Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence
Gunawan, Budi
2014-06-11
The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.
Turbulence and waves in the solar wind
Roberts, D.A.; Goldstein, M.L. )
1991-01-01
Studies of turbulence and waves in the solar wind is discussed. Consideration is given to the observations and theory concerning the origin and evolution of interplanetary MHD fluctuations and to the observations, theory, and simulations of compressive fluctuations. Particular attention is given to extrapolations to near-sun and polar fields regions. Results obtained on turbulence at comets and magnetic turbulence of low-frequency waves excited by unstable distributions of ions are discussed. 230 refs.
Edge Turbulence Velocity Changes with Lithium Coating on NSTX
Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.
2012-08-10
Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________
Measurement of turbulent wind velocities using a rotating boom apparatus
Sandborn, V.A.; Connell, J.R.
1984-04-01
The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.
Elastic wave velocity measurement combined with synchrotron X...
Office of Scientific and Technical Information (OSTI)
Elastic wave velocity measurement combined with synchrotron X-ray measurements at high ... Title: Elastic wave velocity measurement combined with synchrotron X-ray measurements at ...
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Shupe, Matthew
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
Shupe, Matthew
2013-05-22
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
Internal wave energy radiated from a turbulent mixed layer
Munroe, James R.; Sutherland, Bruce R.
2014-09-15
We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals â€” investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of AlfvÂ´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
RF wave propagation and scattering in turbulent tokamak plasmas
Horton, W. Michoski, C.; Peysson, Y.; Decker, J.
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Weakly Turbulent Magnetohydrodynamic Waves in Compressible Low-{beta} Plasmas
Chandran, Benjamin D. G.
2008-12-05
In this Letter, weak-turbulence theory is used to investigate interactions among Alfven waves and fast and slow magnetosonic waves in collisionless low-{beta} plasmas. The wave kinetic equations are derived from the equations of magnetohydrodynamics, and extra terms are then added to model collisionless damping. These equations are used to provide a quantitative description of a variety of nonlinear processes, including parallel and perpendicular energy cascade, energy transfer between wave types, 'phase mixing', and the generation of backscattered Alfven waves.
Experimental signatures of localization in Langmuir wave turbulence
Rose, H.A.; DuBois, D.F.; Russell, D.; Bezzerides, B.
1988-01-01
Features in certain laser-plasma and ionospheric experiments are identified with the basic properties of Langmuir wave turbulence. Also, a model of caviton nucleation is presented which leads to certain novel scaling predictions. 12 refs., 19 figs.
Elastic wave velocities in polycrystalline Mg[subscript 3]Al...
Office of Scientific and Technical Information (OSTI)
Title: Elastic wave velocities in polycrystalline Mgsubscript 3Alsubscript 2Sisubscript 3Osubscript 12-pyrope garnet to 24 GPa and 1300 K Authors: Chantel, Julien ; ...
ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent Dissipation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rate Retrievals ProductsCloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files
Weiss, M.; Zarzalis, N. [Division of Combustion Technology, Engler-Bunte-Institute, University of Karlsruhe (TH), Karlsruhe (Germany); Suntz, R. [Institute for Chemical Technology, University of Karlsruhe (TH), Karlsruhe (Germany)
2008-09-15
Effects of turbulent flame stretch on mean local laminar burning velocity of flamelets, u{sub n}, were investigated experimentally in an explosion vessel at normal temperature and pressure. In this context, the wrinkling, A{sub t}/A{sub l}, and the burning velocity, u{sub t}, of turbulent flames were measured simultaneously. With the flamelet assumption the mean local laminar burning velocity of flamelets, u{sub n}=u{sub t} x (A{sub t}/A{sub l}){sup -1}, was calculated for different turbulence intensities. The results were compared to the influence of stretch on spherically expanding laminar flames. For spherically expanding laminar flames the stretched laminar burning velocity, u{sub n}, varied linearly with the Karlovitz stretch factor, yielding Markstein numbers that depend on the mixture composition. Six different mixtures with positive and negative Markstein numbers were investigated. The measurements of the mean local laminar burning velocity of turbulent flamelets were used to derive an efficiency parameter, I, which reflects the impact of the Markstein number and turbulent flame stretch - expressed by the turbulent Karlovitz stretch factor - on the local laminar burning velocity of flamelets. The results showed that the efficiency is reduced with increasing turbulence intensity and the reduction can be correlated to unsteady effects. (author)
Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com
2013-06-01
We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.
THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard E-mail: benjamin.chandran@unh.edu E-mail: devore@nrl.navy.mil
2012-09-20
One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence
Zhao, L.; Diamond, P. H.
2012-08-15
We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}
Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence
Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.
2012-08-15
The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.
RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES
Zankovich, A. M.; Kovalenko, I. G.
2015-02-10
We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l âˆ¼ 1), meso- (l âˆ¼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Î”l < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l â‰ˆ 18) are surprisingly close to the observed scales (l â‰ˆ 15) of ripples in the shell's surface of SNR 0509-67.5.
Plasma turbulence driven by transversely large-scale standing shear Alfven waves
Singh, Nagendra; Rao, Sathyanarayan
2012-12-15
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
Fichtl, G.H.
1983-09-01
When designing a wind energy converison system (WECS), it may be necessary to take into account the distribution of wind across the disc of rotation. The specific engineering applications include structural strength, fatigue, and control. This wind distribution consists of two parts, namely that associated with the mean wind profile and that associated with the turbulence velocity fluctuation field. The work reported herein is aimed at the latter, namely the distribution of turbulence velocity fluctuations across the WECS disk of rotation. A theory is developed for the two-time covariance matrix for turbulence velocity vector components for wind energy conversion system (WECS) design. The theory is developed for homogeneous and iotropic turbulance with the assumption that Taylor's hypothesis is valid. The Eulerian turbulence velocity vector field is expanded about the hub of the WECS. Formulae are developed for the turbulence velocity vector component covariance matrix following the WECS blade elements. It is shown that upon specification of the turbulence energy spectrum function and the WECS rotation rate, the two-point, two-time covariance matrix of the turbulent flow relative to the WECS bladed elements is determined. This covariance matrix is represented as the sum of nonstationary and stationary contributions. Generalized power spectral methods are used to obtain two-point, double frequency power spectral density functions for the turbulent flow following the blade elements. The Dryden turbulence model is used to demonstrate the theory. A discussion of linear system response analysis is provided to show how the double frequency turbulence spectra might be used to calculate response spectra of a WECS to turbulent flow. Finally the spectrum of the component of turbulence normal to the WECS disc of rotation, following the blade elements, is compared with experimental results.
TURBULENCE-INDUCED RELATIVE VELOCITY OF DUST PARTICLES. IV. THE COLLISION KERNEL
Pan, Liubin; Padoan, Paolo E-mail: ppadoan@icc.ub.edu
2014-12-20
Motivated by its importance for modeling dust particle growth in protoplanetary disks, we study turbulence-induced collision statistics of inertial particles as a function of the particle friction time, ?{sub p}. We show that turbulent clustering significantly enhances the collision rate for particles of similar sizes with ?{sub p} corresponding to the inertial range of the flow. If the friction time, ?{sub p,} {sub h}, of the larger particle is in the inertial range, the collision kernel per unit cross section increases with increasing friction time, ?{sub p,} {sub l}, of the smaller particle and reaches the maximum at ?{sub p,} {sub l} = ?{sub p,} {sub h}, where the clustering effect peaks. This feature is not captured by the commonly used kernel formula, which neglects the effect of clustering. We argue that turbulent clustering helps alleviate the bouncing barrier problem for planetesimal formation. We also investigate the collision velocity statistics using a collision-rate weighting factor to account for higher collision frequency for particle pairs with larger relative velocity. For ?{sub p,} {sub h} in the inertial range, the rms relative velocity with collision-rate weighting is found to be invariant with ?{sub p,} {sub l} and scales with ?{sub p,} {sub h} roughly as ? ?{sub p,h}{sup 1/2}. The weighting factor favors collisions with larger relative velocity, and including it leads to more destructive and less sticking collisions. We compare two collision kernel formulations based on spherical and cylindrical geometries. The two formulations give consistent results for the collision rate and the collision-rate weighted statistics, except that the spherical formulation predicts more head-on collisions than the cylindrical formulation.
Pitch angle and velocity diffusions of newborn ions by turbulence in the solar wind
Ziebell, L.F.; Yoon, P.H. )
1990-12-01
The present study is dedicated to the analysis of dynamical processes relevant to the interaction of newborn ions with turbulence in the solar wind, when the level of turbulence is moderately low so that quasi-linear theory is applicable. It is assumed that the low-frequency turbulence is at saturation level and not affected by the newborn ions. In order to follow the time evolution of the ion distribution, the quasi-linear diffusion equation is derived and numerically solved, starting from a ring-beam initial distribution. A simplified treatment of the resonance broadening effect is included in the diffusion equation, and its role in the pickup process is discussed. Two different configurations of wave polarization and direction of propagation are considered, using model turbulence spectra. The conditions that lead either to the formation of anisotropic shells as a long-duration transient state or to rapid isotropization of the ion pitch angle distribution are discussed, as well as the conditions leading to significant acceleration of the ions.
Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.
2012-05-17
In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.
HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE
Burkhart, Blakesley; Lazarian, A.; Goodman, Alyssa; Rosolowsky, Erik
2013-06-20
Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvenic Mach numbers. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvenic Mach numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.
P wave velocity variations in the Coso region, California, derived...
defined with layers of blocks. Slowness variations in the surface layer reflect local geology, including slow velocities for the sedimentary basins of Indian Wells and Rose...
Kinetic Alfvén wave turbulence and formation of localized structures
Sharma, R. P.; Modi, K. V.; Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001
2013-08-15
This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate ?-plasma (m{sub e}/m{sub i}???1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup ?3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.
10-ft Wave Flume Facility | Open Energy Information
None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent...
Filamentation of magnetosonic wave and generation of magnetic turbulence in laser plasma interaction
Modi, K. V.; Tiwary, Prem Pyari; Singh, Ram Kishor Sharma, R. P.; Satsangi, V. R.
2014-10-15
This paper presents a theoretical model for the magnetic turbulence in laser plasma interaction due to the nonlinear coupling of magnetosonic wave with ion acoustic wave in overdense plasma. For this study, dynamical equations of magnetosonic waves and the ion acoustic waves have been developed in the presence of ponderomotive force due to the pump magnetosonic wave. Slowly converging and diverging behavior has been studied semi-analytically, this results in the formation of filaments of the magnetosonic wave. Numerical simulation has also been carried out to study nonlinear stage. From the results, it has been found that the localized structures become quite complex in nature. Further, power spectrum has been studied. Results show that the spectral index follows (âˆ¼k{sup âˆ’2.0}) scaling at smaller scale. Relevance of the present investigation has been shown with the experimental observation.
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov
2014-06-01
The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Rubinstein, Robert; Kurien, Susan; Cambon, Claude
2015-06-22
The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.
Radial Spreading of Drift-Wave-Zonal-Flow Turbulence via Soliton Formation
Guo Zehua; Chen Liu; Zonca, Fulvio
2009-07-31
The self-consistent spatiotemporal evolution of a drift-wave (DW) radial envelope and a zonal-flow (ZF) amplitude is investigated in a slab model. The stationary solution of the coupled partial differential equations in a simple limit yields the formation of DW-ZF soliton structures, which propagate radially with speed depending on the envelope peak amplitude. Additional interesting physics, e.g., the generation, destruction, collision, and reflection of solitons, as well as turbulence bursting can also be observed due to the effects of linear growth or damping, dissipation, equilibrium nonuniformities and soliton dynamics. The propagation of soliton causes significant radial spreading of DW turbulence and therefore can affect transport scaling with the system size by broadening of the turbulent region. The correspondence of the present analysis with the description of DW-ZF interactions in toroidal geometry is also discussed.
Al-Hashimi, M.H. Wiese, U.-J.
2009-12-15
We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v={partial_derivative}{sub p}E. The position-velocity uncertainty relation {delta}x{delta}v{>=}1/2 |<{partial_derivative}{sub p}{sup 2}E>| is saturated by minimal uncertainty wave packets {phi}(p)=Aexp(-{alpha}E(p)+{beta}p). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p{sup 2}/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma{sup 2} as well as for the relativistic dispersion relation E(p)={radical}(p{sup 2}+m{sup 2}). The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.
THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE
Howes, G. G.; Klein, K. G.; TenBarge, J. M.; Bale, S. D.; Chen, C. H. K.; Salem, C. S.
2012-07-01
We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross-correlation C({delta}n, {delta}B{sub ||}) between proton density fluctuations {delta}n and the field-aligned (compressible) component of the magnetic field {delta}B{sub ||} is negative and close to -1. The typical dependence of C({delta}n, {delta}B{sub ||}) on the ion plasma beta {beta}{sub i} is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.
Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E
2009-07-06
In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the
Two-fluid description of wave-particle interactions in strong Buneman turbulence
Che, H.
2014-06-15
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
Nonlinear interaction of proton whistler with kinetic Alfvén wave to study solar wind turbulence
Goyal, R.; Sharma, R. P.; Goldstein, M. L.; Dwivedi, N. K.
2013-12-15
This paper presents the nonlinear interaction between small but finite amplitude kinetic Alfvén wave (KAW) and proton whistler wave using two-fluid model in intermediate beta plasma, applicable to solar wind. The nonlinearity is introduced by modification in the background density. This change in density is attributed to the nonlinear ponderomotive force due to KAW. The solutions of the model equations, governing the nonlinear interaction (and its effect on the formation of localized structures), have been obtained using semi-analytical method in solar wind at 1AU. It is concluded that the KAW properties significantly affect the threshold field required for the filament formation and their critical size (for proton whistler). The magnetic and electric field power spectra have been obtained and their relevance with the recent observations of solar wind turbulence by Cluster spacecraft has been pointed out.
MULTI-SPACECRAFT OBSERVATIONS OF LINEAR MODES AND SIDEBAND WAVES IN ION-SCALE SOLAR WIND TURBULENCE
Perschke, Christopher; Motschmann, Uwe; Narita, Yasuhito; Glassmeier, Karl-Heinz
2014-10-01
In the scenario of weak turbulence, energy is believed to be cascaded from smaller to larger wave numbers and frequencies due to weak wave-wave interactions. Based on its perturbative treatment one may regard plasma turbulence as a superposition of linear modes (or normal modes) and sideband waves (or nonlinear modes). In this study, we use magnetic field and plasma measurements of nine solar wind events obtained by the Cluster spacecraft and make extensive use of a high-resolution wave vector analysis method, the Multi-point Signal Resonator technique, to find frequencies and wave vectors of discrete modes on ion kinetic scales in the plasma rest frame. The primarily unstructured wave observations in the frequency-wave number diagram are classified into three distinct linear modes (proton Bernstein modes, helium-alpha Bernstein modes, and kinetic AlfvÃ©n waves) and the sideband waves by comparing with the dispersion relations derived theoretically from linear Vlasov theory using observational values of the plasma parameter beta and the propagation angle from the mean magnetic field. About 60% of the observed discrete modes can be explained by the linear modes, primarily as the proton Bernstein and the kinetic AlfvÃ©n waves, within the frequency uncertainties, while the rest of the population (about 40%) cannot be classified as linear modes due to the large deviation from dispersion relations. We conclude that both the linear modes and sideband wave components are needed to construct the wave picture of solar wind turbulence on ion-kinetic scales.
Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai
2013-12-15
The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: â€¢The theory of slow-wave electron cyclotron masers is considered. â€¢The calculation of efficiency under the resonance condition is presented. â€¢The efficiency under Gaussian velocity spreads has been obtained.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, R.F.
1983-10-18
An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, R.F.
1987-03-10
An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, Robert F.
1987-01-01
An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.
Ion Bernstein waves in a plasma with a kappa velocity distribution
Nsengiyumva, F.; Mace, R. L.; Hellberg, M. A.
2013-10-15
Using a Vlasov-Poisson model, a numerical investigation of the dispersion relation for ion Bernstein waves in a kappa-distributed plasma has been carried out. The dispersion relation is found to depend significantly on the spectral index of the ions, Îº{sub i}, the parameter whose smallness is a measure of the departure from thermal equilibrium of the distribution function. Over all cyclotron harmonics, the typical Bernstein wave curves are shifted to higher wavenumbers (k) if Îº{sub i} is reduced. For waves whose frequency lies above the lower hybrid frequency, Ï‰{sub LH}, an increasing excess of superthermal particles (decreasing Îº{sub i}) reduces the frequency, Ï‰{sub peak}, of the characteristic peak at which the group velocity vanishes, while the associated k{sub peak} is increased. As the ratio of ion plasma to cyclotron frequency (Ï‰{sub pi}/Ï‰{sub ci}) is increased, the fall-off of Ï‰ at large k is smaller for lower Îº{sub i} and curves are shifted towards larger wavenumbers. In the lower hybrid frequency band and harmonic bands above it, the frequency in a low-Îº{sub i} plasma spans only a part of the intraharmonic space, unlike the Maxwellian case, thus exhibiting considerably less coupling between adjacent bands for low Îº{sub i}. It is suggested that the presence of the ensuing stopbands may be a useful diagnostic for the velocity distribution characteristics. The model is applied to the Earth's plasma sheet boundary layer in which waves propagating perpendicularly to the ambient magnetic field at frequencies between harmonics of the ion cyclotron frequency are frequently observed.
Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.
2014-09-25
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave
New insights into the decay of ion waves to turbulence, ion heating, and soliton generation
Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.
2014-04-15
The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude Ï•{sub 1} for ZT{sub e}/T{sub i}â‰²20, beyond which the instability is shown to scale with a higher power of Ï•{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.
Effect of the drift wave turbulence on the evolution of the low-[ital m] tearing modes
Siva Rama Prasad, P.V.; Tewari, D.P. )
1994-01-01
The effect of the background drift wave turbulence on the evolution of the low-[ital m] tearing modes has been studied, in the quasilinear regime, in various limiting cases. It is found, in the cases of the [ital m]=1 classical, collisionless, and drift-tearing modes, that the turbulence introduces finite real frequencies to these modes, which are otherwise purely growing ones, but reduces their instability activity. In the case of the [ital m][ge]2 classical modes, in a limit [vert bar][alpha][vert bar][sup 1/2][much gt][rho][sub [ital i
MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE
PETERSON SW
2010-10-08
Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1
Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A
2007-07-25
We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.
2014-11-20
We develop a model for stochastic acceleration of electrons in solar flares. As in several previous models, the electrons are accelerated by turbulent fast magnetosonic waves ({sup f}ast waves{sup )} via transit-time-damping (TTD) interactions. (In TTD interactions, fast waves act like moving magnetic mirrors that push the electrons parallel or anti-parallel to the magnetic field). We also include the effects of Coulomb collisions and the waves' parallel electric fields. Unlike previous models, our model is two-dimensional in both momentum space and wavenumber space and takes into account the anisotropy of the wave power spectrum F{sub k} and electron distribution function f {sub e}. We use weak turbulence theory and quasilinear theory to obtain a set of equations that describes the coupled evolution of F{sub k} and f {sub e}. We solve these equations numerically and find that the electron distribution function develops a power-law-like non-thermal tail within a restricted range of energies E in (E {sub nt}, E {sub max}). We obtain approximate analytic expressions for E {sub nt} and E {sub max}, which describe how these minimum and maximum energies depend upon parameters such as the electron number density and the rate at which fast-wave energy is injected into the acceleration region at large scales. We contrast our results with previous studies that assume that F{sub k} and f {sub e} are isotropic, and we compare one of our numerical calculations with the time-dependent hard-X-ray spectrum observed during the 1980 June 27 flare. In our numerical calculations, the electron energy spectra are softer (steeper) than in models with isotropic F{sub k} and f {sub e} and closer to the values inferred from observations of solar flares.
Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.
2012-01-10
In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.
Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E
2008-11-11
Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Rowe, Charlotte A.; Patton, Howard J.
2015-10-01
Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,moreÂ Â» then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.Â«Â less
Toward the Theory of Turbulence in Magnetized Plasmas
Boldyrev, Stanislav
2013-07-26
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.
Scaling laws in magnetized plasma turbulence
Boldyrev, Stanislav
2015-06-28
Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar
Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E
2010-02-18
Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.
Michael, C. A.; Tanaka, K.; Kawahata, K.; Vyacheslavov, L.; Sanin, A.
2015-09-15
An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO{sub 2} laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 Ã— 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Î”Ï (normalized radius) around the peak wave-number, for conventional Fourier analysis, is âˆ¼0.5, making physical interpretation difficult, while for MEM, Î”Ï âˆ¼ 0.1.
Sermeus, J.; Glorieux, C.; Sinha, R.; Vereecken, P. M.; Vanstreels, K.
2014-07-14
MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.
Long, Yao; Chen, Jun
2015-09-21
We develop a phonon-electron free energy model to study the thermodynamic properties and phase transitions of Î´-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The bulk modulus, thermal expansion coefficient, specific heat, Hugoniot curve, and phase transition curve are calculated in wide temperature and pressure ranges. The results are in agreement with the available experiments at zero pressure, and are reasonable predictions at high pressure for the lack of experiment. Two kinds of phase transition waves are investigated. We find the velocity of shock-induced phase transition wave is between 3400â€‰m/s and 4700â€‰m/s, and the velocity of self-sustaining phase transition wave is between 1300â€‰m/s and 1900â€‰m/s.
Talbot, L.; Cheng, R.K.
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Test particle study of ion transport in drift type turbulence
Vlad, M.; Spineanu, F.
2013-12-15
Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.
Roy, Kaushik; Saha, Taraknath; Chatterjee, Prasanta
2012-10-15
The effect of ion temperature on the existence of arbitrary amplitude ion-acoustic solitary waves is studied in a two component plasma in presence of a q-nonextensive velocity distributed electrons by using Sagdeev's pseudo potential technique. The range of relevent parameters for which solitons may exist is discussed. It is observed that both q, the nonextensive parameter and the ion temperature {sigma}, play significant roles in the formation and existence of solitons.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Winske, D.; Daughton, W.
2015-02-02
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (Î²e = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (Î²i = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, themoreÂ Â» waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.Â«Â less
Winske, D.; Daughton, W.
2015-02-02
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (Î²e = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (Î²i = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.
Rowe, Charlotte A.; Patton, Howard J.
2015-10-01
Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains, then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.
Three-dimensional hybrid simulation study of anisotropic turbulence in the proton kinetic regime
Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G. E-mail: sergei.markovskii@unh.edu
2014-06-20
Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio Î² {sub p} in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on Î² {sub p}.
Bains, A. S.; Gill, T. S.; Tribeche, Mouloud
2011-02-15
The modulational instability (MI) of ion-acoustic waves (IAWs) in a two-component plasma is investigated in the context of the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method, the nonlinear Schroedinger equation (NLSE) which governs the MI of the IAWs is obtained. The presence of the nonextensive electron distribution is shown to influence the MI of the waves. Three different ranges of the nonextensive q-parameter are considered and in each case the MI sets in under different conditions. Furthermore, the effects of the q-parameter on the growth rate of MI are discussed in detail.
Turbulent burning rates of methane and methane-hydrogen mixtures
Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)
2009-04-15
Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)
Hall, M.S.; Jackson, T.G.; Knerr, C.
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.
Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.
Bouzit, Omar Tribeche, Mouloud E-mail: mtribeche@usthb.dz; Bains, A. S.
2015-08-15
Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear SchrÃ¶dinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter Î±. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
1 Summer 2001 Heat Wave This summer has proved to be downright hot in the Southern Great ... Not only is a summer heat wave uncomfortable, but it can also be ARM Facilities Newsletter ...
Diehl, John; Steller, Robert
2007-03-20
Insitu borehole P- and S-wave velocity measurements were collected in three borings located within the Waste Treatment Plant (WTP) boundaries at the Hanford Site, southeastern Washington. Geophysical data acquisition was performed between August and October of 2006 by Rob Steller, Charles Carter, Antony Martin and John Diehl of GEOVision. Data analysis was performed by Rob Steller and John Diehl, and reviewed by Antony Martin of GEOVision, and report preparation was performed by John Diehl and reviewed by Rob Steller. The work was performed under subcontract with Battelle, Pacific Northwest Division with Marty Gardner as Battelle’s Technical Representative and Alan Rohay serving as the Technical Administrator for Pacific Northwest National Laboratory (PNNL). This report describes the field measurements, data analysis, and results of this work.
THE INFLUENCE OF INTERMITTENCY ON THE SPECTRAL ANISOTROPY OF SOLAR WIND TURBULENCE
Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua; Marsch, Eckart
2014-03-01
The relation between the intermittency and the anisotropy of the power spectrum in the solar wind turbulence is studied by applying the wavelet technique to the magnetic field and flow velocity data measured by the WIND spacecraft. It is found that when the intermittency is removed from the turbulence, the spectral indices of the power spectra of the field and velocity turn out to be independent of the angle ?{sub RB} between the direction of the local scale-dependent background magnetic field and the heliocentric direction. The spectral index becomes –1.63 ± 0.02 for magnetic field fluctuations and –1.56 ± 0.02 for velocity fluctuations. These results may suggest that the recently found spectral anisotropy of solar wind power spectra in the inertial range could result from turbulence intermittency. As a consequence, a new concept is here proposed of an intermittency-associated sub-range of the inertial domain adjacent to the dissipation range. Since spectral anisotropy was previously explained as evidence for the presence of a ''critical balance'' type turbulent cascade, and also for the existence of kinetic Alfvén waves, this new finding may stimulate fresh thoughts on how to analyze and interpret solar wind turbulence and the associated heating.
MHD turbulence model for global simulations of the solar wind and SEP acceleration
Sokolov, Igor V.; Roussev, Ilia I.
2008-08-25
The aim of the present work is to unify the various transport equations for turbulent waves that are used in different areas of space physics. We mostly focus on the magnetohydrodynamic (MHD) turbulence, in particular the Alfvenic turbulence.
Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.
2014-09-09
To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.
Edge turbulence and transport: Text and ATF modeling
Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J. . Fusion Research Center); Carreras, B.A.; Leboeuf, J.N.; Lee, D.K.; Harris, J.; Hidalgo, C.; Bell, J.D.; Holmes, J.A.; Isler, R.; Lynch, V.E.; Uckan, T. ); Diamond, P.H.; Ware, A.S. ); Thayer, D.R. (Science Applications Inter
1990-01-01
We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave.
Can we characterize turbulence in premixed flames?
Lipatnikov, A.N. [Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, 412 96 (Sweden)
2009-06-15
Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.
2014-09-09
To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The wavesmoreÂ Â» grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.Â«Â less
Advances in compressible turbulent mixing
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE
Zaheer, S.; Yoon, P. H.
2013-10-01
A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the ? distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized ? distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index ?, where f{sub e} ? v {sup –?} is close to the average index observed during the quiet-time solar wind condition, i.e., ? ? O(6.5) whereas ?{sub average} ? 6.69, according to observation.
Turbulent natural and mixed convection along a vertical plate
Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.; Zhao, J.Z.
1997-07-01
Measurements of turbulent boundary-layer air flow in natural and mixed convection adjacent to an isothermal vertical flat plate are reported. Laser-Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the mean turbulent velocity and temperature distributions were measured for a temperature difference, {Delta}T, of 30 C between the heated wall and the free stream air at a fixed location x = 3 m (with a corresponding Grashof number Gr{sub x} = 8.55 x 10{sup 10}), and for a range of free stream velocities 0 m/s {le} U{sub {infinity} } {le} 0.41 m/s. The effect of small free stream velocity on the turbulent natural convection is examined. These results reveal that the introduction of small free stream velocity on turbulent natural convection flow suppresses turbulence and decreases the heat transfer rate from the heated wall.
Lynn, Jacob W.; Quataert, Eliot; Parrish, Ian J.; Chandran, Benjamin D. G.
2013-11-10
We investigate the effects of pitch-angle scattering on the efficiency of particle heating and acceleration by MHD turbulence using phenomenological estimates and simulations of non-relativistic test particles interacting with strong, subsonic MHD turbulence. We include an imposed pitch-angle scattering rate, which is meant to approximate the effects of high-frequency plasma waves and/or velocity space instabilities. We focus on plasma parameters similar to those found in the near-Earth solar wind, though most of our results are more broadly applicable. An important control parameter is the size of the particle mean free path ?{sub mfp} relative to the scale of the turbulent fluctuations L. For small scattering rates, particles interact quasi-resonantly with turbulent fluctuations in magnetic field strength. Scattering increases the long-term efficiency of this resonant heating by factors of a few times 10, but the distribution function does not develop a significant non-thermal power-law tail. For higher scattering rates, the interaction between particles and turbulent fluctuations becomes non-resonant, governed by particles heating and cooling adiabatically as they encounter turbulent density fluctuations. Rapid pitch-angle scattering can produce a power-law tail in the proton distribution function, but this requires fine-tuning of parameters. Moreover, in the near-Earth solar wind, a significant power-law tail cannot develop by this mechanism because the particle acceleration timescales are longer than the adiabatic cooling timescale set by the expansion of the solar wind. Our results thus imply that MHD-scale turbulent fluctuations are unlikely to be the origin of the v {sup –5} tail in the proton distribution function observed in the solar wind.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gary, S. Peter
2015-04-06
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear waveâ€“particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.moreÂ Â» The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.Â«Â less
Evaluation of three lidar scanning strategies for turbulence measurements
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.
2015-11-24
Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates somemore »of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less
Impulsively started incompressible turbulent jet
Witze, P O
1980-10-01
Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.
Dynamics of turbulence spreading in magnetically confined plasmas
Guercan, Oe.D.; Diamond, P.H.; Hahm, T.S.; Lin, Z.
2005-03-01
A dynamical theory of turbulence spreading and nonlocal interaction phenomena is presented. The basic model is derived using Fokker-Planck theory, and supported by wave-kinetic and K-{epsilon} type closures. In the absence of local growth, the model predicts subdiffusive spreading of turbulence. With local growth and saturation via nonlinear damping, ballistic propagation of turbulence intensity fronts is possible. The time asymptotic front speed is set by the geometric mean of local growth and turbulent diffusion. The leading edge of the front progresses as the turbulence comes to local saturation. Studies indicate that turbulence can jump gaps in the local growth rate profile and can penetrate locally marginal or stable regions. In particular, significant fluctuation energy from a turbulent edge can easily spread into the marginally stable core, thus creating an intermediate zone of strong turbulence. This suggests that the traditional distinction between core and edge should be reconsidered.
Vlasov simulations of kinetic AlfvÃ©n waves at proton kinetic scales
VÃ¡sconez, C. L.; Valentini, F.; Veltri, P.; Camporeale, E.
2014-11-15
Kinetic AlfvÃ©n waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton gyro radius Ï{sub p} and/or inertial length d{sub p} and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic AlfvÃ©n waves at proton kinetic scales, in typical conditions of the solar wind environment (proton plasma beta Î²{sub p}â€‰=â€‰1). In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to d{sub p} and Î²{sub p} â‰ƒ 1 (for which Ï{sub p} â‰ƒ d{sub p}) the kinetic AlfvÃ©n waves have small phase speed compared to the proton thermal velocity, wave-particle interaction processes produce significant deformations in the core of the particle velocity distribution, appearing as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space, three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.
Combustion-turbulence interaction in the turbulent boundary layer over a hot surface
Ng, T.T.; Cheng, R.K.; Robben, F.; Talbot, L.
1982-01-01
The turbulence-combustion interaction in a reacting turbulent boundary layer over a heated flat plate was studied. Ethylene/air mixture with equivalence ratio of 0.35 was used. The free stream velocity was 10.5 m/s and the wall temperature was 1250/sup 0/K. Combustion structures visualization was provided by high-speed schlieren photographs. Fluid density statistics were deduced from Rayleigh scattering intensity measurements. A single-component laser Doppler velocimetry system was used to obtain mean and root-mean-square velocity distributions, the Reynolds stress, the streamwise and the cross-stream turbulent kinetic energy diffusion, and the production of turbulent kinetic energy by Reynolds stress. The combustion process was dominated by large-scale turbulent structures of the boundary layer. Combustion causes expansion of the boundary layer. No overall self-similarity is observed in either the velocity or the density profiles. Velocity fluctuations were increased in part of the boundary layer and the Reynolds stress was reduced. The turbulent kinetic energy diffusion pattern was changed significantly and a modification of the boundary layer assumption will be needed when dealing with this problem analytically. 11 figures, 1 table.
Penetration of lower hybrid current drive waves in tokamaks
Horton, W.; Aix-Marseille University, 58, Bd Charles Livon, 13284 Marseille ; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.
2013-11-15
Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.
New perspectives on superparameterization for geophysical turbulence
Majda, Andrew J.; Grooms, Ian
2014-08-15
This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.
Simulation of High Reynolds Number Turbulent Boundary Layers | Argonne
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Leadership Computing Facility A visualization of the velocity in a boundary layer at Reynolds numbers up to 2100 shows the growth of the turbulence structures out into the free stream as it evolves downstream (to the right) and the intermittent uneven boundary of the turbulent region. Juan Sillero, Universidad PolitÃ©cnica de Madrid. Simulation of High Reynolds Number Turbulent Boundary Layers PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas at Austin
Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| Argonne Leadership Computing Facility A snapshot of turbulent magnetic field lines (red) inside a coronal hole that expands from a small patch on the solar surface to 5 solar radii A snapshot of turbulent magnetic field lines (red) inside a coronal hole that expands from a small patch on the solar surface to 5 solar radii. Alfven waves (AW), launched by convective motions on the photosphere, propagate in the inhomogeneous Solar atmosphere producing primary reflected waves that interact
Evaluation of three lidar scanning strategies for turbulence measurements
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas
2016-05-03
Several errors occur when aÂ traditional Doppler beam swinging (DBS) or velocityâ€“azimuth display (VAD) strategy is used to measure turbulence with aÂ lidar. To mitigate some of these errors, aÂ scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, aÂ Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymoreÂ Â» VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60â€¯% under unstable conditions as aÂ result of variance contamination, where additional variance components contaminate the true value of the variance. AÂ correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20â€¯% at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain aÂ vertical beam position and is aÂ promising method for accurately estimating turbulence with commercially available lidars.Â«Â less
DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS
Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2011-12-01
Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2011-04-15
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and
Wave-wave interactions in solar type III radio bursts
Thejappa, G.; MacDowall, R. J.
2014-02-11
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.
Azimuthally Anisotropic 3D Velocity Continuation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Burnett, William; Fomel, Sergey
2011-01-01
We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemoreÂ Â» the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.Â«Â less
The deterministic chaos and random noise in turbulent jet
Yao, Tian-Liang; Liu, Hai-Feng Xu, Jian-Liang; Li, Wei-Feng
2014-06-01
A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.
Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
Saito, S.; Gary, S. Peter; Narita, Y.
2010-12-15
The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.
Fast wave evanescence in filamentary boundary plasmas
Myra, J. R.
2014-02-15
Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.
TOWARD A THEORY OF ASTROPHYSICAL PLASMA TURBULENCE AT SUBPROTON SCALES
Boldyrev, Stanislav; Horaites, Konstantinos; Xia, Qian; Perez, Jean Carlos
2013-11-01
We present an analytical study of subproton electromagnetic fluctuations in a collisionless plasma with a plasma beta of the order of unity. In the linear limit, a rigorous derivation from the kinetic equation is conducted focusing on the role and physical properties of kinetic-Alfvén and whistler waves. Then, nonlinear fluid-like equations for kinetic-Alfvén waves and whistler modes are derived, with special emphasis on the similarities and differences in the corresponding plasma dynamics. The kinetic-Alfvén modes exist in the lower-frequency region of phase space, ? << k v{sub Ti} , where they are described by the kinetic-Alfvén system. These modes exist both below and above the ion-cyclotron frequency. The whistler modes, which are qualitatively different from the kinetic-Alfvén modes, occupy a different region of phase space, k v{sub Ti} << ? << k{sub z}v{sub Te} , and they are described by the electron magnetohydrodynamics (MHD) system or the reduced electron MHD system if the propagation is oblique. Here, k{sub z} and k are the wavenumbers along and transverse to the background magnetic field, respectively, and v{sub Ti} and v{sub Te} are the ion and electron thermal velocities, respectively. The models of subproton plasma turbulence are discussed and the results of numerical simulations are presented. We also point out possible implications for solar-wind observations.
ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE
Cranmer, Steven R.
2014-07-01
Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant AlfvÃ©n waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.
THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. I. THE TURBULENT STIRRING RECIPE
Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ormel, Chris W., E-mail: okuzumi@geo.titech.ac.jp [Astronomy Department, University of California, Berkeley, CA 94720 (United States)
2013-07-01
Turbulence in protoplanetary disks affects planet formation in many ways. While small dust particles are mainly affected by the aerodynamical coupling with turbulent gas velocity fields, planetesimals and larger bodies are more affected by gravitational interaction with gas density fluctuations. For the latter process, a number of numerical simulations have been performed in recent years, but a fully parameter-independent understanding has not been yet established. In this study, we present simple scaling relations for the planetesimal stirring rate in turbulence driven by magnetorotational instability (MRI), taking into account the stabilization of MRI due to ohmic resistivity. We begin with order-of-magnitude estimates of the turbulence-induced gravitational force acting on solid bodies and associated diffusion coefficients for their orbital elements. We then test the predicted scaling relations using the results of recent ohmic-resistive MHD simulations by Gressel et al. We find that these relations successfully explain the simulation results if we properly fix order-of-unity uncertainties within the estimates. We also update the saturation predictor for the density fluctuation amplitude in MRI-driven turbulence originally proposed by Okuzumi and Hirose. Combination of the scaling relations and saturation predictor allows us to know how the turbulent stirring rate of planetesimals depends on disk parameters such as the gas column density, distance from the central star, vertical resistivity distribution, and net vertical magnetic flux. In Paper II, we apply our recipe to planetesimal accretion to discuss its viability in turbulent disks.
Simultaneous structure and elastic wave velocity measurement...
Office of Scientific and Technical Information (OSTI)
Authors: Kono, Yoshio ; Park, Changyong ; Sakamaki, Tatsuya ; Kenny-Benson, Curtis ; Shen, Guoyin ; Wang, Yanbin 1 ; UC) 2 + Show Author Affiliations (CIW) ( Publication Date: ...
Hassam, Adil
2015-09-21
We studied the feasibility of resonantly driving GAMs in tokamaks. A numerical simulation was carried out and showed the essential features and limitations. It was shown further that GAMs can damp by phase-mixing, from temperature gradients, or nonlinear detuning, thus broadening the resonance. Experimental implications of this were quantified. Theoretical support was provided for the Maryland Centrifugal Experiment, funded in a separate grant by DOE. Plasma diamagnetism from supersonic rotation was established. A theoretical model was built to match the data. Additional support to the experiment in terms of numerical simulation of the interchange turbulence was provided. Spectra from residual turbulence on account of velocity shear suppression were obtained and compared favorably to experiment. A new drift wave, driven solely by the thermal force, was identified.
Statistical theory of turbulent incompressible multimaterial flow
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe.
Mass dependency of turbulent parameters in stationary glow discharge plasmas
Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III
2013-05-15
A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.
Reconnection and electron temperature anisotropy in sub-proton scale plasma turbulence
Haynes, C. T.; Burgess, D.; Camporeale, E.
2014-03-01
Knowledge of turbulent behavior at sub-proton scales in magnetized plasmas is important for a full understanding of the energetics of astrophysical flows such as the solar wind. We study the formation of electron temperature anisotropy due to reconnection in the turbulent decay of sub-proton scale fluctuations using two-dimensional, particle-in-cell plasma simulations with a realistic electron-proton mass ratio and a guide field perpendicular to the simulation plane. A power spectrum fluctuation with approximately power-law form is created down to scales of the order of the electron gyroradius. We identify the signatures of collisionless reconnection at sites of X-point field geometry in the dynamic magnetic field topology, which gradually relaxes in complexity. The reconnection sites are generally associated with regions of strong parallel electron temperature anisotropy. The evolving topology of magnetic field lines connected to a reconnection site allows for the spatial mixing of electrons accelerated at multiple, spatially separated reconnection regions. This leads to the formation of multi-peaked velocity distribution functions with strong parallel temperature anisotropy. In a three-dimensional system that can support the appropriate wave vectors, the multi-peaked distribution functions would be expected to be unstable to kinetic instabilities, contributing to dissipation. The proposed mechanism of anisotropy formation is also relevant to space and astrophysical systems where the evolution of the plasma is constrained by linear temperature anisotropy instability thresholds. The presence of reconnection sites leads to electron energy gain, nonlocal velocity space mixing, and the formation of strong temperature anisotropy; this is evidence of an important role for reconnection in the dissipation of turbulent fluctuations.
Radiosonde measurements of turbulence
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Turbulence detection on aerial platforms using orientation sensors R. Giles Harrison, Robin J. Hogan, George W. Rogers, Alyssa M. Heath and Keri A. Nicoll Department of Meteorology University of Reading, UK r.g.harrison@reading.ac.uk 2 "Bumpiness" (or turbulence), still remains an aircraft hazard, even at cruising altitudes How can in-situ direct position and orientation sensing can be used to detect turbulence affecting aerial platforms? * Investigated using balloon platforms,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... Furthermore, combined spontaneous Raman spectroscopy, Rayleigh scatter, and OHCO-laser-induced fluorescence measurements have been used to quantify in situ turbulent flame mixture ...
Evolution of turbulence in the expanding solar wind, a numerical study
Dong, Yue; Grappin, Roland; Verdini, Andrea E-mail: verdini@arcetri.astro.it
2014-10-01
We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k {sup â€“1}, we observe a steepening toward a k {sup â€“5/3} scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f {sup â€“1} range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate...
Office of Scientific and Technical Information (OSTI)
Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud ...
DeFrees Small Wave Basin | Open Energy Information
Current Velocity Range(ms) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction...
Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| Argonne Leadership Computing Facility Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind PI Name: Jean C Perez PI Email: jeanc.perez@unh.edu Institution: University of New Hampshire Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Physics This project's large-scale numerical simulations of AlfvÃ©n wave (AW) turbulence in the outermost atmosphere of the sun will lead to new insights into the basic properties of inhomogeneous
Subgrid models for mass and thermal diffusion in turbulent mixing
Sharp, David H; Lim, Hyunkyung; Li, Xiao - Lin; Gilmm, James G
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without resolving the
On apparent temperature in low-frequency Alfvenic turbulence
Nariyuki, Yasuhiro
2012-08-15
Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.
Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA
Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.
2012-06-05
Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.
Che, H.; Goldstein, M. L.
2014-11-10
The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvén wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.
Energy Science and Technology Software Center (OSTI)
2008-01-25
BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemoreÂ Â» transport model (UEDGE package).Â«Â less
SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE
Perez, Jean Carlos; Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto E-mail: j.mason@exeter.ac.uk E-mail: cattaneo@flash.uchicago.edu
2014-09-20
Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scaleâ€”the AlfvÃ©n velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.
Experimental Study of Current-Driven Turbulence During Magnetic Reconnection
Miklos Porkolab; Jan Egedal-Pedersen; William Fox
2010-08-31
CMPD Final Report Experimental Study of Current-Driven Turbulence During Magnetic Reconnection Miklos Porkolab, PI, Jan Egedal, co-PI, William Fox, graduate student. This is the final report for Grant DE-FC02-04ER54786, Ã?Â¢Ã?Â?Ã?Â?MIT Participation in the Center for Multiscale Plasma Dynamics,Ã?Â¢Ã?Â?Ã?Â which was active from 8/1/2004 to 7/31/2010. This Grant supported the thesis work of one MIT graduate student, William Fox, The thesis research consisted of an experimental study of the fluctuations arising during magnetic reconnection in plasmas on the Versatile Toroidal Facility (VTF) at MIT Plasma Science and Fusion Center (PSFC). The thesis was submitted and accepted by the MIT physics Department, Ã?Â¢Ã?Â?Ã?Â?W. Fox, Experimental Study of Current-Driven Turbulence During Magnetic Reconnection, Ph.D. Thesis, MIT (2009)Ã?Â¢Ã?Â?Ã?Â. In the VTF experiment reconnection and current-sheet formation is driven by quickly changing currents in a specially arranged set of internal conductors. Previous work on this device [Egedal, et al, PRL 98, 015003, (2007)] identified a Ã?Â¢Ã?Â?Ã?Â?spontaneousÃ?Â¢Ã?Â?Ã?Â reconnection regime. In this work fluctuations were studied using impedance-matched, high-bandwidth Langmuir probes. Strong, broadband fluctuations, with frequencies extending from near the lower-hybrid frequency [fLH = (fcefci)1/2] to the electron cyclotron frequency fce were found to arise during the reconnection events. Based on frequency and wavelength measurements, lower-hybrid waves and Trivelpiece-Gould waves were identified. The lower-hybrid waves are easiest to drive with strong perpendicular drifts or gradients which arise due to the reconnection events; an appealing possibility is strong temperature gradients. The Trivelpiece-Gould modes can result from kinetic, bump-on-tail instability of a runaway electron population energized by the reconnection events. We also observed that the turbulence is often spiky, consisting of discrete positive
Observations of Edge Turbulence
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Edge Turbulence near the X-point of Alcator C-Mod APS-2007 (1) J.L. Terry, S.J. Zweben*, B. LaBombard, I. Cziegler, O. Grulke + , D.P. Stotler* MIT - Plasma Science and Fusion...
UNDERSTANDING GALAXY OUTFLOWS AS THE PRODUCT OF UNSTABLE TURBULENT SUPPORT
Scannapieco, Evan
2013-02-01
The interstellar medium is a multiphase gas in which turbulent support is as important as thermal pressure. Sustaining this configuration requires both continuous turbulent stirring and continuous radiative cooling to match the decay of turbulent energy. While this equilibrium can persist for small turbulent velocities, if the one-dimensional velocity dispersion is larger than Almost-Equal-To 35 km s{sup -1}, the gas moves into an unstable regime that leads to rapid heating. I study the implications of this turbulent runaway, showing that it causes a hot gas outflow to form in all galaxies with a gas surface density above Almost-Equal-To 50 M{sub Sun} pc{sup -2}, corresponding to a star formation rate per unit area of Almost-Equal-To 0.1 M{sub Sun} yr{sup -1} kpc{sup -2}. For galaxies with v{sub esc} {approx}> 200 km s{sup -1}, the sonic point of this hot outflow should lie interior to the region containing cold gas and stars, while for galaxies with smaller escape velocities, the sonic point should lie outside this region. This leads to efficient cold cloud acceleration in higher mass galaxies, while in lower mass galaxies, clouds may be ejected by random turbulent motions rather than accelerated by the wind. Finally, I show that energy balance cannot be achieved at all for turbulent media above a surface density of Almost-Equal-To 10{sup 5} M{sub Sun} pc{sup -2}.
Two-fluid description of wave-particle interactions in strong...
Office of Scientific and Technical Information (OSTI)
Title: Two-fluid description of wave-particle interactions in strong Buneman turbulence To understand the nature of anomalous resistivity in magnetic reconnection, we investigate ...
Pyrotechnic deflagration velocity and permeability
Begeal, D R; Stanton, P L
1982-01-01
Particle size, porosity, and permeability of the reactive material have long been considered to be important factors in propellant burning rates and the deflagration-to-detonation transition in explosives. It is reasonable to assume that these same parameters will also affect the deflagration velocity of pyrotechnics. This report describes an experimental program that addresses the permeability of porous solids (particulate beds), in terms of particle size and porosity, and the relationship between permeability and the behavior of pyrotechnics and explosives. The experimental techniques used to acquire permeability data and to characterize the pyrotechnic burning are discussed. Preliminary data have been obtained on the burning characteristics of titanium hydride/potassium perchlorate (THKP) and boron/calcium chromate (BCCR). With THKP, the velocity of a pressure wave (from hot product gases) in the unburned region shows unsteady behavior which is related to the initial porosity or permeability. Simultaneous measurements with pressure gauges and ion gauges reveal that the pressure wave precedes the burn front. Steady burning of BCCR was observed with pressure gauge diagnostics and with a microwave interferometry technique.
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Petascale Simulations of Inhomogeneous AlfvÃ©n Turbulence in the Solar Wind
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| Argonne Leadership Computing Facility A snapshot of turbulent magnetic field lines (red) inside a coronal hole that expands from a small patch on the solar surface to 5 solar radii A snapshot of turbulent magnetic field lines (red) inside a coronal hole that expands from a small patch on the solar surface to 5 solar radii. Alfven waves (AW), launched by convective motions on the photosphere, propagate in the inhomogeneous Solar atmosphere producing primary reflected waves that interact
The interaction of high-speed turbulence with flames: Global properties and internal flame structure
Poludnenko, A.Y.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States)
2010-05-15
We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H{sub 2}-air mixture. The system being modeled represents turbulent combustion with the Damkoehler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H{sub 2}-air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes. (author)
Power-law wrinkling turbulence-flame interaction model for astrophysical flames
Jackson, Aaron P.; Townsley, Dean M.; Calder, Alan C.
2014-04-01
We extend a model for turbulence-flame interactions (TFI) to consider astrophysical flames with a particular focus on combustion in Type Ia supernovae. The inertial range of the turbulent cascade is nearly always under-resolved in simulations of astrophysical flows, requiring the use of a model in order to quantify the effects of subgrid-scale wrinkling of the flame surface. We provide implementation details to extend a well-tested TFI model to low-Prandtl number flames for use in the compressible hydrodynamics code FLASH. A local, instantaneous measure of the turbulent velocity is calibrated for FLASH and verification tests are performed. Particular care is taken to consider the relation between the subgrid rms turbulent velocity and the turbulent flame speed, especially for high-intensity turbulence where the turbulent flame speed is not expected to scale with the turbulent velocity. Finally, we explore the impact of different TFI models in full-star, three-dimensional simulations of Type Ia supernovae.
Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Internal Detonation Velocity Measurements Inside High Explosives
Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E
2009-01-16
In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.
A mechanistic determination of horizontal flow regime bound using void wave celerity
Park, J.W.
1995-09-01
The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.
Doppler Lidar Vertical Velocity Statistics Value-Added Product
Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.
2015-07-01
Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.
Hietala, Vincent M.; Vawter, Gregory A.
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Hietala, V.M.; Vawter, G.A.
1993-12-14
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Survey and analysis of multiresolution methods for turbulence data
Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; Ahrens, James; Hamann, Bernd
2015-11-10
This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 512^{3} mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Re_{t} = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisons between the algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.
Survey and analysis of multiresolution methods for turbulence data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; Ahrens, James; Hamann, Bernd
2015-11-10
This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 5123 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Ret = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisons between themoreÂ Â» algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.Â«Â less
Energy Science and Technology Software Center (OSTI)
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Neutrino oscillations in a turbulent plasma
Mendonça, J. T.; Haas, F.
2013-07-15
A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.
Coherent structures in ion temperature gradient turbulence-zonal flow
Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ö. D.; Diamond, P. H.
2014-10-15
Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m?=?n?=?0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.
The interaction of high-speed turbulence with flames: Turbulent flame speed
Poludnenko, A.Y.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States)
2011-02-15
Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales, as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Marsh, Stanley P. (Los Alamos, NM)
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Perez, Jean Carlos; Chandran, Benjamin D. G.
2013-10-20
We present direct numerical simulations of inhomogeneous reduced magnetohydrodynamic (RMHD) turbulence between the Sun and the Alfvén critical point. These are the first such simulations that take into account the solar-wind outflow velocity and the radial inhomogeneity of the background solar wind without approximating the nonlinear terms in the governing equations. RMHD turbulence is driven by outward-propagating Alfvén waves (z {sup +} fluctuations) launched from the Sun, which undergo partial non-WKB reflection to produce sunward-propagating Alfvén waves (z {sup –} fluctuations). We present 10 simulations with different values of the correlation time ?{sub c{sub sun}{sup +}} and perpendicular correlation length L{sub ?} of outward-propagating Alfvén waves at the coronal base. We find that between 15% and 33% of the z {sup +} energy launched into the corona dissipates between the coronal base and Alfvén critical point. Between 33% and 40% of this input energy goes into work on the solar-wind outflow, and between 22% and 36% escapes as z {sup +} fluctuations through the simulation boundary at r = r{sub A}. The z {sup ±} power spectra scale like k{sub perpendicular}{sup -?{sup ±}}, where k is the wavenumber in the plane perpendicular to B{sub 0}. In our simulation with the smallest value of ?{sub c{sub sun}{sup +}} (?2 minutes) and largest value of L{sub ?} (2 × 10{sup 4} km), we find that ?{sup +} decreases approximately linearly with increasing ln (r), reaching a value of 1.3 at r = 11.1 R{sub ?}. Our simulations with larger values of ?{sub c{sub sun}{sup +}} exhibit alignment between the contours of constant ?{sup +}, ?{sup –}, ?{sub 0}{sup +}, and ?{sub 0}{sup -}, where ?{sup ±} are the Elsässer potentials and ?{sub 0}{sup ±} are the outer-scale parallel Elsässer vorticities.
One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS
Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.
2015-06-01
The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introduces a single model parameter Î² p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Turbulent Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear
Admiralty Inlet Advanced Turbulence Measurements: May 2015
Kilcher, Levi
2015-05-18
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.
Admiralty Inlet Advanced Turbulence Measurements: June 2014
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kilcher, Levi
2014-06-30
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.
Perry, Russell W.; Farley, M. Jared; Hansen, Gabriel S.
2005-07-01
Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide
MAGNETIC HELICITY IN THE DISSIPATION RANGE OF STRONG IMBALANCED TURBULENCE
Markovskii, S. A.; Vasquez, Bernard J. E-mail: bernie.vasquez@unh.edu
2013-05-01
Hybrid numerical simulations of freely decaying two-dimensional turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The net magnetic helicity of the initial fluctuations at large scales is zero. The turbulence is set to be imbalanced in the sense that the net cross-helicity is not zero. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations. The peak position depends on the plasma beta and correlates with a sharp decline of the cross-helicity spectrum.
Velocity pump reaction turbine
House, P.A.
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Velocity pump reaction turbine
House, Palmer A.
1982-01-01
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Velocity pump reaction turbine
House, Palmer A.
1984-01-01
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Time-resolved particle velocity measurements at impact velocities of 10 km/s
Furnish, M.D.; Chhabildas, L.C.; Reinhart, W.D.
1998-08-01
Hypervelocity launch capabilities (9--16 km/s) with macroscopic plates have become available in recent years. It is now feasible to conduct instrumented plane-wave tests using this capability. Successfully conducting such tests requires a planar launch and impact at hypervelocities, appropriate triggering for recording systems, and time-resolved measurements of motion or stress at a particular point or set of points within the target or projectile during impact. The authors have conducted the first time-resolved wave-profile experiments using velocity interferometric techniques at impact velocities of 10 km/s. These measurements show that aluminum continues to exhibit normal release behavior to 161 GPa shock pressure, with complete loss of strength of the shocked state. These experiments have allowed a determination of shock-wave window transparency in conditions produced by a hypervelocity impact. In particular, lithium fluoride appears to lose transparency at a shock stress of 200 GPa; this appears to be the upper limit for conventional wave profile measurements using velocity interferometric techniques.
ARM - Measurement - Hydrometeor fall velocity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
velocity Fall velocity of hydrometeors (e.g. rain, snow, graupel, hail). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...
Numerical simulations of the decay of primordial magnetic turbulence
Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Brandenburg, Axel [Nordita, AlbaNova University Center, Roslagstullsbacken 23, 10691 Stockholm (Sweden); Department of Astronomy, Stockholm University, SE 10691 Stockholm (Sweden); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue Tbilisi, GE-0128 (Georgia); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)
2010-06-15
We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.
The selection of turbulence models for prediction of room airflow
Nielsen, P.V.
1998-10-01
The airflow in buildings involves a combination of many different flow elements. It is, therefore, difficult to find an adequate, all-round turbulence model covering all aspects. Consequently, it is appropriate and economical to choose turbulence models according to the situation that is to be predicted. This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation for room dimensions and velocity level also is discussed. A {kappa}-{epsilon} model expanded by damping functions is used to improve the prediction of the flow in a room ventilated by displacement ventilation. The damping functions especially take into account the turbulence level and the vertical temperature gradient. Low Reynolds number models (LNR models) are used to improve the prediction of evaporation-controlled emissions from building material, which is shown by an example. Finally, large eddy simulation (LES) of room airflow is discussed and demonstrated.
Drizzle formation in stratocumulus clouds: Effects of turbulent mixing
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Magaritz-Ronen, L.; Pinsky, M.; Khain, A.
2016-02-17
The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangianâ€“Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmoreÂ Â» characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.Â«Â less
Turbulence transport modeling of the temporal outer heliosphere
Adhikari, L.; Zank, G. P.; Hu, Q.; Dosch, A.
2014-09-20
The solar wind can be regarded as a turbulent magnetofluid, evolving in an expanding solar wind and subject to turbulent driving by a variety of in situ sources. Furthermore, the solar wind and the drivers of turbulence are highly time-dependent and change with solar cycle. Turbulence transport models describing low-frequency magnetic and velocity fluctuations in the solar wind have so far neglected solar cycle effects. Here we consider the effects of solar cycle variability on a turbulence transport model developed by Zank et al. This model is appropriate for the solar wind beyond about 1 AU, and extensions have described the steady-state dependence of the magnetic energy density fluctuations, correlation length, and solar wind temperature throughout the outer heliosphere. We find that the temporal solar wind introduces a periodic variability, particularly beyond ?10 AU, in the magnetic energy density fluctuations, correlation length, and solar wind temperature. The variability is insufficient to account for the full observed variability in these quantities, but we find that the time-dependent solutions trace the steady-state solutions quite well, suggesting that the steady-state models are reasonable first approximations.
Daytime turbulent exchange between the Amazon forest and the atmosphere
Fitzjarrald, D.R.; Moore, K.E. ); Cabral, M.R. ); Scolar, J. ); Manzi, A.O.; de Abreau Sa, L.D. )
1990-09-20
Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high-frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum and the relationship between the horizontal wind speed and its standard deviation are well described by dry convective boundary layer similarity hypotheses originally found to apply in flat terrain. Diurnal changes in the sign of the vertical velocity skewness observed above and inside the canopy are shown to be plausibly explained by considering the skewness budget. Simple empirical formulas that relate observed turbulent heat fluxes to horizontal wind speed and variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented in three case studies. Even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during midday.
Onset of Turbulence and Profile Resilience in the Helimak Configuration
Rypdal, K.; Ratynskaia, S.
2005-06-10
An experimental study of the onset of drift wave and flute interchange instabilities in the Helimak configuration is presented. It is shown that the Helimak offers the opportunity to separate the regions where these instabilities are active and to assess their relative role in cross-field anomalous transport and in the self-organization of exponential plasma density profiles with resilient scale length. Some results indicating a period doubling route to turbulence are also presented.
Magnetized Turbulent Dynamo in Protogalaxies
Leonid Malyshkin; Russell M. Kulsrud
2002-01-28
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.
DeFrees Large Wave Basin | Open Energy Information
Current Velocity Range(ms) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be...
Nonlinear and linear timescales near kinetic scales in solar wind turbulence
Matthaeus, W. H.; Wan, M.; Shay, M. A.; Oughton, S.; Osman, K. T.; Chapman, S. C.; Servidio, S.; Valentini, F.; Gary, S. P.; Roytershteyn, V.; Karimabadi, H.
2014-08-01
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local (in scale) nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to or faster than the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theoryâ€”which assumes constant parameters to calculate the associated kinetic ratesâ€”may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior.
Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain
ComiÅŸel, H.; Verscharen, D.; Narita, Y.; Motschmann, U.
2013-09-15
We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique AlfvÃ©n/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.
Ratcliffe, H. Brady, C. S.; Che Rozenan, M. B.; Nakariakov, V. M.
2014-12-15
Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular, ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper, we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit, the results agree well, but for increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. Additionally, we establish lower limits on the number of simulation particles needed to accurately reproduce the electron and wave distributions in their saturated states and to reproduce their intermediate states and time evolution. These results should be taken into consideration in, for example, simulations of plasma wave generation in the solar corona of Type III solar radio bursts from the corona to the solar wind and in weak turbulence investigations of ion-acoustic lines in the ionosphere.
Laboratory Measurements of Velocity and Attenuation in Sediments
Zimmer, M A; Berge, P A; Bonner, B P; Prasad, M
2004-06-08
Laboratory measurements are required to establish relationships between the physical properties of unconsolidated sediments and P- and S-wave propagation through them. Previous work has either focused on measurements of compressional wave properties at depths greater than 500 m for oil industry applications or on measurements of dynamic shear properties at pressures corresponding to depths of less than 50 m for geotechnical applications. Therefore, the effects of lithology, fluid saturation, and compaction on impedance and P- and S-wave velocities of shallow soils are largely unknown. We describe two state-of-the-art laboratory experiments. One setup allows us to measure ultrasonic P-wave velocities at very low pressures in unconsolidated sediments (up to 0.1 MPa). The other experiment allows P- and S-wave velocity measurements at low to medium pressures (up to 20 MPa). We summarize the main velocity and attenuation results on sands and sand - clay mixtures under partially saturated and fully saturated conditions in two ranges of pressures (0 - 0.1 MPa and 0.1 - 20 MPa) representative of the top few meters and the top 1 km, respectively. Under hydrostatic pressures of 0.1 to 20 MPa, our measurements demonstrate a P- and S-wave velocity-dependence in dry sands around a fourth root (0.23 -0.26) with the pressure dependence for S-waves being slightly lower. The P- velocity-dependence in wet sands lies around 0.4. The Vp-Vs and the Qp-Qs ratios together can be useful tools to distinguish between different lithologies and between pressure and saturation effects. These experimental velocities at the frequency of measurement (200 kHz) are slightly higher that Gassmann's static result. For low pressures under uniaxial stress, Vp and Vs were a few hundred meters per second with velocities showing a strong dependence on packing, clay content, and microstructure. We provide a typical shallow soil scenario in a clean sand environment and reconstruct the velocity profile of
Identifying Turbulent Structures through Topological Segmentation
Bremer, Peer-Timo; Gruber, Andrea; Bennett, Janine C.; Gyulassy, Attila; Kolla, Hemanth; Chen, Jacqueline H.; Grout, Ray W.
2016-01-01
A new method of extracting vortical structures from a turbulent flow is proposed whereby topological segmentation of an indicator function scalar field is used to identify the regions of influence of the individual vortices. This addresses a long-standing challenge in vector field topological analysis: indicator functions commonly used produce a scalar field based on the local velocity vector field; reconstructing regions of influence for a particular structure requires selecting a threshold to define vortex extent. In practice, the same threshold is rarely meaningful throughout a given flow. By also considering the topology of the indicator field function, the characteristics of vortex strength and extent can be separated and the ambiguity in the choice of the threshold reduced. The proposed approach is able to identify several types of vortices observed in a jet in cross-flow configuration simultaneously where no single threshold value for a selection of common indicator functions appears able to identify all of these vortex types.
Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas
Tishchenko, V N; Shaikhislamov, I F
2014-02-28
We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)
Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas
Qiu, Z.; Chen, L.; Dept. Physics and Astronomy, Univ. of California, Irvine, California 92697-4575 ; Zonca, F.; Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati
2014-02-15
Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations describing parametric decay of DW into GAM and DW lower sideband are derived and then solved both analytically and numerically to investigate the effects on the parametric decay process due to system nonuniformities, such as nonuniform diamagnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness. It is found that the parametric decay process is a convective instability for typical tokamak parameters when finite group velocities of DW and GAM associated with kinetic dispersiveness and finite radial envelope are taken into account. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instability.
HIGH-RESOLUTION OBSERVATIONS AND THE PHYSICS OF HIGH-VELOCITY CLOUD A0
Verschuur, Gerrit L.
2013-04-01
The neutral hydrogen structure of high-velocity cloud A0 (at about -180 km s{sup -1}) has been mapped with a 9.'1 resolution. Gaussian decomposition of the profiles is used to separately map families of components defined by similarities in center velocities and line widths. About 70% of the H I gas is in the form of a narrow, twisted filament whose typical line widths are of the order of 24 km s{sup -1}. Many bright features with narrow line widths of the order of 6 km s{sup -1}, clouds, are located in and near the filament. A third category with properties between those of the filament and clouds appears in the data. The clouds are not always co-located with the broader line width filament emission as seen projected on the sky. Under the assumption that magnetic fields underlie the presence of the filament, a theorem is developed for its stability in terms of a toroidal magnetic field generated by the flow of gas along field lines. It is suggested that the axial magnetic field strength may be derived from the excess line width of the H I emission over and above that due to kinetic temperature by invoking the role of Alfven waves that create what is in essence a form of magnetic turbulence. At a distance of 200 pc the axial and the derived toroidal magnetic field strengths in the filament are then about 6 {mu}G while for the clouds they are about 4 {mu}G. The dependence of the derived field strength on distance is discussed.
On the interaction between turbulence and a planar rarefaction
Johnson, Bryan M.
2014-04-01
The modeling of turbulence, whether it be numerical or analytical, is a difficult challenge. Turbulence is amenable to analysis with linear theory if it is subject to rapid distortions, i.e., motions occurring on a timescale that is short compared to the timescale for nonlinear interactions. Such an approach (referred to as rapid distortion theory) could prove useful for understanding aspects of astrophysical turbulence, which is often subject to rapid distortions, such as supernova explosions or the free-fall associated with gravitational instability. As a proof of principle, a particularly simple problem is considered here: the evolution of vorticity due to a planar rarefaction in an ideal gas. Analytical solutions are obtained for incompressive modes having a wave vector perpendicular to the distortion; as in the case of gradient-driven instabilities, these are the modes that couple most strongly to the mean flow. Vorticity can either grow or decay in the wake of a rarefaction front, and there are two competing effects that determine which outcome occurs: entropy fluctuations couple to the mean pressure gradient to produce vorticity via baroclinic effects, whereas vorticity is damped due to the conservation of angular momentum as the fluid expands. Whether vorticity grows or decays depends upon the ratio of entropic to vortical fluctuations at the location of the front; growth occurs if this ratio is of order unity or larger. In the limit of purely entropic fluctuations in the ambient fluid, a strong rarefaction generates vorticity with a turbulent Mach number on the order of the rms of the ambient entropy fluctuations. The analytical results are shown to compare well with results from two- and three-dimensional numerical simulations. Analytical solutions are also derived in the linear regime of Reynolds-averaged turbulence models. This highlights an inconsistency in standard turbulence models that prevents them from accurately capturing the physics of
Sudden Viscous Dissipation of Compressing Turbulence
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Davidovits, Seth; Fisch, Nathaniel J.
2016-03-11
Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Discrimination of porosity and fluid saturation using seismic velocity analysis
Berryman, James G.
2001-01-01
The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.
Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.
2015-01-15
In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [â€œAn examination of forcing in direct numerical simulations of turbulence,â€ Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-15
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Li, P.W.; Daisaka, H.; Kawaguchi, Y.; Yabe, A.; Hishida, K.; Maeda, M.
1999-07-01
The turbulent characteristics of a surfactant water solution in changing from drag-reducing flow to turbulent flow inside a two-dimensional smooth channel and in changing from turbulent flow to drag-reducing flow in the same channel with a mesh plug were investigated through LDV measurement in this study. The mesh plug was used to exert high shear stress to destroy micelle structures in the surfactant solution so that turbulence could be produced for better heat transfer. The two-component LDV system was installed on a movable platform, which could be moved streamwise of the flow to measure the two-dimensional velocity at different stations downstream from the mesh plug. The surfactant tested was Cetyltrimethyl ammonium chloride (C{sub 16}H{sub 33}N(CH{sub 3}){sub 3}Cl, abbreviated as CTAC). Local tap water was used as solvent and same weight concentration of sodium salicylate was used as the counter-ion material. The investigation of turbulent parameters for the drag-reducing flow with increasing Reynolds number showed that when the Reynolds number exceeded the drag-reducing region, the turbulent character was the same as that of water. The turbulent parameters of surfactant flow downstream the mesh plug showed that the high heat transfer region had the same turbulent intensity as that of water flow. As the critical Reynolds number was approached, it became easier to obtain such a turbulent region by mesh plug. In such cases, the mesh helped to create high wall shear stress and therefore to destroy the super-ordered structures of rod-like micelles for introducing turbulence. However, it was found that the turbulent intensities of the velocity gradually decreased to the same as those of drag-reducing flow downstream from the mesh because the mesh plug only produced a local high shear stress.
White light velocity interferometer
Erskine, D.J.
1997-06-24
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
White light velocity interferometer
Erskine, David J.
1997-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, David J.
1999-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, D.J.
1999-06-08
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
Compound cooling flow turbulator for turbine component
Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J
2014-11-25
Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.
Boundary Layer Cloud Turbulence Characteristics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface
Unitaxial constant velocity microactuator
McIntyre, T.J.
1994-06-07
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.
Unitaxial constant velocity microactuator
McIntyre, Timothy J.
1994-01-01
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.
Primordial magnetic field amplification from turbulent reheating
Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br
2010-08-01
We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.
Seismicity and Improved Velocity Structure in Kuwait
Gok, R M; Rodgers, A J; Al-Enezi, A
2006-01-26
The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methaneâ€“air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methaneâ€“air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmoreÂ Â» the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.Â«Â less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore »the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methaneâ€“air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methaneâ€“air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.
Turbulent flame speeds and NOx kinetics of HHC fuels with contaminants and high dilution levels
Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Petersen, Eric
2012-09-30
This progress report documents the second year of the project, from October 1, 2011 through September 30, 2012. Characterization of the new turbulent flame speed vessel design was completed. Turbulence statistics of three impellers with different geometric features were measured using particle image velocimetry inside a Plexiglas model (~1:1 scale) of a cylindrical flame speed vessel (30.5 cm ID × 35.6 cm L). With four impellers arranged in a central-symmetric configuration, turbulence intensities between 1.2 and 1.7 m/s with negligible mean flow (0.1u´) were attained at the lowest fan speeds. Acceptable ranges for homogeneity and isotropy ratios of the velocity fields were set within a narrow bandwidth near unity (0.9-1.1). Homogeneity ratios were unaffected by changes to the impeller geometry, and the prototype with the higher number of blades caused the flow to become anisotropic. The integral length scale of the flow fields varied between 27 and 20 mm, which correlates well with those typically observed inside a gas turbine combustor. The mechanism to independently vary the intensity level and the integral length scale was established, where turbulence intensity level was dependent on the rotational speed of the fan, and the integral length scale decreased with increasing blade pitch angle. Ignition delay times of H?/O? mixtures highly diluted with Ar and doped with various amounts of N?O (100, 400, 1600, 3200 ppm) were measured in a shock tube behind reflected shock waves over a wide range of temperatures (940-1675 K). The pressure range investigated during this work (around 1.6, 13, and 30 atm) allows studying the effect of N?O on hydrogen ignition at pressure conditions that have never been heretofore investigated. Ignition delay times were decreased when N?O was added to the mixture only for the higher nitrous oxide concentrations, and some changes in the activation energy were also observed at 1.5 and 30 atm. When it occurred, the decrease in the ignition
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,moreÂ Â» as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.Â«Â less
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
Chang, L.; Hole, M. J.; Corr, C. S.
2011-04-15
A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature, and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetized plasma [WOMBAT (waves on magnetized beams and turbulence)], with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalized rotation frequency, lower temperature, and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These results consolidate earlier claims that the density and floating potential oscillations are a resistive drift mode, driven by the density gradient. To our knowledge, this is the first detailed physics model of flowing plasmas in the diffusion region away from the RF source. Possible extensions to the model, including temperature nonuniformity and magnetic field oscillations, are also discussed.
Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...
by mantle-derived melts has occurred. Authors Lee K. Steck, Clifford H. Thurber, Michael C. Fehler, William J. Lutter, Peter M. Roberts, W. Scott Baldridge, Darrik G....
MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES
Josephson, V.
1960-01-26
A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.
APPARATUS FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES
Scott, F.R.; Josephson, V.
1960-02-01
>A device for producing a high-energy ionized gas region comprises an evacuated tapered insulating vessel and a substantially hemispherical insulating cap hermetically affixed to the large end of the vessel, an annular electrode having a diameter equal to and supported in the interior wall of the vessel at the large end and having a conductive portion inside the vessel, a second electrode supported at the small end of the vessel, means connected to the vessel for introducing a selected gas therein, a source of high potential having two poles. means for connecting one pole of the high potential source to the annular electrode, and means for connecting the other pole of the potential source to the second electrode.
Comparison of Hydrocode Simulations with Measured Shock Wave Velocities
Hixson, R. S.; Veeser, L. R.
2014-11-30
We have conducted detailed 1- and 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly made to understand various shock processes in a sample and to design shock experiments. We began with relatively simple shock experiments, where we examined the effects of the equation of state and the viscoplastic strength models. Eventually we included spallation in copper and iron and a solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations.
Viscoacoustic wave form inversion of transmission data for velocity...
Office of Scientific and Technical Information (OSTI)
and attenuation. An efficient frequency domain implementation is applied that consists of performing a series of single frequency inversions sweeping from low to high frequency. ...
The impact of pedestal turbulence and electron inertia on edge-localized-mode crashes
Xi, P. W.; Lawrence Livermore National Laboratory, Livermore, California 94550 ; Xu, X. Q.; Diamond, P. H.; Center for Astrophysics and Space Sciences and Department of Physics, University of California San Diego, La Jolla, California 92093-0429
2014-05-15
We demonstrate that the occurrence of Edge-Localized-Modes (ELM) crashes does not depend only on the linear peeling-ballooning threshold, but also relies on nonlinear processes. Wave-wave interaction constrains the growth time of a mode, thus inducing a shift in the criterion for triggering an ELM crash. An ELM crash requires the P-B growth rate to exceed a critical value ?>?{sub c}, where ?{sub c} is set by 1/?{sup ¯}{sub c}, and ?{sup ¯}{sub c} is the averaged mode phase coherence time. For 0turbulence develops but drives enhanced turbulent transport. We also show that electron inertia dramatically changes the instability threshold when density is low. However, P-B turbulence alone cannot generate enough current transport to allow fast reconnection during an ELM crash.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmoreÂ Â» a single model parameter Î² p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.Â«Â less
One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.
2015-06-01
The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles aremoreÂ Â» shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.Â«Â less
Quantitative imaging of turbulent and reacting flows
Paul, P.H.
1993-12-01
Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.
Dynamic Multiscale Averaging (DMA) of Turbulent Flow
Richard W. Johnson
2012-09-01
A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical
Conversion of borehole Stoneley waves to channel waves in coal
Johnson, P.A.; Albright, J.N.
1987-01-01
Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.
The various manifestations of collisionless dissipation in wave propagation
Benisti, Didier; Morice, Olivier; Gremillet, Laurent
2012-06-15
The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.
Magnetohydrodynamic turbulence: Observation and experiment
Brown, M. R.; Schaffner, D. A.; Weck, P. J.
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma
Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)
2014-04-15
We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
Compressible Turbulence and Interactions with Shock Waves and...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(RMI) Why it Matters: Shockturbulence interaction is a fundamental phenomenon in fluid mechanics that occurs in a wide range of interesting problems in various...
Burkert, A.; Naab, T.; Genzel, R.; Bouche, N.; Cresci, G.; Khochfar, S.; Schreiber, N. Foerster; Tacconi, L.; Hicks, E.; Lutz, D.; Davies, R.; Buschkamp, P.; Genel, S.; Sommer-Larsen, J.; Sternberg, A.; Shapiro, K. E-mail: genzel@mpe.mpg.d
2010-12-20
The structure of a sample of high-redshift (z {approx} 2), rotating galaxies with high star formation rates and turbulent gas velocities of {sigma} {approx} 40-80 km s{sup -1} is investigated. Fitting the observed disk rotational velocities and radii with a Mo et al. (MMW) model requires unusually large disk spin parameters {lambda}{sub d}>0.1 and disk-to-dark halo mass fractions of m{sub d} {approx} 0.2, close to the cosmic baryon fraction. The galaxies segregate into dispersion-dominated systems with 1 {<=} v{sub max}/{sigma} {<=} 3, maximum rotational velocities v{sub max{<=}} 200 km s{sup -1}, and disk half-light radii r{sub 1/2{approx}} 1-3 kpc, and rotation-dominated systems with v{sub max}> 200 km s{sup -1}, v{sub max}/{sigma}>3, and r{sub 1/2{approx}} 4-8 kpc. For the dispersion-dominated sample, radial pressure gradients partly compensate the gravitational force, reducing the rotational velocities. Including this pressure effect in the MMW model, dispersion-dominated galaxies can be fitted well with spin parameters of {lambda}{sub d} = 0.03-0.05 for high disk mass fractions of m{sub d} {approx} 0.2 and with {lambda}{sub d} = 0.01-0.03 for m{sub d} {approx} 0.05. These values are in good agreement with cosmological expectations. For the rotation-dominated sample, however, pressure effects are small and better agreement with theoretically expected disk spin parameters can only be achieved if the dark halo mass contribution in the visible disk regime (2-3 x r{sub 1/2}) is smaller than predicted by the MMW model. We argue that these galaxies can still be embedded in standard cold dark matter halos if the halos do not contract adiabatically in response to disk formation. In this case, the data favor models with small disk mass fractions of m{sub d} = 0.05 and disk spin parameters of {lambda}{sub d} {approx} 0.035. It is shown that the observed high turbulent gas motions of the galaxies are consistent with a Toomre instability parameter Q = 1 which is equal to
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gray, William J.; Scannapieco, Evan
2016-02-22
Here, we carry out direct numerical simulations of turbulent astrophysical media exposed to the redshift zero metagalactic background. The simulations assume solar composition and explicitly track ionizations, recombinations, and ion-by-ion radiative cooling for hydrogen, helium, carbon, nitrogen, oxygen, neon, sodium, magnesium, silicon, sulfur, calcium, and iron. Each run reaches a global steady state that depends not only on the ionization parameter,moreÂ Â» $U,$ and mass-weighted average temperature, $${T}_{{\\rm{MW}}},$$ but also on the one-dimensional turbulent velocity dispersion, $${\\sigma }_{{\\rm{1D}}}$$. We carry out runs that span a grid of models with U ranging from 0 to 10â€“1 and $${\\sigma }_{{\\rm{1D}}}$$ ranging from 3.5 to 58 km sâ€“1, and we vary the product of the mean density and the driving scale of the turbulence, $${nL},$$ which determines the average temperature of the medium, from $${nL}={10}^{16}$$ to $${nL}={10}^{20}$$ cmâ€“2. The turbulent Mach numbers of our simulations vary from $$M\\approx 0.5$$ for the lowest velocity dispersion cases to $$M\\approx 20$$ for the largest velocity dispersion cases. When $$M\\lesssim 1,$$ turbulent effects are minimal, and the species abundances are reasonably described as those of a uniform photoionized medium at a fixed temperature. On the other hand, when $$M\\gtrsim 1,$$ dynamical simulations such as the ones carried out here are required to accurately predict the species abundances. We gather our results into a set of tables to allow future redshift zero studies of the intergalactic medium to account for turbulent effects.Â«Â less
Supercomputers Capture Turbulence in the Solar Wind
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is
Characterizing the convective velocity fields in massive stars
Chatzopoulos, Emmanouil; Graziani, Carlo; Couch, Sean M.
2014-11-01
We apply the mathematical formalism of vector spherical harmonics decomposition to convective stellar velocity fields from multidimensional hydrodynamics simulations and show that the resulting power spectra furnish a robust and stable statistical description of stellar convective turbulence. Analysis of the power spectra helps identify key physical parameters of the convective process such as the dominant scale of the turbulent motions that influence the structure of massive evolved pre-supernova stars. We introduce the numerical method that can be used to calculate vector spherical harmonics power spectra from two-dimensional (2D) and three-dimensional (3D) convective shell simulation data. Using this method we study the properties of oxygen shell burning and convection for a 15 M {sub â˜‰} star simulated by the hydrodynamics code FLASH in 2D and 3D. We discuss the importance of realistic initial conditions to achieving successful core-collapse supernova explosions in multidimensional simulations. We show that the calculated power spectra can be used to generate realizations of the velocity fields of presupernova convective shells. We find that the slope of the solenoidal mode power spectrum remains mostly constant throughout the evolution of convection in the oxygen shell in both 2D and 3D simulations. We also find that the characteristic radial scales of the convective elements are smaller in 3D than in 2D, while the angular scales are larger in 3D.
Thakur, S. C. Tynan, G. R.; Brandt, C.; Cui, L.; Gosselin, J. J.; Light, A.
2014-11-15
We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.
Structure of turbulent hydrogen jet diffusion flames with or without swirl
Takahashi, Fumiaki; Vangsness, M.D.; Durbin, M.D.; Schmoll, W.J.
1995-12-31
The aerodynamic and thermal structure of double-concentric turbulent hydrogen jet diffusion flames with or without swirl has been investigated using three-component laser-Doppler velocimetry (LDV) and coherent anti-Stokes Raman spectroscopy. The LDV data were conditionally sampled upon the origin of the fluid (jet, annulus, or external) to avoid the velocity-bias problem and to gain more detailed information on the turbulent structure. As the mean jet velocity was increased, the turbulent flame zone shifted inward and the thermal layer became thinner, whereas swirl created a radial velocity even at the annulus air exit, thereby shifting the flame zone outward and broadening the thermal layer. The probability-density functions (pdf) of velocity components,m their 21 moments (up to fourth order), temperature pdf, mean, and root-mean-square fluctuation temperature were determined at numerous radial locations at seven axial heights in the near field (<26.5 jet diameters). The data can be used to validate computational models.
Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar
Newsom, Rob K.; Calhoun, Ron; Ligon, David; Allwine, K Jerry
2008-04-01
Dual-Doppler lidar observations are used to investigate the structure and evolution of surface layer flow over a suburban area. The observations were made during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City in the summer of 2003. This study focuses specifically on a 10-hour sequence of scan data beginning shortly after noon local time on July 7, 2003. During this period two coherent Doppler lidars performed overlapping low elevation angle sector scans upwind and south of Oklahoma City’s central business district (CBD). Radial velocity data from the two lidars are processed to reveal the structure and evolution of the horizontal velocity field in the surface layer throughout the afternoon and evening transition periods. The retrieved velocity fields clearly show a tendency for turbulence structures to be elongated in the direction of the mean flow throughout the entire 10-hour study period. As the stratification changed from unstable to weakly stable the turbulence structures became increasingly more linearly organized, and the cross-stream separation between high- and low-speed regoins decreased. The spatially resolved velocity fields are used to estimate streamwise and cross-stream turbulence length scales as functions of stability.
Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence
Dubois, D.F.; Rose, H.A.; Russell, D.
1995-12-01
Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where the weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.
Turbulence patterns and neutrino flavor transitions in high-resolution supernova models
Borriello, Enrico; Mirizzi, Alessandro [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Chakraborty, Sovan [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Janka, Hans-Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Lisi, Eligio, E-mail: enrico.borriello@desy.de, E-mail: sovan@mppmu.mpg.de, E-mail: thj@mpa-garching.mpg.de, E-mail: eligio.lisi@ba.infn.it, E-mail: alessandro.mirizzi@desy.de [INFN—Sezione di Bari, Via Orabona 4, 70126 Bari (Italy)
2014-11-01
During the shock-wave propagation in a core-collapse supernova (SN), matter turbulence may affect neutrino flavor conversion probabilities. Such effects have been usually studied by adding parametrized small-scale random fluctuations (with arbitrary amplitude) on top of coarse, spherically symmetric matter density profiles. Recently, however, two-dimensional (2D) SN models have reached a space resolution high enough to directly trace anisotropic density profiles, down to scales smaller than the typical neutrino oscillation length. In this context, we analyze the statistical properties of a large set of SN matter density profiles obtained in a high-resolution 2D simulation, focusing on a post-bounce time (2 s) suited to study shock-wave effects on neutrino propagation on scales as small as O(100) km and possibly below. We clearly find the imprint of a broken (Kolmogorov-Kraichnan) power-law structure, as generically expected in 2D turbulence spectra. We then compute the flavor evolution of SN neutrinos along representative realizations of the turbulent matter density profiles, and observe no or modest damping of the neutrino crossing probabilities on their way through the shock wave. In order to check the effect of possibly unresolved fluctuations at scales below O(100) km, we also apply a randomization procedure anchored to the power spectrum calculated from the simulation, and find consistent results within ± 1? fluctuations. These results show the importance of anchoring turbulence effects on SN neutrinos to realistic, fine-grained SN models.
Predicted impacts of proton temperature anisotropy on solar wind turbulence
Klein, K. G.; Howes, G. G.
2015-03-15
Particle velocity distributions measured in the weakly collisional solar wind are frequently found to be non-Maxwellian, but how these non-Maxwellian distributions impact the physics of plasma turbulence in the solar wind remains unanswered. Using numerical solutions of the linear dispersion relation for a collisionless plasma with a bi-Maxwellian proton velocity distribution, we present a unified framework for the four proton temperature anisotropy instabilities, identifying the associated stable eigenmodes, highlighting the unstable region of wavevector space and presenting the properties of the growing eigenfunctions. Based on physical intuition gained from this framework, we address how the proton temperature anisotropy impacts the nonlinear dynamics of the AlfvÃ©nic fluctuations underlying the dominant cascade of energy from large to small scales and how the fluctuations driven by proton temperature anisotropy instabilities interact nonlinearly with each other and with the fluctuations of the large-scale cascade. We find that the nonlinear dynamics of the large-scale cascade is insensitive to the proton temperature anisotropy and that the instability-driven fluctuations are unlikely to cause significant nonlinear evolution of either the instability-driven fluctuations or the turbulent fluctuations of the large-scale cascade.
Turbulence elasticity—A new mechanism for transport barrier dynamics
Guo, Z. B.; Diamond, P. H.; Kosuga, Y.; Gürcan, Ö. D.
2014-09-15
We present a new, unified model of transport barrier formation in “elastic” drift wave-zonal flow (DW-ZF) turbulence. A new physical quantity—the delay time (i.e., the mixing time for the DW turbulence)—is demonstrated to parameterize each stage of the transport barrier formation. Quantitative predictions for the onset of limit-cycle-oscillation (LCO) among DW and ZF intensities (also denoted as I-mode) and I-mode to high-confinement mode (H-mode) transition are also given. The LCO occurs when the ZF shearing rate (|?v?{sub ZF}{sup ?}|) enters the regime ??{sub k}<|?V?{sub ZF}{sup ?}|turbulence decorrelation rate and ?{sub cr} is the threshold delay time. In the basic predator-prey feedback system, ?{sub cr} is also derived. The I-H transition occurs when |?V?{sub E×B}{sup ?}|>?{sub cr}{sup ?1}, where the mean E?×?B shear flow driven by ion pressure “locks” the DW-ZF system to the H-mode by reducing the delay time below the threshold value.
Vorticity dynamics after the shockâ€“turbulence interaction
Livescu, Daniel; Ryu, Jaiyoung
2015-07-23
In this article, the interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756, R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, M_{s}, up to M_{s} = 10. It is shown that, as M_{s} increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.
Vorticity dynamics after the shockâ€“turbulence interaction
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Livescu, Daniel; Ryu, Jaiyoung
2015-07-23
In this article, the interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756, R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviatemoreÂ Â» the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, Ms, up to Ms = 10. It is shown that, as Ms increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.Â«Â less
Magnetic helicity signature produced by cross-field 2D turbulence
Markovskii, S. A.; Vasquez, Bernard J.
2013-06-13
Hybrid numerical simulations of freely decaying 2D turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The normalized magnetic helicity of the initial large-scale fluctuations is zero, while the normalized cross-helicity is not. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations.
GMTI radar minimum detectable velocity.
Richards, John Alfred
2011-04-01
Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.
MACCS2/Deposition Velocity Workshop
Office of Energy Efficiency and Renewable Energy (EERE)
The Department of Energyâ€™s Chief of Nuclear Safety hosted a MACCS2/Deposition Velocity Workshop on June 5-6, 2012, in Germantown, Maryland. Approximately 70 participants attended. The purpose of...
Turbulence structure in free-surface channel flows
Rashidi, M.; Banerjee, S.
1988-09-01
A turbulence structure in horizontal liquid streams bounded by a free surface and a wall has been investigated using 10--25 ..mu..m oxygen bubbles as tracers. High speed video movies indicate that the dominant flow structure is caused by the periodic ejection of intensely turbulent fluid with low streamwise momentum from the wall region into the relatively quiescent bulk fluid which it displaces and mixes with slowly. The motion of these bursts is constrained by the free interface. Between bursts and the interface a high speed region with a steep velocity gradient develops as a consequence. This in turn causes progress of the burst fluid toward the interface to slow down and eventually to turn back toward the wall, giving rise to characteristic rolling structures, which rotate clockwise if the flow is viewed as going from left to right. To complement the video studies, quantitative data were obtained by analyzing bubble streak lines generated by photography of optically chopped flashes. These data show that in the vicinity of the interface the velocity fluctuations normal to it are damped whereas those parallel to it are enhanced. Analysis of conditional samples of the data indicate that fluid with relatively low streamwise momentum tends to move toward the interface while fluid with high momentum moves away giving rise to rotating structures that roll along with the flow in agreement with the video studies. A high degree of correlation between ejection events near the wall and the fluid motion near the interface also confirm that the bursts extend across the flow stream. This has important implications for surface renewal theories of turbulent transport at fluid--fluid interfaces.
Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters
Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian
2014-03-02
Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the â€œNoise Auto-Correlationâ€ (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.
DIFFERENTIAL GROUP-VELOCITY DETECTION OF FLUID PATHS
Leland Timothy Long
2005-12-20
For nearly 50 years, surface waves that propagate through near-surface soils have been utilized in engineering for the determination of the small-strain dynamic properties of soils. These techniques, although useful, have not been sufficiently precise to use in detecting the subtle changes in soil properties that accompany short-term changes in fluid content. The differential techniques developed in this research now make it possible to monitor small changes (less than 3 cm) in the water level of shallow soil aquifers. Using inversion techniques and tomography, differential seismic techniques could track the water level distribution in aquifers with water being pumped in or out. Differential surface wave analysis could lead to new ways to monitor reservoir levels and verify hydrologic models. Field data obtained during this investigation have measured changes in surface-wave phase and group velocity before and after major rain events, and have detected subtle changes associated with pumping water into an aquifer and pumping water out of an aquifer. This research has established analysis techniques for observing these changes. These techniques combine time domain measurements to isolate surface wave arrivals with frequency domain techniques to determine the effects as a function of frequency. Understanding the differences in response as a function of wave frequency facilitates the inversion of this data for soil velocity structure. These techniques have also quantified many aspects of data acquisition and analysis that are important for significant results. These include tight control on the character of the source and proper placement of the geophones. One important application is the possibility that surface waves could be used to monitor and/or track fluid movement during clean-up operations, verifying that the fluid reached all affected areas. Extending this to a larger scale could facilitate monitoring of water resources in basins without having to drill many
Modeling fault-zone guided waves of microearthquakes in a geothermal...
velocity structure have been estimated. It is suggested here that the identification and modeling of such guided waves is an effective tool to locate fracture-induced,...
Collision-dependent power law scalings in two dimensional gyrokinetic turbulence
Cerri, S. S. Bañón Navarro, A.; Told, D.; Jenko, F.
2014-08-15
Nonlinear gyrokinetics provides a suitable framework to describe short-wavelength turbulence in magnetized laboratory and astrophysical plasmas. In the electrostatic limit, this system is known to exhibit a free energy cascade towards small scales in (perpendicular) real and/or velocity space. The dissipation of free energy is always due to collisions (no matter how weak the collisionality), but may be spread out across a wide range of scales. Here, we focus on freely decaying two dimensional electrostatic turbulence on sub-ion-gyroradius scales. An existing scaling theory for the turbulent cascade in the weakly collisional limit is generalized to the moderately collisional regime. In this context, non-universal power law scalings due to multiscale dissipation are predicted, and this prediction is confirmed by means of direct numerical simulations.
Turbulent equipartitions in two dimensional drift convection
Isichenko, M.B.; Yankov, V.V.
1995-07-25
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits.
Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows
Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; Kosovic, Branko
2015-12-08
In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocity and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of â‰ˆ 10 m sâ€“1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.
Bakosi, Jozsef; Ristorcelli, Raymond J
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Rosenberg, Duane L; Pouquet, Dr. Annick; Mininni, Dr. Pablo D.; Marino, Dr. Raffaele
2015-01-01
We report results on rotating stratified turbulence in the absence of forcing, with large-scale isotropic initial conditions, using direct numerical simulations computed on grids of up to $4096^3$ points. The Reynolds and Froude numbers are respectively equal to $Re=5.4\\times 10^4$ and $Fr=0.0242$. The ratio of the Brunt-V\\"ais\\"al\\"a to the inertial wave frequency, $N/f$, is taken to be equal to 5, a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This gives a global buoyancy Reynolds number $R_B=ReFr^2=32$, a value sufficient for some isotropy to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-scale dynamics and confirm that the Froude number based on a typical vertical length scale is of order unity, with strong gradients in the vertical. Two characteristic scales emerge from this computation, and are identified from sharp variations in the spectral distribution of either total energy or helicity. A spectral break is also observed at a scale at which the partition of energy between the kinetic and potential modes changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous in the flow in the velocity and temperature fields, and a large-scale enhancement of energy is also observed, directly attributable to the effect of rotation.
Statistical evidence for the existence of AlfvÃ©nic turbulence in solar coronal loops
Liu, Jiajia; McIntosh, Scott W.; Bethge, Christian; De Moortel, Ineke; Threlfall, James
2014-12-10
Recent observations have demonstrated that waves capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which timescales and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that AlfvÃ©nic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study by analyzing 37 clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter instrument. We observe AlfvÃ©nic perturbations with phase speeds which range from 250 to 750 km s{sup â€“1} and periods from 140 to 270 s for the chosen loops. While excesses of high-frequency wave power are observed near the apex of some loops (tentatively supporting the onset of AlfvÃ©nic turbulence), we show that this excess depends on loop length and the wavelength of the observed oscillations. In deriving a proportional relationship between the loop length/wavelength ratio and the enhanced wave power at the loop apex, and from the analysis of the line widths associated with these loops, our findings are supportive of the existence of AlfvÃ©nic turbulence in coronal loops.
Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.
2014-08-10
We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.
Laboratory experiment on EM backscatter from Farley-Buneman and gradient drift waves
Alport, M.J.; D'Angelo, N.; Pecseli, H.L.
1981-09-01
Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent ideas on EM scattering equatorial and high-latitude ionospheric waves and irregularities.
Origin of ion-cyclotron turbulence in the downward Birkeland current region
Basu, B.; Jasperse, J. R.; Lund, E. J.; Grossbard, N.
2011-02-15
Linear stability analysis of the electron velocity distributions, which are observed in the FAST satellite measurements in the downward Birkeland current region of the magnetosphere, is presented. The satellite-measured particle (electrons and protons) velocity distributions are fitted with analytic functions and the dispersion relation is derived in terms of the plasma dispersion functions associated with those distribution functions. Numerical solutions of the dispersion relation show that the bump-on-tail structure of the electron velocity distribution can excite electrostatic ion-cyclotron instabilities by the Landau resonance mechanism. Nonlinear evolution of these instabilities may explain the observed electrostatic ion-cyclotron turbulence in the Birkeland current region. Excitation of other types of instabilities by the fitted electron velocity distributions and their relevance are also discussed.
Validation of a zero-equation turbulence model for complex indoor airflow simulation
Srebric, J.; Chen, Q.; Glicksman, L.R.
1999-07-01
The design of an indoor environment requires a tool that can quickly predict the three-dimensional distributions of air velocity, temperature, and contaminant concentrations in the room on a desktop computer. This investigation has tested a zero-equation turbulence model for the prediction of the indoor environment in an office with displacement ventilation, with a heater and infiltration and with forced convection and a partition wall. The computed air velocity and temperature distributions agree well with the measured data. The computing time for each case is less than seven minutes on a PC Pentium II, 350 MHz.
Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements
Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan
2009-08-15
In this work an alumina-zirconia ceramic composites have been prepared with {alpha}-Al{sub 2}O{sub 3} contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest {alpha}-Al{sub 2}O{sub 3} content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.
KINETIC PLASMA TURBULENCE IN THE FAST SOLAR WIND MEASURED BY CLUSTER
Roberts, O. W.; Li, X.; Li, B.
2013-05-20
The k-filtering technique and wave polarization analysis are applied to Cluster magnetic field data to study plasma turbulence at the scale of the ion gyroradius in the fast solar wind. Waves are found propagating in directions nearly perpendicular to the background magnetic field at such scales. The frequencies of these waves in the solar wind frame are much smaller than the proton gyrofrequency. After the wavevector k is determined at each spacecraft frequency f{sub sc}, wave polarization property is analyzed in the plane perpendicular to k. Magnetic fluctuations have {delta}B > {delta}B{sub Parallel-To} (here the Parallel-To and refer to the background magnetic field B{sub 0}). The wave magnetic field has right-handed polarization at propagation angles {theta}{sub kB} < 90 Degree-Sign and >90 Degree-Sign . The magnetic field in the plane perpendicular to B{sub 0}, however, has no clear sense of a dominant polarization but local rotations. We discuss the merits and limitations of linear kinetic Alfven waves (KAWs) and coherent Alfven vortices in the interpretation of the data. We suggest that the fast solar wind turbulence may be populated with KAWs, small-scale current sheets, and Alfven vortices at ion kinetic scales.
Stochastic (w*) Convergence for Turbulent Combustion | Argonne...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Stochastic (w*) Convergence for Turbulent Combustion PI Name: James Glimm PI Email: ... chemistry for LES, and (2) stochastic (w*) convergence based on probability ...
Visible imaging of edge turbulence in NSTX
S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al
2000-06-13
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.
3 - 4 Turbulent combustion Princeton.key
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
real question The flame surface density is created by flameturbulence interactions. Writing an equation for it requires to rederive equations for an interface in turbulence...
Approximate Model for Turbulent Stagnation Point Flow.
Dechant, Lawrence
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
Oscillations of a Turbulent Jet Incident Upon an Edge
J.C. Lin; D. Rockwell
2000-09-19
For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel
Asai, Ayumi; Isobe, Hiroaki; Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin'ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari; Shiota, Daikou; Oi, Akihito; Akioka, Maki
2012-02-15
We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.
Quenching and anisotropy of hydromagnetic turbulent transport
Karak, Bidya Binay; Brandenburg, Axel; Rheinhardt, Matthias; KÃ¤pylÃ¤, Petri J.; KÃ¤pylÃ¤, Maarit J.
2014-11-01
Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the Î± effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the Î± effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Î©Ã—J effect nearly the same quenching exponent is obtained as for Î±. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.
Admiralty Inlet Hub-Height Turbulence Measurements from June 2012
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kilcher, Levi
2012-06-18
This data is from measurements at Admiralty Head, in admiralty inlet. The measurements were made using an IMU equipped ADV mounted on a mooring, the 'Tidal Turbulence Mooring' or 'TTM'. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity may have some 'persistent motion contamination' due to mooring sway. The ADV was positioned 11m above the seafloor in 58m of water at 48.1515N, 122.6858W. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. For additional details on this dataset see the included Marine Energy Technology Symposium paper.
Turbulent electron transport in edge pedestal by electron temperature gradient turbulence
Singh, R.; Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 ; Jhang, Hogun; Diamond, P. H.; CMTFO and CASS, University of California, San Diego 92093-0424, California
2013-11-15
We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.
Visualization of Shock Wave Driven by Millimeter Wave Plasma in a Parabolic Thruster
Yamaguchi, Toshikazu; Shimada, Yutaka; Shiraishi, Yuya; Shibata, Teppei; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro
2010-05-06
By focusing a high-power millimeter wave beam generated by a 170 GHz gyrotron, a breakdown occurred and a shock wave was driven by plasma heated by following microwave energy. The shock wave and the plasma around a focal point of a parabolic thruster were visualized by a shadowgraph method, and a transition of structures between the shock wave and the plasma was observed. There was a threshold local power density to make the transition, and the propagation velocity at the transition was around 800 m/s.
PDF Study of Round Turbulent Condensing Jet using GPU Hardware...
Office of Scientific and Technical Information (OSTI)
Conference: PDF Study of Round Turbulent Condensing Jet using GPU Hardware. Citation Details In-Document Search Title: PDF Study of Round Turbulent Condensing Jet using GPU ...
Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling...
Office of Scientific and Technical Information (OSTI)
Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling Citation Details In-Document Search Title: Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling Authors: ...
Turbulence may be key to "fast magnetic reconnection" mystery
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Turbulence may be key to "fast magnetic reconnection" mystery Turbulence may be key to "fast magnetic reconnection" mystery The new research could lead to better understanding of ...
ASCR Workshop on Turbulent Flow Simulations at the Exascale:...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges...
Implementation and Validation of the BHR Turbulence Model in...
Office of Scientific and Technical Information (OSTI)
Turbulence is an often studied and ubiquitous phenomenon in nature, and modeling its effects is essential in many practical applications. Specifically the behavior of turbulence in ...
Stochastic models for turbulent reacting flows
Kerstein, A.
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Cyclone separator having boundary layer turbulence control
Krishna, Coimbatore R.; Milau, Julius S.
1985-01-01
A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.
DNS of a turbulent lifted DME jet flame
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Minamoto, Yuki; Chen, Jacqueline H.
2016-05-07
A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a â€œpentabrachialâ€ structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmoreÂ Â» locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.Â«Â less
Numerical simulations of strong incompressible magnetohydrodynamic turbulence
Mason, J.; Cattaneo, F.; Perez, J. C.; Boldyrev, S.
2012-05-15
Magnetised plasma turbulence pervades the universe and is likely to play an important role in a variety of astrophysical settings. Magnetohydrodynamics (MHD) provides the simplest theoretical framework in which phenomenological models for the turbulent dynamics can be built. Numerical simulations of MHD turbulence are widely used to guide and test the theoretical predictions; however, simulating MHD turbulence and accurately measuring its scaling properties is far from straightforward. Computational power limits the calculations to moderate Reynolds numbers and often simplifying assumptions are made in order that a wider range of scales can be accessed. After describing the theoretical predictions and the numerical approaches that are often employed in studying strong incompressible MHD turbulence, we present the findings of a series of high-resolution direct numerical simulations. We discuss the effects that insufficiencies in the computational approach can have on the solution and its physical interpretation.
Miniati, Francesco
2015-02-10
We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10{sup 15} M {sub ?} galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700 km s{sup –1} even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ? 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys.
Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment
Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.
2009-09-14
The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is marginally damped but will become destabilized by the magnetorotational instability with a modest increase in rotation rate.
Three axis velocity probe system
Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.
1992-01-01
A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.
Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence
Reddy, K. Sandeep; Kumar, Raghwendra; Verma, Mahendra K.
2014-10-15
We perform direct numerical simulations of quasi-static magnetohydrodynamic turbulence and compute various energy transfers including the ring-to-ring and conical energy transfers, and the energy fluxes of the perpendicular and parallel components of the velocity field. We show that the rings with higher polar angles transfer energy to ones with lower polar angles. For large interaction parameters, the dominant energy transfer takes place near the equator (polar angle ??(?)/2 ). The energy transfers are local both in wavenumbers and angles. The energy flux of the perpendicular component is predominantly from higher to lower wavenumbers (inverse cascade of energy), while that of the parallel component is from lower to higher wavenumbers (forward cascade of energy). Our results are consistent with earlier results, which indicate quasi two-dimensionalization of quasi-static magnetohydrodynamic flows at high interaction parameters.
Rose, H.; Dubois, D.; Russell, D.; Hanssen, A.
1996-03-01
This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflection altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic.
Roberts, Jesse D.; Chang, Grace; Jones, Craig
2014-09-01
The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.
Wave excitation by nonlinear coupling among shear AlfvÃ©n waves in a mirror-confined plasma
Ikezoe, R. Ichimura, M.; Okada, T.; Hirata, M.; Yokoyama, T.; Iwamoto, Y.; Sumida, S.; Jang, S.; Takeyama, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.
2015-09-15
A shear AlfvÃ©n wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the AlfvÃ©n ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in the magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.
Response Relationship Between Juvenile Salmon and an Autonomous Sensor in Turbulent Flows
Richmond, Marshall C.; Deng, Zhiqun; McKinstry, Craig A.; Mueller, Robert P.; Carlson, Thomas J.; Dauble, Dennis D.
2009-01-27
Juvenile fall chinook salmon (Oncorhynchus tshawythscha) and an autonomous sensor device (Sensor Fish) were exposed to turbulent shear flows in order to determine how hydraulic conditions effected fish injury response. Studies were designed to establish correlation metrics between Sensor Fish device measurements and live fish injuries by conducting concurrent releases in a range of turbulent shear flows. Comparisons were made for two exposure scenarios. In the fast-fish-to-slow-water scenario, test fish were carried by the fast-moving water of a submerged turbulent jet and exposed into the standing water of a flume. In the slow-fish-to-fast-water scenario, test fish were introduced into a turbulent jet from standing water through an introduction tube placed just outside the edge of the jet. Motion-tracking analysis was performed on high-speed, high-resolution digital videos of all the releases at water jet velocities ranging from 3 to 22.9 m Â· s^{-1}. Velocities of the Sensor Fish were very similar to those of live fish, but maximum accelerations of live fish were larger than those by Sensor Fish for all the nozzle velocities of both cenarios. A 10% probability of major injury threshold was found to occur at sensor fish accelerations of 513 and 260 (m Â· s^{-2}) for the fast-fish-to-slow-water and slow-fish-to-fast-water scenarios, respectively. The findings provide a linkage between laboratory experiments of fish injury, field survival studies, and numerical modeling.
Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure
Berge, P A; Bonner, B P
2002-01-03
Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and a second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.
Method of accelerating photons by a relativistic plasma wave
Dawson, John M.; Wilks, Scott C.
1990-01-01
Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.
1996-10-01
The capability of LDA measurements for future reburning experiments has now been demonstrated. Measurements of mean and turbulent gas and particle velocity have been obtained using Laser Doppler Anemometry (LDA) in the near burner and quarl region of the pulverized coal reactor. The mean and turbulent velocity at the burner outlet, or top of the quarl were obtained under non-reacting conditions in order to obtain realistic boundary conditions for comprehensive combustion modeling. Also, under cold flow it was determined that little error occurred in measuring mean velocities with LDA using pulverized coal as the seed particle. Thus, for mean velocities, coal particle and gas velocities were similar. Coal particle velocity profiles were obtained at three swirls and three axial locations. Gas species, and temperature maps for the reactor have now also been completed at three swirl settings in addition to the LDA data. Gas species obtained include CO, CO{sub 2}, O{sub 2} and NO. Calibration of the HCN and NH{sub 3}measurement has been successfully completed but no measurements in the reactor have been obtained. The design and fabrication of fuel and air injectors to be used for reburning are complete. The injectors have not yet been tested.
Detonation waves in pentaerythritol tetranitrate
Tarver, C.M.; Breithaupt, R.D.; Kury, J.W.
1997-06-01
Fabry{endash}Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry{endash}Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman{endash}Jouguet (C-J) model of detonation, and the reaction product Jones{endash}Wilkins{endash}Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich{endash}von Neumann{endash}Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure. {copyright} {ital 1997 American Institute of Physics.}
Tzvi Galchen; Mei Xu ); Eberhard, W.L. )
1992-11-30
This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. Here the authors present results on doppler LIDAR measurements used to measure a range of turbulence parameters in the region of the unstable planetary boundary layer (PBL). The parameters include, averaged velocities, cartesian velocities, variances in velocities, parts of the covariance associated with vertical fluxes of horizontal momentum, and third moments of the vertical velocity. They explain their analysis technique, especially as it relates to error reduction of the averaged turbulence parameters from individual measurements with relatively large errors. The scales studied range from 150m to 12km. With this new diagnostic they address questions about the behavior of the convectively unstable PBL, as well as the stable layer which overlies it.
Up-gradient particle flux in a drift wave-zonal flow system
Cui, L.; Tynan, G. R.; Thakur, S. C.; Diamond, P. H.; Brandt, C.
2015-05-15
We report a net inward, up-gradient turbulent particle flux in a cylindrical plasma when collisional drift waves generate a sufficiently strong sheared azimuthal flow that drives positive (negative) density fluctuations up (down) the background density gradient, resulting in a steepening of the mean density gradient. The results show the existence of a saturation mechanism for drift-turbulence driven sheared flows that can cause up-gradient particle transport and density profile steepening.
Measuring the AlfvÃ©nic nature of the interstellar medium: Velocity anisotropy revisited
Burkhart, Blakesley; Lazarian, A.; LeÃ£o, I. C.; De Medeiros, J. R.; Esquivel, A.
2014-08-01
The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel and Lazarian method to estimate the AlfvÃ©n Mach number using the structure function anisotropy in velocity centroid data from Position-Position-Velocity maps. We utilize three-dimensional magnetohydrodynamic simulations of fully developed turbulence, with a large range of sonic and AlfvÃ©nic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-AlfvÃ©n Mach number dependency found in Esquivel and Lazarian might change when taking the second moment of the Position-Position-Velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the magnetic field strength (i.e., AlfvÃ©n Mach number) and the line-of-sight orientation, with a secondary effect on sonic Mach number. If the line of sight is parallel to up to â‰ˆ45 deg off of the mean field direction, the velocity centroid anisotropy is not prominent enough to distinguish different AlfvÃ©nic regimes. The observed anisotropy is not strongly affected by including radiative transfer, although future studies should include additional tests for opacity effects. These results open up the possibility of studying the magnetic nature of the ISM using statistical methods in addition to existing observational techniques.
Broadband turbulent spectra in gamma-ray burst light curves
Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo
2014-05-10
Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.
Turbulence-chemistry interactions in reacting flows
Barlow, R.S.; Carter, C.D.
1993-12-01
Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.
Measuring In-Situ Mdf Velocity Of Detonation
Horine, Frank M.; James, Jr., Forrest B.
2005-10-25
A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.
Predicting stress-induced velocity anisotropy in rocks
Mavko, G.; Mukerji, T.; Godfrey, N.
1995-07-01
A simple transformation, using measured isotropic V{sub P} and V{sub S} versus hydrostatic pressure, is presented for predicting stress-induced seismic velocity anisotropy in rocks. The compliant, crack-like portions of the pore space are characterized by generalized compressional and shear compliances that are estimated form the isotropic V{sub P} and V{sub S}. The physical assumption that the compliant porosity is crack-like means that the pressure dependence of the generalized compliances is governed primarily by normal tractions resolved across cracks and defects. This allows the measured pressure dependence to be mapped form the hydrostatic stress state to any applied nonhydrostatic stress. Predicted P- and S-wave velocities agree reasonably well with uniaxial stress data for Barre Granite and Massillon Sandstone. While it is mechanically similar to methods based on idealized ellipsoidal cracks, the approach is relatively independent of any assumed crack geometry and is not limited to small crack densities.
Banta, R. M.
2003-06-01
The nocturnal low-level jet (LLJ) of the Great Plains of the central United States has been identified as a promising source of high-momentum wind flow for wind energy. The acceleration of the winds after sunset above the surface produces a jet profile in the wind velocity, with maximum speeds that often exceed 10 m s-1 or more at heights near 100 m or more. These high wind speeds are advantageous for wind energy generation. The high speeds aloft, however, also produce a region of high shear between the LLJ and the earth's surface, where the nocturnal flow is often calm or nearly so. This shear zone below the LLJ generates atmospheric waves and turbulence that can cause strong vibration in the turbine rotors. It has been suggested that these vibrations contribute to premature failures in large wind turbines, which, of course, would be a considerable disadvantage for wind energy applications. In October 1999, a field project called the Cooperative Atmosphere-Surface Exchange Study 1999 campaign, or CASES-99, was conducted in southeastern Kansas to study the nocturnal stable boundary layer. One of the instruments deployed during CASES-99 was the High-Resolution Doppler Lidar, a new scanning, remote-sensing, wind-mapping instrument.
Spontaneous emission of electromagnetic radiation in turbulent plasmas
Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.; Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul
2014-01-15
Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.
PRECISION RADIAL VELOCITIES WITH CSHELL
Crockett, Christopher J.; Prato, L.; Mahmud, Naved I.; Johns-Krull, Christopher M.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: lprato@lowell.edu E-mail: cmj@rice.edu
2011-07-10
Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.
Newberry EGS Seismic Velocity Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Templeton, Dennise
2013-10-01
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Alfvén wave solar model (AWSoM): Coronal heating
Van der Holst, B.; Sokolov, I. V.; Meng, X.; Jin, M.; Manchester, W. B. IV; Tóth, G.; Gombosi, T. I.
2014-02-20
We present a new version of the Alfvén wave solar model, a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfvén wave turbulence. The injection of Alfvén wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics include the following. (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfvén waves are partially reflected by the Alfvén speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength extreme ultraviolet images of CR2107 with the observations from STEREO/EUVI and the Solar Dynamics Observatory/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in the proximity of active regions sufficiently intensifies the dissipation and observable emission.
Jaeger, E.F.; Berry, L.A.; Batchelor, D.B.; Carter, M.D.; D'Azevedo, E.; Harvey, R.W.; Myra, J.R.; D'Ippolito, D.A.; Dumont, R.J.; Smithe, D.N.; Bonoli, P.T.; Wright, J.C.
2005-09-26
Self-consistent solutions for the wave electric field and particle distribution function are calculated for ion cyclotron heating in non-Maxwellian plasmas. The all-orders wave solver AORSA is generalized to treat non-thermal velocity distributions arising from fusion reactions, neutral beam injection, and wave driven diffusion in velocity space. Quasi-linear diffusion coefficients are derived directly from the wave electric fields and used to calculate velocity distribution functions with the CQL3D Fokker-Planck code. Self-consistent results are obtained by iterating the full-wave and Fokker-Planck solutions.
Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines
Poloski, Adam P.; Adkins, Harold E.; Abrefah, John; Casella, Andrew M.; Hohimer, Ryan E.; Nigl, Franz; Minette, Michael J.; Toth, James J.; Tingey, Joel M.; Yokuda, Satoru T.
2009-03-25
correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 ?m or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.
Feingold, G.; Frisch, A.S.; Cotton, W.R.
1999-09-01
Cloud radar, microwave radiometer, and lidar remote sensing data acquired during the Atlantic Stratocumulus Transition Experiment (ASTEX) are analyzed to address the relationship between (1) drop number concentration and cloud turbulence as represented by vertical velocity and vertical velocity variance and (2) drizzle formation and cloud turbulence. Six cases, each of about 12 hours duration, are examined; three of these cases are characteristic of nondrizzling boundary layers and three of drizzling boundary layers. In all cases, microphysical retrievals are only performed when drizzle is negligible (radar reflectivity{lt}{minus}17dBZ). It is shown that for the cases examined, there is, in general, no correlation between drop concentration and cloud base updraft strength, although for two of the nondrizzling cases exhibiting more classical stratocumulus features, these two parameters are correlated. On drizzling days, drop concentration and cloud-base vertical velocity were either not correlated or negatively correlated. There is a significant positive correlation between drop concentration and mean in-cloud vertical velocity variance for both nondrizzling boundary layers (correlation coefficient r=0.45) and boundary layers that have experienced drizzle (r=0.38). In general, there is a high correlation (r{gt}0.5) between radar reflectivity and in-cloud vertical velocity variance, although one of the boundary layers that experienced drizzle exhibited a negative correlation between these parameters. However, in the subcloud region, all boundary layers that experienced drizzle exhibit a negative correlation between radar reflectivity and vertical velocity variance. {copyright} 1999 American Geophysical Union
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
waves - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear
Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.
2014-10-01
In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to a constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.
MAGNETIC TRANSPORT ON THE SOLAR ATMOSPHERE BY LAMINAR AND TURBULENT AMBIPOLAR DIFFUSION
Hiraki, Y. [National Institute for Fusion Science (NIFS), Toki, Gifu (Japan); Krishan, V. [Raman Research Institute, Bangalore 560 080 (India); Masuda, S., E-mail: hiraki.yasutaka@nifs.ac.j [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi (Japan)
2010-09-10
The lower solar atmosphere consists of partially ionized turbulent plasmas harboring velocity field, magnetic field, and current density fluctuations. The correlations among these small-scale fluctuations give rise to large-scale flows and magnetic fields which decisively affect all transport processes. The three-fluid system consisting of electrons, ions, and neutral particles supports nonideal effects such as the Hall effect and ambipolar diffusion. Here, we study magnetic transport by the laminar- and turbulent-scale ambipolar diffusion processes using a simple model of the magnetic induction equation. Based on a linear analysis of the induction equation, we perform a one-dimensional numerical simulation to study the laminar ambipolar effect on medium-scale magnetic field structures. The nonlinearity of the laminar ambipolar diffusion creates magnetic structures with sharp gradients in the scale of hundreds of kilometers. We expect that these can be amenable to processes such as magnetic reconnection and energy release therefrom for heating and flaring of the solar plasma. Analyzing the characteristic timescales of these processes, we find that the turbulent diffusion timescale is smaller by several orders of magnitude than the laminar diffusion timescale. The effect of the modeled turbulent ambipolar diffusion on the obtained field structures is briefly discussed.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.
2014-10-01
In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to amoreÂ Â» constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.Â«Â less
Notes on the Langevin model for turbulent diffusion of ``marked`` particles
Rodean, H.C.
1994-01-26
Three models for scalar diffusion in turbulent flow (eddy diffusivity, random displacement, and on the Langevin equation) are briefly described. These models random velocity increment based Fokker-Planck equation is introduced as are then examined in more detail in the reverse order. The Fokker-Planck equation is the Eulerian equivalent of the Lagrangian Langevin equation, and the derivation of e outlined. The procedure for obtaining the deterministic and stochastic components of the Langevin equation from Kolmogorov`s 1941 inertial range theory and the Fokker-Planck equation is described. it is noted that a unique form of the Langevin equation can be determined for diffusion in one dimension but not in two or three. The Langevin equation for vertical diffusion in the non-Gaussian convective boundary layer is presented and successively simplified for Gaussian inhomogeneous turbulence and Gaussian homogeneous turbulence in turn. The Langevin equation for Gaussian inhomogeneous turbulence is mathematically transformed into the random displacement model. It is shown how the Fokker-Planck equation for the random displacement model is identical in form to the partial differential equation for the eddy diffusivity model. It is noted that the Langevin model is applicable in two cases in which the other two are not valid: (1) very close in time and distance to the point of scalar release and (2) the non-Gaussian convective boundary layer. The two- and three-dimensional cases are considered in Part III.
Supercomputers Capture Turbulence in the Solar Wind
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy ... he created tools to filter out the "noise" in the datasets. ...
TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING
Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo
2013-06-13
A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.
Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind
Howes, G. G.; Klein, K. G.; TenBarge, J. M.
2014-07-10
The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesisâ€”that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frameâ€”is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic AlfvÃ©n waves is not.
ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK
Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D
2007-03-28
Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Stellar explosions, instabilities, and turbulence
Drake, R. P.; Kuranz, C. C.; Miles, A. R.; Muthsam, H. J.; Plewa, T.
2009-04-15
It has become very clear that the evolution of structure during supernovae is centrally dependent on the pre-existing structure in the star. Modeling of the pre-existing structure has advanced significantly, leading to improved understanding and to a physically based assessment of the structure that will be present when a star explodes. It remains an open question whether low-mode asymmetries in the explosion process can produce the observed effects or whether the explosion mechanism somehow produces jets of material. In any event, the workhorse processes that produce structure in an exploding star are blast-wave driven instabilities. Laboratory experiments have explored these blast-wave-driven instabilities and specifically their dependence on initial conditions. Theoretical work has shown that the relative importance of Richtmyer-Meshkov and Rayleigh-Taylor instabilities varies with the initial conditions and does so in ways that can make sense of a range of astrophysical observations.
VELOCITY INDICATOR FOR EXTRUSION PRESS
Digney, F.J. Jr.; Bevilacqua, F.
1959-04-01
An indicator is presented for measuring the lowspeed velocity of an object in one direction where the object returns in the opposite direction at a high speed. The indicator comprises a drum having its axis of rotation transverse to the linear movement of the object and a tape wound upon the drum with its free end extending therefrom and adapted to be connected to the object. A constant torque is applied to the drum in a direction to wind the tape on the drum. The speed of the tape in the unwinding direction is indicated on a tachometer which is coupled through a shaft and clutch means to the drum only when the tape is unwinding.
Reaction and diffusion in turbulent combustion
Pope, S.B.
1993-12-01
The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.
Foxall, W; Schultz, C A; Tralli, D M
2004-09-21
The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational factors include: Radar frequency (dictated by required wave amplitude measurement accuracy and maximizing ranging, Doppler or interferometric sensitivity), time sampling (maximum seismic wave frequency and velocity), and overall system considerations such as mass, power and data rate. Technical challenges include characterization of, and compensation for, phase distortion resulting from atmospheric and ionospheric perturbations and turbulence, and effects of ground scattering characteristics and seismic
Makwana, K. D. Cattaneo, F.; Zhdankin, V.; Li, H.; Daughton, W.
2015-04-15
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-AlfvÃ©n waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub âŠ¥}{sup âˆ’1.3}. The kinetic code shows a spectral slope of k{sub âŠ¥}{sup âˆ’1.5} for smaller simulation domain, and k{sub âŠ¥}{sup âˆ’1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.
Newman, D. L.; Goldman, M. V.; Sen, N. [Center for Integrated Plasma Studies, University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Andersson, L.; Ergun, R. E. [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)
2008-07-15
A series of one-dimensional Vlasov simulations [Newman et al., Phys. Plasmas 15, 072902 (2008), this issue] show that a sufficiently dense and hot suprathermal electron population can stabilize strong laminar double layers over long periods while regulating their strength and velocity. When suprathermals are less dense or absent, the double layers tend to be sporadic and turbulent. A detailed comparison of the laminar and turbulent regimes reveals that the disruption of the laminar state can be triggered by kinetically modified Buneman instabilities on the low-potential side of the double layer, and by density perturbations that develop into nonlinear coherent shocklike structures on the high-potential side. These findings suggest that the suprathermal electrons may be responsible for suppressing both of these routes to disruption of the laminar state.
Prediction of turbulent buoyant flow using an RNG {kappa}-{epsilon} model
Gan, G.
1998-02-06
Buoyant flows occur in various engineering practices such as heating, ventilation, and air-conditioning of buildings. This phenomenon is particularly important in rooms with displacement ventilation, where supply air velocities are generally very low (< 0.2 m/s) so that the predominant indoor airflow is largely due to thermal buoyancy created by internal heat sources such as occupants and equipment. This type of ventilation system has been shown to be an effective means to remove excess heat and achieve good indoor air quality. Here, numerical predictions were carried out for turbulent natural convection in two tall air cavities. The standard and RNG {kappa}-{epsilon} turbulence models were used for the predictions. The predicted results were compared with experimental data from the literature, and good agreement between prediction and measurement was obtained. Improved prediction was achieved using the RNG {kappa}-{epsilon} model in comparison with the standard {kappa}-{epsilon} model. The principal parameters for the improvement were investigated.
Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.
2008-08-01
Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA’s High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.
Tangential velocity measurement using interferometric MTI radar
Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.
2006-01-03
Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.
Goodenough, C.; Kumar, S.; Marr-Lyon, M.; Boyts, A.; Prestridge, K. P.; Rightley, P. M.; Tomkins, C. D.; Cannon, M. T.; Kamm, J. R.; Rider, William; Zoldi, C. A.; Orlicz, G.; Vorobieff, P. V.
2004-01-01
We report applications of several high-speed photographic techniques to diagnose fluid instability and the onset of turbulence in an ongoing experimental study of the evolution of shock-accelerated, heavy-gas cylinders. Results are at Reynolds numbers well above that associated with the turbulent and mixing transitions. Recent developments in diagnostics enable high-resolution, planar (2D) measurements of velocity fields (using particle image velocimetry, or PIV) and scalar concentration (using planar laser-induced fluorescence, or PLIF). The purpose of this work is to understand the basic science of complex, shock-driven flows and to provide high-quality data for code validation and development. The combination of these high-speed optical methods, PIV and PLIF, is setting a new standard in validating large codes for fluid simulations. The PIV velocity measurements provide quantitative evidence of transition to turbulence. In the PIV technique, a frame transfer camera with a 1 ms separation is used to image flows illuminated by two 10 ns laser pulses. Individual particles in a seeded flow are tracked from frame to frame to produce a velocity field. Dynamic PLIF measurements of the concentration field are high-resolution, quantitative dynamic data that reveal finely detailed structure at several instances after shock passage. These structures include those associated with the incipient secondary instability and late-time transition. Multiple instances of the flow are captured using a single frame Apogee camera and laser pulses with 140 {mu}s spacing. We describe tradeoffs of diagnostic instrumentation to provide PLIF images.
Zhao, J. S.; Wu, D. J.; Voitenko, Y.; De Keyser, J.
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
Maeyama, S. Nakata, M.; Miyato, N.; Yagi, M.; Ishizawa, A.; Watanabe, T.-H.; Idomura, Y.
2014-05-15
Electromagnetic turbulence driven by kinetic ballooning modes (KBMs) in high-? plasma is investigated based on the local gyrokinetic model. Analysis of turbulent fluxes, norms, and phases of fluctuations shows that KBM turbulence gives narrower spectra and smaller phase factors than those in ion-temperature-gradient (ITG)-driven turbulence. This leads to the smaller transport fluxes in KBM turbulence than those in ITG turbulence even when they have similar linear growth rates. From the analysis of the entropy balance relation, it is found that the entropy transfer from ions to electrons through the field-particle interactions mainly drives electron perturbations, which creates radial twisted modes by rapid parallel motions of electrons in a sheared magnetic geometry. The nonlinear coupling between the dominant unstable mode and its twisted modes is important for the saturation of KBM turbulence, in contrast to the importance of zonal flow shearing in ITG turbulence. The coupling depends on the flux-tube domain with the one-poloidal-turn parallel length and on the torus periodicity constraint.
Problems of laminar-turbulent transition control in a boundary layer
Fedorov, A.V.; Levchenko, V. I.; Tumin, A.M. Moscow Physical-Technical Institute, )
1991-03-01
The overview of laminar-turbulent transition control compares different methods of transition control for swept-wing streams. The types of unstable disturbances in boundary layer are listed, and flow stabilization is described in terms of small disturbances. The control of the transition zone is based on the description of background disturbances, their transition into instability waves, and their linear and nonlinear amplifications. Specific references cite the applications to Tollmien-Schlichting waves, crossflow instability near an aircraft's leading edge, and unstable disturbances in a boundary layer over a curved surface. Methods of active control or wave cancellation to deal with the problem are listed including localized periodic heating, the introduction of vibrations, or the use of suction-blowing. The results of the comparative overview are of interest to aircraft and other aerospace applications to reduce drag and improve fuel efficiency. 111 refs.
EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS
Nirmol K. Podder
2009-03-17
In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1â€“20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas.
Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang
2015-12-28
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbineâ€“atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines creates the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.
Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang
2015-12-28
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbineâ€“atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmoreÂ Â» the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.Â«Â less
Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Proll, J. H. E.; Hegna, C. C.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.
2015-07-15
Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.
Plane wave method for elastic wave scattering by a heterogeneous...
Office of Scientific and Technical Information (OSTI)
Plane wave method for elastic wave scattering by a heterogeneous fracture Citation Details In-Document Search Title: Plane wave method for elastic wave scattering by a ...
Ultra Deep Wave Equation Imaging and Illumination
Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu
2006-09-30
In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).
Stable operating regime for traveling wave devices
Carlsten, Bruce E.
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
Seismic Surface-Wave Tomography of Waste Sites
Leland Timothy Long
2002-12-17
Surface-wave group-velocity tomography is an efficient way to obtain images of the group velocity over a test area. Because Rayleigh-wave group velocity depends on frequency, there are separate images for each frequency. Thus, at each point in these images the group velocities define a dispersion curve, a curve that relates group velocity to frequency. The objective of this study has been to find an accurate and efficient way to find the shear-wave structure from these dispersion curves. The conventional inversion techniques match theoretical and observed dispersion curves to determine the structure. These conventional methods do not always succeed in correctly differentiating the fundamental and higher modes, and for some velocity structures can become unstable. In this research a perturbation technique was developed. The perturbation method allows the pre-computation of a global inversion matrix which improves efficiency in obtaining solutions for the structure. Perturbation methods are stable and mimic the averaging process in wave propagation; hence. leading to more accurate solutions. Finite difference techniques and synthetic trace generation techniques were developed to define the perturbations. A new differential trace technique was developed for slight variations in dispersion. The improvements in analysis speed and the accuracy of the solution could lead to real-time field analysis systems, making it possible to obtain immediate results or to monitor temporal change in structure, such as might develop in using fluids for soil remediation.
Flux-driven simulations of turbulence collapse
Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T.; Diamond, P. H.; Xu, X. Q.
2015-03-15
Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and EÃ—B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T}â€‰>â€‰1 at tâ€‰=â€‰t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (Ï‰{sub EÃ—B}>Î³{sub lin} where Ï‰{sub EÃ—B} denotes mean flow shear) is satisfied only after tâ€‰=â€‰t{sub C} (â€‰>t{sub R}), when the mean flow shear grows due to positive feedback.
NO concentration imaging in turbulent nonpremixed flames
Schefer, R.W.
1993-12-01
The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.
ON THE LOW-FREQUENCY BOUNDARY OF SUN-GENERATED MAGNETOHYDRODYNAMIC TURBULENCE IN THE SLOW SOLAR WIND
Shergelashvili, Bidzina M.; Fichtner, Horst
2012-06-20
New aspects of the slow solar wind turbulent heating and acceleration are investigated. A physical meaning of the lower boundary of the Alfven wave turbulent spectra in the solar atmosphere and the solar wind is studied and the significance of this natural parameter is demonstrated. Via an analytical and quantitative treatment of the problem we show that a truncation of the wave spectra from the lower frequency side, which is a consequence of the solar magnetic field structure and its cyclic changes, results in a significant reduction of the heat production and acceleration rates. An appropriate analysis is presented regarding the link of the considered problem with existing observational data and slow solar wind initiation scenarios.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-15
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmoreÂ Â» that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kÎ¸Ïs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in
Nonrelativistic QCD factorization and the velocity dependence...
Office of Scientific and Technical Information (OSTI)
CONFIGURATION; FACTORIZATION; MATRIX ELEMENTS; QUANTUM CHROMODYNAMICS; QUARKONIUM; SINGULARITY; T QUARKS; VELOCITY Word Cloud More Like This Full Text Journal Articles DOI: ...
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)
2013-09-09
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
A signature for turbulence driven magnetic islands
Agullo, O.; Muraglia, M.; Benkadda, S.; PoyÃ©, A.; Yagi, M.; Garbet, X.; Sen, A.
2014-09-15
We investigate the properties of magnetic islands arising from tearing instabilities that are driven by an interchange turbulence. We find that such islands possess a specific signature that permits an identification of their origin. We demonstrate that the persistence of a small scale turbulence maintains a mean pressure profile, whose characteristics makes it possible to discriminate between turbulence driven islands from those arising due to an unfavourable plasma current density gradient. We also find that the island poloidal turnover time, in the steady state, is independent of the levels of the interchange and tearing energy sources. Finally, we show that a mixing length approach is adequate to make theoretical predictions concerning island flattening in the island rotation frame.
Boundary Plasma Turbulence Simulations for Tokamaks
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
RELAXATION PROCESSES IN SOLAR WIND TURBULENCE
Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.
2014-07-10
Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.
Core density turbulence in the HSX Stellarator
Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Briesemeister, Alexis R.; Likin, K. M.
2015-10-23
Broadband turbulent density fluctuations are explored in the helically symmetric stellarator experiment (HSX) by investigating changes related to plasma heating power and location. No fluctuation response is observed to occur with large changes in electron temperature and its gradient, thereby eliminating temperature gradient as a driving mechanism. Instead, measurements reveal that density turbulence varies inversely with electron density scale length. This response is consistent with density gradient drive as one might expect for trapped electron mode (TEM) turbulence. In general, the plasma stored energy and particle confinement are higher for discharges with reduced fluctuations in the plasma core. When the density fluctuation amplitude is reduced, increased plasma rotation is also evident suggesting a role is being played by intrinsic plasma flow.
Surface-wave and refraction tomography at the FACT Site, Sandia National
Office of Scientific and Technical Information (OSTI)
Laboratories, Albuquerque, New Mexico. (Technical Report) | SciTech Connect Surface-wave and refraction tomography at the FACT Site, Sandia National Laboratories, Albuquerque, New Mexico. Citation Details In-Document Search Title: Surface-wave and refraction tomography at the FACT Site, Sandia National Laboratories, Albuquerque, New Mexico. We present a technique that allows for the simultaneous acquisition and interpretation of both shear-wave and compressive-wave 3-D velocities. The
Huang, J.; Chen, S. Y. Tang, C. J.; Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064
2014-01-15
The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency Ï‰ and parallel refractive index N{sub //} of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainly caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space.
Bursting frequency prediction in turbulent boundary layers
LIOU,WILLIAM W.; FANG,YICHUNG
2000-02-01
The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.
DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING
Turner, N. J.; Carballido, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Sano, T., E-mail: neal.turner@jpl.nasa.go [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)
2010-01-01
We apply ionization balance and magnetohydrodynamical (MHD) calculations to investigate whether magnetic activity moderated by recombination on dust grains can account for the mass accretion rates and the mid-infrared spectra and variability of protostellar disks. The MHD calculations use the stratified shearing-box approach and include grain settling and the feedback from the changing dust abundance on the resistivity of the gas. The two-decade spread in accretion rates among solar-mass T Tauri stars is too large to result solely from variations in the grain size and stellar X-ray luminosity, but can plausibly be produced by varying these parameters together with the disk magnetic flux. The diverse shapes and strengths of the mid-infrared silicate bands can come from the coupling of grain settling to the distribution of the magnetorotational turbulence, through the following three effects. First, recombination on grains 1 mum or smaller yields a magnetically inactive dead zone extending more than two scale heights from the midplane, while turbulent motions in the magnetically active disk atmosphere overshoot the dead zone boundary by only about one scale height. Second, grains deep in the dead zone oscillate vertically in wave motions driven by the turbulent layer above, but on average settle at the rates found in laminar flow, so that the interior of the dead zone is a particle sink and the disk atmosphere will become dust-depleted unless resupplied from elsewhere. Third, with sufficient depletion, the dead zone is thinner and mixing dredges grains off the midplane. The last of these processes enables evolutionary signatures such as the degree of settling to sometimes decrease with age. The MHD results also show that the magnetic activity intermittently lifts clouds of small grains into the atmosphere. Consequently the photosphere height changes by up to one-third over timescales of a few orbits, while the extinction along lines of sight grazing the disk surface
Ensemble Kalman filters for dynamical systems with unresolved turbulence
Grooms, Ian; Lee, Yoonsang; Majda, Andrew J.
2014-09-15
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (a multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup ?5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an
Solar type III radio bursts modulated by homochromous Alfvén waves
Zhao, G. Q.; Chen, L.; Wu, D. J.
2013-12-10
Solar type III radio bursts and their production mechanisms have been intensively studied in both theory and observation and are believed to be the most important signatures of electron acceleration in active regions. Recently, Wu et al. proposed that the electron-cyclotron maser emission (ECME) driven by an energetic electron beam could be responsible for producing type III bursts and pointed out that turbulent Alfvén waves can greatly influence the basic process of ECME via the oscillation of these electrons in the wave fields. This paper investigates effects of homochromous Alfvén waves (HAWs) on ECME driven by electron beams. Our results show that the growth rate of the O-mode wave will be significantly modulated by HAWs. We also discuss possible application to the formation of fine structures in type III bursts, such as so-called solar type IIIb radio bursts.
Plasma Turbulence Simulations Reveal Promising Insight for Fusion...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne ... Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of ...
Compressing turbulence to improve inertial confinement fusion experiments |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Princeton Plasma Physics Lab Compressing turbulence to improve inertial confinement fusion experiments By John Greenwald March 15, 2016 Tweet Widget Google Plus One Share on Facebook Compression of a turbulent plasma. Image by Seth Davidovits Compression of a turbulent plasma. Image by Seth Davidovits Physicists have long regarded plasma turbulence as unruly behavior that can limit the performance of fusion experiments. But new findings by researchers associated with the U.S. Department of
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... Industry outreach: DOE and Wave Energy Scotland co-sponsored WEC technology workshop News, Partnership, Renewable Energy, Water Power, Workshops Industry outreach: DOE and Wave ...
Spatio-temporal evolution of magnetosonic wave in the laser plasma interaction
Sharma, R. P. Singh, Ram Kishor Sharma, Swati; Tiwary, Prem Pyari; Modi, K. V.; Satsangi, V. R.
2015-05-15
This paper presents a theoretical model for the transient response of nonlinear coupling between magnetosonic wave and ion acoustic wave in the overdense plasma. Filamentation of magnetosonic wave has been considered to be responsible for magnetic turbulence during the laser plasma interaction. The ion acoustic wave gets excited due to the ponderomotive force exerted by magnetosonic wave and this ion acoustic wave in turn generates perturbation in the background density in the form of spatial density harmonics. Numerical simulation has been carried out for dimensionless coupled equations of magnetosonic wave and ion acoustic wave; and the results show quite complex localized structures that grow with time. The power spectrum has also been studied which shows that the spectral index follows an approximate scaling of the order of âˆ¼k{sup âˆ’2.4} at smaller scales. The data obtained from numerical simulation are used in semi analytical model to better understand the mechanism of nonlinear evolution of magnetosonic wave. The results indicate considerable randomness in the spatial structure of the magnetic field profile which gives sufficient indication of turbulence.
Seismic Surface-Wave Tomography of Waste Sites - Final Report
Long, Timothy L.
2000-09-14
The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.
Gilmore, Mark A.
2013-06-27
Final Report for grant DE-FG02-06ER54898. The dynamics and generation of intermittent plasma turbulent structures, widely known as "blobs" have been studied in the presence of sheared plasma flows in a controlled laboratory experiment.
Abugov, D.I.; Obrezkov, O.I.
1980-01-01
Results are presented of a theoretical analysis of thermoacoustic effects observed during combustion, i.e., turbulent flame noise, amplification of acoustic waves by the combustion front, and acoustic instability of combustion in through-flow chambers. Relations are obtained which describe these phenomena. 8 refs.
Gamayunov, Konstantin V.; Zhang Ming; Rassoul, Hamid K.; Pogorelov, Nikolai V.; Heerikhuisen, Jacob
2012-09-20
A self-consistent model of the interstellar pickup protons, the slab component of the Alfvenic turbulence, and core solar wind (SW) protons is presented for r {>=} 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvenic power spectral density, and a third equation governs SW temperature including source due to the Alfven wave energy dissipation. A fraction of the pickup proton free energy, f{sub D} , which is actually released in the waveform during isotropization, is taken from the quasi-linear consideration without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C{sub sh}, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C{sub sh} Almost-Equal-To 1-1.5 and f{sub D} Almost-Equal-To 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from {approx}8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r {approx}> 20 AU if f{sub D} Almost-Equal-To 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r {approx}< 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r {approx}< 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfven wave damping by the core SW protons is small at heliocentric distances r {approx}< 10 AU for both the slab and the two-dimensional turbulent components
Parkin, E. R.; Bicknell, G. V.
2013-02-15
Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions-perhaps triggered by the onset of turbulence-upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure <{alpha}{sub P}>bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lu, Z. X.; Wang, W. X.; Diamond, P. H.; Tynan, G.; Ethier, S.; Gao, C.; Rice, J.
2015-05-04
We report that intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. Here we focus on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (sË†) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak sË† . BasedmoreÂ Â» on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak sË† discharges and that the value of sË† crit is consistent with the experimental results sË† expcrit [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. In conclusion, the consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive sË† .Â«Â less
Role of ion temperature on scrape-off layer plasma turbulence
Bisai, N.; Kaw, P. K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2013-04-15
Turbulence in Scrape-off layer (SOL) of tokamak plasma has been studied numerically using interchange modes with the help of electron continuity, quasineutrality, and ion energy equations. Electron temperature is assumed uniform. We have studied dynamics of seeded plasma blob and plasma turbulence to identify the role of ion temperature and its gradient. The ion temperature elongates the blob poloidally and reduces its radial velocity. Initial dipole nature of the plasma blob potential breaks and generates few more dipoles during its propagation in the SOL. Plasma turbulence simulation shows poloidally elongated density and ion temperature structures that are similar to the seeded blob simulation studies. Fluctuations of the density and ion temperature have been presented as function of scale lengths of the density and ion temperature. Reduction of the SOL width and increase of radial electric field have been measured in the presence of the ion temperature. Particle and energy transports have been also presented as the function of the density and ion temperature scale lengths.
Turbulence assessment at potential turbine sites
Daniels, A.
1996-12-31
As opposed to a fixed anemometer, the Tala kite is free to move in the air. The motion of the kite is not random, it moves with or against the speed gradient towards the center of passing turbulence events of higher or lower speeds thus allowing the kite to measure event maximum or minimum speed rather than the speed at some unknown distance from the event center like a fixed anemometer. This behavior is confirmed both by a theoretical aerodynamics analysis of the kite motion and by data from a field study where kite and hot film anemometer (HFA) events, defined by the rain flow count method, were compared with flap events on a rotating turbine blade. The HFAs simulated too few events lasting too long while the kites reproduced both the number of events and event periods remarkably close. It is concluded that the kite is the optimal tool for measuring turbulence at potential turbine sites. Kite turbulence can form the bases for economic return estimates and an example is given where less windy sites could be more economical than other more turbulent higher speed sites. 13 refs., 8 figs.
Optical monitor for observing turbulent flow
Albrecht, Georg F.; Moore, Thomas R.
1992-01-01
The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.
Turbulent Combustion in SDF Explosions
Kuhl, A L; Bell, J B; Beckner, V E
2009-11-12
A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.
Fedorczak, N.; Manz, P.; Thakur, S. C.; Xu, M.; Tynan, G. R.; Xu, G. S.; Liu, S. C.
2012-12-15
Time delay estimation (TDE) techniques are frequently used to estimate the flow velocity from fluctuating measurements. Tilted structures carried by the flow lead to misinterpretation of the time delays in terms of velocity direction and amplitude. It affects TDE measurements from probes, and is also intrinsically important for beam emission spectroscopy and gas puff imaging measurements. Local eddy shapes estimated from 2D fluctuating field are necessary to gain a more accurate flow estimate from TDE, as illustrated by Langmuir probe array measurements. A least square regression approach is proposed to estimate both flow field and shaping parameters. The technique is applied to a test case built from numerical simulation of interchange fluctuations. The local eddy shape does not only provide corrections for the velocity field but also quantitative information about the statistical interaction mechanisms between local eddies and E Multiplication-Sign B flow shear. The technique is then tested on gaz puff imaging data collected at the edge of EAST tokamak plasmas. It is shown that poloidal asymmetries of the fluctuation fields-velocity and eddy shape-are consistent at least qualitatively with a ballooning type of turbulence immersed in a radially sheared equilibrium flow.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Russell, D. A.; Myra, J. R.; D'Ippolito, D. A.; LaBombard, B.; Hughes, J. W.; Terry, J. L.; Zweben, S. J.
2016-06-10
Two-dimensional scrape-off layer turbulence (SOLT) code simulations are compared with an L-mode discharge on the Alcator C-Mod tokamak [M. Greenwald, et al., Phys. Plasmas 21, 110501 (2014)]. Density and temperature profiles for the simulations were obtained by smoothly fitting Thomson scattering and mirror Langmuir probe (MLP) data from the shot. Simulations differing in turbulence intensity were obtained by varying a dissipation parameter. Mean flow profiles and density fluctuation amplitudes are consistent with those measured by MLP in the experiment and with a Fourier space diagnostic designed to measure poloidal phase velocity. Blob velocities in the simulations were determined from themoreÂ Â» correlation function for density fluctuations, as in the analysis of gas-puff-imaging (GPI) blobs in the experiment. In the simulations, it was found that larger blobs moved poloidally with the ExB flow velocity, vE , in the near-SOL, while smaller fluctuations moved with the group velocity of the dominant linear (interchange) mode, vE + 1/2 vdi, where vdi is the ion diamagnetic drift velocity. Comparisons are made with the measured GPI correlation velocity for the discharge. The saturation mechanisms operative in the simulation of the discharge are also discussed. In conclusion, it is found that neither sheared flow nor pressure gradient modification can be excluded as saturation mechanisms.Â«Â less
Tree, D.R.
1996-10-31
The capability of LDA measurements for future reburning experiments has now been demonstrated. Measurements of mean and turbulent gas and particle velocity have been obtained using Laser Doppler Anemometry (LDA) in the near burner and quart region of the pulverized coal reactor. The mean and turbulent velocity at the burner outlet, or top of the quart were obtained under non-reacting conditions in order to obtain realistic boundary conditions for comprehensive combustion modeling. Also, under cold flow it was determined that little error occurred in measuring mean velocities with LDA using pulverized coal as the seed particle. Thus, for mean velocities, coal particle and gas velocities were similar. Coal particle velocity profiles were obtained at three swirls and three axial locations. Gas species, and temperature maps for the reactor have now also been completed at three swirl settings in addition to the LDA data. Gas species obtained include CO, CO 2, O{sub 2} and NO. Calibration of the HCN and NH{sub 3} measurement has been successfully completed but no measurements in the reactor have been obtained. The design and fabrication of fuel and air injectors to be used for reburning are complete. The injectors have not yet been tested.
Liu, W. H.; HEDPS and CAPT, Peking University, Beijing 100871 ; Wang, L. F.; Ye, W. H.; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Department of Physics, Zhejiang University, Hangzhou 310027 ; He, X. T.; Institute of Applied Physics and Computational Mathematics, Beijing 100088
2013-06-15
In this research, the temporal evolution of the bubble tip velocity in Rayleigh-Taylor instability (RTI) at arbitrary Atwood numbers and different initial perturbation velocities with a discontinuous profile in irrotational, incompressible, and inviscid fluids (i.e., classical RTI) is investigated. Potential models from Layzer [Astrophys. J. 122, 1 (1955)] and perturbation velocity potentials from Goncharov [Phys. Rev. Lett. 88, 134502 (2002)] are introduced. It is found that the temporal evolution of bubble tip velocity [u(t)] depends essentially on the initial perturbation velocity [u(0)]. First, when the u(0)
Pressure atomizer having multiple orifices and turbulent generation feature
VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane
2002-01-01
A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.
Landau damping of Langmuir waves in non-Maxwellian plasmas
Ouazene, M.; Annou, R.
2011-11-15
As free electrons move in the nearest neighbour ion's potential well, the equilibrium velocity departs from Maxwell distribution. The effect of the non-Maxwellian velocity distribution function (NMVDF) on many properties of the plasma such as the transport coefficients, the kinetic energy, and the degree of ionization is found to be noticeable. A correction to the Langmuir wave dispersion relation is proved to arise due to the NMVDF as well [Phys. Plasmas 17, 052105 (2010)]. The study is extended hereafter to include the effect of NMVDF on the Landau damping of Langmuir wave.
ADVANCED WAVE-EQUATION MIGRATION
L. HUANG; M. C. FEHLER
2000-12-01
Wave-equation migration methods can more accurately account for complex wave phenomena than ray-tracing-based Kirchhoff methods that are based on the high-frequency asymptotic approximation of waves. With steadily increasing speed of massively parallel computers, wave-equation migration methods are becoming more and more feasible and attractive for imaging complex 3D structures. We present an overview of several efficient and accurate wave-equation-based migration methods that we have recently developed. The methods are implemented in the frequency-space and frequency-wavenumber domains and hence they are called dual-domain methods. In the methods, we make use of different approximate solutions of the scalar-wave equation in heterogeneous media to recursively downward continue wavefields. The approximations used within each extrapolation interval include the Born, quasi-Born, and Rytov approximations. In one of our dual-domain methods, we use an optimized expansion of the square-root operator in the one-way wave equation to minimize the phase error for a given model. This leads to a globally optimized Fourier finite-difference method that is a hybrid split-step Fourier and finite-difference scheme. Migration examples demonstrate that our dual-domain migration methods provide more accurate images than those obtained using the split-step Fourier scheme. The Born-based, quasi-Born-based, and Rytov-based methods are suitable for imaging complex structures whose lateral variations are moderate, such as the Marmousi model. For this model, the computational cost of the Born-based method is almost the same as the split-step Fourier scheme, while other methods takes approximately 15-50% more computational time. The globally optimized Fourier finite-difference method significantly improves the accuracy of the split-step Fourier method for imaging structures having strong lateral velocity variations, such as the SEG/EAGE salt model, at an approximately 30% greater
Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI...
Office of Scientific and Technical Information (OSTI)
Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, ... DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: ...
Ilyasov, Askar A.; Chernyshov, Alexander A. Mogilevsky, Mikhail M.; Golovchanskaya, Irina V. Kozelov, Boris V.
2015-03-15
Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.
Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report
Sanjiva Lele
2012-10-01
outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.
Quench propagation velocity for highly stabilized conductors
Mints, R.G. |; Ogitsu, T. |; Devred, A.
1995-05-01
Quench propagation velocity in conductors having a large amount of stabilizer outside the multifilamentary area is considered. It is shown that the current redistribution process between the multifilamentary area and the stabilizer can strongly effect the quench propagation. A criterion is derived determining the conditions under which the current redistribution process becomes significant, and a model of effective stabilizer area is suggested to describe its influence on the quench propagation velocity. As an illustration, the model is applied to calculate the adiabatic quench propagation velocity for a conductor geometry with a multifilamentary area embedded inside the stabilizer.
Experimental investigation of 3-D turbulent free shear flow past propellers and windmills
Kotb, M.A.
1984-01-01
An experimental investigation of the flowfield region near a 0.49 m (1.615 ft), 3 bladed, horizontal axis rotor was conducted in the VPI 2 m x 2 m (6 ft x 6 ft) wind tunnel. Two different modes of operations were studied - propeller and windmill. For each case, tests were run with a uniform approach flow as a base line condition, and the main test series was run with a variable mesh wire grid upstream to produce an approach flow with an essentially linear velocity gradient. The results are compared to elucidate the effects of the non-uniform approach flow. Several types of measurements are reported. First are gross quantities such as overall thrust and power. The second type of measurements are mean (in the turbulence sense) quantities obtained with a five port yawhead tube. All three components of mean velocity and static pressure were obtained. The third type of measurements were made with an x-wire anemometer and an r.m.s. meter. These measurements yield all components of the turbulence intensities and stresses at a point averaged over many passes of the rotor blades.
Two-station phase velocity determination for structure in North Africa
Hazler, S; Pasyanos, M; Sheehan, A; Walter, W
1999-07-28
The seismic structure of North Africa is poorly understood due to the relative paucity of stations and seismicity when compared to other continental regions of the world. A better understanding of the velocity structure in this area will allow improved models of travel times and regional phase amplitudes. Such models will improve location and identification capability in this region leading to more effective monitoring of the Comprehensive Nuclear-Test-Ban Treaty. Using regional-to-teleseismic Rayleigh and Love waves that traverse the area we can obtain information about the region's seismic structure by examining phase velocity as a function of period. We utilize earthquakes from the tectonically active regions bounding North Africa (Mediterranean, Red Sea, East African Rift, and Mid-Atlantic Ridge) recorded at broadband seismic stations distributed throughout the region. A two-station method is utilized to determine phase velocity information along the interstation segment of the ray path. The two-station method provides particular advantage in this region as it dramatically increases the number of events available to provide pure North African sampling. Bandpass filters are applied to the seismograms so that peaks and troughs may be correlated. The phase is unwrapped and a difference curve computed. The difference curve is then converted to a phase velocity dispersion curve. Phase velocity curves are constructed in the range of 10 to 120 seconds. Rayleigh and Love waves in this period range are most sensitive to the shear velocity structure of the lithosphere and can be used in combination with additional independent seismic observations (e.g. Pn tomography, surface wave group velocity tomography, receiver functions, etc.) to construct reliable velocity models. We compare velocities computed in this study to those generated from well known models for similar tectonic regions throughout the world in order to better define the tectonic setting of North Africa
Argonov, V. Yu.
2014-11-15
The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.
Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones
2014-08-01
A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .
Distinct turbulence sources and confinement features in the spherical tokamak plasma regime
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.
2015-10-30
New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offeringmoreÂ Â» one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.Â«Â less
Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-Î² Plasmas
Lin, Zhihong
2014-03-13
Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PIâ€™s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.
WHERE DOES FLUID-LIKE TURBULENCE BREAK DOWN IN THE SOLAR WIND?
Perri, S.; Carbone, V.; Veltri, P.
2010-12-10
Power spectra of the magnetic field in solar wind display a Kolmogorov law f {sup -5/3} at intermediate range of frequencies f, say within the inertial range. Two spectral breaks are also observed: one separating the inertial range from an f {sup -1} spectrum at lower frequencies, and another one between the inertial range and an f {sup -7/3} spectrum at higher frequencies. The breaking of fluid-like turbulence at high frequencies has been attributed to either the occurrence of kinetic Alfven wave fluctuations above the ion-cyclotron frequency or to whistler turbulence above the frequency corresponding to the proton gyroradius. Using solar wind data, we show that the observed high-frequency spectral break seems to be independent of the distance from the Sun, and then of both the ion-cyclotron frequency and the proton gyroradius. We suppose that the observed high-frequency break could be either caused by a combination of different physical processes or associated with a remnant signature of coronal turbulence.
Magnetic island evolution in the presence of ion-temperature gradient-driven turbulence
Ishizawa, A.; Waelbroeck, F. L.
2013-12-15
Turbulence is known to drive and sustain magnetic islands of width equal to multiples of the Larmor radius. The nature of the drive is studied here by means of numerical simulations of a fluid electrostatic model in 2D (single helicity) sheared-slab geometry. The electrostatic model eliminates the coalescence of short wavelength islands as a mechanism for sustaining longer wavelength islands. In quiescent islands, the polarization current, which depends on the propagation velocity of the island through the plasma, plays a critical role in determining the growth or decay of island chains. For turbulent islands, the unforced propagation velocity is significantly changed by strong zonal flow. The simulations show, however, that the turbulent fluctuations in the current density are much larger and faster than those in the zonal flow, and that they dominate the steady-state perturbed current density. In order to distinguish the roles of the zonal flow from the direct action of the fluctuations on the islands, a new diagnostic is implemented. This new diagnostic separates the effects of all the sources of parallel current. These are the curvature (which drives Pfirsch-Schlüter currents) and the divergences of the viscous and Reynolds stresses (the latter driving polarization currents). The new diagnostic also enables the contributions from short and long wavelengths to be separated for each term. It shows that in the absence of curvature, the drive is dominated by the contributions to the polarization current from the short wavelength fluctuations, while the long-wavelength fluctuations play a stabilizing role. In the presence of unfavorable curvature, by contrast, the effects of the short- and long-wavelength contributions of the polarization current reverse roles but nearly cancel, leaving the Pfirsch-Schlüter current as the dominant drive.
Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere
Eliasson, B.; Stenflo, L.; Shukla, P. K.
2008-10-15
We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.
Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence
Lu Wang and T.S. Hahm
2009-06-11
Most existing zonal flow generation theory has been developed with a usual assumption of qr??¡ << 1 (qr is the radial wave number of zonal flow, and ??¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qr??¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarization shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.
Coastal Inlet Model Facility | Open Energy Information
None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent...
Coastal Structures Modeling Complex | Open Energy Information
None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services None Special...
Sectional Model Flume Facilities | Open Energy Information
None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent...
Optically Recording Velocity Interferometer System (ORVIS): Applications
Office of Scientific and Technical Information (OSTI)
and Challenges. (Conference) | SciTech Connect Conference: Optically Recording Velocity Interferometer System (ORVIS): Applications and Challenges. Citation Details In-Document Search Title: Optically Recording Velocity Interferometer System (ORVIS): Applications and Challenges. Abstract not provided. Authors: Cooper, Marcia A. Publication Date: 2015-06-01 OSTI Identifier: 1257697 Report Number(s): SAND2015-4721C 590812 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource
Seismic Velocity Measurements at Expanded Seismic Network Sites
Woolery, Edward W; Wang, Zhenming
2005-01-01
Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.
Millimeter wave technology III; Proceedings of the Meeting, Arlington, VA, April 9, 10, 1985
Wiltse, J.C.
1985-01-01
Various papers on millimeter wave technology are presented. The subjects addressed include: high-power millimeter and submillimeter wave lasers and gyrotrons, GaAs IMPATT sources, InP Gunn diode sources, phase and frequency control of millimeter wave source, the Fresnel zone-plate lens, uniform waveguide leaky wave antennas, microstrip dipole antennas on electrically thick substrates, measurement of antenna patterns at 94 GHz using infrared detection, and transitions in open millimeter waveguides. Also discussed are: millimeter wave subassembly packaging techniques, recent advances in millimeter wave integrated circuits and subsystems, millimeter wave active solid state devices, applications of millimeter wave imaging, contrast reversal in MMW radiometric imaging, detection of stationary ground targets by airborne MMW radars, millimeter wave polarimetric background measurements, coherent 96 GHz high power radar, high-resolution 986 GHz FM-CW solid state radar, integrated circuit radar and radiometric sensors, millimeter-wave six-ports, atmospheric turbulence measuring system, near-millimeter wave propagation instrumentation, and millimeter wave measurement by Fabry-Perot.
Durand, O.; Soulard, L.
2015-04-28
The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.
Teraki, Yuto; Takahara, Fumio
2014-05-20
Using a numerical method, we examine the radiation spectra from relativistic electrons moving in Langmuir turbulence, which are expected to exist in high energy astrophysical objects. The spectral shape is characterized by the spatial scale ?, field strength ?, and frequency of the Langmuir waves, and in terms of frequency they are represented by ?{sub 0} = 2?c/?, ?{sub st} = e?/mc, and ?{sub p}, respectively. We normalize ?{sub st} and ? {sub p} by ?{sub 0} as a ? ?{sub st}/?{sub 0} and b ? ?{sub p}/?{sub 0}, and examine the spectral shape in the a–b plane. An earlier study based on the diffusive radiation in Langmuir turbulence (DRL) theory by Fleishman and Toptygin showed that the typical frequency is ?{sup 2}?{sub p} and that the low frequency spectrum behaves as F {sub ?}??{sup 1} for b > 1 irrespective of a. Here, we adopt the first principle numerical approach to obtain the radiation spectra in more detail. We generate Langmuir turbulence by superposing Fourier modes, injecting monoenergetic electrons, solving the equation of motion, and calculating the radiation spectra using a Lienard-Wiechert potential. We find different features from the DRL theory for a > b > 1. The peak frequency turns out to be ?{sup 2}?{sub st}, which is higher than the ?{sup 2}?{sub p} predicted by the DRL theory, and the spectral index of the low frequency region is not 1 but 1/3. This is because the typical deflection angle of electrons is larger than the angle of the beaming cone ?1/?. We call the radiation for this case 'wiggler radiation in Langmuir turbulence'.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report
Chame, Jacqueline
2011-05-27
The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and for the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.
TURBULENCE AND RADIO MINI-HALOS IN THE SLOSHING CORES OF GALAXY CLUSTERS
ZuHone, J. A.; Markevitch, M.; Giacintucci, S.
2013-01-10
A number of relaxed, cool-core galaxy clusters exhibit diffuse, steep-spectrum radio sources in their central regions, known as radio mini-halos. It has been proposed that the relativistic electrons responsible for the emission have been reaccelerated by turbulence generated by the sloshing of the cool core gas. We present a high-resolution MHD simulation of gas sloshing in a galaxy cluster coupled with subgrid simulations of relativistic electron acceleration to test this hypothesis. Our simulation shows that the sloshing motions generate turbulence on the order of {delta}v {approx} 50-200 km s{sup -1} on spatial scales of {approx}50-100 kpc and below in the cool core region within the envelope of the sloshing cold fronts, whereas outside the cold fronts, there is negligible turbulence. This turbulence is potentially strong enough to reaccelerate relativistic electron seeds (with initial {gamma} {approx} 100-500) to {gamma} {approx} 10{sup 4} via damping of magnetosonic waves and non-resonant compression. The seed electrons could remain in the cluster from, e.g., past active galactic nucleus activity. In combination with the magnetic field amplification in the core, these electrons then produce diffuse radio synchrotron emission that is coincident with the region bounded by the sloshing cold fronts, as indeed observed in X-rays and the radio. The result holds for different initial spatial distributions of pre-existing relativistic electrons. The power and the steep spectral index ({alpha} Almost-Equal-To 1-2) of the resulting radio emission are consistent with observations of mini-halos, though the theoretical uncertainties of the acceleration mechanisms are high. We also produce simulated maps of inverse-Compton hard X-ray emission from the same population of relativistic electrons.
Scalar and tensor spherical harmonics expansion of the velocity...
Office of Scientific and Technical Information (OSTI)
The representation theory of the rotation group is applied to construct a series expansion ... by anisotropic turbulence; representation theory parametrises this dependence by a tensor ...
Free energy balance in gyrokinetic turbulence
Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.
2011-09-15
Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.
COHERENT STRUCTURES IN PLASMA TURBULENCE: PERSISTENCE, INTERMITTENCY,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
COHERENT STRUCTURES IN PLASMA TURBULENCE: PERSISTENCE, INTERMITTENCY, AND CONNECTIONS WITH OBSERVATIONS by Kurt W. Smith A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN-MADISON 2011 c Copyright by Kurt W. Smith 2011 All Rights Reserved i To Paul Terry, my adviser: for your patient guidance and helpful instruction; for the stimulating conversations and for honing my physical intuition; and for
Electromagnetic Transport From Microtearing Mode Turbulence
Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R
2011-03-23
This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.
Turbulent Equipartition Theory of Toroidal Momentum Pinch
T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt
2008-01-31
The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.
Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow
Wang, Zhen-guo Wu, Liyin; Li, Qinglian; Li, Chun
2014-09-29
Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma?=?2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d?velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.
Generalized Dix equation and analytic treatment of normal-movement velocity for anisotropic media
Grechka, V.; Tsvankin, I.; Cohen, J.K.
1999-03-01
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e., plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. The high accuracy of the NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. The authors also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.
Gao, Q. D.; Budny, R. V.
2015-03-15
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub Ï•}) and the EÃ—B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the EÃ—B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared EÃ—B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of EÃ—B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts
Sippola, Mark R.; Nazaroff, William W.
2003-08-01
Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.
A STUDY OF ALFVÉN WAVE PROPAGATION AND HEATING THE CHROMOSPHERE
Tu, Jiannan; Song, Paul
2013-11-01
Alfvén wave propagation, reflection, and heating of the chromosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma, neutral fluid, and Maxwell's equations with incorporation of the Hall effect and strong electron-neutral, electron-ion, and ion-neutral collisions. We have developed a numerical model based on an implicit backward difference formula of second-order accuracy both in time and space to solve stiff governing equations resulting from strong inter-species collisions. A non-reflecting boundary condition is applied to the top boundary so that the wave reflection within the simulation domain can be unambiguously determined. It is shown that due to the density gradient the Alfvén waves are partially reflected throughout the chromosphere and more strongly at higher altitudes with the strongest reflection at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation, producing heating strong enough to balance the radiative loss for the quiet chromosphere without invoking anomalous processes or turbulences. The heating rates are larger for weaker background magnetic fields below ?500 km with higher-frequency waves subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the interaction of reflected waves with the upward propagating waves produces power at their double frequencies, which leads to more damping. The wave energy flux transmitted to the corona is one order of magnitude smaller than that of the driving source.
Menikoff, Ralph
2015-12-14
The Zelâ€™dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, Î»). ii. A burn rate for the reaction progress variable; d/dt Î» = R(V, e, Î»). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.
The interaction of katabatic winds and mountain waves
Poulos, G.S.
1997-01-01
The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.
Catching a Wave: Innovative Wave Energy Device Surfs for Power...
Office of Environmental Management (EM)
Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis...
Property:Maximum Velocity(m/s) | Open Energy Information
Velocity(ms) Jump to: navigation, search Property Name Maximum Velocity(ms) Property Type String Pages using the property "Maximum Velocity(ms)" Showing 25 pages using this...
Property:Velocity(m/s) | Open Energy Information
Velocity(ms) Jump to: navigation, search Property Name Velocity(ms) Property Type String Pages using the property "Velocity(ms)" Showing 21 pages using this property. A Alden...
Kinetic Theory of Turbulent Multiphase Flow | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Kinetic Theory of Turbulent Multiphase Flow FWP/Project Description: Project Leader(s): Rodney Fox It is proposed to further the present understanding of turbulent gas-solid fluidized-bed reactors from the conceptual standpoint of kinetic theory and turbulence modeling. The primary purpose is to provide a theoretical underpinning for the construction of computer codes to better understand and predict multiphase flow behavior in polydisperse gas-solid fluidized-bed reactors and risers. In
Assessment of Combustion and Turbulence Models for the Simulation of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Combustion Processes in a DI Diesel Engine | Department of Energy Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine deer09_ren.pdf (497.22 KB) More Documents & Publications Low Temperature
Whistler mode waves and the electron heat flux in the solar wind: cluster observations
Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.; Matteini, L.; SantolÃk, O.
2014-11-20
The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In âˆ¼10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor Î² {sub eâˆ¥} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for Î² {sub eâˆ¥} â‰¥ 3, in slow wind at 1 AU.
Decay of helical Kelvin waves on a quantum vortex filament
Van Gorder, Robert A.
2014-07-15
We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite
Convection Heat Transfer in Three-Dimensional Turbulent Separated/Reattached Flow
Bassem F. Armaly
2007-10-31
The measurements and the simulation of convective heat transfer in separated flow have been a challenge to researchers for many years. Measurements have been limited to two-dimensional flow and simulations failed to predict accurately turbulent heat transfer in the separated and reattached flow region (prediction are higher than measurements by more than 50%). A coordinated experimental and numerical effort has been initiated under this grant for examining the momentum and thermal transport in three-dimensional separated and reattached flow in an effort to provide new measurements that can be used for benchmarking and for improving the simulation capabilities of 3-D convection in separated/reattached flow regime. High-resolution and non-invasive measurements techniques are developed and employed in this study to quantify the magnitude and the behavior of the three velocity components and the resulting convective heat transfer. In addition, simulation capabilities are developed and employed for improving the simulation of 3-D convective separated/reattached flow. Such basic measurements and simulation capabilities are needed for improving the design and performance evaluation of complex (3-D) heat exchanging equipment. Three-dimensional (3-D) convective air flow adjacent to backward-facing step in rectangular channel is selected for the experimental component of this study. This geometry is simple but it exhibits all the complexities that appear in any other separated/reattached flow, thus making the results generated in this study applicable to any other separated and reattached flow. Boundary conditions, inflow, outflow, and wall thermal treatment in this geometry can be well measured and controlled. The geometry can be constructed with optical access for non-intrusive measurements of the flow and thermal fields. A three-component laser Doppler velocimeter (LDV) is employed to measure simultaneously the three-velocity components and their turbulent fluctuations
Identification of new turbulence contributions to plasma transport...
Office of Scientific and Technical Information (OSTI)
Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime Citation Details In-Document Search This content will become publicly...
PPPL researchers advance understanding of plasma turbulence that...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
PPPL researchers advance understanding of plasma turbulence that drains heat from fusion ... Now, physicists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory ...
Gyrokinetic simulations of turbulent transport in fusion plasmas
Rogers, Barrett Neil
2013-05-30
This is the final report for a DOE award that was targeted at understanding and simulating turbulence and transport in plasma fusion devices such as tokamaks.
A Model for Turbulent Combustion Simulation of Large Scale Hydrogen...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A Model for Turbulent Combustion Simulation of Large Scale Hydrogen Explosions Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 6 2015 - 10:00am...
Sandia Energy - Turbulent Mixed-Mode Combustion Studied in a...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Turbulent Mixed-Mode Combustion Studied in a New Piloted Burner Home Transportation Energy CRF Office of Science Capabilities News News & Events Research & Capabilities Fuel...
Multi-Scale Simulations Solve a Plasma Turbulence Mystery
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
period are helping physicists better understand what influences the behavior of the plasma turbulence that is driven by the intense heating necessary to create fusion energy. ...
PPPL researchers advance understanding of plasma turbulence that...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
But while that motion helps produce the fusion reactions that could power a new class of electricity generator, the turbulence it generates can also limit those reactions. Now, ...
Turbulence-Flame Interactions in Type Ia Supernovae (Journal...
Office of Scientific and Technical Information (OSTI)
turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. ...
Lagrangian-Averaged Scale-Dependent subfilter turbulence model
Energy Science and Technology Software Center (OSTI)
2011-03-01
LASD are Fortran 90 modules that compute the stresses and scalar fluxes arising from unrelolved scales of turbulence, required for large-eddy eimulations of fluid flows.
Consider Installing Turbulators on Two- and Three-Pass Firetube...
Broader source: Energy.gov (indexed) [DOE]
steam systems. STEAM TIP SHEET 25 Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers (January 2012) (373.54 KB) More Documents & Publications Clean Boiler ...
Identifying new sources of turbulence in spherical tokamaks | Princeton
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Plasma Physics Lab Identifying new sources of turbulence in spherical tokamaks By John Greenwald November 24, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the
Identifying new sources of turbulence in spherical tokamaks | Princeton
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Plasma Physics Lab Identifying new sources of turbulence in spherical tokamaks By John Greenwald November 25, 2015 Tweet Widget Google Plus One Share on Facebook Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. Computer simulation of turbulence in a model of the NSTX-U. Image courtesy of Eliot Feibush. For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the
Ion temperature gradient driven turbulence with strong trapped...
Office of Scientific and Technical Information (OSTI)
driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. ...
Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...
Hot Particle and Turbulent Transport Effects on Resistive Instabilities
Brennan, Dylan P.
2012-10-16
This research project included two main thrusts; energetic particle effects on resistive MHD modes in tokamaks, and turbulence interactions with tearing modes in simplified geometry.
TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS
Gao, Yang; Law, Chung K.; Xu, Haitao
2015-02-01
The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.
Furuya, Ray S.; Kitamura, Yoshimi; Shinnaga, Hiroko E-mail: kitamura@isas.jaxa.jp
2014-10-01
To study physical properties of the natal filament gas around the cloud core harboring an exceptionally young low-mass protostar GF 9-2, we carried out J = 1-0 line observations of {sup 12}CO, {sup 13}CO, and C{sup 18}O molecules using the Nobeyama 45 m telescope. The mapping area covers ? one-fifth of the whole filament. Our {sup 13}CO and C{sup 18}O maps clearly demonstrate that the core formed at the local density maxima of the filament, and the internal motions of the filament gas are totally governed by turbulence with Mach number of ?2. We estimated the scale height of the filament to be H = 0.3-0.7 pc, yielding the central density of n {sub c} = 800-4200 cm{sup –3}. Our analysis adopting an isothermal cylinder model shows that the filament is supported by the turbulent and magnetic pressures against the radial and axial collapse due to self-gravity. Since both the dissipation timescales of the turbulence and the transverse magnetic fields can be comparable to the free-fall time of the filament gas of 10{sup 6} yr, we conclude that the local decay of the supersonic turbulence and magnetic fields made the filament gas locally unstable, hence making the core collapse. Furthermore, we newly detected a gas condensation with velocity width enhancement to ?0.3 pc southwest of the GF 9-2 core. The condensation has a radius of ?0.15 pc and an LTE mass of ?5 M {sub ?}. Its internal motion is turbulent with Mach number of ?3, suggesting a gravitationally unbound state. Considering the uncertainties in our estimates, however, we propose that the condensation is a precursor of a cloud core, which would have been produced by the collision of the two gas components identified in the filament.
PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS (Journal...
Office of Scientific and Technical Information (OSTI)
PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS Citation Details In-Document Search Title: PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS A protostellar jet and outflow...
Wave Energy | Open Energy Information
Wave Energy Jump to: navigation, search Contents 1 Description 2 History 3 Technology 4 Current and Possible Wave Farms 5 Pros and Cons Description Wave energy (or wave power) is...
RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES
Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.
2012-04-03
, i.e., low wind speed, weak turbulence, night, low deposition velocity, the effect of deposition and re-emission on MOI exposure was found to be very small. The exposure over the two hour period following arrival of the plume was found to be decreased by less than 0.05 %. Furthermore the sensitivity to deposition velocity was low. Increasing deposition velocity to 0.5 cm/s reduced exposure to 0.3 %. After a 24 hour period, an MOI would have been exposed to all of the released material. Based on the low sensitivity of MOI exposure to the value of deposition velocity when re-emission is considered, it is appropriately conservative to use a 0.0 cm/s effective deposition velocity for safety analysis in the MACCS2 code.
Adaptive LES Methodology for Turbulent Flow Simulations
Oleg V. Vasilyev
2008-06-12
Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence
Effect of Resolution on Propagating Detonation Wave
Menikoff, Ralph
2014-07-10
Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8?m), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.
AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE
Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan
2013-02-10
Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.
In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors
Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D
2007-07-25
In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.
Apparatus and method for laser velocity interferometry
Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.
1993-09-14
An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.
Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers
Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan
2014-10-08
The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) programâ€™s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil
2010-06-15
Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].
The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra
Murphy, T. J.
2014-07-15
Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br
2014-11-10
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
Realizing bright-matter-wave-soliton collisions with controlled relative phase
Billam, T. P.; Cornish, S. L.; Gardiner, S. A.
2011-04-15
We propose a method to split the ground state of an attractively interacting atomic Bose-Einstein condensate into two bright solitary waves with controlled relative phase and velocity. We analyze the stability of these waves against their subsequent recollisions at the center of a cylindrically symmetric, prolate harmonic trap as a function of relative phase, velocity, and trap anisotropy. We show that the collisional stability is strongly dependent on relative phase at low velocity, and we identify previously unobserved oscillations in the collisional stability as a function of the trap anisotropy. An experimental implementation of our method would determine the validity of the mean-field description of bright solitary waves and could prove to be an important step toward atom interferometry experiments involving bright solitary waves.
P- and S-body wave tomography of the state of Nevada.
Preston, Leiph
2010-04-01
P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.
Propagating and reflecting of spin wave in permalloy nanostrip with 360° domain wall
Zhang, Senfu; Mu, Congpu; Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Wang, Jianbo; Liu, Qingfang
2014-01-07
By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360° domain wall in a nanostrip. It is found that propagating spin wave can drive a 360° domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360° domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360° domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360° domain wall normal mode, the 360° domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360° domain wall, we observed the Doppler effect clearly. After passing through a 360° domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360° domain walls that spin wave passing through.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.
2015-07-24
Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization aremoreÂ Â» located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen
Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.
2015-07-24
Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H_{2} in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H_{2} or CO species reveals that
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will
The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere
Goossens, M.; Van Doorsselaere, T. [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2014-06-10
Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvén wave.
Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Edge Transport | Princeton Plasma Physics Lab Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport
Danish, Mohammad Suman, Sawan Srinivasan, Balaji
2014-12-15
The pressure Hessian tensor plays a key role in shaping the behavior of the velocity gradient tensor, and in turn, that of many incumbent non-linear processes in a turbulent flow field. In compressible flows, the role of pressure Hessian is even more important because it represents the level of fluid-thermodynamic coupling existing in the flow field. In this work, we first perform a direct numerical simulation-based study to clearly identify, isolate, and understand various important inviscid mechanisms that govern the evolution of the pressure Hessian tensor in compressible turbulence. The ensuing understanding is then employed to introduce major improvements to the existing Lagrangian model of the pressure Hessian tensor (the enhanced Homogenized Euler equation or EHEE) in terms of (i) non-symmetric, non-isentropic effects and (ii) improved representation of the anisotropic portion of the pressure Hessian tensor. Finally, we evaluate the new model extensively by comparing the new model results against known turbulence behavior over a range of Reynolds and Mach numbers. Indeed, the new model shows much improved performance as compared to the EHEE model.
Afterburning in spherical premixed turbulent explosions
Bradley, D.; Lawes, M.; Scott, M.J. . Dept. of Mechanical Engineering); Mushi, E.M.J. )
1994-12-01
During the early stages of spherical turbulent flame propagation, more than half of the gas behind the visible flame front may be unburned. Previous models of the afterburning of the gas behind the apparent flame front have been extended in the present work, to include the effects of flame quenching, consequent upon localized flame stretch. The predictions of the model cover, the spatial and temporal variations of the fraction burned, the flame propagation rate, and the mass burning rate. They are all in dimensionless form and are well supported by associated experimental measurements in a fan-stirred bomb with controlled turbulence. The proportion of the gas that is unburned decreases with time and increases with the product of the Karlovitz stretch factor and the Lewis number. Simultaneous photographs were taken of the spherical schlieren image and of that due to Mie scattering from small seed particles in a thin laser sheet that sectioned the spherical flame. These clearly showed the amount of unburned gas within the sphere and, along with other evidence suggest laminar flamelet burning across a scale of distance which is close to the Taylor confirm the predictions of the fraction of gas unburned and of the rate at which it is burning.
Microtearing turbulence: Magnetic braiding and disruption limit
Firpo, Marie-Christine
2015-12-15
A realistic reduced model involving a large poloidal spectrum of microtearing modes is used to probe the existence of some stochasticity of magnetic field lines. Stochasticity is shown to occur even for the low values of the magnetic perturbation Î´B/B devoted to magnetic turbulence that have been experimentally measured. Because the diffusion coefficient may strongly depend on the radial (or magnetic-flux) coordinate, being very low near some resonant surfaces, and because its evaluation implicitly makes a normal diffusion hypothesis, one turns to another indicator appropriate to diagnose the confinement: the mean residence time of magnetic field lines. Their computation in the microturbulence frame points to the existence of a disruption limit, namely of a critical order of magnitude of Î´B/B above which stochasticity is no longer benign yet, leads to a macroscopic loss of confinement in some tens to hundred of electron toroidal excursions. Since the level of magnetic turbulence Î´B/B has been measured to grow with the plasma electron density, this would also be a density limit.
Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence
Donato, S.; Servidio, S.; Carbone, V. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires, CONICET, Buenos Aires (Argentina); Shay, M. A.; Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)
2012-09-15
The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.
Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments
Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.
2006-01-01
A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.
Wouters, L.F.
1960-08-30
Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.
Coiled tubing velocity strings keep wells unloaded
Wesson, H.R.; Shursen, J.L.
1989-07-01
Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.
Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames
Weiland, N.T.; Strakey, P.A.
2007-03-01
Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Program’s aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.
Jin, C.; Potts, I.; Reeks, M. W.
2015-05-15
We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.
Characteristics of transverse waves in chromospheric mottles
Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P. [Astrophysics Research Center, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morton, R. J. [Mathematics and Information Science, Northumbria University, Camden Street, Newcastle Upon Tyne NE1 8ST (United Kingdom); Christian, D. J., E-mail: dkuridze01@qub.ac.uk [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States)
2013-12-10
Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ?2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ?280 ± 80 km.
Radial velocities of southern visual multiple stars
Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra E-mail: pribulla@ta3.sk
2015-01-01
High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out to have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
Ames, Forrest; Kingery, Joseph E.
2015-06-17
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kemenov, Konstantin A.; Calhoon, William H.
2015-03-24
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,moreÂ Â» the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.Â«Â less
Kemenov, Konstantin A.; Calhoon, William H.
2015-03-24
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.
Three-dimensional P and S waves velocity structures of the Coso...
synthetic modeling of a cross model at critical locations, is estimated to be 0.35 km for V (sub p ) and 0.5 km for V (sub s ) . Model uncertainties are estimated by a jackknife...
FILTER FOR HIGH VELOCITY GAS STREAMS
Heckman, R.A.; Warner, H.F.
1963-11-01
An air filter that is particularly useful in air-sampling rockets is presented. The filter comprises a cellulose fiber mat having an evenly disposed thin coating of stearic acid. Protective loose weave fabric covers are stitched to the front and back of the fiber mat, the stitching being in the form of a sine wave spiraled from the midpoint of the mat out to its periphery. (AEC)
WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows
Tsoutsanis, Panagiotis, E-mail: panagiotis.tsoutsanis@cranfield.ac.uk; Antoniadis, Antonios Foivos, E-mail: a.f.antoniadis@cranfield.ac.uk; Drikakis, Dimitris, E-mail: d.drikakis@cranfield.ac.uk
2014-01-01
This paper presents the development and implementation of weighted-essentially-non-oscillatory (WENO) schemes for viscous flows on arbitrary unstructured grids. WENO schemes up to fifth-order accurate have been implemented in conjunction with hybrid and non-hybrid unstructured grids. The schemes are investigated with reference to numerical and experimental results for the Taylor–Green vortex, as well as for laminar and turbulent flows around a sphere, and the turbulent shock-wave boundary layer interaction flow problem. The results show that the accuracy of the schemes depends on the arbitrariness of shape and orientation of the unstructured mesh elements, as well as the compactness of directional stencils. The WENO schemes provide a more accurate numerical framework compared to second-order and third-order total variation diminishing (TVD) methods, however, the fifth-order version of the schemes is computationally too expensive to make the schemes practically usable. On the other hand, the third-order variant offers an excellent numerical framework in terms of accuracy and computational cost compared to the fifth-order WENO and second-order TVD schemes. Parallelisation of the CFD code (henceforth labelled as UCNS3D), where the schemes have been implemented, shows that the present methods offer very good scalable performance.
In-phase waves: Their behavior, internal stratification and fabric
Cheel, R.J. (Brock Univ., St. Catharines, Ontario (Canada). Dept. of Earth Sciences); Udri, A. (Freiburg Univ. (Germany). Dept. of Geologie)
1993-03-01
Experiments were conducted in 0.305m wide, 9m long recirculating sediment flume on a bed of quartz sand (mean diameter of 0.18mm). The experiments included eight runs over the following range of conditions: 0.0605m [<=] depth [<=] 0.068m, 0.51m/s [<=] mean flow velocity [<=] 0.90m/s and 0.63 [<=] Froze Number (F) [<=] 1.1. For F < 0.83 dunes were the dominant bedform and these became longer and lower as F increased. At F = 0.83 the bed was nominally plane but locally and temporarily developed low in-phase waves or dunes. Post-run bed profiles showed symmetrical bedwaves with average length (L) of 0.26m and average height (H) of 0.005m. A complete cycle was characterized by: increased height of bed and water surface waves [r arrow] upstream migration [r arrow] breaking or decay [r arrow] planing of bed surface [r arrow] growth of new in-phase waves (initially migrating downstream and then remaining stationary during continued vertical growth). Each in-phase wave normally behaved independently of other waves although less commonly a breaking wave would trigger breaking of the next downstream wave. For F > 1.0 in-phase waves behaved as described above but a breaking wave would more commonly cause breaking of other waves. With increasing F it became more common for waves to break and rebuild quickly without complete planing of the bed surface. However, complete cycles occurred frequently with the following significant differences: (1) the upstream-migrating antidune developed upstream slopes that approached 25[degree]; (2) planing was accomplished by the rapid migration of a low, asymmetrical bedform through the antidune trough.
The effect of solids concentration on self-induced turbulence
Kenning, V.; Crowe, C.T.
1994-12-31
A model to predict the turbulence intensity due to the solid particles in a simple flow has been developed. The flow is one in which all the turbulence is due to the presence of the particles. The model accounts for energy input through the loss of potential energy by the solid particles and energy loss by turbulent dissipation. The predictions are compared for various solids concentrations and particle sizes. The peak turbulence intensity is seen to b3e reached faster for higher solid concentrations. The peak is also higher for higher concentrations. In all cases, a peak value of turbulent intensity is reached if the supply of particles is maintained. The case in which the supply of particles are no longer available to supply the turbulence with energy. When normalized by the peak value, the turbulence was seen to decay more rapidly for higher concentrations of solid particles in the present model. An experimental study will be conducted to compare with the current model.
Plasmoid Instabilities Mediated Three-Dimensional Magnetohydrodynamic Turbulent Reconnection
Huang, Yi-min; Guo, Fan
2015-07-21
After some introductory remarks on fast reconnection in resistive MHD due to plasmoid instability, oblique tearing modes in 3D, and previous studies on 3D turbulent reconnection, the subject is presented under the following topics: 3D simulation setup, time evolution of the 3D simulation, comparison with Sweet-Parker and 2D plasmoid reconnection, and diagnostics of the turbulent state (decomposition of mean fields and fluctuations, power spectra of energy fluctuations, structure function and eddy anisotropy with respect to local magnetic field). Three primary conclusions were reached: (1) The results suggest that 3D plasmoid instabilities can lead to self-generated turbulent reconnection (evidence of energy cascade and development of inertial range, energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence); (2) The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets (conventional MHD turbulence theories or phenomenologies may not be applicable â€“ e.g. scale-dependent anisotropy as predicted by Goldreich & Sridhar is not found); (3) 3D turbulent reconnection is different from 2D plasmoid-dominated reconnection in many aspects. However, in fully developed state, reconnection rates in 2D and 3D are comparable â€” this result needs to be further checked in higher S.
PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS
Machida, Masahiro N.
2014-11-20
A protostellar jet and outflow are calculated for ?270 yr following the protostar formation using a three-dimensional magnetohydrodynamics simulation, in which both the protostar and its parent cloud are spatially resolved. A high-velocity (?100 km s{sup –1}) jet with good collimation is driven near the disk's inner edge, while a low-velocity (? 10 km s{sup –1}) outflow with a wide opening angle appears in the outer-disk region. The high-velocity jet propagates into the low-velocity outflow, forming a nested velocity structure in which a narrow high-velocity flow is enclosed by a wide low-velocity flow. The low-velocity outflow is in a nearly steady state, while the high-velocity jet appears intermittently. The time-variability of the jet is related to the episodic accretion from the disk onto the protostar, which is caused by gravitational instability and magnetic effects such as magnetic braking and magnetorotational instability. Although the high-velocity jet has a large kinetic energy, the mass and momentum of the jet are much smaller than those of the low-velocity outflow. A large fraction of the infalling gas is ejected by the low-velocity outflow. Thus, the low-velocity outflow actually has a more significant effect than the high-velocity jet in the very early phase of the star formation.
Studies of Intermittency-like Phenomena in Plasma turbulence at IPR
Jha, R.; Das, A.; Bisai, N.; Kaw, P. [Institute for Plasma Research, Bhat, Near Indira Bridge, Gandhinagar-382428 (India)
2010-11-23
The observation of intermittency in the turbulent scrape-off layer plasma of ADITYA tokamak was first reported about one and a half decade ago. In the last decade or so, several aspects of intermittency-like phenomena have been observed on tokamaks and other fusion devices throughout the world. A review of the research carried out at the Institute for Plasma Research (IPR) is presented, which closely follow the research trend on intermittency-like phenomena in plasmas worldwide. We also present our analysis of particle flux data in order to test the recently proposed fluctuation theorem, which states that the probability of 'entropy consuming' flux events falls off exponentially with the averaging time. This theorem, proposed in the context of small systems, is applied to macroscopic system like tokamak edge plasma by invoking an 'effective temperature' of the bath of drift waves from which, plasma objects take energy and carry out work of transporting matter
POTENTIAL EVIDENCE FOR THE ONSET OF ALFVÃ‰NIC TURBULENCE IN TRANS-EQUATORIAL CORONAL LOOPS
De Moortel, I.; Threlfall, J.; McIntosh, S. W.; Bethge, C.; Liu, J. E-mail: mscott@ucar.edu
2014-02-20
This study investigates Coronal Multi-channel Polarimeter Doppler-shift observations of a large, off-limb, trans-equatorial loop system observed on 2012 April 10-11. Doppler-shift oscillations with a broad range of frequencies are found to propagate along the loop with a speed of about 500Â kmÂ s{sup â€“1}. The power spectrum of perturbations travelling up from both loop footpoints is remarkably symmetric, probably due to the almost perfect north-south alignment of the loop system. Compared to the power spectrum at the footpoints of the loop, the Fourier power at the apex appears to be higher in the high-frequency part of the spectrum than expected from theoretical models. We suggest this excess high-frequency power could be tentative evidence for the onset of a cascade of the low-to-mid frequency waves into (AlfvÃ©nic) turbulence.
Leavitt, M.A.; Lutz, I.C.
1958-08-01
An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.
Viñas, Adolfo F.; Moya, Pablo S.; Department of Physics, Catholic University of America, Washington DC, District of Columbia 20064 ; Navarro, Roberto; Araneda, Jaime A.
2014-01-15
Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the ?{sub e} increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron–proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.
Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.
2008-08-01
Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results
Ali Shan, S.; National Centre For Physics , Shahdra Valley Road, 44000 Islamabad; Pakistan Institute of Engineering and Applied Sciences , Islamabad ; El-Tantawy, S. A.; Moslem, W. M.
2013-08-15
Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.
Data interpretation of joint compressional and shear wave survey in mountainous region
Fugiu, D. )
1992-01-01
The join utilization of compressional and shear wave data leads one to discover nonstructural hydrocarbon traps such as stratigraphic trap, lithologic trap, fracture trap, etc. and to ascertain fluid situation in formation, lithologic variation and fracture zone, so that the accuracy of seismic data interpretation is improved greatly. In this paper, the author describes how to determine shear wave horizon, how to interpret carbonate reservoir and how to discover gas accumulation zone in HBC area in Sichuan Province. It is very important to pay more attention to analyzing the ratio between compressional wave amplitude and shear wave amplitude, and the ratio between compressional wave velocity and shear wave velocity in data interpretation. The amplitude ratio anomaly and the velocity ratio anomaly in HBC area can be usually seen at anticlinal axis areas and small noses. Generally speaking, the amplitude ratio anomaly area reflects gas accumulation and the velocity ratio anomaly area exhibits dense fracture zone. Good results have been obtained from exploratory wells in the areas where there occur the two anomalies simultaneously.
Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian
2015-04-24
West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.
Multi-Scale Simulations Solve a Plasma Turbulence Mystery
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Multi-Scale Simulations Solve a Plasma Turbulence Mystery Multi-Scale Simulations Solve a Plasma Turbulence Mystery Coupled Model Reproduces Experimental Electron Heat Losses March 7, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 turb cross High-res image of the inside of the Alcator C-Mod tokamak, with a representative cross-section of a plasma. The inset shows the approximate domain for one of the multi-scale simulations and a graphic of the plasma turbulence in the
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Coriton, Bruno; Frank, Jonathan H.
2016-02-16
In turbulent flows, the interaction between vorticity, Ï‰, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The Ï‰-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which Ï‰ and s are determined. The effects of combustion and mean shear on the Ï‰-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmoreÂ Â» Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger Ï‰-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between Ï‰ and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the Ï‰-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of Ï‰ and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45Â° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which Ï‰ is parallel to the s1Â¯-s2Â¯ plane and orthogonal to s3Â¯.Â«Â less
Offner, S R; Krumholz, M R; Klein, R I; McKee, C F
2008-04-18
In this study we investigate the formation and properties of prestellar and protostellar cores using hydrodynamic, self-gravitating Adaptive Mesh Refinement simulations, comparing the cases where turbulence is continually driven and where it is allowed to decay. We model observations of these cores in the C{sup 18}O(2 {yields} 1), NH{sub 3}(1,1), and N{sub 2}H{sup +} (1 {yields} 0) lines, and from the simulated observations we measure the linewidths of individual cores, the linewidths of the surrounding gas, and the motions of the cores relative to one another. Some of these distributions are significantly different in the driven and decaying runs, making them potential diagnostics for determining whether the turbulence in observed star-forming clouds is driven or decaying. Comparing our simulations with observed cores in the Perseus and {rho} Ophiuchus clouds shows reasonably good agreement between the observed and simulated core-to-core velocity dispersions for both the driven and decaying cases. However, we find that the linewidths through protostellar cores in both simulations are too large compared to the observations. The disagreement is noticeably worse for the decaying simulation, in which cores show highly supersonic infall signatures in their centers that decrease toward their edges, a pattern not seen in the observed regions. This result gives some support to the use of driven turbulence for modeling regions of star formation, but reaching a firm conclusion on the relative merits of driven or decaying turbulence will require more complete data on a larger sample of clouds as well as simulations that include magnetic fields, outflows, and thermal feedback from the protostars.
Evidence for wave heating of the quiet-sun corona
Hahn, M.; Savin, D. W.
2014-11-10
We have measured the energy and dissipation of AlfvÃ©nic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpoint of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 Ã— 10{sup 5} erg cm{sup â€“2} s{sup â€“1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.
Scientists use plasma shaping to control turbulence in stellarators...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
could also apply to their more widely used symmetrical donut-shaped cousins called tokamaks. This work was supported by the DOE Office of Science. Turbulence allows the hot,...
Assessment of Combustion and Turbulence Models for the Simulation...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine deer09ren.pdf (497.22 KB) More ...
Survey and Analysis of Multiresolution Methods for Turbulence...
Office of Scientific and Technical Information (OSTI)
Survey and Analysis of Multiresolution Methods for Turbulence Data Citation Details In-Document ... DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: ...
Magnetohydrodynamical turbulence in Star and Planet Formation | Princeton
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Plasma Physics Lab March 7, 2007, 4:15pm to 5:15pm Colloquia Magnetohydrodynamical turbulence in Star and Planet Formation Dr. Mordecai-Mark Mac Low, Department of Astrophysics American Museum of Natural History
TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS...
Office of Scientific and Technical Information (OSTI)
The numerical models are analyzed in the framework of one-dimensional Reynolds-Averaged ... We clarify the driving sources of kinetic energy, and show that the rate of turbulent ...
Hardage, Bob A.; DeAngelo, Michael V.; Ermolaeva, Elena; Hardage, Bob A.; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion
2013-02-01
The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal
Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E.
2013-05-15
Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?m
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
Seitzman, Jerry; Lieuwen, Timothy
2014-09-30
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide
Modeling coiled tubing velocity strings for gas wells
Martinez, J.; Martinez, A.
1995-12-31
Multiphase flowing pressure and velocity prediction models are necessary to coiled tubing velocity string design. A model used by most of the coiled tubing service companies or manufacturers is reviewed. Guidance is provided for selecting a coiled tubing of the proper size. The steps include: (1) Measured data matching; (2) Fluid property adjustment; (3) Pressure, velocity, and holdup selection; (4) Correlation choice; (5) Coiled tubing selection. A velocity range for the lift of liquid is given.
Scientists use plasma shaping to control turbulence in stellarators |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Princeton Plasma Physics Lab Scientists use plasma shaping to control turbulence in stellarators By John Greenwald October 21, 2014 Tweet Widget Google Plus One Share on Facebook Magnetic field strength in the turbulence-optimized MPX stellarator design with regions of the highest strength shown in yellow. The MPX design is named for coauthors Harry Mynick and Neil Pomphrey of PPPL and Pavlos Xanthopoulos of the Max Planck Institute of Plasma Physics. Magnetic field strength in the
Scientists use plasma shaping to control turbulence in stellarators |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Princeton Plasma Physics Lab Scientists use plasma shaping to control turbulence in stellarators By John Greenwald October 21, 2014 Tweet Widget Google Plus One Share on Facebook Magnetic field strength in the turbulence-optimized MPX stellarator design with regions of the highest strength shown in yellow. The MPX design is named for coauthors Harry Mynick and Neil Pomphrey of PPPL and Pavlos Xanthopoulos of the Max Planck Institute of Plasma Physics. Magnetic field strength in the
Numerical Simulations of Small Non-spherical Particles in Turbulence |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Argonne Leadership Computing Facility Numerical Simulations of Small Non-spherical Particles in Turbulence Event Sponsor: Mathematics and Computer Science Division LANS Seminar Start Date: Aug 31 2016 - 3:00pm Building/Room: Building 240/Room 1404-1405 Location: Argonne National Laboratory Speaker(s): Nimish Pujara Speaker(s) Title: UC Berkeley Motivated by the ubiquity of natural particles in turbulent flows in the natural environment as well as in many industrial processes, we investigate
Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| Argonne Leadership Computing Facility Visualization of the spanwise vorticity in a turbulent channel. S. Hoyas and O. Flores while they were at Universidad Politecnica de Madrid Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas Allocation Program: INCITE Allocation Hours at ALCF: 175 Million Year: 2013 Research Domain: Engineering Approximately 28% of U.S. energy resources are
Spectral Slope of MHD Turbulence | Argonne Leadership Computing Facility
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Spectral Slope of MHD Turbulence PI Name: Andrey Beresnyak PI Email: andrey.at.astro@gmail.com Institution: Los Alamos National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 35 Million Year: 2013 Research Domain: Physics MHD turbulence has attracted attention of astronomers since mid 1960s. As most astrophysical media are ionized, plasmas are coupled to the magnetic fields. A simple one-fluid description known as magnetohydrodynamics (MHD) is broadly applicable to most
Grechka, V.; Tsvankin, I.
1999-08-01
Reflection moveout recorded over an azimuthally anisotropic medium (e.g., caused by vertical or dipping fractures) varies with the azimuth of the source-receiver line. Normal-moveout (NMO) velocity, responsible for the reflection traveltimes on conventional-length spreads, forms an elliptical curve in the horizontal plane. While this result remains valid in the presence of arbitrary anisotropy and heterogeneity, the inversion of the NMO ellipse for the medium parameters has been discussed so far only for horizontally homogeneous models above a horizontal or dipping reflector. Here, the authors develop an analytic moveout correction for weak lateral velocity variation in horizontally layered azimuthally anisotropic media. The correction term is proportional to the curvature of the zero-offset travel-time surface at the common midpoint and, therefore, can be estimated from surface seismic data. After the influence of lateral velocity variation on the effective NMO ellipses has been stripped, the generalized Dix equation can be used to compute the interval ellipses and evaluate the magnitude of azimuthal anisotropy (measured by P-wave NMO velocity) within the layer of interest. This methodology was applied to a 3-D wide-azimuth data set acquired over a fractured reservoir in the Powder River Basin, Wyoming. The processing sequence included 3-D semblance analysis (based on the elliptical NMO equation) for a grid of common-midpoint supergathers, spatial smoothing of the effective NMO ellipses and zero-offset traveltimes, correction for lateral velocity variation, and generalized Dix differentiation. The estimates of depth-varying fracture trends in the survey area, based on the interval P-wave NMO ellipses, are in good agreement with the results of outcrop and borehole measurements and the rotational analysis of four component S-wave data.
Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Miki?, Zoran; Velli, Marco E-mail: cdowns@predsci.com E-mail: mikic@predsci.com
2014-12-01
Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
Plane shock wave studies of Westerly granite and Nugget sandstone
Larson, D.B.; Anderson, G.D.
1980-12-01
Plane shock wave experiments were performed by using a light-gas gun on dry and water-saturated Westerly granite and dry Nugget sandstone. Changes in the slopes of the shock velocity versus particle velocity curves at 2 to 3 GPa and 1 to 2 GPa for dry granite and for dry sandstone, respectively, are attributed to the onset of pore collapse. However, there is little apparent loss of shear strength in either dry rock over the stress range of the experiments (i.e., 9.3 GPa in Westerly granite and 9.2 GPa in Nugget sandstone). Agreement between the shock wave data and quasistatic, uniaxial strain data for the dry rock implies the absence of rate-dependence in uniaxial strain. The shock data on saturated granite agree well with those for dry granite, thus suggesting there was no loss in shear strength as a result of pore pressure buildup.
Numerical calculation of two-phase turbulent jets
Saif, A.A.
1995-05-01
Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.
GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS
Horton, Claude Wendell
2014-06-10
The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, â€œValidation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).
Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.
2015-07-23
A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmoreÂ Â» relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in SuetÂ al.(Combust. Flame, vol.Â 144 (3), 2006, pp.Â 494â€“512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse
Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.
2015-07-23
A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Su
Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.
2015-07-23
A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Su
Weinstein, Alla
2011-11-01
Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.
Caughey, David
2010-10-08
A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.
Abbott, Robert E.; Bartel, Lewis Clark; Pullammanappallil, Satish; Engler, Bruce Phillip
2006-08-01
We present a technique that allows for the simultaneous acquisition and interpretation of both shear-wave and compressive-wave 3-D velocities. The technique requires no special seismic sources or array geometries, and is suited to studies with small source-receiver offsets. The method also effectively deals with unwanted seismic arrivals by using the statistical properties of the data itself to discriminate against spurious picks. We demonstrate the technique with a field experiment at the Facility for Analysis, Calibration, and Testing at Sandia National Laboratories, Albuquerque, New Mexico. The resulting 3-D shear-velocity and compressive-velocity distributions are consistent with surface geologic mapping. The averaged velocities and V{sub p}/V{sub s} ratio in the upper 30 meters are also consistent with examples found in the scientific literature.