-01

    The authors present CDF cross-section measurements for the inclusive production of b jets and the production of b jets in association with a Z{sup 0} boson. Both measurements are in reasonable agreement with NLO QCD predictions.

  4. Radial flow pulse jet mixer (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Radial flow pulse jet mixer Title: Radial flow pulse jet mixer The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing ...

  5. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  6. Jet Fuel from Microalgal Lipids

    SciTech Connect (OSTI)

    Not Available

    2006-07-01

    A fact sheet on production of jet fuel or multi-purpose military fuel from lipids produced by microalgae.

  7. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R.

    2016-05-03

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  8. Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  9. Vortex diode jet

    DOE Patents [OSTI]

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  10. GROWTH OF A LOCALIZED SEED MAGNETIC FIELD IN A TURBULENT MEDIUM

    SciTech Connect (OSTI)

    Cho, Jungyeon; Yoo, Hyunju

    2012-11-10

    Turbulence dynamo deals with the amplification of a seed magnetic field in a turbulent medium and has been studied mostly for uniform or spatially homogeneous seed magnetic fields. However, some astrophysical processes (e.g., jets from active galaxies, galactic winds, or ram-pressure stripping in galaxy clusters) can provide localized seed magnetic fields. In this paper, we numerically study amplification of localized seed magnetic fields in a turbulent medium. Throughout the paper, we assume that the driving scale of turbulence is comparable to the size of the system. Our findings are as follows. First, turbulence can amplify a localized seed magnetic field very efficiently. The growth rate of magnetic energy density is as high as that for a uniform seed magnetic field. This result implies that magnetic field ejected from an astrophysical object can be a viable source of a magnetic field in a cluster. Second, the localized seed magnetic field disperses and fills the whole system very fast. If turbulence in a system (e.g., a galaxy cluster or a filament) is driven at large scales, we expect that it takes a few large-eddy turnover times for the magnetic field to fill the whole system. Third, growth and turbulence diffusion of a localized seed magnetic field are also fast in high magnetic Prandtl number turbulence. Fourth, even in decaying turbulence, a localized seed magnetic field can ultimately fill the whole system. Although the dispersal rate of the magnetic field is not fast in purely decaying turbulence, it can be enhanced by an additional forcing.

  11. Flow cytometer jet monitor system

    DOE Patents [OSTI]

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  12. The Composition of GRB Jets and the ICMART Model

    SciTech Connect (OSTI)

    Zhang, Bing; Guo, Fan

    2015-07-16

    Models of gamma ray bursts (GRBs) are drawn from observations of light curves, spectra, and spectral evolution. The ICMART (Internal Collision-induced MAgnetic Reconnection & Turbulence) model and some of its features are presented. Increasing evidence points towards Poynting-flux-dominated jets in at least some (even a good fraction of) GRBs. The main emission component (Band) is of a synchrotron emission origin, produced by electrons accelerated in the emission region. The data seem to require that magnetic reconnection in the moderately-high sigma regime is the mechanism to accelerate particles. Extensive numerical simulations are needed to verify physical details of such a model, and some encouraging results have been obtained.

  13. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect (OSTI)

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  14. UNBOUND GEODESICS FROM THE ERGOSPHERE AND THE MESSIER 87 JET PROFILE

    SciTech Connect (OSTI)

    Gariel, J.; Marcilhacy, G.; Santos, N. O. E-mail: gmarcilhacy@hotmail.com

    2013-09-10

    Assuming that the spin a of the black hole presumably located at the core of the active galactic nucleus Messier 87 takes the value which maximizes the ergospheric volume of the Kerr spacetime, we find the results compatible with the recent observations obtained by high-resolution interferometry on the origin of the jet, which would be located inside the innermost stable circular orbit diameter. Moreover, we find that a flow of unbound geodesics issued from the ergoregion is able to frame the best fits at large scales recently obtained for describing the observed profile of the relativistic jet launched from this central engine.

  15. BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS

    SciTech Connect (OSTI)

    Fendt, Christian; Sheikhnezami, Somayeh E-mail: nezami@mpia.de

    2013-09-01

    We investigate the jet launching from accretion disks, in particular the formation of intrinsically asymmetric jet/counter jet systems. We perform axisymmetric MHD simulations of the disk-jet structure on a bipolar computational domain covering both hemispheres. We apply various models such as asymmetric disks with (initially) different scale heights in each hemisphere, symmetric disks into which a local disturbance is injected, and jets launched into an asymmetric disk corona. We consider both a standard global magnetic diffusivity distribution and a novel local diffusivity model. Typical disk evolution first shows substantial disk warping and then results in asymmetric outflows with a 10%-30% mass flux difference. We find that the magnetic diffusivity profile is essential for establishing a long-term outflow asymmetry. We conclude that bipolar asymmetry in protostellar and extragalactic jets can indeed be generated intrinsically and maintained over a long time by disk asymmetries and the standard jet launching mechanism.

  16. Ram jet engine

    SciTech Connect (OSTI)

    Crispin, B.; Pohl, W.D.; Thomaier, D.; Voss, N.

    1983-11-29

    In a ram jet engine, a tubular combustion chamber is divided into a flame chamber followed by a mixing chamber. The ram air is supplied through intake diffusers located on the exterior of the combustion chamber. The intake diffusers supply combustion air directly into the flame chamber and secondary air is conveyed along the exterior of the combustion chambers and then supplied directly into the mixing chamber.

  17. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect (OSTI)

    Chang, C.H.

    1992-01-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  18. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect (OSTI)

    Chang, C.H.

    1992-08-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  19. Magnetized Turbulent Dynamo in Protogalaxies

    SciTech Connect (OSTI)

    Leonid Malyshkin; Russell M. Kulsrud

    2002-01-28

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.

  20. Advances in compressible turbulent mixing

    SciTech Connect (OSTI)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  1. Numerical simulation of jet mixing concepts in Tank 241-SY-101

    SciTech Connect (OSTI)

    Trent, D.S.; Michener, T.E.

    1993-03-01

    The episodic gas release events (GRES) that have characterized the behavior of Tank 241-SY-101 for the past several years are thought to result from gases generated by the waste material in it that become trapped in the layer of settled solids at the bottom of the tank. Several concepts for mitigating the GREs have been proposed. One concept involves mobilizing the solid particles with mixing jets. The rationale behind this idea is to prevent formation of a consolidated layer of settled solids at the bottom of the tank, thus inhibiting the accumulation of gas bubbles in this layer. Numerical simulations were conducted using the TEMPEST computer code to assess the viability and effectiveness of the proposed jet discharge concepts and operating parameters. Before these parametric studies were commenced, a series of turbulent jet studies were conducted that established the adequacy of the TEMPEST code for this application. Configurations studied for Tank 241-SY-101 include centrally located downward discharging jets, draft tubes, and horizontal jets that are either stationary or rotating. Parameter studies included varying the jet discharge velocity, jet diameter, discharge elevation, and material properties. A total of 18 simulations were conducted and are reported in this document. The effect of gas bubbles on the mixing dynamics was not included within the scope of this study.

  2. Combustor with non-circular head end

    DOE Patents [OSTI]

    Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-29

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a head end with a non-circular configuration, a number of fuel nozzles positioned about the head end, and a transition piece extending downstream of the head end.

  3. Federal Acquisition Circular 2005-42

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of Federal Acquisition Circular (FAC) 2005-42 which makes changes to the Federal Acquisition Regulation (FAR). The FAC has eleven rules (seven final and four interim) and one technical amendment. Attached is a short overview of the rules to include its effective date and applicability date.

  4. Federal Acquisition Circular 2005-49

    Broader source: Energy.gov [DOE]

    Federal Acquisition Circular (FAC) 2005-49 was issued January 24, 2011 in volume 76 FR 4188. It published one interim rule Federal Acquisition Regulation (FAR) case number 2010-016 on Public Access to Federal Awardee Performance and Integrity Information System. This rule is effective January 24, 2011. The summary of the FAC is attached.

  5. Federal Acquisition Circular 2005-40

    Broader source: Energy.gov [DOE]

    Federal Acquisition Circular 2005-40 implements the Federal Awardee Performance and Integrity Information System (FAPIIS) to the Federal Acquisition Regulation. This FAC was published in the March 23,2010 issue of the Federal Register. A summary of the changes is attached.

  6. Jet initiation of PBX 9502

    SciTech Connect (OSTI)

    McAfee, J.M.

    1987-07-01

    This report details the progress of an effort to determine the quantitative aspects of the initiation of PBX 9502 (95% TATB, 5% Kel-F 800) by copper jets. The particular jet used was that produced by the LAW warhead (66-mm diameter, 42/sup 0/ angle cone, copper-lined, conical shaped charge). Fifteen experiments, in various configurations, have been fired to define the essential parameters for quantitatively measuring the jet performance and initiation of bare PBX 9502. 7 refs., 8 figs.

  7. Response Relationship Between Juvenile Salmon and an Autonomous Sensor in Turbulent Flows

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Deng, Zhiqun; McKinstry, Craig A.; Mueller, Robert P.; Carlson, Thomas J.; Dauble, Dennis D.

    2009-01-27

    Juvenile fall chinook salmon (Oncorhynchus tshawythscha) and an autonomous sensor device (Sensor Fish) were exposed to turbulent shear flows in order to determine how hydraulic conditions effected fish injury response. Studies were designed to establish correlation metrics between Sensor Fish device measurements and live fish injuries by conducting concurrent releases in a range of turbulent shear flows. Comparisons were made for two exposure scenarios. In the fast-fish-to-slow-water scenario, test fish were carried by the fast-moving water of a submerged turbulent jet and exposed into the standing water of a flume. In the slow-fish-to-fast-water scenario, test fish were introduced into a turbulent jet from standing water through an introduction tube placed just outside the edge of the jet. Motion-tracking analysis was performed on high-speed, high-resolution digital videos of all the releases at water jet velocities ranging from 3 to 22.9 m · s-1. Velocities of the Sensor Fish were very similar to those of live fish, but maximum accelerations of live fish were larger than those by Sensor Fish for all the nozzle velocities of both cenarios. A 10% probability of major injury threshold was found to occur at sensor fish accelerations of 513 and 260 (m · s-2) for the fast-fish-to-slow-water and slow-fish-to-fast-water scenarios, respectively. The findings provide a linkage between laboratory experiments of fish injury, field survival studies, and numerical modeling.

  8. Nocturnal Low-Level-Jet-Dominated Atmospheric Boundary Layer Observed by a Doppler Lidar Over Oklahoma City during JU2003

    SciTech Connect (OSTI)

    Wang, Yansen; Klipp, Cheryl L.; Garvey, Dennis M.; Ligon, David; Williamson, Chatt C.; Chang, Sam S.; Newsom, Rob K.; Calhoun, Ron

    2007-12-01

    Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25-100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%-15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

  9. Gaussian Quadrature for Optical Design with Non-circular Pupils...

    Office of Scientific and Technical Information (OSTI)

    Optical Design with Non-circular Pupils and Fields, and Broad Wavelength Ranges Citation Details In-Document Search Title: Gaussian Quadrature for Optical Design with Non-circular ...

  10. File:DEQ Circular 2.pdf | Open Energy Information

    Open Energy Info (EERE)

    DEQ Circular 2.pdf Jump to: navigation, search File File history File usage File:DEQ Circular 2.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Go...

  11. Policy Flash 2014-11 Federal Acquisition Circular (FAC) 2005...

    Office of Environmental Management (EM)

    11 Federal Acquisition Circular (FAC) 2005-71 Policy Flash 2014-11 Federal Acquisition Circular (FAC) 2005-71 Questions concerning this policy flash should be directed to Barbara...

  12. Policy Flash 2013-63 Federal Acquisition Circular (FAC) 2005...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Federal Acquisition Circular (FAC) 2005-67 Policy Flash 2013-63 Federal Acquisition Circular (FAC) 2005-67 Questions concerning this policy flash should be directed to Barbara...

  13. Federal Acquisition Circular 2005-34 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005-34 Federal Acquisition Circular 2005-34 PF2009-54.pdf (879.43 KB) PF2009-54a - Attachment-Summary of the Contents of Federal Acquisition Circular 2005-34 Published in the July 1, 2009 Issue of the Federal Register at Page 31556 (11.54 KB) More Documents & Publications Federal Acquisition Circular 2005-40 Federal Acquisition Circular 2005-47 Policy Flash Archive Search File

  14. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    SciTech Connect (OSTI)

    Federrath, Christoph; Schober, Jennifer; Bovino, Stefano; Schleicher, Dominik R. G.

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ?/? = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ? 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub ?31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  15. Sudden Viscous Dissipation of Compressing Turbulence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-11

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  16. Structure of hydrogen-rich transverse jets in a vitiated

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significantmoreasymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.less

  17. Direct Numerical Simulation of Autoiginition of a Hydrogen Jet in a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preheated Cross Flow | Argonne Leadership Computing Facility Numerical Simulation of Autoiginition of a Hydrogen Jet in a Preheated Cross Flow Authors: Abdilghanie, A., Frouzakis, C.E., Fischer, P Autoignition of a nitrogen-diluted hydrogen mixture issuing from a round nozzle into a cross-flowing turbulent stream of preheated air flowing in a channel at a friction Reynolds number Re = 180 is inves- tigated via 3-D direct numerical simulations (DNS) at two crossflow stream temperatures (930

  18. Compound cooling flow turbulator for turbine component

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J

    2014-11-25

    Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.

  19. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  20. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  1. Circular zig-zag scan video format

    DOE Patents [OSTI]

    Peterson, C. Glen; Simmons, Charles M.

    1992-01-01

    A circular, ziz-zag scan for use with vidicon tubes. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal.

  2. Shroud for a submerged jet cutting nozzle

    DOE Patents [OSTI]

    Schwab, Thomas L.

    1978-01-01

    A shroud for a submerged jet cutting nozzle is described which separates the jet from surrounding fluid environment and enhances the cutting effect.

  3. OPENING ANGLES OF COLLAPSAR JETS

    SciTech Connect (OSTI)

    Mizuta, Akira; Ioka, Kunihito

    2013-11-10

    We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by θ{sub j} ∼ 1/5Γ{sub 0} and infer the initial Lorentz factor of the jet at the central engine, Γ{sub 0}, is a few for existing observations of θ{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this new picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle θ{sub j,{sub max}} ∼ 1/5 ∼ 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.

  4. Jet grouting for a groundwater cutoff wall in difficult glacial soil deposits

    SciTech Connect (OSTI)

    Flanagan, R.F.; Pepe, F. Jr.

    1997-12-31

    Jet grouting is being used as part of a groundwater cutoff wall system in a major New York City subway construction project to limit drawdowns in an adjacent PCB contamination plume. A circular test shaft of jet grout columns was conducted during the design phase to obtain wall installation parameters. The test program also included shaft wall mapping, and measurements of; inflows, piezometric levels, ground heave and temperature, and jet grout hydraulic conductivity. An axisymmetric finite element method groundwater model was established to back calculate the in-situ hydraulic conductivities of both the surrounding glacial soils and the jet grout walls by matching observed inflows and piezometric levels. The model also verified the use of packer permeability test as a tool in the field to evaluate the hydraulic conductivities of jet grout columns. Both the test program and analytic studies indicated that adjustments to the construction procedures would be required to obtain lower hydraulic conductivities of the jet grout walls for construction. A comparison is made with the conductivities estimated from the test program/analytic studies with those from the present construction.

  5. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  6. Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators

    SciTech Connect (OSTI)

    Kearney-Fischer, M.; Kim, J.-H.; Samimy, M.

    2009-09-15

    The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.

  7. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  8. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, Steve P.

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  9. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  10. Jet fuel from LPG

    SciTech Connect (OSTI)

    Maples, R.E.; Jones, J.R.

    1983-02-01

    Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

  11. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  12. Circular zig-zag scan video format

    DOE Patents [OSTI]

    Peterson, C.G.; Simmons, C.M.

    1992-06-09

    A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

  13. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    SciTech Connect (OSTI)

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  14. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  15. Fragmentation inside an identified jet

    SciTech Connect (OSTI)

    Procura, Massimiliano; Stewart, Iain W.

    2011-05-23

    Using Soft-Collinear Effective Theory (SCET) we derive factorization formulae for semi-inclusive processes where a light hadron h fragments from a jet whose invariant mass is measured. Our analysis yields a novel 'fragmenting jet function' G{sub i}{sup h}(s,z) that depends on the jet invariant mass {radical}(s), and on the fraction z of the large light-cone momentum components of the hadron and the parent parton i. We show that G{sub i}{sup h}(s,z) can be computed in terms of perturbatively calculable coefficients, J{sub ij}(s,z/x), integrated against standard non-perturbative fragmentation functions, D{sub j}{sup h}(x). Our analysis yields a simple replacement rule that allows any factorization theorem depending on a jet function J{sub i} to be converted to a semi-inclusive process with a fragmenting hadron h.

  16. Magnetohydrodynamic turbulence: Observation and experiment

    SciTech Connect (OSTI)

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  17. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  18. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is

  19. PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS (Journal...

    Office of Scientific and Technical Information (OSTI)

    PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS Citation Details In-Document Search Title: PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS A protostellar jet and outflow...

  20. Analysis of Beam Dynamics in a Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Circular e+e- Colliders - Higgs Factory (HF2014) October 9-12, 2014. Beijing, China Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office ...

  1. Federal Acquisition Circular (FAC) 2005-67 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Acquisition Circular (FAC) 2005-67 Attached for your information is a list of Federal Acquisition Regulation (FAR) amendments, published in the June 21, 2013 Federal ...

  2. Federal Acquisition Circular (FAC) 2005-75 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Acquisition Circular (FAC) 2005-75 Attached for your information is a brief summary of Federal Acquisition Regulation (FAR) amendments, published in the June 24, 2014 ...

  3. Gaussian Quadrature for Optical Design with Non-circular Pupils...

    Office of Scientific and Technical Information (OSTI)

    Gaussian Quadrature for Optical Design with Non-circular Pupils and Fields, and Broad Wavelength Ranges Citation Details In-Document Search Title: Gaussian Quadrature for Optical...

  4. Major Facility Siting Program - Circular 2 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Major Facility Siting Program - Circular 2PermittingRegulatory...

  5. Federal Acquisition Circular 2005-52 Item Subject FAR...

    Office of Environmental Management (EM)

    Federal Acquisition Circular 2005-52 Item Subject FAR case I Sustainable Acquisition ... VI Technical Amendments NA Item I--Sustainable Acquisition (FAR Case 2010-001) ...

  6. Policy Flash 2013-37 Federal Acquisition Circular (FAC) 2005...

    Broader source: Energy.gov (indexed) [DOE]

    37 Federal Acquisition Circular (FAC) 2005-66 Questions concerning this policy flash should be directed to Barbara Binney, of the Office of Acquisition and Project Management...

  7. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect (OSTI)

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the

  8. The circular velocity function of group galaxies

    SciTech Connect (OSTI)

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  9. AN X-RAY VIEW OF THE JET CYCLE IN THE RADIO-LOUD AGN 3C120

    SciTech Connect (OSTI)

    Lohfink, Anne M.; Reynolds, Christopher S.; Mushotzky, Richard F.; Tombesi, Francesco; Jorstad, Svetlana G.; Marscher, Alan P.; Miller, Eric D.; Nowak, Michael A.; Aller, Hugh; Aller, Margo F.; Miller, Jon M.; Brenneman, Laura W.; Fabian, Andrew C.

    2013-08-01

    We present a study of the central engine in the broad-line radio galaxy 3C120 using a multi-epoch analysis of a deep XMM-Newton observation and two deep Suzaku pointings (in 2012). In order to place our spectral data into the context of the disk-disruption/jet-ejection cycles displayed by this object, we monitor the source in the UV/X-ray bands, and in the radio band. We find three statistically acceptable spectral models: a disk-reflection model, a jet model, and a jet+disk model. Despite being good descriptions of the data, the disk-reflection model violates the radio constraints on the inclination, and the jet model has a fine-tuning problem, requiring a jet contribution exceeding that expected. Thus, we argue for a composite jet+disk model. Within the context of this model, we verify the basic predictions of the jet-cycle paradigm, finding a truncated/refilling disk during the Suzaku observations and a complete disk extending down to the innermost stable circular orbit during the XMM-Newton observation. The idea of a refilling disk is further supported by the detection of the ejection of a new jet knot approximately one month after the Suzaku pointings. We also discover a step-like event in one of the Suzaku pointings in which the soft band lags the hard band. We suggest that we are witnessing the propagation of a disturbance from the disk into the jet on a timescale set by the magnetic field.

  10. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  11. Santa Fe Jets and Heavy Flavor Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Santa Fe Jets and Heavy Flavor Workshop Santa Fe Jets and Heavy Flavor Workshop WHEN: Jan 11, 2016 8:30 AM - Jan 13, 2016 5:30 PM WHERE: Inn and Spa at Loretto 211 Old Santa Fe...

  12. BioJet Corporation | Open Energy Information

    Open Energy Info (EERE)

    93940 Sector: Carbon Product: Monterey-based carbon credit developer and producer of bio-jet fuel derived from jatropha. References: BioJet Corporation1 This article is a...

  13. Jets in relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  14. Inclusive jet production at the Tevatron

    SciTech Connect (OSTI)

    Norniella, Olga; /Barcelona, IFAE

    2006-08-01

    Preliminary results on inclusive jet production in proton-antiproton collisions at {radical}s = 1.96 TeV based on 1 fb{sup -1} of CDF Run II data are presented. Measurements are preformed using different jet algorithms in a wide range of jet transverse momentum and jet rapidity. The measured cross sections are compared to next-to-leading order perturbative QCD calculations

  15. Turbulent equipartitions in two dimensional drift convection

    SciTech Connect (OSTI)

    Isichenko, M.B.; Yankov, V.V.

    1995-07-25

    Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits.

  16. Highly turbulent counterflow flames: A laboratory scale benchmark for practical systems

    SciTech Connect (OSTI)

    Coppola, Gianfilippo; Coriton, Bruno; Gomez, Alessandro

    2009-09-15

    We propose a highly turbulent counterflow flame as a very useful benchmark of complexity intermediate between laminar flames and practical systems. By operating in a turbulent Reynolds number regime of relevance to practical systems such as gas turbines and internal combustion engines, it retains the interaction of turbulence and chemistry of such environments, but offers several advantages including: (a) the achievement of high Reynolds numbers without pilot flames, which is particularly advantageous from a modeling standpoint; (b) control of the transition from stable flames to local extinction/reignition conditions; (c) compactness of the domain by comparison with jet flames, with obvious advantages from both a diagnostic and, especially, a computational viewpoint; and (d) the reduction or, altogether, elimination of soot formation, thanks to the high strain rates and low residence times of such a system, and the establishment of conditions of large stoichiometric mixture fraction, as required for robust flame stabilization. We demonstrate the phenomenology of such highly strained turbulent flames under conditions spanning unpremixed, partially premixed and premixed regimes. The system lends itself to the validation of DNS and other computational models. It is also well-suited for the examination of practical fuel blends - a need that is becoming more and more pressing in view of the anticipated diversification of the future fossil fuel supply. (author)

  17. Three-dimensional simulations of cellular non-premixed jet flames

    SciTech Connect (OSTI)

    Valaer, A.L.; Frouzakis, C.E.; Boulouchos, K.; Papas, P.; Tomboulides, A.G.

    2010-04-15

    The formation, dynamics and structure of cellular flames in circular non-premixed jets are examined with three-dimensional numerical simulations incorporating detailed descriptions of chemistry and transport. Similar to past experiments reported in the literature, CO{sub 2}-diluted hydrogen in diluted or pure oxygen co-flowing streams in the proximity of the extinction limit are considered. As in the experiments, several preferred cellular states are found to co-exist with the particular state realized depending on initial conditions as well as on the jet characteristics. The simulations provide additionally the temporal transitions to different stationary or rotating cellular flames, their detailed structure, and the dependence of the scaling of the realized number of cells with the vorticity thickness. (author)

  18. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    SciTech Connect (OSTI)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-21

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  19. Federal Acquisition Circular 2005-38 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    38 Federal Acquisition Circular 2005-38 Federal Acquisition Circular 2005-3 8, which makes miscellaneous changes to the Federal Acquisition Regulation (FAR), was published in the December 10, 2009 issue of the Federal Register. A summary of the changes is attached. Due to the publication of two rules item I11 and item V, additional guidance is provided in this flash. PF2010-18 Policy PF 2010-18 Federal Acquisition Circular 2005-38 (117.76 KB) PF2010-18a.pdf (117.46 KB) More Documents &

  20. Federal Acquisition Circulars 2005-56 and 57

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of Federal Acquisition Circular 2005-56 which makes miscellaneous changes to the Federal Acquisition Regulation. The Circular was published in the Federal Register on March 2, 2012 at 77 FR 12912 and 12913. Also included is a Correction Notice affecting Items I and VI of the FAC. This was published March 9, 2012 at 77 FR 14303. Lastly, a summary of Federal Acquisition Circular 2005-57 is included. This was published March 7, 2012 at 77 FR 13952.

  1. Turbulence and waves in the solar wind

    SciTech Connect (OSTI)

    Roberts, D.A.; Goldstein, M.L. )

    1991-01-01

    Studies of turbulence and waves in the solar wind is discussed. Consideration is given to the observations and theory concerning the origin and evolution of interplanetary MHD fluctuations and to the observations, theory, and simulations of compressive fluctuations. Particular attention is given to extrapolations to near-sun and polar fields regions. Results obtained on turbulence at comets and magnetic turbulence of low-frequency waves excited by unstable distributions of ions are discussed. 230 refs.

  2. Jet energy calibration at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  3. Stochastic (w*) Convergence for Turbulent Combustion | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic (w*) Convergence for Turbulent Combustion PI Name: James Glimm PI Email: ... chemistry for LES, and (2) stochastic (w*) convergence based on probability ...

  4. Visible imaging of edge turbulence in NSTX

    SciTech Connect (OSTI)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al

    2000-06-13

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.

  5. 3 - 4 Turbulent combustion Princeton.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    real question The flame surface density is created by flameturbulence interactions. Writing an equation for it requires to rederive equations for an interface in turbulence...

  6. Policy Flash 2013-63 Federal Acquisition Circular (FAC) 2005...

    Energy Savers [EERE]

    FlashFAC67 Summary.docx More Documents & Publications Policy FLash 2014-36 FAC 2005-75 Policy Flash 2013-75 Federal Acquisition Circular 2005-69 Policy Flash 2013-37 Federal...

  7. Policy Flash 2013-27 Federal Acquisition Circular (FAC) 2005...

    Broader source: Energy.gov (indexed) [DOE]

    Attached is Policy Flash 2013-27 Federal Acquisition Circular (FAC) 2005-65. Questions concerning this policy flash should be directed to Barbara Binney, of the Office of...

  8. Can we characterize turbulence in premixed flames?

    SciTech Connect (OSTI)

    Lipatnikov, A.N. [Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, 412 96 (Sweden)

    2009-06-15

    Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)

  9. Quenching and anisotropy of hydromagnetic turbulent transport

    SciTech Connect (OSTI)

    Karak, Bidya Binay; Brandenburg, Axel; Rheinhardt, Matthias; Käpylä, Petri J.; Käpylä, Maarit J.

    2014-11-01

    Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Ω×J effect nearly the same quenching exponent is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.

  10. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  11. Turbulent electron transport in edge pedestal by electron temperature gradient turbulence

    SciTech Connect (OSTI)

    Singh, R.; Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 ; Jhang, Hogun; Diamond, P. H.; CMTFO and CASS, University of California, San Diego 92093-0424, California

    2013-11-15

    We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.

  12. Jet pump for oil wells

    SciTech Connect (OSTI)

    Binks, R. H.; Christ, F. C.

    1985-03-12

    A fluid operated pump system which includes power fluid supply means comprising either the annulus between well casing and production tubing, or a secondary tubing, and a production tubing, set in a well, the production tubing having a housing at the lower end with which the power fluid supply means communicates. A pump unit, including a fluid operated jet pump, is movable downwardly through the production tubing into the housing to a fixed location and maintained at the fixed location by the forces of gravity and friction. The pump is operable in the housing by operating fluid under pressure supplied through the power fluid supply means to pump fluid from the well into the production tubing. A cavity is provided at the lower end of the pump unit between two balanced seals. The cavity communicates with the power fluid supply means and with the fluid operated jet pump. Power fluid introduced into the cavity causes no net force to be exerted on the pump unit. When pumping action takes place, produced fluids are taken from a lower pressure area below the pump unit and boosted to a higher pressure area above the pump unit by the fluid operated jet pump, resulting in a net downward force on the pump unit to cause the pump unit to be restrained against its fixed location without the need of latch means.

  13. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A.

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  14. Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling...

    Office of Scientific and Technical Information (OSTI)

    Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling Citation Details In-Document Search Title: Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling Authors: ...

  15. Turbulence may be key to "fast magnetic reconnection" mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence may be key to "fast magnetic reconnection" mystery Turbulence may be key to "fast magnetic reconnection" mystery The new research could lead to better understanding of ...

  16. ASCR Workshop on Turbulent Flow Simulations at the Exascale:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges...

  17. Implementation and Validation of the BHR Turbulence Model in...

    Office of Scientific and Technical Information (OSTI)

    Turbulence is an often studied and ubiquitous phenomenon in nature, and modeling its effects is essential in many practical applications. Specifically the behavior of turbulence in ...

  18. A comparison of experimental and numerical results on convective thermal mixing of three vertical, quasi-planar jets

    SciTech Connect (OSTI)

    Tokuhiro, A.T.; Kimura, N.; Nishimura, M.; Kobayashi, J.; Miyakoshi, H.

    1999-07-01

    The thermal-hydraulic mixing of three quasi-planar vertical water jets was experimentally and numerically investigated. The central jet was initially 5 C lower in temperature than the other two. The hydraulic diameter and average exit velocity-based Reynolds and Richardson numbers were, Re{sub D} = 2 x 10{sup 4}, Ri{sub D} = 0.002. Besides temperature measurements from a traversing array of 37 thermocouples, velocity measurements were made using laser and ultrasound Doppler velocimetries (LDV and UDV). In parallel the in-house code, CASCADE, featuring a {kappa}-{epsilon} turbulence model was used to simulate the experimental flow configuration. A comparison of the experimental and numerical results showed that code validation by LDV/UDV was possible and in particular that time-averaged field and frequency characteristics of transversely swaying jets, even under Reynolds averaging of the conservation equations, could be simulated. A representative comparison of the amplitude of oscillation is shown in Figure A-1 with an inset of the visualized flow and sample time-series of the temperature fluctuations at the position indicated. The difference in the predominant frequency, the numerically predicted {approximately}1.6 Hz versus the experimental {approximately}2.25 Hz, is attributed to the turbulence model that overestimate thus effective fluid viscosity. Development of an accurate numerical simulation is of relevance to the design of the liquid metal fast breeder reactor (LMFBR), where the lack of mixing of the cold sodium may initiate thermal striping; that is, poorly mixed hot and cold streams may thermally stress the components onto which they impinge. Turbulent mixing of jets is equally of general interest to environmental and material processing flows.

  19. Stochastic models for turbulent reacting flows

    SciTech Connect (OSTI)

    Kerstein, A.

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  20. Cyclone separator having boundary layer turbulence control

    DOE Patents [OSTI]

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  1. Scaling laws in magnetized plasma turbulence

    SciTech Connect (OSTI)

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar

  2. Numerical simulations of strong incompressible magnetohydrodynamic turbulence

    SciTech Connect (OSTI)

    Mason, J.; Cattaneo, F.; Perez, J. C.; Boldyrev, S.

    2012-05-15

    Magnetised plasma turbulence pervades the universe and is likely to play an important role in a variety of astrophysical settings. Magnetohydrodynamics (MHD) provides the simplest theoretical framework in which phenomenological models for the turbulent dynamics can be built. Numerical simulations of MHD turbulence are widely used to guide and test the theoretical predictions; however, simulating MHD turbulence and accurately measuring its scaling properties is far from straightforward. Computational power limits the calculations to moderate Reynolds numbers and often simplifying assumptions are made in order that a wider range of scales can be accessed. After describing the theoretical predictions and the numerical approaches that are often employed in studying strong incompressible MHD turbulence, we present the findings of a series of high-resolution direct numerical simulations. We discuss the effects that insufficiencies in the computational approach can have on the solution and its physical interpretation.

  3. Jet measurements by ALICE at LHC

    SciTech Connect (OSTI)

    Sultanov, Rishat; Collaboration: ALICE Collaboration

    2015-12-15

    Jets are collimated sprays of particles originating from fragmentation of high energy partons produced in a hard collision. They are an important diagnostic tool in studies of the Quark Gluon Plasma (QGP). The modification of the jet fragmentation pattern and its structure is a signature for the influence of hot and dense matter on the parton fragmentation process. Jet measurements in proton-proton collisions provide a baseline for similar measurements in heavy-ion collisions, while studies in proton-nucleus system allow to estimate cold nuclear matter effects. Here we present jet studies in different colliding systems (p–p, p–Pb, Pb–Pb) performed by the ALICE collaboration at LHC energies. Results on jet spectra, cross sections, nuclear modification factors, jet structure and other kinematic observables will be presented.

  4. Nonlinear compressions in merging plasma jets

    SciTech Connect (OSTI)

    Messer, S.; Case, A.; Wu, L.; Brockington, S.; Witherspoon, F. D.

    2013-03-15

    We investigate the dynamics of merging supersonic plasma jets using an analytic model. The merging structures exhibit supersonic, nonlinear compressions which may steepen into full shocks. We estimate the distance necessary to form such shocks and the resulting jump conditions. These theoretical models are compared to experimental observations and simulated dynamics. We also use those models to extrapolate behavior of the jet-merging compressions in a Plasma Jet Magneto-Inertial Fusion reactor.

  5. PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS

    SciTech Connect (OSTI)

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina; Sterling, Alphonse C.

    2013-10-10

    The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adopt spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event.

  6. continuously jet-stirred tank reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    continuously jet-stirred tank reactor - Sandia Energy Energy Search Icon Sandia Home ... Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ...

  7. Bioenergy Impacts … Renewable Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    able to produce renewable jet fuel for the commercial aviation industry and the military. ... Biofuel is becoming an option for commercial and military airplanes BIOENERGY To learn ...

  8. Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution

    SciTech Connect (OSTI)

    Lorteau, Mathieu Cléro, Franck Vuillot, François

    2015-07-15

    In the framework of jet noise computation, a numerical simulation of a subsonic turbulent hot jet is performed using large-eddy simulation. A geometrical tripping is used in order to trigger the turbulence at the nozzle exit. In a first part, the validity of the simulation is assessed by comparison with experimental measurements. The mean and rms velocity fields show good agreement, so do the azimuthal composition of the near pressure field and the far field spectra. Discrepancies remain close to the nozzle exit which lead to a limited overestimation of the pressure levels in both near and far fields, especially near the 90{sup ∘} angular sector. Two point correlation analyses are then applied to the data obtained from the simulation. These enable to link the downstream acoustic radiation, which is the main direction of radiation, to pressure waves developing in the shear layer and propagating toward the potential core end. The intermittency of the downstream acoustic radiation is evidenced and related to the coherent structures developing in the shear layer.

  9. Terascale direct numerical simulations of turbulent combustion using S3D

    SciTech Connect (OSTI)

    Chen, Jackie; Klasky, Scott A; Hawkes, Evatt R; Sankaran, Ramanan; Choudhary, Alok; Yoo, Chun S; Liao, Wei-keng; Podhorszki, Norbert

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  10. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect (OSTI)

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  11. Stellar explosions, instabilities, and turbulence

    SciTech Connect (OSTI)

    Drake, R. P.; Kuranz, C. C.; Miles, A. R.; Muthsam, H. J.; Plewa, T.

    2009-04-15

    It has become very clear that the evolution of structure during supernovae is centrally dependent on the pre-existing structure in the star. Modeling of the pre-existing structure has advanced significantly, leading to improved understanding and to a physically based assessment of the structure that will be present when a star explodes. It remains an open question whether low-mode asymmetries in the explosion process can produce the observed effects or whether the explosion mechanism somehow produces jets of material. In any event, the workhorse processes that produce structure in an exploding star are blast-wave driven instabilities. Laboratory experiments have explored these blast-wave-driven instabilities and specifically their dependence on initial conditions. Theoretical work has shown that the relative importance of Richtmyer-Meshkov and Rayleigh-Taylor instabilities varies with the initial conditions and does so in ways that can make sense of a range of astrophysical observations.

  12. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect (OSTI)

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  13. Federal Acquisition Circular 2005-43 | Department of Energy

    Energy Savers [EERE]

    FedVTE FedVTE Train2.jpg The Federal Virtual Training Environment (FedVTE) is a multi-media, e-learning environment that provides free cybersecurity training resources to employees and contractors. To access FedVTE: https://fedvte.usalearning.gov. Course list: https://fedvte.usalearning.gov/pdf/FedVTE_Training_Catalog.pdf.

    43 Federal Acquisition Circular 2005-43 Attached for your information is a summary of Federal Acquisition Circular PAC) 2005-43 which makes changes to the Federal

  14. Fragmentation, underlying event and jet shapes at the Tevatron...

    Office of Scientific and Technical Information (OSTI)

    Conference: Fragmentation, underlying event and jet shapes at the Tevatron Citation Details In-Document Search Title: Fragmentation, underlying event and jet shapes at the Tevatron...

  15. Boron nitride ablation studies in arc jet facilities (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Boron nitride ablation studies in arc jet facilities Citation Details In-Document Search Title: Boron nitride ablation studies in arc jet facilities You are ...

  16. Sustainable Alternative Jet Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jim Hileman, U.S. Federal Aviation Administration, presentation at the Industry Roundtable on Life-Cycle GHG Emissions Modeling 9_hileman_roundtable.pdf (637.68 KB) More Documents & Publications An Update on FAA Alternative Jet Fuel Efforts Sustainable Alternative Jet Fuels Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis

  17. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  18. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    SciTech Connect (OSTI)

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-07-20

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I{sub {nu}} falls with distance d from the core, following the relation, I{sub {nu}}{proportional_to}d{sup a} , where a is typically {approx} - 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r{proportional_to}d 0{sup .4}; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra observations of 15 UGC FRIs detect X-ray jets in

  19. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy ... he created tools to filter out the "noise" in the datasets. ...

  20. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    SciTech Connect (OSTI)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  1. Relativistic high harmonic generation in gas jet targets

    SciTech Connect (OSTI)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; and others

    2012-07-11

    We experimentally demonstrate a new regime of high-order harmonic generation by relativistic-irradiance lasers in gas jet targets. Bright harmonics with both odd and even orders, generated by linearly as well as circularly polarized pulses, are emitted in the forward direction, while the base harmonic frequency is downshifted. A 9 TW laser generates harmonics up to 360 eV, within the 'water window' spectral region. With a 120 TW laser producing 40 uJ/sr per harmonic at 120 eV, we demonstrate the photon number scalability. The observed harmonics cannot be explained by previously suggested scenarios. A novel high-order harmonics generation mechanism [T. Zh. Esirkepov et al., AIP Proceedings, this volume], which explains our experimental findings, is based on the phenomena inherent in the relativistic laser - underdense plasma interactions (self-focusing, cavity evacuation, and bow wave generation), mathematical catastrophe theory which explains formation of electron density singularities (cusps), and collective radiation due to nonlinear oscillations of a compact charge.

  2. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect (OSTI)

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine programs goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  3. Electrical studies and plasma characterization of an atmospheric pressure plasma jet operated at low frequency

    SciTech Connect (OSTI)

    Giuliani, L.; Xaubet, M.; Grondona, D.; Minotti, F.; Kelly, H.

    2013-06-15

    Low-temperature, high-pressure plasma jets have an extensive use in medical and biological applications. Much work has been devoted to study these applications while comparatively fewer studies appear to be directed to the discharge itself. In this work, in order to better understand the kind of electrical discharge and the plasma states existing in those devices, a study of the electrical characteristics of a typical plasma jet, operated at atmospheric pressure, using either air or argon, is reported. It is found that the experimentally determined electrical characteristics are consistent with the model of a thermal arc discharge, with a highly collisional cathode sheet. The only exception is the case of argon at the smallest electrode separation studied, around 1 mm in which case the discharge is better modeled as either a non-thermal arc or a high-pressure glow. Also, variations of the electrical behavior at different gas flow rates are interpreted, consistently with the arc model, in terms of the development of fluid turbulence in the external jet.

  4. Reaction and diffusion in turbulent combustion

    SciTech Connect (OSTI)

    Pope, S.B.

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  5. Federal Acquisition Circulars 2005-45 and 2005-46

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached for your information is a summary of Federal Acquisition Circulars (FAC) 2005-45 and 2005-46 which make changes to the Federal Acquisition Regulation (FAR). FAC 2005-45 has three final rules. FAC 2005-46 has seven rules (three final and four interim). Attached is a short overview of the rules to include its effective dates and applicability dates.

  6. Publication of Federal Acquisition Circular 2005-50

    Broader source: Energy.gov [DOE]

    Attached for your information is a summary of Federal Acquisition Circular 2005-50 which makes miscellaneous changes to the Federal Acquisition Regulation. We are reviewing Item II for possible changes we may need to make in DOE Acquisition Guide Chapter 38.

  7. Circularly polarized antennas for active holographic imaging through barriers

    DOE Patents [OSTI]

    McMakin, Douglas L [Richland, WA; Severtsen, Ronald H [Richland, WA; Lechelt, Wayne M [West Richland, WA; Prince, James M [Kennewick, WA

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  8. Intra-jet shocks in two counter-streaming, weakly collisional plasma jets

    SciTech Connect (OSTI)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Plechaty, C.; Remington, B. A.; Ross, J. S.

    2012-07-15

    Counterstreaming laser-generated plasma jets can serve as a test-bed for the studies of a variety of astrophysical phenomena, including collisionless shock waves. In the latter problem, the jet's parameters have to be chosen in such a way as to make the collisions between the particles of one jet with the particles of the other jet very rare. This can be achieved by making the jet velocities high and the Coulomb cross-sections correspondingly low. On the other hand, the intra-jet collisions for high-Mach-number jets can still be very frequent, as they are determined by the much lower thermal velocities of the particles of each jet. This paper describes some peculiar properties of intra-jet hydrodynamics in such a setting: the steepening of smooth perturbations and shock formation affected by the presence of the 'stiff' opposite flow; the role of a rapid electron heating in shock formation; ion heating by the intrajet shock. The latter effect can cause rapid ion heating which is consistent with recent counterstreaming jet experiments by Ross et al.[Phys. Plasmas 19, 056501 (2012)].

  9. Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence

    SciTech Connect (OSTI)

    Maeyama, S. Nakata, M.; Miyato, N.; Yagi, M.; Ishizawa, A.; Watanabe, T.-H.; Idomura, Y.

    2014-05-15

    Electromagnetic turbulence driven by kinetic ballooning modes (KBMs) in high-? plasma is investigated based on the local gyrokinetic model. Analysis of turbulent fluxes, norms, and phases of fluctuations shows that KBM turbulence gives narrower spectra and smaller phase factors than those in ion-temperature-gradient (ITG)-driven turbulence. This leads to the smaller transport fluxes in KBM turbulence than those in ITG turbulence even when they have similar linear growth rates. From the analysis of the entropy balance relation, it is found that the entropy transfer from ions to electrons through the field-particle interactions mainly drives electron perturbations, which creates radial twisted modes by rapid parallel motions of electrons in a sheared magnetic geometry. The nonlinear coupling between the dominant unstable mode and its twisted modes is important for the saturation of KBM turbulence, in contrast to the importance of zonal flow shearing in ITG turbulence. The coupling depends on the flux-tube domain with the one-poloidal-turn parallel length and on the torus periodicity constraint.

  10. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  11. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  12. THE RHIC HYDROGEN JET LUMINESCENCE MONITOR.

    SciTech Connect (OSTI)

    RUSSO,T.; BELLAVIA, S.; GASSNER, D.; THIEBERGER, P.; TRBOJEVIC, D.; TSANG, T.

    2007-06-25

    A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and a new camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper describes the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

  13. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect (OSTI)

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  14. Office of Management and Budget Circular No. A-133 | Open Energy...

    Open Energy Info (EERE)

    Management and Budget Circular No. A-133 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Office of Management and Budget Circular No....

  15. Www.deq.mt.gov/MFS/LawRules/Circular2 | Open Energy Information

    Open Energy Info (EERE)

    Www.deq.mt.govMFSLawRulesCircular2 Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Www.deq.mt.govMFSLawRulesCircular2 Published Publisher Not...

  16. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  17. Technical Standards, OMB Circular A-119 - May 14, 1998 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy OMB Circular A-119 - May 14, 1998 Technical Standards, OMB Circular A-119 - May 14, 1998 May 14, 1998 Federal Participation in the Development and Use of Voluntary Consensus Standards and in Conformity Assessment Activities; Notice OMB has revised this Circular in order to make the terminology of the Circular consistent with the National Technology Transfer and Advancement Act of 1995, to issue guidance to the agencies on making their reports to OMB, to direct the Secretary of

  18. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  19. String model for spinning quark jets

    SciTech Connect (OSTI)

    Artru, X.; Belghobsi, Z.

    2012-06-27

    A string model of quark hadronization, taking the quark spin degree of freedom into account, is proposed. The method for using the model in a Monte-Carlo code for jet generation is given.

  20. Jet-images — deep learning edition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de Oliveira, Luke; Kagan, Michael; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-07-13

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physicallymotivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less

  1. Flux-driven simulations of turbulence collapse

    SciTech Connect (OSTI)

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T.; Diamond, P. H.; Xu, X. Q.

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  2. Gap between jets at the LHC

    SciTech Connect (OSTI)

    Royon, Christophe

    2013-04-15

    We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

  3. Santa Fe Jets and Heavy Flavor Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Santa Fe Jets and Heavy Flavor Workshop Santa Fe Jets and Heavy Flavor Workshop WHEN: Jan 11, 2016 8:30 AM - Jan 13, 2016 5:30 PM WHERE: Inn and Spa at Loretto 211 Old Santa Fe Trail Santa Fe, New Mexico 87501 USA CONTACT: Ivan Vitev CATEGORY: Science TYPE: Conference INTERNAL: Calendar Login Event Description This workshop will bring together senior researchers, postdoctoral fellows and talented graduate students to discuss the exciting recent developments and future directions in high energy

  4. Estimation of k-e parameters using surrogate models and jet-in-crossflow data.

    SciTech Connect (OSTI)

    Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan; Dechant, Lawrence

    2015-02-01

    We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of the calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k [?] e parameters ( C u , C e 2 , C e 1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal values of the turbulence model

  5. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  6. Study of jet properties at the Tevatron

    SciTech Connect (OSTI)

    Martinez, Mario; /Barcelona, IFAE

    2005-05-01

    The Run II at the Tevatron will define a new level of precision for QCD studies in hadron collisions. Both collider experiments, CDF and D0, expect to collect up to 8 fb{sup -1} of data in this new run period. The increase in instantaneous luminosity, center-of-mass energy (from 1.8 TeV to 2 TeV) and the improved acceptance of the detectors will allow stringent tests of the Standard Model (SM) predictions in extended regions of jet transverse momentum, P{sub T}{sup jet}, and jet rapidity, Y{sup jet}. The hadronic final states in hadron-hadron collisions are characterized by the presence of soft contributions (the so-called underlying event) from initial-state gluon radiation and multiple parton interactions between remnants, in addition to the jets of hadrons originated by the hard interaction. A proper comparison with pQCD predictions at the parton level requires an adequate modeling of these soft contributions which become important at low P{sub T}{sup jet}. In this letter, a review of some of the most important QCD results from Run II is presented.

  7. Structure and Dynamics of Colliding Plasma Jets

    SciTech Connect (OSTI)

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; Rinderknecht, H.; Petrasso, R.; Amendt, P.; Park, H.; Remington, B.; Wilks, S.; Betti, R.; Froula, D.; Knauer, J.; Meyerhofer, D.; Drake, R.; Kuranz, C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  8. Structure and Dynamics of Colliding Plasma Jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; et al

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  9. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect (OSTI)

    Bellan, P. M.

    2013-08-15

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  10. SIMULTANEOUS LINEAR AND CIRCULAR OPTICAL POLARIMETRY OF ASTEROID (4) VESTA

    SciTech Connect (OSTI)

    Wiktorowicz, Sloane J.; Nofi, Larissa A.

    2015-02-10

    From a single 3.8 hr observation of the asteroid (4) Vesta at 13.7 phase angle with the POlarimeter at Lick for Inclination Studies of Hot jupiters 2 (POLISH2) at the Lick Observatory Shane 3 m telescope, we confirm rotational modulation of linear polarization in the B and V bands. We measure the peak-to-peak modulation in the degree of linear polarization to be ?P = (294 35) 10{sup ?6} (ppm) and time-averaged ?P/P = 0.0575 0.0069. After rotating the plane of linear polarization to the scattering plane, asteroidal rotational modulation is detected with 12? confidence and observed solely in Stokes Q/I. POLISH2 simultaneously measures Stokes I, Q, U (linear polarization), and V (circular polarization), but we detect no significant circular polarization with a 1? upper limit of 78 ppm in the B band. Circular polarization is expected to arise from multiple scattering of sunlight by rough surfaces, and it has previously been detected in nearly all other classes of solar system bodies except for asteroids. Subsequent observations may be compared with surface albedo maps from the Dawn Mission, which may allow the identification of compositional variation across the asteroidal surface. These results demonstrate the high accuracy achieved by POLISH2 at the Lick 3 m telescope, which is designed to directly detect scattered light from spatially unresolvable exoplanets.

  11. THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. I. THE TURBULENT STIRRING RECIPE

    SciTech Connect (OSTI)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ormel, Chris W., E-mail: okuzumi@geo.titech.ac.jp [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    Turbulence in protoplanetary disks affects planet formation in many ways. While small dust particles are mainly affected by the aerodynamical coupling with turbulent gas velocity fields, planetesimals and larger bodies are more affected by gravitational interaction with gas density fluctuations. For the latter process, a number of numerical simulations have been performed in recent years, but a fully parameter-independent understanding has not been yet established. In this study, we present simple scaling relations for the planetesimal stirring rate in turbulence driven by magnetorotational instability (MRI), taking into account the stabilization of MRI due to ohmic resistivity. We begin with order-of-magnitude estimates of the turbulence-induced gravitational force acting on solid bodies and associated diffusion coefficients for their orbital elements. We then test the predicted scaling relations using the results of recent ohmic-resistive MHD simulations by Gressel et al. We find that these relations successfully explain the simulation results if we properly fix order-of-unity uncertainties within the estimates. We also update the saturation predictor for the density fluctuation amplitude in MRI-driven turbulence originally proposed by Okuzumi and Hirose. Combination of the scaling relations and saturation predictor allows us to know how the turbulent stirring rate of planetesimals depends on disk parameters such as the gas column density, distance from the central star, vertical resistivity distribution, and net vertical magnetic flux. In Paper II, we apply our recipe to planetesimal accretion to discuss its viability in turbulent disks.

  12. A signature for turbulence driven magnetic islands

    SciTech Connect (OSTI)

    Agullo, O.; Muraglia, M.; Benkadda, S.; Poyé, A.; Yagi, M.; Garbet, X.; Sen, A.

    2014-09-15

    We investigate the properties of magnetic islands arising from tearing instabilities that are driven by an interchange turbulence. We find that such islands possess a specific signature that permits an identification of their origin. We demonstrate that the persistence of a small scale turbulence maintains a mean pressure profile, whose characteristics makes it possible to discriminate between turbulence driven islands from those arising due to an unfavourable plasma current density gradient. We also find that the island poloidal turnover time, in the steady state, is independent of the levels of the interchange and tearing energy sources. Finally, we show that a mixing length approach is adequate to make theoretical predictions concerning island flattening in the island rotation frame.

  13. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect (OSTI)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  14. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  15. Core density turbulence in the HSX Stellarator

    SciTech Connect (OSTI)

    Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Briesemeister, Alexis R.; Likin, K. M.

    2015-10-23

    Broadband turbulent density fluctuations are explored in the helically symmetric stellarator experiment (HSX) by investigating changes related to plasma heating power and location. No fluctuation response is observed to occur with large changes in electron temperature and its gradient, thereby eliminating temperature gradient as a driving mechanism. Instead, measurements reveal that density turbulence varies inversely with electron density scale length. This response is consistent with density gradient drive as one might expect for trapped electron mode (TEM) turbulence. In general, the plasma stored energy and particle confinement are higher for discharges with reduced fluctuations in the plasma core. When the density fluctuation amplitude is reduced, increased plasma rotation is also evident suggesting a role is being played by intrinsic plasma flow.

  16. PHOTOSPHERIC EMISSION FROM STRATIFIED JETS

    SciTech Connect (OSTI)

    Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji

    2013-11-01

    We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E{sub p}-L{sub p} relation can be explained by differences in the outflow properties of individual sources.

  17. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  18. Dynamics of turbulence spreading in magnetically confined plasmas

    SciTech Connect (OSTI)

    Guercan, Oe.D.; Diamond, P.H.; Hahm, T.S.; Lin, Z.

    2005-03-01

    A dynamical theory of turbulence spreading and nonlocal interaction phenomena is presented. The basic model is derived using Fokker-Planck theory, and supported by wave-kinetic and K-{epsilon} type closures. In the absence of local growth, the model predicts subdiffusive spreading of turbulence. With local growth and saturation via nonlinear damping, ballistic propagation of turbulence intensity fronts is possible. The time asymptotic front speed is set by the geometric mean of local growth and turbulent diffusion. The leading edge of the front progresses as the turbulence comes to local saturation. Studies indicate that turbulence can jump gaps in the local growth rate profile and can penetrate locally marginal or stable regions. In particular, significant fluctuation energy from a turbulent edge can easily spread into the marginally stable core, thus creating an intermediate zone of strong turbulence. This suggests that the traditional distinction between core and edge should be reconsidered.

  19. Statistical theory of turbulent incompressible multimaterial flow

    SciTech Connect (OSTI)

    Kashiwa, B.

    1987-10-01

    Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe.

  20. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect (OSTI)

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  1. Publication of Federal Acquisition Circular 2005-51 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publication of Federal Acquisition Circular 2005-51 Publication of Federal Acquisition Circular 2005-51 Attached for your information is a summary of Federal Acquisition Circular 2005-51 which makes two changes to the Federal Acquisition Regulation involving the small business program and a modification of Standard Form 26. PF2011-64 Publication of Federal Acquisition Circular 2005-51 (9.64 KB) PF2011-64a.pdf (6.67 KB) More Documents & Publications Federal Acquisition Circular (FAC) 2005-75

  2. Plasma Turbulence Simulations Reveal Promising Insight for Fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne ... Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of ...

  3. Compressing turbulence to improve inertial confinement fusion experiments |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Compressing turbulence to improve inertial confinement fusion experiments By John Greenwald March 15, 2016 Tweet Widget Google Plus One Share on Facebook Compression of a turbulent plasma. Image by Seth Davidovits Compression of a turbulent plasma. Image by Seth Davidovits Physicists have long regarded plasma turbulence as unruly behavior that can limit the performance of fusion experiments. But new findings by researchers associated with the U.S. Department of

  4. Study of Jet Transverse Momentum and Jet Rapidity Dependence on Dijet Azimuthal Decorrelations

    SciTech Connect (OSTI)

    Chakravarthula, Kiran

    2012-01-01

    In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (pT ) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (p$\\bar{p}$) collisions occurring at a center of mass energy of 1.96TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (pQCD) predictions at next-to-leading order (NLO).

  5. THE PROPAGATION OF RELATIVISTIC JETS IN EXTERNAL MEDIA

    SciTech Connect (OSTI)

    Bromberg, Omer; Piran, Tsvi; Sari, Re'em; Nakar, Ehud

    2011-10-20

    Relativistic jets are ubiquitous in astrophysical systems that contain compact objects. They transport large amounts of energy to large distances from the source and their interaction with the ambient medium has a crucial effect on the evolution of the system. The propagation of the jet is characterized by the formation of a shocked 'head' at the front of the jet which dissipates the jet's energy and a cocoon that surrounds the jet and potentially collimates it. We present here a self-consistent, analytic model that follows the evolution of the jet and its cocoon, and describes their interaction. We show that the critical parameter that determines the properties of the jet-cocoon system is the dimensionless ratio between the jet's energy density and the rest-mass energy density of the ambient medium. This parameter, together with the jet's injection angle, also determines whether the jet is collimated by the cocoon or not. The model is applicable to relativistic, unmagnetized jets on all scales and may be used to determine the conditions in active galactic nucleus (AGN) jets as well as in gamma-ray bursts (GRBs) or microquasars. It shows that AGN and microquasar jets are hydrodynamically collimated due to the interaction with the ambient medium, while GRB jets can be collimated only inside a star and become uncollimated once they break out.

  6. Spatially resolved heat release rate measurements in turbulent premixed flames

    SciTech Connect (OSTI)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.; Mastorakos, E.; Frank, J.H.

    2006-01-01

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique uses simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.

  7. Final Report - Investigation of Intermittent Turbulence and Turbulent Structures in the Presence of Controlled Sheared Flows

    SciTech Connect (OSTI)

    Gilmore, Mark A.

    2013-06-27

    Final Report for grant DE-FG02-06ER54898. The dynamics and generation of intermittent plasma turbulent structures, widely known as "blobs" have been studied in the presence of sheared plasma flows in a controlled laboratory experiment.

  8. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    SciTech Connect (OSTI)

    Wu, S.; Huang, Q.; Wang, Z.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-01-28

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  9. Turbulence assessment at potential turbine sites

    SciTech Connect (OSTI)

    Daniels, A.

    1996-12-31

    As opposed to a fixed anemometer, the Tala kite is free to move in the air. The motion of the kite is not random, it moves with or against the speed gradient towards the center of passing turbulence events of higher or lower speeds thus allowing the kite to measure event maximum or minimum speed rather than the speed at some unknown distance from the event center like a fixed anemometer. This behavior is confirmed both by a theoretical aerodynamics analysis of the kite motion and by data from a field study where kite and hot film anemometer (HFA) events, defined by the rain flow count method, were compared with flap events on a rotating turbine blade. The HFAs simulated too few events lasting too long while the kites reproduced both the number of events and event periods remarkably close. It is concluded that the kite is the optimal tool for measuring turbulence at potential turbine sites. Kite turbulence can form the bases for economic return estimates and an example is given where less windy sites could be more economical than other more turbulent higher speed sites. 13 refs., 8 figs.

  10. Optical monitor for observing turbulent flow

    DOE Patents [OSTI]

    Albrecht, Georg F.; Moore, Thomas R.

    1992-01-01

    The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.

  11. Singular behavior of jet substructure observables

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Larkoski, Andrew J.; Moult, Ian

    2016-01-20

    Jet substructure observables play a central role at the Large Hadron Collider for identifying the boosted hadronic decay products of electroweak scale resonances. The complete description of these observables requires understanding both the limit in which hard substructure is resolved, as well as the limit of a jet with a single hard core. In this paper we study in detail the perturbative structure of two prominent jet substructure observables, N-subjettiness and the energy correlation functions, as measured on background QCD jets. In particular, we focus on the distinction between the limits in which two-prong structure is resolved or unresolved. Dependingmore » on the choice of subjet axes, we demonstrate that at fixed order, N-subjettiness can manifest myriad behaviors in the unresolved region: smooth tails, end-point singularities, or singularities in the physical region. The energy correlation functions, by contrast, only have non-singular perturbative tails extending to the end point. We discuss the effect of hadronization on the various observables with Monte Carlo simulation and demonstrate that the modeling of these effects with non-perturbative shape functions is highly dependent on the N-subjettiness axes definitions. Lastly, our study illustrates those regions of phase space that must be controlled for high-precision jet substructure calculations, and emphasizes how such calculations can be facilitated by designing substructure observables with simple singular structures.« less

  12. Combustion-turbulence interaction in the turbulent boundary layer over a hot surface

    SciTech Connect (OSTI)

    Ng, T.T.; Cheng, R.K.; Robben, F.; Talbot, L.

    1982-01-01

    The turbulence-combustion interaction in a reacting turbulent boundary layer over a heated flat plate was studied. Ethylene/air mixture with equivalence ratio of 0.35 was used. The free stream velocity was 10.5 m/s and the wall temperature was 1250/sup 0/K. Combustion structures visualization was provided by high-speed schlieren photographs. Fluid density statistics were deduced from Rayleigh scattering intensity measurements. A single-component laser Doppler velocimetry system was used to obtain mean and root-mean-square velocity distributions, the Reynolds stress, the streamwise and the cross-stream turbulent kinetic energy diffusion, and the production of turbulent kinetic energy by Reynolds stress. The combustion process was dominated by large-scale turbulent structures of the boundary layer. Combustion causes expansion of the boundary layer. No overall self-similarity is observed in either the velocity or the density profiles. Velocity fluctuations were increased in part of the boundary layer and the Reynolds stress was reduced. The turbulent kinetic energy diffusion pattern was changed significantly and a modification of the boundary layer assumption will be needed when dealing with this problem analytically. 11 figures, 1 table.

  13. Pressure atomizer having multiple orifices and turbulent generation feature

    DOE Patents [OSTI]

    VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane

    2002-01-01

    A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.

  14. ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS

    SciTech Connect (OSTI)

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; Ciardi, A.; Hartigan, P.; Lebedev, S. V.; Chittenden, J. P.

    2012-09-20

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

  15. Circular dichroism in the electron microscope: Progress and applications (invited)

    SciTech Connect (OSTI)

    Schattschneider, P.; Loeffler, S.; Ennen, I.; Stoeger-Pollach, M.; Verbeeck, J.

    2010-05-15

    According to theory, x-ray magnetic circular dichroism in a synchrotron is equivalent to energy loss magnetic chiral dichroism (EMCD) in a transmission electron microscope (TEM). After a synopsis of the development of EMCD, the theoretical background is reviewed and recent results are presented, focusing on the study of magnetic nanoparticles for ferrofluids and Heusler alloys for spintronic devices. Simulated maps of the dichroic strength as a function of atom position in the crystal allow evaluating the influence of specimen thickness and sample tilt on the experimental EMCD signal. Finally, the possibility of direct observation of chiral electronic transitions with atomic resolution in a TEM is discussed.

  16. Particle creation in (2+1) circular dust collapse

    SciTech Connect (OSTI)

    Gutti, Sashideep; Singh, T. P.

    2007-09-15

    We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole, we recover the expected Hawking radiation.

  17. Public information circular for shipments of irradiated reactor fuel

    SciTech Connect (OSTI)

    1996-07-01

    This circular provides information on shipment of spent fuel subject to regulation by US NRC. It provides a brief description of spent fuel shipment safety and safeguards requirement of general interest, a summary of data for 1979-1995 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials.

  18. QCD at the Tevatron: Jets and fragmentation

    SciTech Connect (OSTI)

    V. Daniel Elvira

    2001-09-27

    At the Fermilab Tevatron energies, ({radical} s=1800 GeV and {radical} s = 630 GeV), jet production is the dominant process. During the period 1992-1996, the D0 and CDF experiments accumulated almost 100 pb{sup -1} of data and performed the most accurate jet production measurements up to this date. These measurements and the NLO-QCD theoretical predictions calculated during the last decade, have improved our understanding of QCD, our knowledge of the proton structure, and pushed the limit to the scale associated with quark compositeness to 2.4-2.7 TeV. In this paper, we present the most recent published and preliminary measurements on jet production and fragmentation by the D0 and CDF collaborations.

  19. Mixing enhancement by use of swirling jets

    SciTech Connect (OSTI)

    Kraus, D.K.; Cutler, A.D.

    1993-01-01

    It has been proposed that the mixing of fuel with air in the combustor of scramjet engines might be enhanced by the addition of swirl to the fuel jet prior to injection. This study investigated the effects of swirl on the mixing of a 30 deg wall jet into a Mach 2 flow. Cases with swirl and without swirl were investigated, with both helium and air simulating the fuel. Rayleigh scattering was used to visualize the flow, and seeding the fuel with water allowed it to be traced through the main flow. The results show that the addition of swirl to the fuel jet causes the fuel to mix more rapidly with the main flow, that larger amounts of swirl increase this effect, and that helium spreads better into the main flow than air. 12 refs.

  20. Gaseous Laser Targets and Optical Dignostics for Studying Compressible Turbulent Hydrodynamic Instabilities

    SciTech Connect (OSTI)

    Edwards, M J; Hansen, J; Miles, A R; Froula, D; Gregori, G; Glenzer, S; Edens, A; Dittmire, T

    2005-02-08

    The possibility of studying compressible turbulent flows using gas targets driven by high power lasers and diagnosed with optical techniques is investigated. The potential advantage over typical laser experiments that use solid targets and x-ray diagnostics is more detailed information over a larger range of spatial scales. An experimental system is described to study shock - jet interactions at high Mach number. This consists of a mini-chamber full of nitrogen at a pressure {approx} 1 atms. The mini-chamber is situated inside a much larger vacuum chamber. An intense laser pulse ({approx}100J in {approx} 5ns) is focused on to a thin {approx} 0.3{micro}m thick silicon nitride window at one end of the mini-chamber. The window acts both as a vacuum barrier, and laser entrance hole. The ''explosion'' caused by the deposition of the laser energy just inside the window drives a strong blast wave out into the nitrogen atmosphere. The spherical shock expands and interacts with a jet of xenon introduced though the top of the mini-chamber. The Mach number of the interaction is controlled by the separation of the jet from the explosion. The resulting flow is visualized using an optical schlieren system using a pulsed laser source at a wavelength of 0.53 {micro}m. The technical path leading up to the design of this experiment is presented, and future prospects briefly considered. Lack of laser time in the final year of the project severely limited experimental results obtained using the new apparatus.

  1. Enhancement of wall jet transport properties

    DOE Patents [OSTI]

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  2. High pressure water jet mining machine

    DOE Patents [OSTI]

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  3. Enhancement of wall jet transport properties

    DOE Patents [OSTI]

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  4. Cascade impactor and jet plate for same

    DOE Patents [OSTI]

    Dahlin, Robert S.; Farthing, William E.; Landham Jr., Edward C.

    2004-02-03

    A sampling system and method for sampling particulate matter from a high-temperature, high-pressure gas stream. A cyclone sampler for use at high temperatures and pressures, and having threadless sacrificial connectors is disclosed. Also disclosed is an improved cascade impactor including jet plates with integral spacers, and alignment features provided for aligning the jet plates with their associated collection substrates. An activated bauxite alkali collector is disclosed, and includes an alumina liner. The sampling system can be operated remotely or locally, and can be permanently installed or configured as a portable system.

  5. Jet Engine Cooling | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthetic Jets Help Keep Avionics Cool at Cruising Altitude Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Synthetic Jets Help Keep Avionics Cool at Cruising Altitude When you think of airplanes, one of the first objects that comes to mind is the combustion engine that allows it to fly high in the sky. And for decades,

  6. Relativistic MHD simulations of poynting flux-driven jets

    SciTech Connect (OSTI)

    Guan, Xiaoyue; Li, Hui; Li, Shengtai

    2014-01-20

    Relativistic, magnetized jets are observed to propagate to very large distances in many active galactic nuclei (AGNs). We use three-dimensional relativistic MHD simulations to study the propagation of Poynting flux-driven jets in AGNs. These jets are already assumed to be being launched from the vicinity (?10{sup 3} gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al., and we follow the propagation of these jets to ?parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When ?, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to nonaxisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability being convective and the fact that the jet magnetic fields are rapidly evolving on Alfvnic time scales. We present the detailed jet properties and show that far from the jet launching region, a substantial amount of magnetic energy has been transformed into kinetic energy and thermal energy, producing a jet magnetization number ? < 1. In addition, we have also studied the effects of a gas pressure supported 'disk' surrounding the injection region, and qualitatively similar global jet behaviors were observed. We stress that jet collimation, CDIs, and the subsequent energy transitions are intrinsic features of current-carrying jets.

  7. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Pressure Steam | Department of Energy Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #29 Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam (January 2012)

  8. NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V

    SciTech Connect (OSTI)

    Kwon, Jungmi; Tamura, Motohide; Hashimoto, Jun; Kusakabe, Nobuhiko; Kandori, Ryo; Lucas, Phil W.; Hough, James H.; Nakajima, Yasushi; Nagayama, Takahiro; Nagata, Tetsuya

    2013-03-01

    We present results from deep imaging linear and circular polarimetry of the massive star-forming region NGC 6334-V. These observations show high degrees of circular polarization (CP), as much as 22% in the K{sub s} band, in the infrared nebula associated with the outflow. The CP has an asymmetric positive/negative pattern and is very extended ({approx}80'' or 0.65 pc). Both the high CP and its extended size are larger than those seen in the Orion CP region. Three-dimensional Monte Carlo light-scattering models are used to show that the high CP may be produced by scattering from the infrared nebula followed by dichroic extinction by an optically thick foreground cloud containing aligned dust grains. Our results show not only the magnetic field orientation of around young stellar objects, but also the structure of circumstellar matter such as outflow regions and their parent molecular cloud along the line of sight. The detection of the large and extended CP in this source and the Orion nebula may imply the CP origin of the biological homochirality on Earth.

  9. Revised OMB Circular A-76 (Revised November 14, 2002) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy OMB Circular A-76 (Revised November 14, 2002) Revised OMB Circular A-76 (Revised November 14, 2002) Revised OMB Circular A-76 (Revised November 14, 2002) (246.94 KB) More Documents & Publications Operating Guidelines Appendix A B.DOC&#0; DOE HR Guidebook 12_15_05.DOC&#0; Operating Guidelines Appendix C D.DOC&#0;

  10. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    SciTech Connect (OSTI)

    Deng, Wei

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σb,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σb,i - σb,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.

  11. Online b-jets tagging at CDF

    SciTech Connect (OSTI)

    Casarsa, M.; Ristori, L.; Amerio, S.; Lucchesi, D.; Pagan Griso, S.; Torre, S.T.; Cortiana, G.; /Padua U., Astron. Dept.

    2007-04-01

    We propose a method to identify b-quark jets at trigger level which exploits recently increased CDF trigger system capabilities. b-quark jets identification is of central interest for the CDF high-P{sub T} physics program, and the possibility to select online b-jets enriched samples can extend the physics reaches especially for light Higgs boson searches where the H {yields} b{bar b} decay mode is dominant. Exploiting new trigger primitives provided by two recent trigger upgrades, the Level2 XFT stereo tracking and the improved Level2 cluster-finder, in conjunction with the existing Silicon Vertex Tracker (SVT), we design an online trigger algorithm aimed at selecting good purity b-jets samples useful for many physics measurements, the most important being inclusive H {yields} b{bar b} searches. We discuss the performances of the proposed b-tagging algorithm which must guarantee reasonable trigger rates at luminosity greater than 2 x 10{sup 32} cm{sup -2}s{sup -1} and provide high efficiency on H {yields} b{bar b} events.

  12. Neutrino emission in the jet propagation process

    SciTech Connect (OSTI)

    Xiao, D.; Dai, Z. G.

    2014-07-20

    Relativistic jets are universal in long-duration gamma-ray burst (GRB) models. Before breaking out, they must propagate in the progenitor envelope along with a forward shock and a reverse shock forming at the jet head. Both electrons and protons will be accelerated by the shocks. High-energy neutrinos could be produced by these protons interacting with stellar materials and electron-radiating photons. The jet will probably be collimated, which may have a strong effect on the final neutrino flux. Under the assumption of a power-law stellar-envelope density profile ??r {sup ?} with index ?, we calculate the neutrino emission flux by these shocks for low-luminosity GRBs (LL-GRBs) and ultra-long GRBs (UL-GRBs) in different collimation regimes, using the jet propagation framework developed by Bromberg et al. We find that LL-GRBs and UL-GRBs are capable of producing detectable high-energy neutrinos up to ?PeV, from which the final neutrino spectrum can be obtained. Further, we conclude that a larger ? corresponds to greater neutrino flux at the high-energy end (?PeV) and to higher maximum neutrino energy as well. However, such differences are so small that it is not promising for us to be able to distinguish these in observations, given the energy resolution we have now.

  13. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect (OSTI)

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  14. HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT

    SciTech Connect (OSTI)

    Russo, Matthew; Thompson, Christopher

    2013-08-20

    We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

  15. Sustainable Alternative Jet Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nate Brown, Federal Aviation Administration, presentation at the Industry Roundtable on Update on ASTM Approval. 10_brown_roundtable.pdf (575.65 KB) More Documents & Publications An Update on FAA Alternative Jet Fuel Efforts CAAFI Progress Update Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters

  16. Free energy balance in gyrokinetic turbulence

    SciTech Connect (OSTI)

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-09-15

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  17. COHERENT STRUCTURES IN PLASMA TURBULENCE: PERSISTENCE, INTERMITTENCY,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COHERENT STRUCTURES IN PLASMA TURBULENCE: PERSISTENCE, INTERMITTENCY, AND CONNECTIONS WITH OBSERVATIONS by Kurt W. Smith A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN-MADISON 2011 c Copyright by Kurt W. Smith 2011 All Rights Reserved i To Paul Terry, my adviser: for your patient guidance and helpful instruction; for the stimulating conversations and for honing my physical intuition; and for

  18. Electromagnetic Transport From Microtearing Mode Turbulence

    SciTech Connect (OSTI)

    Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R

    2011-03-23

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  19. HYPERSONIC BUCKSHOT: ASTROPHYSICAL JETS AS HETEROGENEOUS COLLIMATED PLASMOIDS

    SciTech Connect (OSTI)

    Yirak, Kristopher; Frank, Adam; Cunningham, Andrew J.; Mitran, Sorin

    2009-04-20

    Herbig-Haro jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or 'pulsed' variations of conditions at the jet source. Simulations based on this scenario result in knots extending across the jet diameter. Observations and recent high energy density laboratory experiments shed new light on structures below this scale and indicate they may be important for understanding the fundamentals of jet dynamics. In this paper, we offer an alternative to 'pulsed' models of protostellar jets. Using direct numerical simulations we explore the possibility that jets are chains of subradial clumps propagating through a moving interclump medium. Our models explore an idealization of this scenario by injecting small (r < r {sub jet}), dense ({rho}>{rho}{sub jet}) spheres embedded in an otherwise smooth interclump jet flow. The spheres are initialized with velocities differing from the jet velocity by {approx}15%. We find that the consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each other and with the interclump medium in a variety of ways. Structures which mimic what is expected from pulsed-jet models can form, as can be previously unseen, 'subradial' behaviors including backward facing bow shocks and off-axis working surfaces. While these small-scale structures have not been seen before in simulation studies, they are found in high-resolution jet observations. We discuss implications of our simulations for the interpretation of protostellar jets with regard to characterization of knots by a 'lifetime' or 'velocity history' approach as well as linking observed structures with central engines which produce the jets.

  20. Turbulent Equipartition Theory of Toroidal Momentum Pinch

    SciTech Connect (OSTI)

    T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt

    2008-01-31

    The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  1. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect (OSTI)

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  2. Polarization and Structure of Relativistic Parsec-Scale AGN Jets

    SciTech Connect (OSTI)

    Lyutikov, M

    2004-06-10

    We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron-positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor {Lambda}. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. Our computations predict and explain the following behavior. (1) For jets unresolved in the direction perpendicular to their direction of propagation, the position angle of the electric vector of the linear polarization has a bimodal distribution, being oriented either parallel or perpendicular to the jet. (2) If an ultra-relativistic jet with {Lambda} >> 1 whose axis makes a small angle to the line of sight, {theta} {approx} 1/{Lambda}, experiences a relatively small change in the direction of propagation, velocity or pitch angle of the magnetic fields, the polarization is likely to remain parallel or perpendicular; on the other hand, in some cases, the degree of polarization can exhibit large variations and the polarization position angle can experience abrupt 90{sup o} changes. This change is more likely to occur in jets with flatter spectra. (3) In order for the jet polarization to be oriented along the jet axis, the intrinsic toroidal magnetic field (in the frame of the jet) should be of the order of or stronger than the intrinsic poloidal field; in this case, the highly relativistic motion of the jet implies that, in the observer's frame, the jet is strongly dominated by the toroidal magnetic field B{sub {phi}}/B{sub z} {ge} {Lambda}. (4) The emission-weighted average pitch angle of the intrinsic helical field in the jet must not be too small to produce polarization along the jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be generated in a limited

  3. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    SciTech Connect (OSTI)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-12-15

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  4. Electron energy spectrum in circularly polarized laser irradiated overdense plasma

    SciTech Connect (OSTI)

    Liu, C. S.; Tripathi, V. K.; Shao, Xi; Kumar, Pawan

    2014-10-15

    A circularly polarized laser normally impinged on an overdense plasma thin foil target is shown to accelerate the electrons in the skin layer towards the rear, converting the quiver energy into streaming energy exactly if one ignores the space charge field. The energy distribution of electrons is close to Maxwellian with an upper cutoff ?{sub max}=mc{sup 2}[(1+a{sub 0}{sup 2}){sup 1/2}?1], where a{sub 0}{sup 2}=(1+(2?{sup 2}/?{sub p}{sup 2})|a{sub in}|{sup 2}){sup 2}?1, |a{sub in}| is the normalized amplitude of the incident laser of frequency ?, and ?{sub p} is the plasma frequency. The energetic electrons create an electrostatic sheath at the rear and cause target normal sheath acceleration of protons. The energy gain by the accelerated ions is of the order of ?{sub max}.

  5. Broad-band characteristics of circular button pickups

    SciTech Connect (OSTI)

    Barry, W.C.

    1992-10-01

    A broad-band.theory of the circular button pickup is presented. Expressions for the longitudinal and transverse transfer impedance of a pair of such pickups are derived in the frequency domain. The broad-band expressions are shown to reduce to the standard electrostatic transfer functions for wavelengths large compared to the button diameter. The theory is shown to be in reasonable agreement with measurements performed on standard LEP button electrodes. In particular, the theory explains a resonance in the response of the LEP buttons which made them unsuitable, in standard form, for their intended application as pickups in the LBL Advanced Light Source feedback system. The buttons were modified to suppress the resonance and subsequently incorporated into the feedback system.

  6. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    SciTech Connect (OSTI)

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-15

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  7. Protein Characterisation by Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy

    SciTech Connect (OSTI)

    Wallace, B.

    2009-01-01

    Circular dichroism (CD) spectroscopy is a well-established technique for the study of proteins. Synchrotron radiation circular dichroism (SRCD) spectroscopy extends the utility of conventional CD spectroscopy (i.e. using laboratory-based instruments) because the high light flux from a synchrotron enables collection of data to lower wavelengths, detection of spectra with higher signal-to-noise levels and measurements in the presence of strongly absorbing non-chiral components such as salts, buffers, lipids and detergents. This review describes developments in instrumentation, methodologies and bioinformatics that have enabled new applications of the SRCD technique for the study of proteins. It includes examples of the use of SRCD spectroscopy for providing static and dynamic structural information on molecules, including determinations of secondary structures of intact proteins and domains, assessment of protein stability, detection of conformational changes associated with ligand and drug binding, monitoring of environmental effects, examination of the processes of protein folding and membrane insertion, comparisons of mutant and modified proteins, identification of intermolecular interactions and complex formation, determination of the dispositions of proteins in membranes, identification of natively disordered proteins and their binding partners and examination of the carbohydrate components of glycoproteins. It also discusses how SRCD can be used in conjunction with macromolecular crystallography and other biophysical techniques to provide a more complete picture of protein structures and functions, including how proteins interact with other macromolecules and ligands. This review also includes a discussion of potential new applications in structural and functional genomics using SRCD spectroscopy and future instrumentation and bioinformatics developments that will enable such studies. Finally, the appendix describes a number of computational

  8. The interaction of high-speed turbulence with flames: Turbulent flame speed

    SciTech Connect (OSTI)

    Poludnenko, A.Y.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States)

    2011-02-15

    Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps

  9. Kinetic Theory of Turbulent Multiphase Flow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetic Theory of Turbulent Multiphase Flow FWP/Project Description: Project Leader(s): Rodney Fox It is proposed to further the present understanding of turbulent gas-solid fluidized-bed reactors from the conceptual standpoint of kinetic theory and turbulence modeling. The primary purpose is to provide a theoretical underpinning for the construction of computer codes to better understand and predict multiphase flow behavior in polydisperse gas-solid fluidized-bed reactors and risers. In

  10. Assessment of Combustion and Turbulence Models for the Simulation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Processes in a DI Diesel Engine | Department of Energy Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine deer09_ren.pdf (497.22 KB) More Documents & Publications Low Temperature

  11. Simulation of High Reynolds Number Turbulent Boundary Layers | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility A visualization of the velocity in a boundary layer at Reynolds numbers up to 2100 shows the growth of the turbulence structures out into the free stream as it evolves downstream (to the right) and the intermittent uneven boundary of the turbulent region. Juan Sillero, Universidad Politécnica de Madrid. Simulation of High Reynolds Number Turbulent Boundary Layers PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas at Austin

  12. Identification of new turbulence contributions to plasma transport...

    Office of Scientific and Technical Information (OSTI)

    Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime Citation Details In-Document Search This content will become publicly...

  13. Toward the Theory of Turbulence in Magnetized Plasmas

    SciTech Connect (OSTI)

    Boldyrev, Stanislav

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a condensate, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  14. PPPL researchers advance understanding of plasma turbulence that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL researchers advance understanding of plasma turbulence that drains heat from fusion ... Now, physicists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory ...

  15. Gyrokinetic simulations of turbulent transport in fusion plasmas

    SciTech Connect (OSTI)

    Rogers, Barrett Neil

    2013-05-30

    This is the final report for a DOE award that was targeted at understanding and simulating turbulence and transport in plasma fusion devices such as tokamaks.

  16. A Model for Turbulent Combustion Simulation of Large Scale Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Model for Turbulent Combustion Simulation of Large Scale Hydrogen Explosions Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 6 2015 - 10:00am...

  17. Sandia Energy - Turbulent Mixed-Mode Combustion Studied in a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent Mixed-Mode Combustion Studied in a New Piloted Burner Home Transportation Energy CRF Office of Science Capabilities News News & Events Research & Capabilities Fuel...

  18. Multi-Scale Simulations Solve a Plasma Turbulence Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    period are helping physicists better understand what influences the behavior of the plasma turbulence that is driven by the intense heating necessary to create fusion energy. ...

  19. PPPL researchers advance understanding of plasma turbulence that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    But while that motion helps produce the fusion reactions that could power a new class of electricity generator, the turbulence it generates can also limit those reactions. Now, ...

  20. Turbulence-Flame Interactions in Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. ...

  1. Lagrangian-Averaged Scale-Dependent subfilter turbulence model

    Energy Science and Technology Software Center (OSTI)

    2011-03-01

    LASD are Fortran 90 modules that compute the stresses and scalar fluxes arising from unrelolved scales of turbulence, required for large-eddy eimulations of fluid flows.

  2. Consider Installing Turbulators on Two- and Three-Pass Firetube...

    Broader source: Energy.gov (indexed) [DOE]

    steam systems. STEAM TIP SHEET 25 Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers (January 2012) (373.54 KB) More Documents & Publications Clean Boiler ...

  3. Identifying new sources of turbulence in spherical tokamaks | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Identifying new sources of turbulence in spherical tokamaks By John Greenwald November 24, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the

  4. Identifying new sources of turbulence in spherical tokamaks | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Identifying new sources of turbulence in spherical tokamaks By John Greenwald November 25, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the

  5. Ion temperature gradient driven turbulence with strong trapped...

    Office of Scientific and Technical Information (OSTI)

    driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. ...

  6. Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...

  7. Hot Particle and Turbulent Transport Effects on Resistive Instabilities

    SciTech Connect (OSTI)

    Brennan, Dylan P.

    2012-10-16

    This research project included two main thrusts; energetic particle effects on resistive MHD modes in tokamaks, and turbulence interactions with tearing modes in simplified geometry.

  8. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect (OSTI)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  9. Adaptive LES Methodology for Turbulent Flow Simulations

    SciTech Connect (OSTI)

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence

  10. MHD turbulence model for global simulations of the solar wind and SEP acceleration

    SciTech Connect (OSTI)

    Sokolov, Igor V.; Roussev, Ilia I.

    2008-08-25

    The aim of the present work is to unify the various transport equations for turbulent waves that are used in different areas of space physics. We mostly focus on the magnetohydrodynamic (MHD) turbulence, in particular the Alfvenic turbulence.

  11. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect (OSTI)

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [Equatorial superrotation in shallow atmospheres, Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  12. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  13. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, Charles D. (Livermore, CA)

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  14. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  15. Merging of high speed argon plasma jets

    SciTech Connect (OSTI)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  16. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation

    SciTech Connect (OSTI)

    Li, Jiaming; Wang, Jiajian; Tang, Peng; Liu, Wei; Huang, Tao; Wang, Yanqi; Lin, Feng; Fang, Zheyu; Zhu, Xing

    2015-04-20

    Analyzing the polarization of a circularly polarized light is a critical issue. We have fabricated a spiral nano-structure on the Au film by using focused ion beam etching technique. The fabricated structure can be used as a plasmonic circular polarization analyzer. By designing the relative orientation of two nano-apertures in the spiral structural unit, the propagation direction of the surface plasmon polaritons excited by circularly polarized light of opposite handedness can be controlled. Therefore, the spiral structure could be used to accurately determine the helicity of the excited circularly polarized light. Based on the results of scanning near-field optical microscopy, the obtained circular polarization extinction ratio of this structure was above 500. This structure can be used for a flexible detecting size and a very wide spectrum.

  17. Experimental study of elliptical jet from sub to supercritical conditions

    SciTech Connect (OSTI)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations were carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.

  18. STEADY TWIN-JETS ORIENTATION: IMPLICATIONS FOR THEIR FORMATION MECHANISM

    SciTech Connect (OSTI)

    Soker, Noam; Mcley, Liron E-mail: lironmc@tx.technion.ac.il

    2013-08-01

    We compare the structures of the jets of the pre-planetary nebulae (pre-PNe) CRL618 and the young stellar object (YSO) NGC 1333 IRAS 4A2 and propose that in both cases the jets are launched near periastron passages of a highly eccentric binary system. The pre-PN CRL618 has two ''twin-jets'' on each side, where by ''twin-jets'' we refer to a structure where one side is composed of two very close and narrow jets that were launched at the same time. We analyze the position-velocity diagram of NGC 1333 IRAS 4A2, and find that it also has the twin-jet structure. In both systems, the orientation of the two twin-jets does not change with time. By comparing these two seemingly different objects, we speculate that the constant relative direction of the two twin-jets is fixed by the direction of a highly eccentric orbit of a binary star. For example, a double-arm spiral structure in the accretion disk induced by the companion might lead to the launching of the twin-jets. We predict the presence of a low-mass stellar companion in CRL618 that accretes mass and launches the jets, and a substellar (a planet of a brown dwarf) companion to the YSO NGC 1333 IRAS 4A2 that perturbed the accretion disk. In both cases the orbit has a high eccentricity.

  19. Cellulosic Biomass Sugars to Advantaged Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 May, 2013 Technology Area Review: Biochemical Conversion Randy Cortright PhD Virent, Inc WBS: 2.3.1.8 Goal Statement Project Goal - Integrate Virent's BioForming® Process with NREL's biomass deconstruction technology to efficiently produce cost effective "drop-in" fuels from corn stover with particular focus in maximizing jet fuel yields.  Improve pretreatment strategies for deconstruction of cellulose and hemicellulose while significantly reducing or eliminating costly enzymes

  20. An approximation technique for jet impingement flow

    SciTech Connect (OSTI)

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  1. Disruption mitigation using high pressure gas jets

    SciTech Connect (OSTI)

    Dennis G. Whyte

    2007-10-11

    The goal of this research is to establish credible disruption mitigation scenarios based on the technique of massive gas injection. Disruption mitigation seeks to minimize or eliminate damage to internal components that can occur due to the rapid dissipation of thermal and magnetic energy during a tokamak disruption. In particular, the focus of present research is extrapolating mitigation techniques to burning plasma experiments such as ITER, where disruption-caused damage poses a serious threat to the lifetime of internal vessel components. A majority of effort has focused on national and international collaborative research with large tokamaks: DIII-D, Alcator C-Mod, JET, and ASDEX Upgrade. The research was oriented towards empirical trials of gas-jet mitigation on several tokamaks, with the goal of developing and applying cohesive models to the data across devices. Disruption mitigation using gas jet injection has proven to be a viable candidate for avoiding or minimizing damage to internal components in burning plasma experiments like ITER. The physics understanding is progress towards a technological design for the required gas injection system in ITER.

  2. Ejector device for direct injection fuel jet

    DOE Patents [OSTI]

    Upatnieks, Ansis

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  3. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    SciTech Connect (OSTI)

    Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  4. Neutrino oscillations in a turbulent plasma

    SciTech Connect (OSTI)

    Mendona, J. T.; Haas, F.

    2013-07-15

    A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.

  5. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect (OSTI)

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup 1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  6. Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edge Transport | Princeton Plasma Physics Lab Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport

  7. Analysis of ``soft`` recovered shaped charge jet particles

    SciTech Connect (OSTI)

    Lassila, D.H.; Nikkel, D.J. Jr.; Kershaw, R.P.; Walters, W.P.

    1996-04-01

    A shaped charge with an 81 mm diameter, 42{degree} apex angle oxygen-free high-conductivity (OFHC) copper conical liner was fired into a ``soft`` recovery bunker to allow metallurgical examination of recovered jet particles and the slug. The initial weight of the copper liner was 245 g, of which 184 g was recovered. The number of jet particles recovered was 37 (approximately 63% of the particles formed by the charge). Extensive metallurgical analyses were performed on the recovered slug and jet particles. The microstructural features associated with voids, e.g., dendritic grain growth, clearly indicate that the regions in the vicinity of the centerline of the slug and jet particles were melted. In this work the authors present calculations of jet temperature as a function of constitutive behavior. In order to predict melt in the center region of the jet they find it necessary to scale flow stress with a pressure dependent shear modulus.

  8. SIMULATING PROTOSTELLAR JETS SIMULTANEOUSLY AT LAUNCHING AND OBSERVATIONAL SCALES

    SciTech Connect (OSTI)

    Ramsey, Jon P.; Clarke, David A. [Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Mary's University, Halifax, Nova Scotia B3H 3C3 (Canada)

    2011-02-10

    We present the first 2.5-dimensional magnetohydrodynamic (MHD) simulations of protostellar jets that include both the region in which the jet is launched magnetocentrifugally at scale lengths <0.1 AU and where the propagating jet is observed at scale lengths >10{sup 3} AU. These simulations, performed with the new adaptive mesh refinement MHD code AZEuS, reveal interesting relationships between conditions at the disk surface, such as the magnetic field strength, and direct observables such as proper motion, jet rotation, jet radius, and mass flux. By comparing these quantities with observed values, we present direct numerical evidence that the magnetocentrifugal launching mechanism is capable, by itself, of launching realistic protostellar jets.

  9. A NUMERICAL MODEL OF STANDARD TO BLOWOUT JETS

    SciTech Connect (OSTI)

    Archontis, V.; Hood, A. W.

    2013-06-01

    We report on three-dimensional (3D) MHD simulations of the formation of jets produced during the emergence and eruption of solar magnetic fields. The interaction between an emerging and an ambient magnetic field in the solar atmosphere leads to (external) reconnection and the formation of ''standard'' jets with an inverse Y-shaped configuration. Eventually, low-atmosphere (internal) reconnection of sheared fieldlines in the emerging flux region produces an erupting magnetic flux rope and a reconnection jet underneath it. The erupting plasma blows out the ambient field and, moreover, it unwinds as it is ejected into the outer solar atmosphere. The fast emission of the cool material that erupts together with the hot outflows due to external/internal reconnection form a wider ''blowout'' jet. We show the transition from ''standard'' to ''blowout'' jets and report on their 3D structure. The physical plasma properties of the jets are consistent with observational studies.

  10. Towards an understanding of the correlations in jet substructure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, D.; Arce, A.; Asquith, L.; Backovic, M.; Barillari, T.; Berta, P.; Bertolini, D.; Buckley, A.; Butterworth, J.; Camacho Toro, R.  C.; et al

    2015-09-09

    Over the past decade, a large number of jet substructure observables have been proposed in the literature, and explored at the LHC experiments. Such observables attempt to utilize the internal structure of jets in order to distinguish those initiated by quarks, gluons, or by boosted heavy objects, such as top quarks and W bosons. This report, originating from and motivated by the BOOST2013 workshop, presents original particle-level studies that aim to improve our understanding of the relationships between jet substructure observables, their complementarity, and their dependence on the underlying jet properties, particularly the jet radius and jet transverse momentum. Thismore » is explored in the context of quark/gluon discrimination, boosted W boson tagging and boosted top quark tagging.« less

  11. Afterburning in spherical premixed turbulent explosions

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Scott, M.J. . Dept. of Mechanical Engineering); Mushi, E.M.J. )

    1994-12-01

    During the early stages of spherical turbulent flame propagation, more than half of the gas behind the visible flame front may be unburned. Previous models of the afterburning of the gas behind the apparent flame front have been extended in the present work, to include the effects of flame quenching, consequent upon localized flame stretch. The predictions of the model cover, the spatial and temporal variations of the fraction burned, the flame propagation rate, and the mass burning rate. They are all in dimensionless form and are well supported by associated experimental measurements in a fan-stirred bomb with controlled turbulence. The proportion of the gas that is unburned decreases with time and increases with the product of the Karlovitz stretch factor and the Lewis number. Simultaneous photographs were taken of the spherical schlieren image and of that due to Mie scattering from small seed particles in a thin laser sheet that sectioned the spherical flame. These clearly showed the amount of unburned gas within the sphere and, along with other evidence suggest laminar flamelet burning across a scale of distance which is close to the Taylor confirm the predictions of the fraction of gas unburned and of the rate at which it is burning.

  12. Microtearing turbulence: Magnetic braiding and disruption limit

    SciTech Connect (OSTI)

    Firpo, Marie-Christine

    2015-12-15

    A realistic reduced model involving a large poloidal spectrum of microtearing modes is used to probe the existence of some stochasticity of magnetic field lines. Stochasticity is shown to occur even for the low values of the magnetic perturbation δB/B devoted to magnetic turbulence that have been experimentally measured. Because the diffusion coefficient may strongly depend on the radial (or magnetic-flux) coordinate, being very low near some resonant surfaces, and because its evaluation implicitly makes a normal diffusion hypothesis, one turns to another indicator appropriate to diagnose the confinement: the mean residence time of magnetic field lines. Their computation in the microturbulence frame points to the existence of a disruption limit, namely of a critical order of magnitude of δB/B above which stochasticity is no longer benign yet, leads to a macroscopic loss of confinement in some tens to hundred of electron toroidal excursions. Since the level of magnetic turbulence δB/B has been measured to grow with the plasma electron density, this would also be a density limit.

  13. Cable bolt support technology in north America. Information circular/1994

    SciTech Connect (OSTI)

    Goris, J.M.; Nickson, S.D.; Pakalnis, R.

    1994-01-01

    Cable bolt supports are becoming an important ground control technique in underground mines in the United States and Canada. They show great versatility and are adaptable for use with many mining techniques, they have high load-carrying capacities, they can be installed in small areas with low roofs, and they are cost effective. Investigators in a number of research institutes in North America have conducted studies to assess the material and support properties of cable bolts, evaluate their support capabilities under various mining conditions, and provide design criteria for using cable bolt supports as roof control systems under varying mining conditions. While conducting these studies, personnel have collected important information on the history, application, performance, and economics of these supports. This Information Circular (IC) documents this information so that ground control personnel unfamiliar with cable bolt supports can gain an understanding and appreciation of their use. A comprehensive bibliography of technical information on cable bolt supports was selected by the authors and is also presented.

  14. Method for making circular tubular channels with two silicon wafers

    DOE Patents [OSTI]

    Yu, C.M.; Hui, W.C.

    1996-11-19

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si{sub 3}N{sub 4}) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO{sub 3}/CH{sub 3}COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary. 11 figs.

  15. Method for making circular tubular channels with two silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad M.; Hui, Wing C.

    1996-01-01

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si.sub.3 N.sub.4) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO.sub.3 /CH.sub.3 COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary.

  16. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect (OSTI)

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  17. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence

    SciTech Connect (OSTI)

    Donato, S.; Servidio, S.; Carbone, V. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires, CONICET, Buenos Aires (Argentina); Shay, M. A.; Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2012-09-15

    The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.

  18. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect (OSTI)

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%3% of the turbulent kinetic energy density of the turbulent layer.

  19. Turbulent natural and mixed convection along a vertical plate

    SciTech Connect (OSTI)

    Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.; Zhao, J.Z.

    1997-07-01

    Measurements of turbulent boundary-layer air flow in natural and mixed convection adjacent to an isothermal vertical flat plate are reported. Laser-Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the mean turbulent velocity and temperature distributions were measured for a temperature difference, {Delta}T, of 30 C between the heated wall and the free stream air at a fixed location x = 3 m (with a corresponding Grashof number Gr{sub x} = 8.55 x 10{sup 10}), and for a range of free stream velocities 0 m/s {le} U{sub {infinity} } {le} 0.41 m/s. The effect of small free stream velocity on the turbulent natural convection is examined. These results reveal that the introduction of small free stream velocity on turbulent natural convection flow suppresses turbulence and decreases the heat transfer rate from the heated wall.

  20. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    SciTech Connect (OSTI)

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  1. Reconstructing top quark-antiquark events with one lost jet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demina, Regina; Harel, Amnon; Orbaker, Douglas

    2015-04-02

    We present a technique for reconstructing the kinematics of pair-produced top quarks that decay to a charged lepton, a neutrino and four final state quarks in the subset of events where only three jets are reconstructed. We present a figure of merit that allows for a fair comparison of reconstruction algorithms without requiring their calibration. The new reconstruction of events with only three jets is fully competitive with the full reconstruction typically used for four-jet events.

  2. Reconstructing $t\\bar{t}$ events with one lost jet

    SciTech Connect (OSTI)

    Demina, Regina; Harel, Amnon; Orbaker, Douglas

    2015-04-02

    We present a technique for reconstructing the kinematics of pair-produced top quarks that decay to a charged lepton, a neutrino and four final state quarks in the subset of events where only three jets are reconstructed. We present a figure of merit that allows for a fair comparison of reconstruction algorithms without requiring their calibration. As a result, the new reconstruction of events with only three jets is fully competitive with the full reconstruction typically used for four-jet events.

  3. MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect (OSTI)

    Shabala, S. S.; Santoso, J. S.; Godfrey, L. E. H.

    2012-09-10

    We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

  4. Reconstructing $$t\\bar{t}$$ events with one lost jet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demina, Regina; Harel, Amnon; Orbaker, Douglas

    2015-04-02

    We present a technique for reconstructing the kinematics of pair-produced top quarks that decay to a charged lepton, a neutrino and four final state quarks in the subset of events where only three jets are reconstructed. We present a figure of merit that allows for a fair comparison of reconstruction algorithms without requiring their calibration. As a result, the new reconstruction of events with only three jets is fully competitive with the full reconstruction typically used for four-jet events.

  5. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    SciTech Connect (OSTI)

    Mikkelsen, D. R. Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.

    2015-06-15

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  6. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect (OSTI)

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frmter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grtzmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  7. COLLIMATION AND CONFINEMENT OF MAGNETIC JETS BY EXTERNAL MEDIA

    SciTech Connect (OSTI)

    Levinson, Amir; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We study the collimation of a highly magnetized jet by a surrounding cocoon that forms as a result of the interaction of the jet with the external medium. We show that in regions where the jet is well confined by the cocoon, current-driven instabilities should develop over timescales shorter than the expansion time of the jet's head. We speculate that these instabilities would give rise to complete magnetic field destruction, whereby the jet undergoes a transition from high to low sigma above the collimation zone. Using this assumption, we construct a self-consistent model for the evolution of the jet-cocoon system in an ambient medium of arbitrary density profile. We apply the model to jet breakout in long gamma-ray bursts (GRBs) and show that the jet is highly collimated inside the envelope of the progenitor star and is likely to remain confined well after breakout. We speculate that this strong confinement may provide a channel for magnetic field conversion in GRB outflows, whereby the hot, low-sigma jet section thereby produced is the source of the photospheric emission observed in many bursts.

  8. Electrical characteristics and formation mechanism of atmospheric pressure plasma jet

    SciTech Connect (OSTI)

    Liu, Lijuan; Zhang, Yu; Tian, Weijing; Meng, Ying; Ouyang, Jiting

    2014-06-16

    The behavior of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge in helium in external electrostatic and magnetic field is investigated. Net negative charges in the plasma jet outside the tube were detected. The deflection of the plume in the external field was observed. The plasma jet is suggested to be formed by the electron beam from the temporal cathode which is accelerated by a longitudinal field induced by the surface charges on the dielectric tube or interface between the helium and ambient air. The helium flow is necessary for the jet formation in the surrounding air.

  9. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  10. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect (OSTI)

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  11. Renewable Jet Fuel Is Taking Flight | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    efforts to develop renewable jet fuel for the military and commercial aviation industry. ... advanced biofuels, which can be utilized by both the military and civil aviation sectors. ...

  12. Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence

    SciTech Connect (OSTI)

    Zhao, L.; Diamond, P. H.

    2012-08-15

    We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

  13. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    SciTech Connect (OSTI)

    Wang, Sen; Zhang, Yan; Wang, Xinke; Kan, Qiang; Qu, Shiliang

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysis of chiral molecules in biology.

  14. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    SciTech Connect (OSTI)

    Ames, Forrest; Kingery, Joseph E.

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  15. Jet mass and substructure of inclusive jets in root s=7 TeV pp collisions with the ATLAS experiment

    SciTech Connect (OSTI)

    Aad G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamezyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; et al.

    2012-05-01

    Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb{sup -1} of pp collisions delivered by the LHC at {radical}s = 7 TeV. In a subsample of events with single pp collisions, measurements corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, k{sub t} splitting scales and N-subjettiness variables are presented for anti-k{sub t} R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.

  16. One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS

    SciTech Connect (OSTI)

    Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.

    2015-06-01

    The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.

  17. Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model

    SciTech Connect (OSTI)

    Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.

    2014-10-09

    Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introduces a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.

  18. Jet and electromagnetic tomography (JET) of extreme phases of matter in heavy-ion collisions

    SciTech Connect (OSTI)

    Heinz, Ulrich

    2015-08-31

    The Ohio State University (OSU) group contributed to the deliverables of the JET Collaboration three major products: 1. The code package iEBE-VISHNU for modeling the dynamical evolution of the soft medium created in relativistic heavy-ion collisions, from its creation all the way to final freeze-out using a hybrid approach that interfaces a free-streaming partonic pre-equilbrium stage with a (2+1)-dimensional viscous relativistic fluid dynamical stage for the quark-gluon plasma (QGP) phase and the microscopic hadron cascade UrQMD for the hadronic rescattering and freeze-out stage. Except for UrQMD, all dynamical evolution components and interfaces were developed at OSU and tested and implemented in collaboration with the Duke University group. 2. An electromagnetic radiation module for the calculation of thermal photon emission from the QGP and hadron resonance gas stages of a heavy-ion collision, with emission rates that have been corrected for viscous effects in the expanding medium consistent with the bulk evolution. The electromagnetic radiation module was developed under OSU leadership in collaboration with the McGill group and has been integrated in the iEBE-VISHNU code package. 3. An interface between the Monte Carlo jet shower evolution and hadronization codes developed by the Wayne State University (WSU), McGill and Texas A&M groups and the iEBE-VISHNU bulk evolution code, for performing jet quenching and jet shape modification studies in a realistically modeled evolving medium that was tuned to measured soft hadron data. Building on work performed at OSU for the theoretical framework used to describe the interaction of jets with the medium, initial work on the jet shower Monte Carlo was started at OSU and moved to WSU when OSU Visiting Assistant Professor Abhijit Majumder accepted a tenure track faculty position at WSU in September 2011. The jet-hydro interface was developed at OSU and WSU and tested and implemented in collaboration with the McGill, Texas

  19. EFFECT OF INTERACTING RAREFACTION WAVES ON RELATIVISTICALLY HOT JETS

    SciTech Connect (OSTI)

    Matsumoto, Jin; Shibata, Kazunari; Masada, Youhei

    2012-06-01

    The effect of rarefaction acceleration on the propagation dynamics and structure of relativistically hot jets is studied through relativistic hydrodynamic simulations. We emphasize the nonlinear interaction of rarefaction waves excited at the interface between a cylindrical jet and the surrounding medium. From simplified one-dimensional (1D) models with radial jet structure, we find that a decrease in the relativistic pressure due to the interacting rarefaction waves in the central zone of the jet transiently yields a more powerful boost of the bulk jet than that expected from single rarefaction acceleration. This leads to a cyclic in situ energy conversion between thermal and bulk kinetic energies, which induces radial oscillating motion of the jet. The oscillation timescale is characterized by the initial pressure ratio of the jet to the ambient medium and follows a simple scaling relation, {tau}{sub oscillation}{proportional_to}(P{sub jet,0}/P{sub amb,0}){sup 1/2}. Extended two-dimensional simulations confirm that this radial oscillating motion in the 1D system manifests as modulation of the structure of the jet in a more realistic situation where a relativistically hot jet propagates through an ambient medium. We find that when the ambient medium has a power-law pressure distribution, the size of the reconfinement region along the propagation direction of the jet in the modulation structure {lambda} evolves according to a self-similar relation {lambda}{proportional_to}t{sup {alpha}/2}, where {alpha} is the power-law index of the pressure distribution.

  20. The effect of solids concentration on self-induced turbulence

    SciTech Connect (OSTI)

    Kenning, V.; Crowe, C.T.

    1994-12-31

    A model to predict the turbulence intensity due to the solid particles in a simple flow has been developed. The flow is one in which all the turbulence is due to the presence of the particles. The model accounts for energy input through the loss of potential energy by the solid particles and energy loss by turbulent dissipation. The predictions are compared for various solids concentrations and particle sizes. The peak turbulence intensity is seen to b3e reached faster for higher solid concentrations. The peak is also higher for higher concentrations. In all cases, a peak value of turbulent intensity is reached if the supply of particles is maintained. The case in which the supply of particles are no longer available to supply the turbulence with energy. When normalized by the peak value, the turbulence was seen to decay more rapidly for higher concentrations of solid particles in the present model. An experimental study will be conducted to compare with the current model.

  1. SIMULATION AND MOCKUP OF SNS JET-FLOW TARGET WITH WALL JET FOR CAVITATION DAMAGE MITIGATION

    SciTech Connect (OSTI)

    Wendel, Mark W; Geoghegan, Patrick J; Felde, David K

    2014-01-01

    Pressure waves created in liquid mercury pulsed spallation targets at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel is characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.

  2. Admiralty Inlet Advanced Turbulence Measurements: May 2015

    SciTech Connect (OSTI)

    Kilcher, Levi

    2015-05-18

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  3. Quantitative imaging of turbulent and reacting flows

    SciTech Connect (OSTI)

    Paul, P.H.

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  4. Admiralty Inlet Advanced Turbulence Measurements: June 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kilcher, Levi

    2014-06-30

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  5. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical

  6. Interaction of Nocturnal Low-Level Jets with Urban Geometries as seen in Joint URBAN 2003 Data

    SciTech Connect (OSTI)

    K.Lundquist, J; D.Mirocha, J

    2006-09-06

    As accurate modeling of atmospheric flows in urban environments requires sophisticated representation of complex urban geometries, much work has been devoted to treatment of the urban surface. However, the importance of the larger-scale flow impinging upon the urban complex to the flow, transport and dispersion within it and downwind has received less attention. Building-resolving computational fluid dynamics (CFD) models are commonly employed to investigate interactions between the flow and three-dimensional structures comprising the urban environment, however such models are typically forced with simplified boundary conditions that fail to include important regional-scale phenomena that can strongly influence the flow within the urban complex and downwind. This paper investigates the interaction of an important and frequently occurring regional-scale phenomenon, the nocturnal low-level jet (LLJ), with urban-scale turbulence and dispersion in Oklahoma City using data from the Joint URBAN 2003 (JU2003) field experiment. Two simulations of nocturnal tracer release experiments from JU2003 using Lawrence Livermore National laboratory's FEM3MP CFD model yield differing levels of agreement with the observations in wind speed, turbulence kinetic energy (TKE) and concentration profiles in the urban wake, approximately 750m downwind of the central business district. Profiles of several observed turbulence parameters at this location indicate characteristics of both bottom-up and top-down boundary layers during each of the experiments. These data are consistent with turbulence production due to at least two sources, the complex flow structures of the urban area and the region of strong vertical wind shear occurring beneath the LLJs present each night. While strong LLJs occurred each night, their structures varied considerably, resulting in significant differences in the magnitudes of the turbulence parameters observed during the two experiments. As FEM3MP was forced only

  7. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  8. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    SciTech Connect (OSTI)

    van der Laan, J. D.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  9. On apparent temperature in low-frequency Alfvenic turbulence

    SciTech Connect (OSTI)

    Nariyuki, Yasuhiro

    2012-08-15

    Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.

  10. Edge Turbulence Velocity Changes with Lithium Coating on NSTX

    SciTech Connect (OSTI)

    Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.

    2012-08-10

    Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________

  11. Multi-Scale Simulations Solve a Plasma Turbulence Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-Scale Simulations Solve a Plasma Turbulence Mystery Multi-Scale Simulations Solve a Plasma Turbulence Mystery Coupled Model Reproduces Experimental Electron Heat Losses March 7, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 turb cross High-res image of the inside of the Alcator C-Mod tokamak, with a representative cross-section of a plasma. The inset shows the approximate domain for one of the multi-scale simulations and a graphic of the plasma turbulence in the

  12. Complex Geometry Creation and Turbulent Conjugate Heat Transfer...

    Office of Scientific and Technical Information (OSTI)

    The LRN meets the needs of the nominal HFIR thermal-hydraulic requirements for 2D and 3D simulations. COMSOL also has the capability to create complex geometries. The circular ...

  13. Enabling High Efficiency Low Temperature Combustion by Adaptive In-Situ Jet Cooling

    Broader source: Energy.gov [DOE]

    A new approach, called Adaptive-Jet-Cooling, leverages two distinct spray patters of hollow conical sprays and conventional multiple jets, eliminating key sources of NOx and PM.

  14. W/Z + jets production at the tevatron {bar p}p collider (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: WZ + jets production at the tevatron bar pp collider Citation Details In-Document Search Title: WZ + jets production at the tevatron bar pp collider You are ...

  15. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect (OSTI)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  16. PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS

    SciTech Connect (OSTI)

    Machida, Masahiro N.

    2014-11-20

    A protostellar jet and outflow are calculated for ?270yr following the protostar formation using a three-dimensional magnetohydrodynamics simulation, in which both the protostar and its parent cloud are spatially resolved. A high-velocity (?100 km s{sup 1}) jet with good collimation is driven near the disk's inner edge, while a low-velocity (? 10 km s{sup 1}) outflow with a wide opening angle appears in the outer-disk region. The high-velocity jet propagates into the low-velocity outflow, forming a nested velocity structure in which a narrow high-velocity flow is enclosed by a wide low-velocity flow. The low-velocity outflow is in a nearly steady state, while the high-velocity jet appears intermittently. The time-variability of the jet is related to the episodic accretion from the disk onto the protostar, which is caused by gravitational instability and magnetic effects such as magnetic braking and magnetorotational instability. Although the high-velocity jet has a large kinetic energy, the mass and momentum of the jet are much smaller than those of the low-velocity outflow. A large fraction of the infalling gas is ejected by the low-velocity outflow. Thus, the low-velocity outflow actually has a more significant effect than the high-velocity jet in the very early phase of the star formation.

  17. EVIDENCE FOR GAMMA-RAY JETS IN THE MILKY WAY

    SciTech Connect (OSTI)

    Su Meng; Finkbeiner, Douglas P.

    2012-07-01

    Although accretion onto supermassive black holes in other galaxies is seen to produce powerful jets in X-ray and radio, no convincing detection has ever been made of a kpc-scale jet in the Milky Way. The recently discovered pair of 10 kpc tall gamma-ray bubbles in our Galaxy may be signs of earlier jet activity from the central black hole. In this paper, we identify a gamma-ray cocoon feature in the southern bubble, a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. Both the cocoon and jet-like feature have a hard spectrum with spectral index {approx} - 2 from 1 to 100 GeV, with a cocoon total luminosity of (5.5 {+-} 0.45) Multiplication-Sign 10{sup 35} and luminosity of the jet-like feature of (1.8 {+-} 0.35) Multiplication-Sign 10{sup 35} erg s{sup -1} at 1-100 GeV. If confirmed, these jets are the first resolved gamma-ray jets ever seen.

  18. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect (OSTI)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ? ni ~ 10? cm?, Te ? Ti ? 1.4 eV, Vjet ? 30100 km/s, mean charge $\\bar{Z}$ ? 1, sonic Mach number Ms ? Vjet/Cs > 10, jet diameter = 5 cm, and jet length ? 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  19. Search for New Physics in the Jets + Missing ET topology

    SciTech Connect (OSTI)

    Makovec, Nikola Michel; /Orsay

    2006-05-01

    Although the standard model of particle physics agrees perfectly with experimental data, it is unlikely the final theory describing particles and their interactions. New phenomena has been searched in the jets and missing transverse energy topology. Such phenomena may be due to the pair production of leptoquarks decaying into a quark and a neutrino or the pair production of stops decaying into a charm and a neutralino which is assumed to be the lightest supersymmetric particle. These searches have been performed with the D0 detector at hadronic collider TeVatron with a center of mass energy of 1.96 TeV. This kind of search needs a good understanding of the jet energy calibration. The determination of the relative jet energy scale has allowed them to reduce the systematic uncertainties on the jet energy measurement when comparing the data and the simulation. Moreover a new method has been developed in order to correct simulated jets for the differences observed in the jet energy scale, the jet energy resolution and the jet reconstruction efficiency between the data and the simulation. The data analysis, performed with an integrated luminosity of 310 pb{sup -1}, has not observed any excess. This result is interpreted in terms of limit on the mass of the particles: leptoquarks with a mass smaller than 136 GeV and stops with a mass smaller than 131 GeV, for a neutralino mass equal to 46 GeV, are excluded with 95% confidence level.

  20. Stellar signatures of AGN-jet-triggered star formation

    SciTech Connect (OSTI)

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-12-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ? 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  1. Electrodynamics of a rotating body; Relativistic theory of circular and axial birefringence

    SciTech Connect (OSTI)

    Evans, M.W. . Dept. of Physics)

    1992-09-20

    In this paper, the theory of the electrodynamics of a rotating body is used to show that there exists: circular birefringence purely relativistic origin, composed of dispersive aether drag and residual, ensemble averaged, magnetization; non-relativistic circular birefringence due to the angular velocity of the body in the observer frame; non-relativistic axial birefringence in chiral media due to the angular velocity of the body; second order, relativistic equivalents.

  2. Cost-plus-award-fee contracts-Federal Acquisition Circular 2005-37

    Office of Energy Efficiency and Renewable Energy (EERE)

    With the issuance of Federal Acquisition Circular 2005-37, the FAR now requires, in addition to previous requirements, several new actions in using and administering a cost-plus-award-fee contract. Attached are the pre and post Federal Acquisition Circular 2005-37 requirements for using and administering cost-plus-award-fee contracts. Changes to current Departmental guidance are being considered and will be disseminated in future communications.

  3. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  4. Jet measurements at D0 using a KT algorithm

    SciTech Connect (OSTI)

    V.Daniel Elvira

    2002-10-03

    D0 has implemented and calibrated a k{perpendicular} jet algorithm for the first time in a p{bar p} collider. We present two results based on 1992-1996 data which were recently published: the subjet multiplicity in quark and gluon jets and the central inclusive jet cross section. The measured ratio between subjet multiplicities in gluon and quark jets is consistent with theoretical predictions and previous experimental values. NLO pQCD predictions of the k{perpendicular} inclusive jet cross section agree with the D0 measurement, although marginally in the low p{sub T} range. We also present a preliminary measurement of thrust cross sections, which indicates the need to include higher than {alpha}{sub s}{sup 3} terms and resumation in the theoretical calculations.

  5. Interaction between Supersonic Disintegrating Liquid Jets and Their Shock Waves

    SciTech Connect (OSTI)

    Im, Kyoung-Su; Cheong, Seong-Kyun; Liu, X.; Wang Jin; Lai, M.-C.; Tate, Mark W.; Ercan, Alper; Renzi, Matthew J.; Schuette, Daniel R.; Gruner, Sol M.

    2009-02-20

    We used ultrafast x radiography and developed a novel multiphase numerical simulation to reveal the origin and the unique dynamics of the liquid-jet-generated shock waves and their interactions with the jets. Liquid-jet-generated shock waves are transiently correlated to the structural evolution of the disintegrating jets. The multiphase simulation revealed that the aerodynamic interaction between the liquid jet and the shock waves results in an intriguing ambient gas distribution in the vicinity of the shock front, as validated by the ultrafast x-radiography measurements. The excellent agreement between the data and the simulation suggests the combined experimental and computational approach should find broader applications in predicting and understanding dynamics of highly transient multiphase flows.

  6. JET-SHOCKED H{sub 2} AND CO IN THE ANOMALOUS ARMS OF MOLECULAR HYDROGEN EMISSION GALAXY NGC4258

    SciTech Connect (OSTI)

    Ogle, P. M.; Lanz, L.; Appleton, P. N.

    2014-06-20

    We present a Spitzer Infrared Spectrograph map of H{sub 2} emission from the nearby galaxy NGC4258 (Messier 106). The H{sub 2} emission comes from 9.4 0.4 10{sup 6} M {sub ?} of warm molecular hydrogen heated to 240-1040K in the inner anomalous arms, a signature of jet interaction with the galaxy disk. The spectrum is that of a molecular hydrogen emission galaxy (MOHEG), with a large ratio of H{sub 2} over 7.7 ?m polycyclic aromatic hydrocarbon emission (0.37), characteristic of shocked molecular gas. We find close spatial correspondence between the H{sub 2} and CO emission from the anomalous arms. Our estimate of cold molecular gas mass based on CO emission is 10times greater than our estimate of 1.0 10{sup 8} M {sub ?} based on dust emission. We suggest that the X {sub CO} value is 10times lower than the Milky Way value because of high kinetic temperature and enhanced turbulence. The H{sub 2} disk has been overrun and is being shocked by the jet cocoon, and much of the gas originally in the disk has been ejected into the galaxy halo in an X-ray hot outflow. We measure a modest star formation rate of 0.08 M {sub ?} yr{sup 1} in the central 3.4kpc{sup 2} that is consistent with the remaining gas surface density.

  7. Squeezing of particle distributions by expanding magnetic turbulence and space weather variability

    SciTech Connect (OSTI)

    Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W. H. E-mail: achara.ser@mahidol.ac.th E-mail: p.chuychai@sci.mfu.ac.th

    2013-12-10

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which motivates examination of the transport of high-energy solar ions to Earth's orbit. Ions of low kinetic energy (up to ?2 MeV nucleon{sup 1}) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth's orbit. By employing a corresponding spherical two-component model of Alfvnic (slab) and two-dimensional magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E ? 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction.

  8. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect (OSTI)

    Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC

    2011-03-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  9. Note: Derivation of two-photon circular dichroism—Addendum to “Two-photon circular dichroism” [J. Chem. Phys. 62, 1006 (1975)

    SciTech Connect (OSTI)

    Friese, Daniel H.

    2015-09-07

    This addendum shows the detailed derivation of the fundamental equations for two-photon circular dichroism which are given in a very condensed form in the original publication [I. Tinoco, J. Chem. Phys. 62, 1006 (1975)]. In addition, some minor errors are corrected and some of the derivations in the original publication are commented.

  10. Scientists use plasma shaping to control turbulence in stellarators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could also apply to their more widely used symmetrical donut-shaped cousins called tokamaks. This work was supported by the DOE Office of Science. Turbulence allows the hot,...

  11. Test particle study of ion transport in drift type turbulence

    SciTech Connect (OSTI)

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  12. Assessment of Combustion and Turbulence Models for the Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine deer09ren.pdf (497.22 KB) More ...

  13. Survey and Analysis of Multiresolution Methods for Turbulence...

    Office of Scientific and Technical Information (OSTI)

    Survey and Analysis of Multiresolution Methods for Turbulence Data Citation Details In-Document ... DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: ...

  14. Magnetohydrodynamical turbulence in Star and Planet Formation | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab March 7, 2007, 4:15pm to 5:15pm Colloquia Magnetohydrodynamical turbulence in Star and Planet Formation Dr. Mordecai-Mark Mac Low, Department of Astrophysics American Museum of Natural History

  15. Experimental signatures of localization in Langmuir wave turbulence

    SciTech Connect (OSTI)

    Rose, H.A.; DuBois, D.F.; Russell, D.; Bezzerides, B.

    1988-01-01

    Features in certain laser-plasma and ionospheric experiments are identified with the basic properties of Langmuir wave turbulence. Also, a model of caviton nucleation is presented which leads to certain novel scaling predictions. 12 refs., 19 figs.

  16. RF wave propagation and scattering in turbulent tokamak plasmas

    SciTech Connect (OSTI)

    Horton, W. Michoski, C.; Peysson, Y.; Decker, J.

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  17. TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS...

    Office of Scientific and Technical Information (OSTI)

    The numerical models are analyzed in the framework of one-dimensional Reynolds-Averaged ... We clarify the driving sources of kinetic energy, and show that the rate of turbulent ...

  18. Scientists use plasma shaping to control turbulence in stellarators |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Scientists use plasma shaping to control turbulence in stellarators By John Greenwald October 21, 2014 Tweet Widget Google Plus One Share on Facebook Magnetic field strength in the turbulence-optimized MPX stellarator design with regions of the highest strength shown in yellow. The MPX design is named for coauthors Harry Mynick and Neil Pomphrey of PPPL and Pavlos Xanthopoulos of the Max Planck Institute of Plasma Physics. Magnetic field strength in the

  19. Scientists use plasma shaping to control turbulence in stellarators |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Scientists use plasma shaping to control turbulence in stellarators By John Greenwald October 21, 2014 Tweet Widget Google Plus One Share on Facebook Magnetic field strength in the turbulence-optimized MPX stellarator design with regions of the highest strength shown in yellow. The MPX design is named for coauthors Harry Mynick and Neil Pomphrey of PPPL and Pavlos Xanthopoulos of the Max Planck Institute of Plasma Physics. Magnetic field strength in the

  20. Numerical Simulations of Small Non-spherical Particles in Turbulence |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Numerical Simulations of Small Non-spherical Particles in Turbulence Event Sponsor: Mathematics and Computer Science Division LANS Seminar Start Date: Aug 31 2016 - 3:00pm Building/Room: Building 240/Room 1404-1405 Location: Argonne National Laboratory Speaker(s): Nimish Pujara Speaker(s) Title: UC Berkeley Motivated by the ubiquity of natural particles in turbulent flows in the natural environment as well as in many industrial processes, we investigate

  1. Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind PI Name: Jean C Perez PI Email: jeanc.perez@unh.edu Institution: University of New Hampshire Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Physics This project's large-scale numerical simulations of Alfvén wave (AW) turbulence in the outermost atmosphere of the sun will lead to new insights into the basic properties of inhomogeneous

  2. Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility A snapshot of turbulent magnetic field lines (red) inside a coronal hole that expands from a small patch on the solar surface to 5 solar radii A snapshot of turbulent magnetic field lines (red) inside a coronal hole that expands from a small patch on the solar surface to 5 solar radii. Alfven waves (AW), launched by convective motions on the photosphere, propagate in the inhomogeneous Solar atmosphere producing primary reflected waves that interact

  3. Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Visualization of the spanwise vorticity in a turbulent channel. S. Hoyas and O. Flores while they were at Universidad Politecnica de Madrid Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas Allocation Program: INCITE Allocation Hours at ALCF: 175 Million Year: 2013 Research Domain: Engineering Approximately 28% of U.S. energy resources are

  4. Spectral Slope of MHD Turbulence | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Slope of MHD Turbulence PI Name: Andrey Beresnyak PI Email: andrey.at.astro@gmail.com Institution: Los Alamos National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 35 Million Year: 2013 Research Domain: Physics MHD turbulence has attracted attention of astronomers since mid 1960s. As most astrophysical media are ionized, plasmas are coupled to the magnetic fields. A simple one-fluid description known as magnetohydrodynamics (MHD) is broadly applicable to most

  5. Survey and analysis of multiresolution methods for turbulence data

    SciTech Connect (OSTI)

    Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; Ahrens, James; Hamann, Bernd

    2015-11-10

    This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 5123 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Ret = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisons between the algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.

  6. SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect (OSTI)

    Perez, Jean Carlos; Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto E-mail: j.mason@exeter.ac.uk E-mail: cattaneo@flash.uchicago.edu

    2014-09-20

    Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale—the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.

  7. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    SciTech Connect (OSTI)

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).

  8. Survey and analysis of multiresolution methods for turbulence data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; Ahrens, James; Hamann, Bernd

    2015-11-10

    This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 5123 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Ret = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisons between themore » algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.« less

  9. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    SciTech Connect (OSTI)

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  10. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    SciTech Connect (OSTI)

    Colgate, Stirling A.; Li, Hui; Fowler, T. Kenneth; Pino, Jesse

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  11. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    SciTech Connect (OSTI)

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao; Liu Yu

    2010-03-10

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  12. Flame and flow characteristics of double concentric jets

    SciTech Connect (OSTI)

    Huang, R.F.; Yang, J.T.; Lee, P.C.

    1997-01-01

    The characteristic flame and flow modes of a double concentric type of combustor possessing a central air jet and an annular propane gas are experimentally studied. Subject to the effects of the gravitational, inertial, and pressure forces, the cold flow is classified into three primary patterns: annular fountain, unstable fountain, and recirculation bubble flows. Using direct and schlieren photography techniques, the flames in the velocity domain of annulus and central jets are systematically classified into several characteristic modes. At low central jet velocity, a central flame enclosed in a annular diffusion flame might exist. At high central jet velocity, only the annular flames exist. The existence of the central flame dominates the flame and flow behaviors at low central jet velocity. The interaction between the central jet and the recirculation bubble in the near wake region dominates the flame characteristics at high central jet velocity. The interaction between the flame behavior and the flow patterns in each characteristic mode is comprehensively discussed. The temperature profiles are probed by a fine-wire thermocouple. The radial temperature profiles for each characteristic flame mode at various levels are presented to show the thermal structures.

  13. Primordial magnetic field amplification from turbulent reheating

    SciTech Connect (OSTI)

    Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br

    2010-08-01

    We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.

  14. High order harmonic generation in dual gas multi-jets

    SciTech Connect (OSTI)

    Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro

    2013-11-13

    High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.

  15. Interaction between jets during laser-induced forward transfer

    SciTech Connect (OSTI)

    Patrascioiu, A.; Florian, C.; Fernndez-Pradas, J. M.; Morenza, J. L.; Serra, P.; Hennig, G.; Delaporte, P.

    2014-07-07

    Simultaneous two-beam laser-induced forward transfer (LIFT) was carried out for various inter-beam separations, analyzing both the resulting printing outcomes and the corresponding liquid transfer dynamics. In a first experiment, droplets of an aqueous solution were printed onto a substrate at different inter-beam distances, which proved that a significant departure from the single-beam LIFT dynamics takes places at specific separations. In the second experiment, time-resolved imaging analysis revealed the existence of significant jet-jet interactions at those separations; such interactions proceed through a dynamics that results in remarkable jet deflection for which a possible onset mechanism is proposed.

  16. Panchromatic Views of Large-Scale Extragalactic Jets

    SciTech Connect (OSTI)

    Cheung, C.C.; /KIPAC, Menlo Park

    2007-06-01

    Highlights of recent observations of extended jets in AGN are presented. Specifically, we discuss new spectral constraints enabled by Spitzer, studies of the highest-redshift (z{approx}4) radio/X-ray quasar jets, and a new VLBA detection of superluminal motion in the M87 jet associated with a recent dramatic X-ray outburst. Expanding on the title, inverse Compton emission from extended radio lobes is considered and a testable prediction for the gamma-ray emission in one exemplary example is presented. Prospects for future studies with ALMA and low-frequency radio interferometers are briefly described.

  17. Four different shale oils processed into jet fuel

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Crude shale oils produced by (a) Geokinetics, (b) Occidental, (c) Paraho, and (d) Tosco II processes have each been catalytically hydroprocessed to produce jet fuel fractions. The shale oil hydroprocessing was performed at low, medium and high hydroprocessing severities. Hydroprocessing severity was changed mainly by varying the temperature. Full boiling range (121-300/sup 0/C) jet fuel was produced from the hydroprocessed product of the raw oil distillates boiling below 343/sup 0/C. This paper describes the shale oil properties and hydroprocessing, gives the results of sulfur removal and hydrogenated shale oil distillation, and lists the physical and chemical properties of the jet fuels. 2 figures, 3 tables.

  18. ePLAS Development for Jet Modeling and Applications

    SciTech Connect (OSTI)

    Dr. Rodney J. Mason

    2011-09-07

    Plasma jets provide an alternate approach to the creation of high energy density laboratory plasmas (HEDLP). For the Plasma Liner Experiment (PLX), typically 30 partially ionized argon jets, produced with mini-rail guns, will be focused into a central volume for subsequent magnetic compression into high density plasma liners that can reach high (0.1 Mbar) peak pressures upon stagnation. The jets are typically 2.5 cm in radius traveling at Mach number 30. Ultimate success will require optimized tuning of the rail configurations, the nozzles injecting the gases, and the careful implementation of pre-ionization. The modeling of plasma jet transport is particularly challenging, due the large space (100 sq cm) and time scales (microseconds) involved. Even traditional implicit methods are insufficient, due to the usual need to track electrons explicitly on the mesh. Wall emission and chemistry must be managed, as must ionization of the jet plasma. Ions in the jets are best followed as particles to account properly for collisions upon jet merger. This Phase I Project developed the code ePLAS to attack and successfully surmount many of these challenges. It invented a new 'super implicit' electromagnetic scheme, using implicit electron moment currents that allowed for modeling of jets over multi-cm and multi-picoseconds on standard, single processor 2 GHz PCs. It enabled merger studies of two jets, in preparation for the multi-jet merger problem. The Project explored particle modeling for the ions, and prepared for the future addition of a grid-base jet ion collision model. Access was added to tabular equations of state for the study of ionization effects in merging jets. The improved code was discussed at the primary plasma meetings (IEEE and APS) during the Project period. Collaborations with National Laboratory and industrial partners were nurtured. Code improvements were made to facilitate code use. See: http://www.researchapplicationscorp.com. The ePLAS code enjoys EAR

  19. Probing New Physics with Jets at the LHC

    ScienceCinema (OSTI)

    Harris, Robert

    2009-09-01

    The Large Hadron Collider at CERN has the potential to make a major discovery as early as 2008 from simple measurements of events with two high energy jets. This talk will present the jet trigger and analysis plans of the CMS collaboration, which were produced at the LHC Physics Center at Fermilab. Plans to search the two jet channel for generic signals of new particles and forces will be discussed. I will present the anticipated sensitivity of the CMS experiment to a variety of models of new physics, including quark compositeness, technicolor, superstrings, extra dimensions and grand unification.

  20. Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.

    2014-10-09

    Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less

  1. One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.

    2015-06-01

    The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles aremore » shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.« less

  2. UNDERSTANDING GALAXY OUTFLOWS AS THE PRODUCT OF UNSTABLE TURBULENT SUPPORT

    SciTech Connect (OSTI)

    Scannapieco, Evan

    2013-02-01

    The interstellar medium is a multiphase gas in which turbulent support is as important as thermal pressure. Sustaining this configuration requires both continuous turbulent stirring and continuous radiative cooling to match the decay of turbulent energy. While this equilibrium can persist for small turbulent velocities, if the one-dimensional velocity dispersion is larger than Almost-Equal-To 35 km s{sup -1}, the gas moves into an unstable regime that leads to rapid heating. I study the implications of this turbulent runaway, showing that it causes a hot gas outflow to form in all galaxies with a gas surface density above Almost-Equal-To 50 M{sub Sun} pc{sup -2}, corresponding to a star formation rate per unit area of Almost-Equal-To 0.1 M{sub Sun} yr{sup -1} kpc{sup -2}. For galaxies with v{sub esc} {approx}> 200 km s{sup -1}, the sonic point of this hot outflow should lie interior to the region containing cold gas and stars, while for galaxies with smaller escape velocities, the sonic point should lie outside this region. This leads to efficient cold cloud acceleration in higher mass galaxies, while in lower mass galaxies, clouds may be ejected by random turbulent motions rather than accelerated by the wind. Finally, I show that energy balance cannot be achieved at all for turbulent media above a surface density of Almost-Equal-To 10{sup 5} M{sub Sun} pc{sup -2}.

  3. Method and apparatus for water jet drilling of rock

    DOE Patents [OSTI]

    Summers, David A.; Mazurkiewicz, Marian; Bushnell, Dwight J.; Blaine, James

    1978-01-01

    Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.

  4. Heat Transfer in GE Jet Engines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer in GE Jet Engines Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on ...

  5. Calculation of Personalized Argonne Anti-Jet-Lag Diet Plan

    Energy Science and Technology Software Center (OSTI)

    1998-07-30

    The software lets a traveler or the traveler''s agent enter key information about a specific travel itinerary and then computes and displays an Argonne Anti-Jet-Lag Diet plan tailored to the individual itinerary. The Argonne Ant-Jet-Lag Diet helps people who travel across three or more time zones avoid or minimize jet lag by greatly speeding their adjustment to a new time zone. The software displays precise date and time information about when to start and endmore » the Argonne Anti-Jet-Lag Diet plan, when to eat meals, and what to eat. It also displays tips and answers common questions about the diet plan and how best to implement it.« less

  6. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect (OSTI)

    Kim, Kangil; Sik Yang, Sang E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak; Lee, Jong-Soo E-mail: ssyang@ajou.ac.kr; Lee, Jae-Hyeok; Kim, Jae-Ho

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  7. GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Sun Mouyuan; Liu Tong; Gu Weimin; Lu Jufu

    2012-06-10

    The physical nature of gamma-ray bursts (GRBs) is believed to involve an ultra-relativistic jet. The observed complex structure of light curves motivates the idea of jet precession. In this work, we study the gravitational waves of jet precession based on neutrino-dominated accretion disks around black holes, which may account for the central engine of GRBs. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational waves are therefore expected to be significant from this black-hole-inner-disk precession system. By comparing our numerical results with the sensitivity of some detectors, we find that it is possible for DECIGO and BBO to detect such gravitational waves, particularly for GRBs in the Local Group.

  8. Search for massive resonances in dijet systems containing jets...

    Office of Scientific and Technical Information (OSTI)

    massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at ?s 8 TeV Re-direct Destination: Search for massive resonances in dijet...

  9. On the damping of right hand circularly polarized waves in spin quantum plasmas

    SciTech Connect (OSTI)

    Iqbal, Z.; Hussain, A.; Murtaza, G.; Ali, M.

    2014-12-15

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ?}v?(?+?{sub ce}),(?+?{sub cg}) and (ii) k{sub ?}v?(?+?{sub ce}),(?+?{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.

  10. Hydrocarbon characterization experiments in fully turbulent fires.

    SciTech Connect (OSTI)

    Ricks, Allen; Blanchat, Thomas K.

    2007-05-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  11. Two-fluid turbulence including electron inertia

    SciTech Connect (OSTI)

    Andrs, Nahuel Gmez, Daniel; Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length ?{sub i} and the electron inertial length ?{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup ?5?3} law. For intermediate wavenumbers such that ?{sub i}{sup ?1}?k??{sub e}{sup ?1}, the spectrum is modified to a k{sup ?7?3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>?{sub e}{sup ?1} arises. The power spectrum for magnetic energy in this region is given by a k{sup ?11?3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  12. Director of Maintenance for USA Jet Airlines, Inc. | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Director of Maintenance for USA Jet Airlines, Inc. Rick A. Wilson Rick Wilson July 2009 U.S. General Services Administration (GSA) Aviation Maintenance Professional of the Year Rick A. Wilson has received the U.S. General Services Administration (GSA) Aviation Maintenance Professional of the Year award. Wilson is the director of maintenance for USA Jet Airlines, Inc., in Albuquerque. He manages the maintenance activity of seven different fleet aircraft for

  13. Advanced Bio-based Jet Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-based Jet Fuel Advanced Bio-based Jet Fuel This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Mary Biddy (NREL). biddy_caafi_workshop.pdf (1.47 MB) More Documents & Publications Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Cross-cutting Technologies for Advanced Biofuels Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates

  14. Microtextural characterization of copper shaped charge jet fragments

    SciTech Connect (OSTI)

    Wright, S.I.; Bingert, J.F.; Zernow, L.

    1995-09-01

    The microstructures of two soft-caught copper shaped charge jet particles were investigated. In particular, the spatial distributions of crystallographic texture within the particles were characterized using point specific measurements of crystallographic orientation. Significant variations in preferred orientation were observed. These results are discussed in fight of previous computer simulations of the jetting process which showed significant radial gradients in both strain and strain rate.

  15. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  16. On the interaction between turbulence and a planar rarefaction

    SciTech Connect (OSTI)

    Johnson, Bryan M.

    2014-04-01

    The modeling of turbulence, whether it be numerical or analytical, is a difficult challenge. Turbulence is amenable to analysis with linear theory if it is subject to rapid distortions, i.e., motions occurring on a timescale that is short compared to the timescale for nonlinear interactions. Such an approach (referred to as rapid distortion theory) could prove useful for understanding aspects of astrophysical turbulence, which is often subject to rapid distortions, such as supernova explosions or the free-fall associated with gravitational instability. As a proof of principle, a particularly simple problem is considered here: the evolution of vorticity due to a planar rarefaction in an ideal gas. Analytical solutions are obtained for incompressive modes having a wave vector perpendicular to the distortion; as in the case of gradient-driven instabilities, these are the modes that couple most strongly to the mean flow. Vorticity can either grow or decay in the wake of a rarefaction front, and there are two competing effects that determine which outcome occurs: entropy fluctuations couple to the mean pressure gradient to produce vorticity via baroclinic effects, whereas vorticity is damped due to the conservation of angular momentum as the fluid expands. Whether vorticity grows or decays depends upon the ratio of entropic to vortical fluctuations at the location of the front; growth occurs if this ratio is of order unity or larger. In the limit of purely entropic fluctuations in the ambient fluid, a strong rarefaction generates vorticity with a turbulent Mach number on the order of the rms of the ambient entropy fluctuations. The analytical results are shown to compare well with results from two- and three-dimensional numerical simulations. Analytical solutions are also derived in the linear regime of Reynolds-averaged turbulence models. This highlights an inconsistency in standard turbulence models that prevents them from accurately capturing the physics of

  17. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect (OSTI)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  18. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    SciTech Connect (OSTI)

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-05-15

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent.

  19. The selection of turbulence models for prediction of room airflow

    SciTech Connect (OSTI)

    Nielsen, P.V.

    1998-10-01

    The airflow in buildings involves a combination of many different flow elements. It is, therefore, difficult to find an adequate, all-round turbulence model covering all aspects. Consequently, it is appropriate and economical to choose turbulence models according to the situation that is to be predicted. This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation for room dimensions and velocity level also is discussed. A {kappa}-{epsilon} model expanded by damping functions is used to improve the prediction of the flow in a room ventilated by displacement ventilation. The damping functions especially take into account the turbulence level and the vertical temperature gradient. Low Reynolds number models (LNR models) are used to improve the prediction of evaporation-controlled emissions from building material, which is shown by an example. Finally, large eddy simulation (LES) of room airflow is discussed and demonstrated.

  20. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect (OSTI)

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  1. Developments in the Gyrofluid approach to tokamak turbulence simulations

    SciTech Connect (OSTI)

    Hammett, G.W.; Beer, M.A.; Dorland, W.; Smith, S.A.; Cowley, S.C.

    1993-06-01

    A status report is given on recent developments in the gyrofluid approach to simulating tokamak turbulence. ``Gyrofluid`` (or ``gyro-Landau fluid``) equations attempt to extend the range of validity of fluid equations to a more collisionless regime typical of tokamaks, by developing fluid models of important kinetic effects such as Landau-damping and gyro-orbit averaging. The fluid moments approach should converge if enough moments are kept, though this may require a large number of moments for some processes. Toroidal gyrofluid equations have been extended from 4 to 6 moments, and to include the {mu} {gradient}B magnetic mirroring force. An efficient field-line coordinate system for toroidal turbulence simulations (useful for both particle and fluid simulations) is presented. Nonlinear 3-D simulations of toroidal ITG-driven turbulence indicate that turbulence-generated sheared flows play. an important role in the development and saturation of the turbulence. There is a strong enhancement of the flows when the electrons are assumed adiabatic on each flux surface, which is partially offset by toroidal drift effects which reduce the flows.

  2. SNOW LINES AS PROBES OF TURBULENT DIFFUSION IN PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    Owen, James E. [Canadian Institute for Theoretical Astrophysics, 60 St George Street, Toronto, M5S 3H8, ON (Canada)

    2014-07-20

    Sharp chemical discontinuities can occur in protoplanetary disks, particularly at ''snow lines'' where a gas-phase species freezes out to form ice grains. Such sharp discontinuities will diffuse out due to the turbulence suspected to drive angular momentum transport in accretion disks. We demonstrate that the concentration gradientin the vicinity of the snow lineof a species present outside a snow line but destroyed inside is strongly sensitive to the level of turbulent diffusion (provided the chemical and transport timescales are decoupled) and provides a direct measurement of the radial ''Schmidt number'' (the ratio of the angular momentum transport to radial turbulent diffusion). Taking as an example the tracer species N{sub 2}H{sup +}, which is expected to be destroyed inside the CO snow line (as recently observed in TW Hya) we show that ALMA observations possess significant angular resolution to constrain the Schmidt number. Since different turbulent driving mechanisms predict different Schmidt numbers, a direct measurement of the Schmidt number in accretion disks would allow inferences to be made about the nature of the turbulence.

  3. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  4. Turbulence transport modeling of the temporal outer heliosphere

    SciTech Connect (OSTI)

    Adhikari, L.; Zank, G. P.; Hu, Q.; Dosch, A.

    2014-09-20

    The solar wind can be regarded as a turbulent magnetofluid, evolving in an expanding solar wind and subject to turbulent driving by a variety of in situ sources. Furthermore, the solar wind and the drivers of turbulence are highly time-dependent and change with solar cycle. Turbulence transport models describing low-frequency magnetic and velocity fluctuations in the solar wind have so far neglected solar cycle effects. Here we consider the effects of solar cycle variability on a turbulence transport model developed by Zank et al. This model is appropriate for the solar wind beyond about 1 AU, and extensions have described the steady-state dependence of the magnetic energy density fluctuations, correlation length, and solar wind temperature throughout the outer heliosphere. We find that the temporal solar wind introduces a periodic variability, particularly beyond ?10 AU, in the magnetic energy density fluctuations, correlation length, and solar wind temperature. The variability is insufficient to account for the full observed variability in these quantities, but we find that the time-dependent solutions trace the steady-state solutions quite well, suggesting that the steady-state models are reasonable first approximations.

  5. Daytime turbulent exchange between the Amazon forest and the atmosphere

    SciTech Connect (OSTI)

    Fitzjarrald, D.R.; Moore, K.E. ); Cabral, M.R. ); Scolar, J. ); Manzi, A.O.; de Abreau Sa, L.D. )

    1990-09-20

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high-frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum and the relationship between the horizontal wind speed and its standard deviation are well described by dry convective boundary layer similarity hypotheses originally found to apply in flat terrain. Diurnal changes in the sign of the vertical velocity skewness observed above and inside the canopy are shown to be plausibly explained by considering the skewness budget. Simple empirical formulas that relate observed turbulent heat fluxes to horizontal wind speed and variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented in three case studies. Even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during midday.

  6. Neutron emission profiles and energy spectra measurements at JET

    SciTech Connect (OSTI)

    Giacomelli, L.; Conroy, S.; Belli, F.; Riva, M.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B.; Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  7. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  8. COUNTERROTATION IN MAGNETOCENTRIFUGALLY DRIVEN JETS AND OTHER WINDS

    SciTech Connect (OSTI)

    Sauty, C.; Cayatte, V.; Lima, J. J. G.; Matsakos, T.; Tsinganos, K.

    2012-11-01

    Rotation measurement in jets from T Tauri stars is a rather difficult task. Some jets seem to be rotating in a direction opposite to that of the underlying disk, although it is not yet clear if this affects the totality or part of the outflows. On the other hand, Ulysses data also suggest that the solar wind may rotate in two opposite ways between the northern and southern hemispheres. We show that this result is not as surprising as it may seem and that it emerges naturally from the ideal MHD equations. Specifically, counterrotating jets neither contradict the magnetocentrifugal driving of the flow nor prevent extraction of angular momentum from the disk. The demonstration of this result is shown by combining the ideal MHD equations for steady axisymmetric flows. Provided that the jet is decelerated below some given threshold beyond the Alfven surface, the flow will change its direction of rotation locally or globally. Counterrotation is also possible for only some layers of the outflow at specific altitudes along the jet axis. We conclude that the counterrotation of winds or jets with respect to the source, star or disk, is not in contradiction with the magnetocentrifugal driving paradigm. This phenomenon may affect part of the outflow, either in one hemisphere, or only in some of the outflow layers. From a time-dependent simulation, we illustrate this effect and show that it may not be permanent.

  9. Atmospheric gradients and the stability of expanding jets. [Astrophysics

    SciTech Connect (OSTI)

    Hardee, P.E.; Koupelis, T.; Norman, M.L.; Clarke, D.A. Illinois, University, Urbana )

    1991-05-01

    Numerical simulations of adiabatically expanding slab jets in initial static pressure balance with an external atmosphere have been performed and compared to predictions made by a linear analysis of the stability of expanding jets. It is found that jets are stabilized by jet expansion as predicted by the linear analysis. It is also found that an expanding jet can be destabilized by a positive temperature gradient or temperature jump in the surrounding medium which lowers the Mach number defined by the external sound speed. A temperature gradient or jump is more destabilizing than would be predicted by a linear stability analysis. The enhanced instability compared to an isothermal atmosphere with identical pressure gradient is a result of the reduced external Mach number and a result of a higher jet density relative to the density in the external medium and higher ram speed. Other differences between predictions made by the linear theory and the simulations can be understood qualitatively as a result of a change in wave speed as the wave amplitude increases. 12 refs.

  10. Evaluation of a jet plate solar air heater

    SciTech Connect (OSTI)

    Choudhury, C.; Garg, H.P. )

    1991-01-01

    To achieve higher heat transfer from the absorber plate to the flowing air stream with an intention to increase the amount of the collected energy, and hence, to improve the efficiency of an air-based solar collector, a unique jet impingement concept has been advanced for evaluation in the present study. To investigate the effects of various geometrical parameters such as the hole or nozzle diameter on the jet plate, their interspacings, the nozzle height, the distance between the absorber and the jet plate and the operational parameter such as the velocity of air impinging out of the holes/nozzles on to the back side of the absorber surface on the performance parameters of the jet impingement concept air heater, a detailed theoretical parametric analysis has been made on the design for different mass flow rates of air and different lengths of air channel. A parallel study has also been carried out on a conventional parallel plate air heater in order to compare its air temperature increment and performance efficiency with those of the jet plate air heater. The gain in air temperature increment and performance efficiency of the jet-concept air heater over that of the parallel plate air heater with duct depth 10 cm and length 2 m is 15.5{degree}C to 2.5{degree}C and 26.5% to 19%, respectively, for air flow rates in the range 50 to 250 kg/hm{sup 2}.

  11. Jet conversions in a quark-gluon plasma

    SciTech Connect (OSTI)

    Liu, W.; Ko, C. M.; Zhang, B. W.

    2007-05-15

    Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic q(q)g{yields}gq(q) and the inelastic qq{r_reversible}gg scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/{pi}{sup +} and p/{pi}{sup -} ratios at high transverse momentum. However, a much larger net quark-to-gluon jet conversion rate than the one given by the lowest order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at the same energy. Implications of our results are discussed.

  12. A vortex panel analysis of circular-arc bluff-bodies in unsteady flow

    SciTech Connect (OSTI)

    Strickland, J.H.

    1989-01-01

    A method which is capable of calculating the unsteady flow field around circular-arc bluff bodies of zero thickness is presented. This method utilizes linear vortex panels to model the body surface and a portion of the wake surfaces. Discrete vortices are used to model the remainder of the wake surfaces. Separation is assumed to occur at the sharp edges of the bodies. Numerical results for circular-arc bodies with included angles of less than 180/degree/ are compared with experimental data and found to be in good agreement. 31 refs., 15 figs.

  13. CIRCULARLY POLARIZED EMISSION FROM THE TRANSIENT BURSTING RADIO SOURCE GCRT J1745 - 3009

    SciTech Connect (OSTI)

    Roy, Subhashis; Hyman, Scott D.; Pal, Sabyasachi; Lazio, T. Joseph W.; Kassim, Namir E.; Ray, Paul S. E-mail: shyman@sbc.edu E-mail: namir.kassim@nrl.navy.mil

    2010-03-20

    We report on the detection of strong circularly polarized emission from the transient bursting source GCRT J1745 - 3009 based on new analysis of 325 MHz Giant Metrewave Radio Telescope observations conducted on 2003 September 28. We place 8 R {sub sun} as the upper limit on the size of the emission region. The implied high brightness temperature required for an object beyond 1 pc and the high fraction of circular polarization firmly establish the emission as coherent. Electron cyclotron or plasma emission from a highly subsolar magnetically dominated dwarf located {<=}4 kpc away could have given rise to the GCRT radio emission.

  14. THE JET/COUNTERJET INFRARED SYMMETRY OF HH 34 AND THE SIZE OF THE JET FORMATION REGION

    SciTech Connect (OSTI)

    Raga, A. C.; Noriega-Crespo, A.; Carey, S. J.; Lora, V.; Stapelfeldt, K. R.

    2011-04-01

    We present new Spitzer IRAC images of the HH 34 outflow. These are the first images that detect both the knots along the southern jet and the northern counterjet (the counterjet knots were only detected previously in a long-slit spectrum). This result removes the problem of the apparent coexistence of a large-scale symmetry (at distances of up to {approx}1 pc) and a complete lack of symmetry close to the source (at distances of {approx}10{sup 17} cm) for this outflow. We present a quantitative evaluation of the newly found symmetry between the HH 34 jet and counterjet, and show that the observed degree of symmetry implies that the jet production region has a characteristic size <2.8 AU. This is the strongest constraint yet derived for the size of the region in which HH jets are produced.

  15. MAGNETOHYDRODYNAMIC TURBULENCE POWERED BY MAGNETOROTATIONAL INSTABILITY IN NASCENT PROTONEUTRON STARS

    SciTech Connect (OSTI)

    Masada, Youhei [Department of Computational Science, Kobe University, Kobe 657-8501 (Japan); Takiwaki, Tomoya [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Kotake, Kei, E-mail: ymasada@harbor.kobe-u.ac.jp [Faculty of Science, Department of Applied Physics, Fukuoka University, Fukuoka 814-0180 (Japan)

    2015-01-01

    Magnetorotational instability (MRI) in a convectively stable layer around the neutrinosphere is simulated by a three-dimensional model of a supernova core. To resolve MRI-unstable modes, a thin layer approximation considering only the radial global stratification is adopted. Our intriguing finding is that the convectively stable layer around the neutrinosphere becomes fully turbulent due to the MRI and its nonlinear penetration into the strongly stratified MRI-stable region. The intensity of the MRI-driven turbulence increases with magnetic flux threading the core, but is limited by the free energy stored in the differential rotation. The turbulent neutrinosphere is a natural consequence of rotating core-collapse and could exert a positive impact on the supernova mechanism.

  16. RECONNECTION OUTFLOW GENERATED TURBULENCE IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Vrs, Z.; Sasunov, Y. L.; Zaqarashvili, T. V.; Khodachenko, M.; Semenov, V. S.; Bruno, R.

    2014-12-10

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the generation of local turbulence in the solar wind. Comparing TDR/QSR model predictions of the outflow structures with actual measurements shows that both models can explain the data equally well. It is demonstrated that the outflows can often generate more or less spatially extended turbulent boundary layers. The structure of a unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and spectral break locations shows that reconnection can change the local field and plasma conditions which may support different local turbulent dissipation mechanisms at their characteristic wavenumbers.

  17. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    SciTech Connect (OSTI)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  18. Analysis of cancellation exponents in two-dimensional Vlasov turbulence

    SciTech Connect (OSTI)

    De Vita, G.; Valentini, F.; Servidio, S.; Primavera, L.; Carbone, V.; Veltri, P.; Sorriso-Valvo, L.

    2014-07-15

    Statistical properties of plasma turbulence are investigated by means of two-dimensional Vlasov simulations. In particular, a classical technique called signed measure is used to characterize the scaling behavior and the topology of sign-oscillating structures in simulations of the hybrid Vlasov-Maxwell model. Exploring different turbulence regimes, varying both the plasma β and the level of fluctuations, it is observed that Vlasov turbulence manifests two ranges with different exponents, the transition being observed near the ion skin depth. These results, which may have applications to both laboratory and astrophysical systems, further confirm the singular nature of small scale fluctuations in a plasma, mainly classified as intermittent, narrow, and intense current sheets.

  19. MAGNETIC HELICITY IN THE DISSIPATION RANGE OF STRONG IMBALANCED TURBULENCE

    SciTech Connect (OSTI)

    Markovskii, S. A.; Vasquez, Bernard J. E-mail: bernie.vasquez@unh.edu

    2013-05-01

    Hybrid numerical simulations of freely decaying two-dimensional turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The net magnetic helicity of the initial fluctuations at large scales is zero. The turbulence is set to be imbalanced in the sense that the net cross-helicity is not zero. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations. The peak position depends on the plasma beta and correlates with a sharp decline of the cross-helicity spectrum.

  20. FAN-SHAPED JETS IN THREE-DIMENSIONAL RECONNECTION SIMULATION AS A MODEL OF UBIQUITOUS SOLAR JETS

    SciTech Connect (OSTI)

    Jiang Ronglin; Fang Cheng; Shibata, Kazunari; Isobe, Hiroaki

    2011-01-10

    Magnetic reconnection is a fundamental process in space and astrophysical plasmas in which the oppositely directed magnetic field changes its connectivity and eventually converts its energy into kinetic and thermal energy of the plasma. Recently, ubiquitous jets (for example, chromospheric anemone jets, penumbral microjets, umbral light bridge jets) have been observed by the Solar Optical Telescope on board the satellite Hinode. These tiny and frequently occurring jets are considered to be a possible evidence of small-scale ubiquitous reconnection in the solar atmosphere. However, the details of three-dimensional (3D) magnetic configuration are still not very clear. Here, we propose a new model based on 3D simulations of magnetic reconnection using a typical current sheet magnetic configuration with a strong guide field. The most interesting feature is that the jets produced by the reconnection eventually move along the guide field lines. This model provides a fresh understanding of newly discovered ubiquitous jets and moreover a new observational basis for the theory of astrophysical magnetic reconnection.

  1. The effects of dilution on turbulence and transport in C-Mod...

    Office of Scientific and Technical Information (OSTI)

    The effects of dilution on turbulence and transport in C-Mod ohmic plasmas and comparisons ... Title: The effects of dilution on turbulence and transport in C-Mod ohmic plasmas and ...

  2. Dissipation of turbulence in the wake of a wind turbine

    SciTech Connect (OSTI)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  3. Dissipation of turbulence in the wake of a wind turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  4. Los Alamos scientists propose new theory for development of turbulent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic reconnection Turbulent magnetic reconnection Los Alamos scientists propose new theory for development of turbulent magnetic reconnection This new theory was developed to better explain recent large-scale three-dimensional kinetic simulations that describe the physics of this process. April 15, 2011 New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field New LANL 3-D model shows the formation of "flux ropes" in a thin

  5. Electron geodesic acoustic modes in electron temperature gradient mode turbulence

    SciTech Connect (OSTI)

    Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-08-15

    In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.

  6. Microsoft PowerPoint - Tokamak_turbulence3.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Aug. 3-4, 2010, Washington DC g , , g Plasma Turbulence and Transport C.S. Chang a) , J. Candy b) , S. Ethier/W. Wang c) , and Z. Lin d) a) Courant Institute of Mathematical Sciences, New York U. b) G l At i b) General Atomics c) Princeton Plasma Physics Laboratory, Princeton U. d) U. California, Irvine Introduction * Tokamak confinement in the low confinement mode (L- mode) is dominated by turbulent transport. ) y p * In the high confinement mode (H-mode), the ion

  7. Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines the benefits of turbulators on firetube boilers as part of optimized steam systems.

  8. CIRCULAR POLARIZATION OF PULSAR WIND NEBULAE AND THE COSMIC-RAY POSITRON EXCESS

    SciTech Connect (OSTI)

    Linden, Tim

    2015-02-01

    Recent observations by the PAMELA and AMS-02 telescopes have uncovered an anomalous rise in the positron fraction at energies above 10 GeV. One possible explanation for this excess is the production of primary electron/positron pairs through electromagnetic cascades in pulsar magnetospheres. This process results in a high multiplicity of electron/positron pairs within the wind-termination shock of pulsar wind nebulae (PWNe). A consequence of this scenario is that no circular polarization should be observed within PWNe, since the contributions from electrons and positrons exactly cancel. Here we note that current radio instruments are capable of setting meaningful limits on the circular polarization of synchrotron radiation in PWNe, which observationally test the model for pulsar production of the local positron excess. The observation of a PWN with detectable circular polarization would cast strong doubt on pulsar interpretations of the positron excess, while observations setting strong limits on the circular polarization of PWNe would lend credence to these models. Finally, we indicate which PWNe are likely to provide the best targets for observational tests of the AMS-02 excess.

  9. Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation

    SciTech Connect (OSTI)

    Westholm, Jakub O.; Miura, Pedro; Olson, Sara; Shenker, Sol; Joseph, Brian; Sanfilippo, Piero; Celniker, Susan E.; Graveley, Brenton R.; Lai, Eric C.

    2014-11-26

    Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate >2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and coding conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase substantially relative to linear isoforms during CNS aging and constitute an aging biomarker.

  10. Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Westholm, Jakub O.; Miura, Pedro; Olson, Sara; Shenker, Sol; Joseph, Brian; Sanfilippo, Piero; Celniker, Susan E.; Graveley, Brenton R.; Lai, Eric C.

    2014-11-26

    Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate >2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and codingmoreconserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase substantially relative to linear isoforms during CNS aging and constitute an aging biomarker.less

  11. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    SciTech Connect (OSTI)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-15

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.

  12. A generic model for transport in turbulent shear flows

    SciTech Connect (OSTI)

    Newton, Andrew P. L.; Kim, Eun-Jin [Department of Applied Mathematics, University of Sheffield, Sheffield, S3 7RH (United Kingdom)

    2011-05-15

    Turbulence regulation by large-scale shear flows is crucial for a predictive modeling of transport in plasma. In this paper the suppression of turbulent transport by large-scale flows is studied numerically by measuring the turbulent diffusion D{sub t} and scalar amplitude of decaying passive scalar fields n{sup '} advected by various turbulent flows. Both uniform flows and shear flows are shown to suppress turbulence causing the quenching in transport and turbulence amplitude. The uniform flows U{sub 0}={Lambda}y with the advection rate {Lambda} in the case of a finite correlated forcing with {tau}{sub F}=1 gives rise to the advection/sweeping effect which suppresses D{sub t}, and as {proportional_to}{Lambda}{sup -2} for {Lambda}>>{tau}{sub F}{sup -1}. In contrast, no influence of the uniform flow is found in the case of a short correlated forcing {tau}{sub F}{yields}0 due to Galilean invariance. For the shear flow U{sub 0}={Omega}sinxy ({Omega}= constant shearing rate) with the appropriate choice of the forcing ({tau}{sub F}{yields}0) the nature of transport suppression is shown to crucially depend on the properties of the turbulence. Specifically, for prescribed turbulence with a short correlation time {tau}{sub c}={tau}{sub F}<<{Omega}{sup -1}, the turbulence statistics scale as D{sub t{proportional_to}{Omega}}{sup -0.02}, {proportional_to}{Omega}{sup -0.62} and cross-phase cos{theta}{proportional_to}{Omega}{sup 0.29}. For consistently evolved turbulence with a finite correlation time {tau}{sub c{>=}{Omega}}{sup -1}, turbulence statistics are suppressed more strongly as D{sub t{proportional_to}{Omega}}{sup -1.75}, {proportional_to}{Omega}{sup -2.41}, {proportional_to}{Omega}{sup -0.65} and <{omega}{sup '2}>{proportional_to}{Omega}{sup -0.50}. A novel renormalization scheme is then introduced to rescale our results into the regime within which the kinetic energy and enstrophy are unchanged by

  13. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect (OSTI)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  14. Sooting characteristics of surrogates for jet fuels

    SciTech Connect (OSTI)

    Mensch, Amy; Santoro, Robert J.; Litzinger, Thomas A.; Lee, S.-Y.

    2010-06-15

    Currently, modeling the combustion of aviation fuels, such as JP-8 and JetA, is not feasible due to the complexity and compositional variation of these practical fuels. Surrogate fuel mixtures, composed of a few pure hydrocarbon compounds, are a key step toward modeling the combustion of practical aviation fuels. For the surrogate to simulate the practical fuel, the composition must be designed to reproduce certain pre-designated chemical parameters such as sooting tendency, H/C ratio, autoignition, as well as physical parameters such as boiling range and density. In this study, we focused only on the sooting characteristics based on the Threshold Soot Index (TSI). New measurements of TSI values derived from the smoke point along with other sooting tendency data from the literature have been combined to develop a set of recommended TSI values for pure compounds used to make surrogate mixtures. When formulating the surrogate fuel mixtures, the TSI values of the components are used to predict the TSI of the mixture. To verify the empirical mixture rule for TSI, the TSI values of several binary mixtures of candidate surrogate components were measured. Binary mixtures were also used to derive a TSI for iso-cetane, which had not previously been measured, and to verify the TSI for 1-methylnaphthalene, which had a low smoke point and large relative uncertainty as a pure compound. Lastly, surrogate mixtures containing three components were tested to see how well the measured TSI values matched the predicted values, and to demonstrate that a target value for TSI can be maintained using various components, while also holding the H/C ratio constant. (author)

  15. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    SciTech Connect (OSTI)

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures the so-called ligaments in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  16. Production of cumulative jets by ablatively-driven implosion of hollow cones and wedges

    SciTech Connect (OSTI)

    Nikitin, S. P.; Manka, C.; Miller, C.; Grun, J.; Velikovich, A. L.; Aglitskiy, Y.; Zabetakis, D.

    2008-05-15

    Cumulative plasma jets formed by hollow cones imploded via laser ablation of their outer surfaces were observed. The velocity, shape, and density of the jets are measured with monochromatic 0.65 keV x-ray imaging. Depending on cone geometry, cumulative jets with ion density {approx}2x10{sup 20} cm{sup -3} and propagation velocities >10 km/s are formed. Similar results are observed when jets are formed by imploding wedges. Such jets can be used to simulate hydrodynamics of astrophysical jets interacting with stellar or interstellar matter.

  17. Numerical Study on GRB-Jet Formation in Collapsars

    SciTech Connect (OSTI)

    Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park; Takahashi, Rohta; /Tokyo U.; Mizuta, Akira; /Garching, Max Planck Inst.; Takiwaki, Tomoya; /Tokyo U.

    2006-08-22

    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.

  18. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    SciTech Connect (OSTI)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  19. Convection causes enhanced magnetic turbulence in accretion disks in outburst

    SciTech Connect (OSTI)

    Hirose, Shigenobu; Blaes, Omer; Coleman, Matthew S. B.; Krolik, Julian H.; Sano, Takayoshi

    2014-05-20

    We present the results of local, vertically stratified, radiation magnetohydrodynamic (MHD) shearing box simulations of magneto-rotational instability (MRI) turbulence appropriate for the hydrogen ionizing regime of dwarf nova and soft X-ray transient outbursts. We incorporate the frequency-integrated opacities and equation of state for this regime, but neglect non-ideal MHD effects and surface irradiation, and do not impose net vertical magnetic flux. We find two stable thermal equilibrium tracks in the effective temperature versus surface mass density plane, in qualitative agreement with the S-curve picture of the standard disk instability model. We find that the large opacity at temperatures near 10{sup 4} K, a corollary of the hydrogen ionization transition, triggers strong, intermittent thermal convection on the upper stable branch. This convection strengthens the magnetic turbulent dynamo and greatly enhances the time-averaged value of the stress to thermal pressure ratio ?, possibly by generating vertical magnetic field that may seed the axisymmetric MRI, and by increasing cooling so that the pressure does not rise in proportion to the turbulent dissipation. These enhanced stress to pressure ratios may alleviate the order of magnitude discrepancy between the ?-values observationally inferred in the outburst state and those that have been measured from previous local numerical simulations of magnetorotational turbulence that lack net vertical magnetic flux.

  20. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    SciTech Connect (OSTI)

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are