Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Staged direct injection diesel engine  

DOE Patents (OSTI)

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

2

carbon sequestration via direct injection  

NLE Websites -- All DOE Office Websites (Extended Search)

SEQUESTRATION VIA DIRECT INJECTION SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams INTRODUCTION The build-up of carbon dioxide (CO 2 ) and other greenhouse gases in the Earth's atmosphere has caused concern about possible global climate change. As a result, international negotiations have produced the Framework Convention on Climate Change (FCCC), completed during the 1992 Earth Summit in Rio de Janeiro. The treaty, which the United States has ratified, calls for the "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system." The primary greenhouse gas is CO 2 , which is estimated to contribute to over two-thirds of any climate change. The primary source of CO

3

Radial lean direct injection burner  

Science Conference Proceedings (OSTI)

A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

2012-09-04T23:59:59.000Z

4

INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL  

Science Conference Proceedings (OSTI)

This preliminary phase 1 report summarizes the background and the work on the ''Increased Flexibility of Turbo-Compressors in Natural Gas Transmission through Direct Surge Control'' project to date. The importance of centrifugal compressors for natural gas transmission is discussed, and the causes of surge and the consequences of current surge control approaches are explained. Previous technology development, including findings from early GMRC research, previous surge detection work, and selected publications, are presented. The project is divided into three Phases to accomplish the project objectives of verifying near surge sensing, developing a prototype surge control system (sensor and controller), and testing/demonstrating the benefits of direct surge control. Specification for the direct surge control sensor and controller developed with guidance from the industry Oversight Committee is presented in detail. Results of CFD modeling conducted to aid in interpreting the laboratory test results are shown and explained. An analysis of the system dynamics identified the data sampling and handling requirements for direct surge control. A detailed design process for surge detection probes has been developed and explained in this report and has been used to prepare drag probes for the laboratory compressor test and the first field test. The surge detection probes prepared for testing have been bench tested and flow tested to determine and calibrate their sensitivity to flow forces as shown in data presented in this report. The surge detection drag probes have been shown to perform as expected and as required to detect approaching surge. Laboratory test results of surge detection in the SwRI centrifugal compressor demonstrated functionality of the surge detection probes and a change in the impeller inlet flow pattern prior to surge. Although the recirculation cannot be detected because of the specific geometry of this compressor, there are changes that indicate the approach of surge that can be detected. Preparations for a field test had been completed at one point in the project. However, a failure of the surge probe wiring just inside the compressor case has caused a delay in the field testing. Repairs for the wiring in the compressor have been scheduled and the field test will take place shortly after the repairs.

Robert J. McKee

2003-05-01T23:59:59.000Z

5

European Lean Gasoline Direct Injection Vehicle Benchmark  

DOE Green Energy (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL; Huff, Shean P [ORNL; Edwards, Kevin Dean [ORNL; Norman, Kevin M [ORNL; Prikhodko, Vitaly Y [ORNL; Thomas, John F [ORNL

2011-01-01T23:59:59.000Z

6

Ejector device for direct injection fuel jet  

SciTech Connect

Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

Upatnieks, Ansis (Livermore, CA)

2006-05-30T23:59:59.000Z

7

INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL  

Science Conference Proceedings (OSTI)

The objective of this Direct Surge Control project was to develop a new internal method to avoid surge of pipeline compressors. This method will safely expand the range and flexibility of compressor operations, while minimizing wasteful recycle flow at the lower end of the operating envelope. The approach is to sense the onset of surge with a probe that directly measures re-circulation at the impeller inlet. The signals from the probe are used by a controller to allow operation at low flow conditions without resorting to a predictive method requiring excessive margin to activate a recycle valve. The sensor developed and demonstrated during this project was a simple, rugged, and sensitive drag probe. Experiments conducted in a laboratory compressor clearly showed the effectiveness of the technique. Subsequent field demonstrations indicated that the increase in range without the need to recycle flow was on the order of 19% to 25%. The cost benefit of applying the direct surge control technology appears to be as much as $120 per hour per compressor for operation without the current level of recycle flow. This could amount to approximately $85 million per year for the U.S. Natural Gas Transmission industry, if direct surge control systems are applied to most pipeline centrifugal compressors.

Robert J. McKee; Shane P. Siebenaler; Danny M. Deffenbaugh

2005-02-25T23:59:59.000Z

8

Direct liquid injection of liquid petroleum gas  

SciTech Connect

A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

Lewis, D.J.; Phipps, J.R.

1984-02-14T23:59:59.000Z

9

NOx Sensor for Direct Injection Emission Control  

DOE Green Energy (OSTI)

The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

Betteridge, William J

2006-02-28T23:59:59.000Z

10

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

11

Optical Diagnostics and Direct Injection of Liquid Fuel Sprays  

Science Conference Proceedings (OSTI)

The research described here addresses the problem of a paucity of high quality data on the full field structure of high pressure liquid fuel sprays for gasoline direct injection, GDI, engines. The paper describes the application of phase Doppler anemometry, ... Keywords: GDI, PDA, laser sheet, spray, visualisation

G. K. Hargrave; G. Wigley; J. Allen; A. Bacon

1999-12-01T23:59:59.000Z

12

Influence of water injection on performance and emissions of a direct-injection hydrogen research engine.  

DOE Green Energy (OSTI)

The application of hydrogen (H{sub 2}) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions.

Nande, A. M.; Wallner, T.; Naber, J. (Energy Systems); (MIchigan Technological Univ.)

2008-10-06T23:59:59.000Z

13

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program  

DOE Green Energy (OSTI)

The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

14

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network (OSTI)

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

15

Assessing the hydrocarbon emissions in a homogeneous direct injection spark ignited engine  

E-Print Network (OSTI)

For the purpose of researching hydrocarbon (HC) emissions in a direct-injection spark ignited (DISI) engine, five experiments were performed. These experiments clarified the role of coolant temperature, injection pressure, ...

Radovanovic, Michael S

2006-01-01T23:59:59.000Z

16

Modeling turbo-expander systems  

Science Conference Proceedings (OSTI)

Turbo-expander systems have long been used instead of regulators, but they have recently received attention as a driving medium for power electrical generators. These systems typically replace the regulator valves that reduce the gas pressure in gas ... Keywords: dispersed generation, turbo-expander systems, variable nozzle angle

Mehdi Taleshian Jelodar, Hasan Rastegar, Hossein Askarian Abyaneh

2013-02-01T23:59:59.000Z

17

Testing of a new aftertreatment system for lean burn direct injected gasoline engines.  

E-Print Network (OSTI)

??A gasoline direct injected engine operating under lean conditions can offer a reduction in fuel consumption and a reduction of CO2 emissions but meanwhile suffer… (more)

Thulin, Andeas

2011-01-01T23:59:59.000Z

18

Evaluation of UHT milk processed by direct steam injection and steam infusion technology.  

E-Print Network (OSTI)

??UHT direct steam injection and steam infusion are widely used; however there is no comparison of their impact on milk components. This study evaluates the… (more)

Malmgren, Bozena

2007-01-01T23:59:59.000Z

19

Control strategy for hydrocarbon emissions in turbocharged direct injection spark ignition engines during cold-start  

E-Print Network (OSTI)

Gasoline consumption and pollutant emissions from transportation are costly and have serious, demonstrated environmental and health impacts. Downsized, turbocharged direct-injection spark ignition (DISI) gasoline engines ...

Cedrone, Kevin David

2013-01-01T23:59:59.000Z

20

Premixed direct injection nozzle for highly reactive fuels  

Science Conference Proceedings (OSTI)

A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

2013-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

Science Conference Proceedings (OSTI)

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17T23:59:59.000Z

22

PLIF flow visualization of methane gas jet from spark plug fuel injector in a direct injection spark ignition engine  

Science Conference Proceedings (OSTI)

A Spark Plug Fuel Injection (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection [1]. A direct fuel injector is combined ... Keywords: air-fuel mixing, direct fuel injection, flow visualization, gaseous fuel, laser-induced fluorescent

Taib Iskandar Mohamad; How Heoy Geok

2008-11-01T23:59:59.000Z

23

Evaluation of the environmental viability of direct injection schemes for ocean carbon sequestration  

E-Print Network (OSTI)

This thesis evaluates the expected impact of several promising schemes for ocean carbon sequestration by direct injection of CO2, and serves as an update to the assessment by Auerbach et al. (1997) and Caulfield et al. ...

Israelsson, Peter H. (Peter Hampus), 1973-

2008-01-01T23:59:59.000Z

24

Effects of different fuels on a turbocharged, direct injection, spark ignition engine  

E-Print Network (OSTI)

The following pages describe the experimentation and analysis of two different fuels in GM's high compression ratio, turbocharged direct injection (TDI) engine. The focus is on a burn rate analysis for the fuels - gasoline ...

Negrete, Justin E

2010-01-01T23:59:59.000Z

25

Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine  

DOE Green Energy (OSTI)

Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Not Available

2004-08-01T23:59:59.000Z

26

Predicting and Evaluating the Effectiveness of Ocean Carbon Sequestration by Direct Injection  

Science Conference Proceedings (OSTI)

Direct injection of CO{sub 2} into the ocean is a potentially effective carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection and develop the appropriate analytic framework to allow us to compare the effectiveness of this strategy with other carbon management options. Here, after a brief review of direct oceanic injection, we estimate the effectiveness of ocean carbon sequestration using one dimensional and three dimensional ocean models. We discuss a new measure of effectiveness of carbon sequestration in a leaky reservoir, which we denote sequestration potential. The sequestration potential is the fraction of global warning cost avoided by sequestration in a reservoir. We show how these measures apply to permanent sequestration and sequestration in leaky reservoirs, such as the oceans, terrestrial biosphere, and some geologic formations. Under the assumptions of a constant cost of carbon emission and a 4% discount rate, injecting 900 m deep in the ocean avoids {approx}90% of the global warming cost associated with atmospheric emission; an injection 1700 m deep would avoid > 99 % of the global warming cost. Hence, for discount rates in the range commonly used by commercial enterprises, oceanic direct injection may be nearly as economically effective as permanent sequestration at avoiding global warming costs.

Caldeira, K; Herzog, H J; Wickett, M E

2001-04-24T23:59:59.000Z

27

Evaluation of injector location and nozzle design in a direct-injection hydrogen research engine.  

DOE Green Energy (OSTI)

The favorable physical properties of hydrogen (H{sub 2}) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs.

Wallner, T.; Nande, A. M.; Naber, J.; Energy Systems; Michigan Technological Univ.

2008-06-01T23:59:59.000Z

28

Computational study of homogeneous and stratified combustion in a compressed natural gas direct injection engine  

Science Conference Proceedings (OSTI)

In recent years, the type of combustion occurred within engine cylinder plays an important role determining the performance and emissions. In the present study, the computational investigation was performed in order to compare characteristics of homogeneous ... Keywords: compressed natural gas, direct injection, exhaust emissions, homogeneous combustion, stratified combustion

S. Abdullah; W. H. Kurniawan; M. A. Al-Rawi; Y. Ali; T. I. Mohamad

2009-02-01T23:59:59.000Z

29

Turbo Dynamics | Open Energy Information  

Open Energy Info (EERE)

Turbo Dynamics Turbo Dynamics Jump to: navigation, search Name Turbo Dynamics Address 3235 River rd. Place Toledo, Ohio Zip 43614 Sector Biomass, Buildings, Efficiency, Renewable Energy, Services, Solar Product Agriculture; Consulting;Energy audits/weatherization; Engineering/architectural/design;Installation; Maintenance and repair;Manufacturing; Research and development;Retail product sales and distribution;Trainining and education Phone number 419-382-7287 Website http://www.turbodradial.com Coordinates 41.607247°, -83.591719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.607247,"lon":-83.591719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Controlling combustion characteristics using a slit nozzle in a direct-injection methanol engine  

SciTech Connect

A new type of fuel injection nozzle, called a `slit nozzle,` has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation. 3 refs., 12 figs., 4 tabs.

Kusaka, Jin; Daisho, Yasuhiro; Saito, Takeshi; Kihara, Ryoji

1994-10-01T23:59:59.000Z

31

Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions  

Science Conference Proceedings (OSTI)

A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissions is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.

He, X.; Ratcliff, M. A.; Zigler, B. T.

2012-04-19T23:59:59.000Z

32

FY2001 Progress Report for the Spark Ignition Direct Injection R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

SPARK IGNITION, SPARK IGNITION, DIRECT INJECTION ENGINE R&D 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and Computer Systems Management, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for the Spark Ignition Direct Injection R&D Program

33

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

34

Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine  

DOE Green Energy (OSTI)

In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

John Dec; Paul Miles

1999-01-01T23:59:59.000Z

35

Research and development of hydrogen direct-injection internal combustion engine system  

Science Conference Proceedings (OSTI)

The research and development of hydrogen-internal combustion engine (ICE) system for heavy-duty trucks, with the goal of allowing carbon dioxide (CO2)-free operation in transportation department, has been carried out. The high-pressure hydrogen ... Keywords: NOx emission reduction, NOx storage reduction catalyst, carbon dioxide-free, direct injection, heavy-duty truck, high-pressure hydrogen injector, hydrogen, internal combustion engine

Yoshio Sato; Atsuhiro Kawamura; Tadanori Yanai; Kaname Naganuma; Kimitaka Yamane; Yasuo Takagi

2009-02-01T23:59:59.000Z

36

Microsoft Word - TURBO EXPO CO2 draft  

NLE Websites -- All DOE Office Websites (Extended Search)

MAN TURBO MAN TURBO CO2 Compression Challenges presented on May 15, 2007 at the ASME Turbo Expo, Montreal, CO2 Compression Panel By Pierre L. Bovon, MAN TURBO Calgary (pierre.bovon@ca.manturbo.com, tel. +403 233 7151) And Dr. Rolf Habel, MAN TURBO Berlin (rolf.habel@de.manturbo.com, tel. +49 304 301 2224) CO2 has been used for a very long time, for instance in the food industry, and most applications have required it to be compressed. For Sequestration or Enhanced Oil Recovery, the traditional approach to CO2 compression has been to use high-speed reciprocating compressors. The main reasons are: - Flexibility with regards to pressure ratio, and capacity (if equipped with variable speed drive or valve unloaders). - Short delivery times, since many recip. packagers dispose of a selection of frames

37

CE Turbo Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Turbo Geothermal Facility Turbo Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home CE Turbo Geothermal Facility General Information Name CE Turbo Geothermal Facility Facility CE Turbo Sector Geothermal energy Location Information Address 7001 Gentry Road Location Calipatria, California Zip 92233 Coordinates 33.164229333373°, -115.61447381973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.164229333373,"lon":-115.61447381973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Wilson TurboPower | Open Energy Information  

Open Energy Info (EERE)

TurboPower TurboPower Jump to: navigation, search Logo: Wilson TurboPower Name Wilson TurboPower Address 55 Sixth Street Place Woburn, Massachusetts Zip 01801 Sector Efficiency Product Developer of microturbines and high efficiency heat exchangers Website http://www.wilsonturbopower.co Coordinates 42.5099836°, -71.150081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5099836,"lon":-71.150081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network (OSTI)

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

40

Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine  

SciTech Connect

The objective of this research is a detailed investigation of particulate sizing and number count from a direct-injection spark-ignited (DISI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded. These varied parameters include load, air-to-fuel ratio (A/F), spark timing, injection timing, fuel rail pressure, and oil and coolant temperatures. Most conditions resulted with uni-modal type distributions usually with an increase in magnitude of particles in comparison to the baseline, with the exception of lean operation with retarded ignition timing. Further investigation revealed high sensitivity of the particle number and size distribution to changes in the engine control parameters. There was also a high sensitivity of the particle size distributions to small variations in A/F, ignition timing, and EOI. Investigations revealed the possibility of emissions oxidation in the exhaust and engine combustion instability at later EOI timings which therefore ruled out late EOI as the benchmark condition. Attempts to develop this benchmark revealed engine sensitivity to A/F and ignition timing, especially at later EOI operation

Farron, Carrie; Matthias, Nick; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

2011-04-12T23:59:59.000Z

42

The influence of bowl offset on air motion in a direct injection diesel engine  

SciTech Connect

The influence of bowl offset on motored mean flow and turbulence in a direct injection diesel engine has been examined with the aid of a multi-dimensional flow code. Results are presented for three piston geometries. The bowl geometry of each piston was the same, while the offset between the bowl and the cylinder axis was varied from 0.0 to 9.6% of the bore. The swirl ratio at intake valve closing was also varied from 2.60 to 4.27. It was found that the angular momentum of the air at TDC was decreased by less than 8% when the bowl was offset. Nevertheless, the mean (squish and swirl) flows were strongly affected by the offset. In addition, the distribution of turbulent kinetic energy (predicted by the /delta/-e model) was modified. Moderate increases (10% or less) in mass averaged turbulence intensity at TDC with offset were observed.

McKinley, T.L.; Primus, R.J

1988-01-01T23:59:59.000Z

43

Towards Near Real-Time Availability With Enhanced Accuracy Turbo...  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbo" ARSCL Towards Near Real-Time Availability With Enhanced Accuracy Turbo-ARSCL Project The goal is to speed delivery of the widely-used ARSCL product while improving the...

44

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network (OSTI)

A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre-ignition radicals, start of combustion, and eventual heat release. These mechanisms are described based on the current understanding and knowledge of the diesel engine combustion acquired through advanced laser-based diagnostics. Six zones are developed to take into account the surrounding bulk gas, liquid- and vapor-phase fuel, pre-ignition mixing, fuel-rich combustion products as well as the diffusion flame combustion products. A three-step phenomenological soot model and a nitric oxide emission model are applied based on where and when each of these reactions mainly occurs within the diesel fuel jet evolution process. The simulation is completed for a 4.5 liter, inline four-cylinder diesel engine for a range of operating conditions. Specifically, the engine possesses a compression ratio of 16.6, and has a bore and stroke of 106 and 127 mm. The results suggest that the simulation is able to accurately reproduce the fuel jet evolution and heat release process for conventional diesel engine combustion conditions. The soot and nitric oxide models are able to qualitatively predict the effects of various engine parameters on the engine-out emissions. In particular, the detailed thermodynamics and characteristics with respect to the combustion and emission formation processes are investigated for different engine speed/loads, injection pressures and timings, and EGR levels. The local thermodynamic properties and energy, mass distributions obtained from the simulation offer some fundamental insights into heterogeneous type combustion systems. The current work provides opportunities to better study and understand the diesel engine combustion and emission formation mechanisms for conventional diesel engine combustion modes. The flexible, low computational cost features of this simulation result in a convenient tool for conducting parametric studies, and benefits for engine control and diagnostics.

Xue, Xingyu 1985-

2012-12-01T23:59:59.000Z

45

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions  

Science Conference Proceedings (OSTI)

Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Barone, Teresa L [ORNL

2010-01-01T23:59:59.000Z

46

Hydrocarbon emissions in a homogeneous direct-injection spark engine : gasoline and gasohol  

E-Print Network (OSTI)

In order to better understand the effects on hydrocarbon emissions of loading, engine temperature, fuel type, and injection timing, a series of experiments was performed. The effect of loading was observed by running the ...

Tharp, Ronald S

2008-01-01T23:59:59.000Z

47

Assessment of Component Reliability Databases for Turbo-XN  

Science Conference Proceedings (OSTI)

EPRI's Turbo-X tool quantifies financial risk associated with decisions on nuclear power plant maintenance, such as extending maintenance intervals and modifying plant operation. Turbo-X was originally developed for fossil plant applications to evaluate the net present value of various operational or maintenance scenarios. Turbo-X compares the probability and corresponding consequential costs of equipment failure against the financial benefits of extending or modifying operations. Future application of t...

2001-11-07T23:59:59.000Z

48

Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by TIAX and Westport to test and perform cost analysis for catalytic glow plugs and shields for direct-injection natural gas engines for the Next Generation Natural Gas Vehicle Program.

Mello, J. P.; Bezaire, D.; Sriramulu, S.; Weber, R.

2003-08-01T23:59:59.000Z

49

The effect of oxygenate molecular structure on soot production in direct-injection diesel engines.  

DOE Green Energy (OSTI)

A combined experimental and kinetic modeling study of soot formation in diesel engine combustion has been used to study the addition of oxygenated species to diesel fuel to reduce soot emissions. This work indicates that the primary role of oxygen atoms in the fuel mixture is to reduce the levels of carbon atoms available for soot formation by fixing them in the form of CO or COz. When the structure of the oxygenate leads to prompt and direct formation of CO2, the oxygenate is less effective in reducing soot production than in cases when all fuel-bound 0 atoms produce only CO. The kinetic and molecular structure principles leading to this conclusion are described.

Westbrook, Charles K. (Lawrence Livermore National Laboratory, Livermore, CA); Pitz, William J. (Lawrence Livermore National Laboratory, Livermore, CA); Mueller, Charles J.; Martin, Glen M.; Pickett, Lyle M.

2003-06-01T23:59:59.000Z

50

University of Michigan-Flint Turbo Jet Engine  

E-Print Network (OSTI)

University of Michigan-Flint Turbo Jet Engine Leon LaVene III, Steven Skorski Michael Isaac, Kyle Stokes & Quamrul Mazumder Assistant Professor, Mechanical Engineering University of Michigan-Flint Flint

Farmer, Michael E.

51

Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1  

DOE Green Energy (OSTI)

This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

Chan, A.K.

2000-02-23T23:59:59.000Z

52

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2  

DOE Green Energy (OSTI)

This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

2000-03-02T23:59:59.000Z

53

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions  

Science Conference Proceedings (OSTI)

More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

2012-01-01T23:59:59.000Z

54

Wilson TurboPower Inc | Open Energy Information  

Open Energy Info (EERE)

TurboPower Inc TurboPower Inc Jump to: navigation, search Name Wilson TurboPower Inc Place Woburn, Massachusetts Zip MA 01801 Product Massachusetts-based developer of heat exchanger technology that was founded to commercialise the research of Prof. David Gordon Wilson from MIT. Coordinates 42.479195°, -71.150604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.479195,"lon":-71.150604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition (DISI) engine.  

DOE Green Energy (OSTI)

This study was designed to evaluate a 'what if' scenario in terms of using butanol as an oxygenate in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency, and emissions of pure gasoline, 10% ethanol, and 10% butanol blends in a modern direct-injection four-cylinder spark-ignition engine were analyzed. Data were taken at engine speeds of 1000 rpm up to 4000 rpm with load varying from 0 N m (idle) to 150 N m. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation in indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared with the gasoline baseline and, even more pronounced, compared with the ethanol blend. Brake specific volumetric fuel consumption, which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared with the ethanol blend, as expected, based on energy density differences. The results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NO{sub x} due to the high octane rating of ethanol and effective antiknock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol.

Wallner, T.; Miers, S. A.; McConnell, S. (Energy Systems)

2009-05-01T23:59:59.000Z

56

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1  

DOE Green Energy (OSTI)

The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

NONE

2000-03-02T23:59:59.000Z

57

Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine  

Science Conference Proceedings (OSTI)

The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

1994-07-01T23:59:59.000Z

58

SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercritical Carbon Dioxide Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers to someone by E-mail Share SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Facebook Tweet about SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Twitter Bookmark SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Google Bookmark SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Delicious Rank SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Digg Find More places to share SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on AddThis.com... Concentrating Solar Power Systems Components

59

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: LIF, air-to-fuel mixing, gasoline direct injection engine, image analysis, intensified image acquisition, laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

60

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: Air-to-fuel mixing, Gasoline direct injection engine, Image analysis, Intensified image acquisition, LIF, Laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

Völk, S; Schülein, F J R; Truong, T A; Kim, H; Petroff, P M; Wixforth, A; Krenner, H J

2010-01-01T23:59:59.000Z

62

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

S. Völk; F. Knall; F. J. R. Schülein; T. A. Truong; H. Kim; P. M. Petroff; A. Wixforth; H. J. Krenner

2010-11-08T23:59:59.000Z

63

TurboTech Precision Engineering Private Limited | Open Energy Information  

Open Energy Info (EERE)

TurboTech Precision Engineering Private Limited TurboTech Precision Engineering Private Limited Jump to: navigation, search Name TurboTech Precision Engineering Private Limited Place Bangalore, India Zip 560 044 Sector Efficiency Product Designs and manufactures of high-efficiency steam turbines in the 50-250kW range. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Iterative Decoding and Turbo Equalization: The Z-Crease Phenomenon  

E-Print Network (OSTI)

Iterative probabilistic inference, popularly dubbed the soft-iterative paradigm, has found great use in a wide range of communication applications, including turbo decoding and turbo equalization. The classic approach of analyzing the iterative approach inevitably use the statistical and information-theoretical tools that bear ensemble-average flavors. This paper consider the per-block error rate performance, and analyzes it using nonlinear dynamical theory. By modeling the iterative processor as a nonlinear dynamical system, we report a universal "Z-crease phenomenon:" the zig-zag or up-and-down fluctuation -- rather than the monotonic decrease -- of the per-block errors, as the number of iteration increases. Using the turbo decoder as an example, we also report several interesting motion phenomenons which were not previously reported, and which appear to correspond well with the notion of "pseudo codewords" and "stopping/trapping sets." We further propose a heuristic stopping criterion to control Z-crease and identify the best iteration. Our stopping criterion is most useful for controlling the worst-case per-block errors, and helps to significantly reduce the average-iteration numbers.

Jing Li; Kai Xie

2013-06-03T23:59:59.000Z

65

Improvement of the performance of a turbo-ramjet engine for UAV and missile applications .  

E-Print Network (OSTI)

??An existing turbo-ramjet engine was modified in order to increase the produced thrust and sustain combustion at increased freejet Mach numbers. The engine's afterburner fuel… (more)

Krikellas, Dimitrios

2003-01-01T23:59:59.000Z

66

Development of Inexpensive Turbo Compressor/Expanders for Industrial Use  

E-Print Network (OSTI)

Use of Turbo Compressor/ Expanders (TCEs) as industrial reversed Brayton Cycle Heat Pumps offers many technical and energy saving advantages. Until recently, such devices have been far too expensive in both capital cost and inefficiency mainly because the compressor and expander stages were built for forward Brayton Cycle operation in unmatched compressor/expander efficiencies. A few years ago, NUCON initiated a program to locate sources of TCEs and to engineer cost effective modifications to these standard TCEs for use in reverse Brayton Cycle condensation based pollution control and solvent recovery, material recycle applications. The NUCON program is continuing to further improve the matched compressor/expander efficiency, the availability and cost effectiveness of these uses. This program has resulted in major advances in availability and significant improvements in efficiency.

Jacox, J. W.

1991-06-01T23:59:59.000Z

67

Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)  

DOE Green Energy (OSTI)

Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

Not Available

2012-12-01T23:59:59.000Z

68

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO HONEYWELL TURBO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCE WAIVER OF PATENT RIGHTS TO HONEYWELL TURBO ADVANCE WAIVER OF PATENT RIGHTS TO HONEYWELL TURBO TECHNOLOGIES (HTT) UNDER DOE PRIME CONTRACT NO. DE-DE-FC26- 06NT42873 FOR "ADVANCED TURBO-CHARGING RESEARCH AND DEVELOPMENT"; CH-1390; W(A)-06-032 Honeywell Turbo Technologies (HTT), has petitioned for an advanced waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. DE-FC26-06NT42873. This advanced waiver is intended to apply to all subject inventions of HTT's employees. As brought out in its waiver petition, HTT will research and develop advanced turbocharger systems for use in gasoline and diesel engines for passenger cars and commercial vehicles. In response to question 3, the total dollar amount of the contract is $9,221,458 with HTT's

69

MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...  

Open Energy Info (EERE)

Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

70

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones  

E-Print Network (OSTI)

Societal concerns on combustion-based fuel consumption are ever-increasing. With respect to internal combustion engines, this translates to a need to increase brake fuel conversion efficiency (BFCE). Diesel engines are a relatively efficient internal combustion engine to consider for numerous applications, but associated actions to mitigate certain exhaust emissions have generally deteriorated engine efficiency. Conventionally, diesel engine emission control has centered on in-cylinder techniques. Although these continue to hold promise, the industry trend is presently favoring the use of after-treatment devices which create new opportunities to improve the diesel engine's brake fuel conversion efficiency. This study focuses on injection timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct fuel injection, variable geometry turbo charging, and interfaced with a custom built engine controller. The study found that injection timing greatly affected BFCE by changing the combustion phasing. BFCE would increase up to a maximum then begin to decrease as phasing became less favorable. Combustion phasing would change from being mostly mixing controlled combustion to premixed combustion as injection timing would advance allowing more time for fuel to mix during the ignition delay. Combustion phasing, in turn, would influence many other engine parameters. As injection timing is advanced, in-cylinder temperatures and pressures amplify, and intake and exhaust manifold pressures deteriorate. Rate of heat release and rate of heat transfer increase when injection timing is advanced. Turbocharger speed falls with the advancing injection timing. Torque, however, rose to a maximum then fell off again even though engine speed and fueling rate were held constant between different injection timings. Interestingly, the coefficient of heat transfer changes from a two peak curve to a smooth one peak curve as the injection timing is advanced further. The major conclusion of the study is that injection advance both positively and negatively influences the diesel engine's response which contributes to the brake fuel conversion efficiency.

McLean, James Elliott

2011-08-01T23:59:59.000Z

71

Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems  

Science Conference Proceedings (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

2010-01-01T23:59:59.000Z

72

Full length article: Turbo equalization receivers for evolved GSM/EDGE radio access network using QAM modulation  

Science Conference Proceedings (OSTI)

For evolution of the GSM/EDGE radio access network (RAN), the use of higher order modulation like 16- and 32-ary quadrature amplitude modulation (QAM) is considered in standardization for increased peak data rates and reduced transmission delays. In ... Keywords: Complexity reduction, GSM/EDGE, Higher order modulation, Turbo coding, Turbo equalization

Patrick Nickel; Wolfgang Gerstacker; Christoph Reck; Wolfgang Koch

2008-09-01T23:59:59.000Z

73

TurboCap: A Batteryless, Supercapacitor-based Power Supply for Mini-FDPM  

E-Print Network (OSTI)

TurboCap: A Batteryless, Supercapacitor-based Power Supply for Mini-FDPM Chulsung Park1 , KeunsikCap, a batteryless, supercapacitor-based power supply subsystem for a handheld, laser-based breast cancer detector on the selection of supercapacitor topology for conversion efficiency and for form- factor minimization

Shinozuka, Masanobu

74

Development of a new type of oil?free turbo vacuum pump  

Science Conference Proceedings (OSTI)

We developed a new type of high?performance oil?free roughing pump which could attain an inlet pressure of the order of 10? 2 Pa with an outlet pressure of atmosphere. The pump is a turbo vacuum pump which has radial flow and peripheral flow pump stages in series. From the inlet side residual gas analysis

M. Mase; I. Gyoubu; T. Nagaoka; M. Taniyama

1988-01-01T23:59:59.000Z

75

Managing Risk and Improving Financial Performance for an Aging Turbo-Generator Fleet  

Science Conference Proceedings (OSTI)

This document is a brief guide for maintenance staff on effectively using the PowerPoint slideshow, A Proposal to Better Manage Risk and Improve Financial Performance of an Aging Turbo-Generator Fleet, as a starting point for discussing the issue with plant management.

2008-11-03T23:59:59.000Z

76

1 Copyright 2002 by ASME Proceedings of ASME Turbo Expo 2003  

E-Print Network (OSTI)

INTRODUCTION Gas turbines are typical power sources used in a wide size range for stationary power plants1 Copyright © 2002 by ASME Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air June 16 OF WAVE ROTOR TOPPING CYCLES Pezhman Akbari Michigan State University Dept. of Mechanical Engineering 2500

Müller, Norbert

77

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

DOE Green Energy (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

78

A solarized Brayton engine based on turbo-charger technology and the DLR receiver  

DOE Green Energy (OSTI)

Northern Research and Engineering Corp. (NREC) is currently under contract to Sandia National Laboratories to solarize a 30 kWe Brayton engine that is based on turbo-charger technology. This program is also supported by the German Aerospace Research Establishment (DLR), which is supplying the solar receiver through an agreement with the International Energy Agency/SolarPACES. The engine is a low pressure, highly recuperated engine. The turbo-machinery is built up from commercial turbo-chargers, which ensures low cost and high reliability. A combustor will be included in the system to allow for full power production during cloud transients. Current estimates are that the engine/alternator thermal-to-electric efficiency will be 30+%. The solar receiver to be supplied by DLR will be an advanced version of their VOBREC volumetric receiver. This receiver has a parabolic quartz window and ceramic foam absorber. The estimated efficiency of the receiver is 90+%. Sandia has developed an economic model to estimate the levelized energy cost (LEC) of energy produced by dish/engine systems. The model includes both the operating characteristics of the dishes and engines as well as a detailed economic model. The results of the analysis indicate that the dish/Brayton systems compare favorably with dish/Stirling systems.

Gallup, D.R. [Sandia National Labs., Albuquerque, NM (United States); Kesseli, J.B. [Northern Research and Engineering Corp., Woburn, MA (United States)

1994-06-01T23:59:59.000Z

79

Modeling Injection and Ignition in Direct Injection Natural Gas Engines.  

E-Print Network (OSTI)

??With increasing concerns about the harmful effects of conventional liquid fossil fuel emissions, natural gas has become a very attractive alternative fuel to power prime… (more)

Cheng, Xu Jr.

2008-01-01T23:59:59.000Z

80

Slide 1  

U.S. Energy Information Administration (EIA)

... quadrillion Btu Annual Energy Outlook 2008 Unconventional light-duty vehicles constitute 45 percent of sales in 2030 Hybrids Flex Fuel Turbo Direct Injection ...

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF  

SciTech Connect

A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different fuel injection strategies. Finally, mixture distributions for late injection obtained using quantitative PLIF are compared to predictions of computational fluid dynamics calculations. (author)

Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

2010-10-15T23:59:59.000Z

82

Operating experiences and measurements on turbo sets of CCGT-cogeneration plants in Germany  

Science Conference Proceedings (OSTI)

Five closed-cycle gas turbine cogeneration plants have been built and commissioned in the Federal Republic of Germany. In all cases the working fluid was air. The facilities were designed as cogeneration plants to supply electricity as well as heat to electrical and heating networks. Each of the plants accumulated more than 100,000 operating hours. One of them, which has exceeded 160,000 hours of operation, is still working. An account has already been given of the experience with the air heaters of these plants, which were fired with coal, oil, gas, or combinations of these. This paper records the experience obtained with the turbo sets.

Bammert, K.

1987-01-01T23:59:59.000Z

83

MAN Turbo  

Science Conference Proceedings (OSTI)

... Berlin Small / medium centrifugal compressors Products Division Oil & Gas Multi-shaft compressors Refining & CO2 Applications ... Refinery / ...

2012-10-26T23:59:59.000Z

84

High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback  

DOE Green Energy (OSTI)

This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

2007-12-31T23:59:59.000Z

85

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

86

Slit injection device  

DOE Patents (OSTI)

A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

Alger, Terry W. (Livermore, CA); Schlitt, Leland G. (Livermore, CA); Bradley, Laird P. (Livermore, CA)

1976-06-15T23:59:59.000Z

87

Rich catalytic injection  

SciTech Connect

A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

Veninger, Albert (Coventry, CT)

2008-12-30T23:59:59.000Z

88

Beam injection into RHIC  

SciTech Connect

During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

1997-07-01T23:59:59.000Z

89

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

90

Study Reveals Fuel Injection Timing Impact on Particle Number...  

NLE Websites -- All DOE Office Websites (Extended Search)

In an ongoing quest to meet ever-more-rigorous fuel economy and emissions requirements, vehicle manufacturers are increasingly turning to gasoline direct injection (GDI) coupled...

91

Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection  

DOE Green Energy (OSTI)

A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

2010-12-03T23:59:59.000Z

92

Geysers injection modeling  

DOE Green Energy (OSTI)

Our research is concerned with mathematical modeling techniques for engineering design and optimization of water injection in vapor-dominated systems. The emphasis in the project has been on the understanding of physical processes and mechanisms during injection, applications to field problems, and on transfer of numerical simulation capabilities to the geothermal community. This overview summarizes recent work on modeling injection interference in the Southeast Geysers, and on improving the description of two-phase flow processes in heterogeneous media.

Pruess, K.

1994-04-01T23:59:59.000Z

93

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

94

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

Folta, James A. (Livermore, CA)

1997-01-01T23:59:59.000Z

95

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

Folta, J.A.

1997-07-01T23:59:59.000Z

96

Yet Another Fault Injection Technique : by Forward Body Biasing Injection  

E-Print Network (OSTI)

expensive fault injection tech- niques, like clock or voltage glitches, are well taken into accountYet Another Fault Injection Technique : by Forward Body Biasing Injection K. TOBICH1,2, P. MAURINE1 Injection, Electromag- netic Attacks, RSA, Chinese Remainder Theorem 1 Introduction Fault injection

97

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, Larry W. (Oswego, IL)

1986-01-01T23:59:59.000Z

98

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, L.W.

1983-12-21T23:59:59.000Z

99

THE RHIC INJECTION SYSTEM.  

SciTech Connect

The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

1999-03-29T23:59:59.000Z

100

Simulation System on the Thermal Stress and Fatigue Life Loss of Startup and Shutdown for a Domestic 600MW Steam Turbo Generator Unit  

Science Conference Proceedings (OSTI)

The Simulation System on the thermal stresses and fatigue life loss of the rotator during startup and shutdown for a domestic 600MW steam turbo generator unit, By means of the analysis of Simulation System on the thermal stress and life loss of the rotor, ... Keywords: steam turbine unit, thermal stress, Fatigue Life Loss, rotator, startup, shutdown

Yunchun Xia

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optimization of Injection Scheduling in  

E-Print Network (OSTI)

- of wells,and (2) allocating a total speci6cd injection rate among chosen injectors. The alloca- tion is defined as the fieldwide break- through lindex, B. Injection is optimized by choosing injection wells questions: (1) Which wells should be made injectors? (2) How should the total nquired injection rate

Stanford University

102

A 0.077 to 0.168 nJ/bit/iteration Scalable 3GPP LTE Turbo Decoder with an Adaptive Sub-Block Parallel Scheme and an Embedded DVFS Engine  

E-Print Network (OSTI)

3GPP LTE requires a 100 Mbps of peak bandwidth, and the instantaneous throughput demand changes with different applications. Fixed sub-block parallel turbo decoding scheme introduces bit-error rate (BER) performance drop ...

Cheng, Chih-Chi

103

Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

Swanson, Michael; Henderson, Ann

2012-04-01T23:59:59.000Z

104

Completion report: Raft River Geothermal Injection Well Six (RRGI-6)  

DOE Green Energy (OSTI)

Raft River Geothermal Injection Well Six (RRGI-6) is an intermediate-depth injection well designed to accept injection water in the 600 to 1000 m (2000 to 3500 ft) depth range. It has one barefoot leg, and it was drilled so that additional legs can be added later; if there are problems with intermediate-depth injection, one or more additional legs could be directionally drilled from the current well bore. Included are the reports of daily drilling records of drill bits, casings, and loggings, and descriptions of cementing, coring, and containment.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

105

TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) GM F40 6-speed Manual Johnson Controls, Nickel Metal Hydride - 330V...

106

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2013...  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy (DOE). Key Technology 2.0L 4-cylinder turbo diesel Common-rail direct injection 6 speed dual clutch transmission Multiple emissions reduction...

107

Argonne TTRDC - D3 (Downloadable Dynamometer Database)  

NLE Websites -- All DOE Office Websites (Extended Search)

a 6 speed dual clutch transmission. Key Technology 2.0L 4-cylinder turbo diesel Common-rail direct injection 6 speed dual clutch transmission Multiple emissions reduction...

108

Pressurized feed-injection spray-forming apparatus  

SciTech Connect

A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

Berry, Ray A. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

109

Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology  

DOE Green Energy (OSTI)

The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

Hessel, R P; Aceves, S M; Flowers, D L

2006-03-06T23:59:59.000Z

110

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

the injection well to^ production wells along high conductivity fractures. A powerful method for investigat- ing fields typically choose a configuration for injection wells after a number of development wells have of cooler injected fluids at producing wells. The goal of the current #12;- 10 - work is to provide

Stanford University

111

Lean direct injection diffusion tip and related method  

SciTech Connect

A nozzle for a gas turbine combustor includes a first radially outer tube defining a first passage having an inlet and an outlet, the inlet adapted to supply air to a reaction zone of the combustor. A center body is located within the first radially outer tube, the center body including a second radially intermediate tube for supplying fuel to the reaction zone and a third radially inner tube for supplying air to the reaction zone. The second intermediate tube has a first outlet end closed by a first end wall that is formed with a plurality of substantially parallel, axially-oriented air outlet passages for the additional air in the third radially inner tube, each air outlet passage having a respective plurality of associated fuel outlet passages in the first end wall for the fuel in the second radially intermediate tube. The respective plurality of associated fuel outlet passages have non-parallel center axes that intersect a center axis of the respective air outlet passage to locally mix fuel and air exiting said center body.

Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy S. (Simpsonville, SC); Lipinski, John (Simpsonville, SC); Kraemer, Gilbert O. (Greer, SC); Yilmaz, Ertan (Niskayuna, NY); Lacy, Benjamin (Greer, SC)

2012-08-14T23:59:59.000Z

112

Particle beam injection system  

SciTech Connect

This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

Jassby, Daniel L. (Princeton, NJ); Kulsrud, Russell M. (Princeton, NJ)

1977-01-01T23:59:59.000Z

113

Optimization of injection scheduling in geothermal fields  

DOE Green Energy (OSTI)

This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific break-through index, b/sub ij/, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b/sub ij/-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The study presents four computer programs which employ linear or quadratic programming to solve the allocation problem. In addition, a program is presented which solves the injector configuration problem by a combination of enumeration and quadratic programming. The use of the various programs is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

Lovekin, J.

1987-05-01T23:59:59.000Z

114

Optimization of Injection Scheduling in Geothermal Fields  

DOE Green Energy (OSTI)

This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific breakthrough index, b{sub ij}, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b{sub ij}-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The use of the various methods is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

Lovekin, James; Horne, Roland N.

1989-03-21T23:59:59.000Z

115

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

116

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

117

Injectivity Test | Open Energy Information  

Open Energy Info (EERE)

Injectivity Test Injectivity Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Injectivity Test Details Activities (7) Areas (6) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Permeability of the well Thermal: Dictionary.png Injectivity Test: A well testing technique conducted upon completion of a well. Water is pumped into the well at a constant rate until a stable pressure is reached then the pump is turned off and the rate at which pressure decreases is measured. The pressure measurements are graphed and well permeability can

118

Common Rail Injection System Development  

DOE Green Energy (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

119

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Map to JGI Directions from Directions from key local start points, public transit Home > About Us > Map to JGI UC logo DOE logo Contact Us Credits Disclaimer Access...

120

Energy recovery by water injection  

DOE Green Energy (OSTI)

Several analytical and numerical studies that address injection and thermal breakthrough in fractured geothermal reservoirs are described. The results show that excellent thermal sweeps can be achieved in fractured reservoirs, and that premature cold water breakthrough can be avoided if the injection wells are appropriately located.

Witherspoon, P.A.; Bodvarsson, G.S.; Pruess, K.; Tsang, C.F.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

An experimental study of fuel injection strategies in CAI gasoline engine  

Science Conference Proceedings (OSTI)

Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

Hunicz, J.; Kordos, P. [Department of Combustion Engines and Transport, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

2011-01-15T23:59:59.000Z

122

Injection, injectivity and injectability in geothermal operations: problems and possible solutions. Phase I. Definition of the problems  

DOE Green Energy (OSTI)

The following topics are covered: thermodynamic instability of brine, injectivity loss during regular production and injection operations, injectivity loss caused by measures other than regular operations, heat mining and associated reservoir problems in reinjection, pressure maintenance through imported make-up water, suggested solutions to injection problems, and suggested solutions to injection problems: remedial and stimulation measures. (MHR)

Vetter, O.J.; Crichlow, H.B.

1979-02-14T23:59:59.000Z

123

NEUTRAL-BEAM INJECTION  

SciTech Connect

The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

Kunkel, W.B.

1980-06-01T23:59:59.000Z

124

Stokes injected Raman capillary waveguide amplifier  

DOE Patents (OSTI)

A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

Kurnit, Norman A. (Santa Fe, NM)

1980-01-01T23:59:59.000Z

125

Injection nozzle for a turbomachine  

Science Conference Proceedings (OSTI)

A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

2012-09-11T23:59:59.000Z

126

-OGP 04 (1) -Predicting Injectivity Decline  

E-Print Network (OSTI)

- OGP 04 (1) - Predicting Injectivity Decline in Water Injection Wells by Upscaling On-Site Core, resulting in injectivity decline of injection wells. Particles such as biomass, corrosion products, silt on permeability. These data were then processed, upscaled to model injection wells and, finally, history matched

Abu-Khamsin, Sidqi

127

Development of an injection augmentation program at the Dixie Valley,  

Open Energy Info (EERE)

an injection augmentation program at the Dixie Valley, an injection augmentation program at the Dixie Valley, Nevada geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of an injection augmentation program at the Dixie Valley, Nevada geothermal field Abstract Evaporative cooling at geothermal power plants generally reduces reservoir pressures even if all available geothermal liquids are reinjected. Controlled programs of injecting non geothermal waters directly into reservoirs have been tested or implemented at only four fields, three of them being vapor dominated. At the liquid-dominated Dixie Valley geothermal field an unsuccessful search for a large volume source of warm,chemically desirable fluid for augmentation was conducted.After determining water

128

Adaptive engine injection for emissions reduction  

DOE Patents (OSTI)

NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

2008-12-16T23:59:59.000Z

129

Injecting Carbon Dioxide into Unconventional Storage Reservoirs...  

NLE Websites -- All DOE Office Websites (Extended Search)

will also be investigated with a targeted CO 2 injection test into a depleted shale gas well. Different reservoir models will be used before, during, and after injection...

130

Massachusetts Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

131

JGI - Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions Address DOE Joint Genome Institute 2800 Mitchell Drive Walnut Creek, CA 94598 From Oakland Airport Follow Airport exit signs onto AIRPORT DR. Turn RIGHT onto HEGENBERGER...

132

The energy injection and losses in the Monte Carlo simulations of a diffusive shock  

E-Print Network (OSTI)

Although diffusive shock acceleration (DSA) could be simulated by some well-established models, the assumption of the injection rate from the thermal particles to the superthermal population is still a contentious problem. But in the self-consistent Monte Carlo simulations, because of the prescribed scattering law instead of the assumption of the injected function, hence particle injection rate is intrinsically defined by the prescribed scattering law. We expect to examine the correlation of the energy injection with the prescribed multiple scattering angular distributions. According to the Rankine-Hugoniot conditions, the energy injection and the losses in the simulation system can directly decide the shock energy spectrum slope. By the simulations performed with multiple scattering law in the dynamical Monte Carlo model, the energy injection and energy loss functions are obtained. As results, the case applying anisotropic scattering law produce a small energy injection and large energy losses leading to a s...

Wang, Xin

2011-01-01T23:59:59.000Z

133

Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems  

Science Conference Proceedings (OSTI)

The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

Ronald G. Ballinger Chunyun Wang Andrew Kadak Neil Todreas

2004-08-30T23:59:59.000Z

134

Real-Time Observation of Platinum Redispersion on Ceria-Based Oxide by In-situ Turbo-XAS in Fluorescence Mode  

Science Conference Proceedings (OSTI)

A real-time observation of the redispersion behavior of sintered Pt on ceria-based oxide was made possible by in-situ time-resolved Turbo-XAS in fluorescence mode. 2 wt% Pt/Ce-Zr-Y mixed oxide samples were prepared, and then treated under an aging condition. The average Pt particle size measured by CO absorption method after aging was 7 nm. Redispersion treatments of the previously aged catalyst were carried out at 600 deg. C within an in-situ XAS cell in a cyclical flow of reducing/oxidizing gases. Pt L3-edge XANES spectra were collected every 1.1 second under in-situ conditions. From a change in the XANES spectra, we observed that the Pt particle size of the aged catalyst decreased from 7 to 5 nm after 60 seconds and then to 3 nm after 1000 seconds.

Nagai, Yasutaka; Dohmae, Kazuhiko; Tanabe, Toshitaka; Shinjoh, Hirofumi [TOYOTA Central R and D Labs., Inc., Nagakute, Aichi, 480-1192 (Japan); Takagi, Nobuyuki [TOYOTA Motor Corporation Higashi-fuji Technical Center, Shizuoka, 410-1193 (Japan); Ikeda, Yasuo [TOYOTA Motor Europe Technical Centre, Zaventem, B-1930 (Belgium); Guilera, Gemma; Pascarelli, Sakura; Newton, Mark [European Synchrotron Radiation Facility, Grenoble, F-38043 (France); Matsumoto, Shin'ichi [TOYOTA Motor Corporation, Toyota, Aichi, 471-8572 (Japan)

2007-02-02T23:59:59.000Z

135

Predicting the rate by which suspended solids plug geothermal injection wells  

DOE Green Energy (OSTI)

Standard membrane filtration tests were used to evaluate injection at the Salton Sea Geothermal Field, Southern California. Results indicate that direct injection into reservoir zones with primary porosity is not feasible unless 1 ..mu..m or larger particulates formed during or after the energy conversion process are removed. (JGB)

Owens, L.B.; Kasameyer, P.W.; Netherton, R.; Thorson, L.

1978-01-09T23:59:59.000Z

136

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

.A. Hsieh 1e$ Pressure Buildup Monitoring of the Krafla Geothermal Field, . . . . . . . . 1'1 Xceland - 0 Initial Chemical and Reservoir Conditions at Lo6 Azufres Wellhead Power Plant Startup - P. Kruger, LSGP-TR-92 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

Stanford University

137

Current drive, anticurrent drive, and balanced injection  

SciTech Connect

In lower hybrid (LH) discharges, the number of suprathermal electrons is limited by the upper bound on the current density from the q = 1 condition, which is caused by the onset of the m = 1 MHD instability. The stored energy of suprathermal electrons, measured in terms of a poloidal beta, scales with plasma current as I/sub p//sup -1/. Potentially, these bounds represent very restrictive conditions for heating in larger machines. Consequently, it seems necessary to perform experiments where the electrons are driven in both directions, parallel and antiparallel to the magnetic field, i.e., bidirectional scenarios like anticurrent drive or balanced injection. Data from PLT relevant to these ideas are discussed. 6 refs., 4 figs.

von Goeler, S.; Stevens, J.; Beiersdorfer, P.; Bell, R.; Bernabei, S.; Bitter, M.; Cavallo, A.; Chu, T.K.; Fishman, H.; Hill, K.

1987-08-01T23:59:59.000Z

138

Waste heat steams ahead with injection technology  

Science Conference Proceedings (OSTI)

Owners of Commercial-Industrial-Institutional buildings whose thermal usage is too variable to implement cogeneration are looking to a gasturbine steam-injection technology, called the Cheng Cycle, to reduce their energy costs. The Cheng Cycle uses industrial components-a gas-turbine generating set, a waste-heat recovery steam generator and system controls-in a thermodynamically optimized mode. In the process, steam produced from waste heat can be used for space or process heating or to increase the electrical output of a gas turbine. The process was patented in 1974 by Dr. Dah Yu Cheng, of the University of Santa Clara, Santa Clara, Calif. When a plant's thermal needs fall because of production or temperature changes, unused steam is directed back to the turbine to increase electrical output. As thermal requirements rise, the process is reversed and needed steam is channeled to plant uses.

Shepherd, S.; Koloseus, C.

1985-03-01T23:59:59.000Z

139

Grid orientation effects in the simulation of cold water injection into depleted vapor zones  

DOE Green Energy (OSTI)

A considerable body of field experience with injection has been accumulated at Larderello, Italy and The Geysers, California; the results have been mixed. There are well documented cases where injection has increased flow rates of nearby wells. Return of injected fluid as steam from production wells has been observed directly through chemical and isotopic changes of produced fluids (Giovannoni et al., 1981; Nuti et al., 1981). In other cases injection has caused thermal interference and has degraded the temperature and pressure of production wells. Water injection into depleted vapor zones gives rise to complex two-phase fluid flow and heat transfer processes with phase change. These are further complicated by the fractured-porous nature of the reservoir rocks. An optimization of injection design and operating practice is desirable; this requires realistic and robust mathematical modeling capabilities.

Pruess, K.

1991-01-01T23:59:59.000Z

140

Injection of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids  

Science Conference Proceedings (OSTI)

Approximately 190 kg of two micron-diameter zero-valent iron (ZVI) particles were injected into a test zone in the top two meters of an unconfined aquifer within a trichloroethene (TCE) source area. A shear-thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to four meters from a single injection well. The ZVI particles were mixed in-line with the injection water, shear-thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 days after injection. These results suggest that ZVI can be directly injected into an aquifer with shear-thinning fluids and extends the applicability of ZVI to situations where other emplacement methods may not be viable.

Truex, Michael J.; Vermeul, Vincent R.; Mendoza, Donaldo P.; Fritz, Brad G.; Mackley, Rob D.; Oostrom, Martinus; Wietsma, Thomas W.; Macbeth, Tamzen

2011-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An environmental analysis of injection molding  

E-Print Network (OSTI)

This thesis investigates injection molding from an environmental standpoint, yielding a system-level environmental analysis of the process. There are three main objectives: analyze the energy consumption trends in injection ...

Thiriez, Alexandre

2006-01-01T23:59:59.000Z

142

Experience with Zinc Injection in European PWRs  

Science Conference Proceedings (OSTI)

Zinc injection is an effective technique for lowering shutdown dose rates in pressurized water reactors (PWRs). This report compiles information about zinc injection experience at Siemens PWRs and compares the results with the use of zinc injection at U.S. PWRs. The plant data confirm that even low concentrations of zinc in the reactor water can indeed lower shutdown dose rates, but plants should make a concerted effort to inject zinc on a continuous basis to achieve the best results.

2002-11-01T23:59:59.000Z

143

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

144

Injectivity Testing for Vapour Dominated Feed Zones  

DOE Green Energy (OSTI)

Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

Clotworthy, A.W.; Hingoyon, C.S.

1995-01-01T23:59:59.000Z

145

INJECTIVE COGENERATORS AMONG OPERATOR BIMODULES  

E-Print Network (OSTI)

Abstract. Given C ?-algebras A and B acting cyclically on Hilbert spaces H and K, respectively, we characterize completely isometric A, B-bimodule maps from B(K, H) into operator A, B-bimodules. We determine cogenerators in some classes of operator bimodules. For an injective cogenerator X in a suitable category of operator A, B-bimodules we show: if A, regarded as a C ?-subalgebra of A?(X) (adjointable left multipliers on X), is equal to its relative double commutant in A?(X), then A must be a W ?-algebra. 1.

Bojan Magajna

2005-01-01T23:59:59.000Z

146

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

147

Operational experience during the LHC injection tests  

E-Print Network (OSTI)

Following the LHC injection tests of 2008. two injection tests took place in October and November 2009 as preparation for the LHC restart on November 20, 2009. During these injection tests beam was injected through the TI 2 transfer line into sector 23 of ring 1 and through TI 8 into the sectors 78, 67 and 56 of ring 2. The beam time was dedicated to injection steering, optics measurements and debugging of all the systems involved. Because many potential problems were sorted out in advance, these tests contributed to the rapid progress after the restart. This paper describes the experiences and issues encountered during these tests as well as related measurement results.

Fuchsberger, K; Arduini, G; Assmann, R; Bailey, R; Bruning, O; Goddard, B; Kain, V; Lamont, M; MacPherson, A; Meddahi, M; Papotti, G; Pojer, M; Ponce, L; Redaelli, S; Solfaroli Camillocci, M; Venturini Delsolaro, W; Wenninger, J

2010-01-01T23:59:59.000Z

148

Allergy Injection Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Allergy Injection Policy Allergy Injection Policy Allergy Injection Policy Millions of Americans suffer from perennial and seasonal allergic rhinitis. Allergy immunotherapy is an effective way to reduce or eliminate the symptoms of allergic rhinitis by desensitizing the patient to the allergen(s) by giving escalating doses of an extract via regular injections. Receiving weekly injections at a private physician's office is time consuming, reduces productivity, and can quickly deplete an employee's earned leave. FOH offers the convenience of receiving allergy injections at the OHC as a physician-prescribed service, reducing time away from work for many federal employees. Allergy Injection Policy.pdf More Documents & Publications Physician Treatment Order Handicapped Parking Guidance

149

Reservoir response to injection in the Southeast Geysers  

DOE Green Energy (OSTI)

A 20 megawatt (MW) increase in steam flow potential resulted within five months of the start-up of new injection wells in the Southeast Geysers. Flow rate increases were observed in 25 wells offset to the injectors, C-11 and 956A-1. This increased flowrate was sustained during nine months of continuous injection with no measurable decrease in offset well temperature until C-11 was shut-in due to wellbore bridging. The responding steam wells are located in an area of reduced reservoir steam pressure known as the Low Pressure Area (LPA). The cause of the flowrate increases was twofold (1) an increase in static reservoir pressure and (2) a decrease in interwell communication. Thermodynamic and microseismic evidence suggests that most of the water is boiling near the injector and migrating to offset wells located ''down'' the static pressure gradient. However, wells showing the largest increase in steam flowrate are not located at the heart of the pressure sink. This indicates that localized fracture distribution controls the preferred path of fluid migration from the injection well. A decrease in non-condensible gas concentrations was also observed in certain wells producing injection derived steam within the LPA. The LPA project has proven that steam suppliers can work together and benefit economically from joint efforts with the goal of optimizing the use of heat from The Geysers reservoir. The sharing of costs and information led directly to the success of the project and introduces a new era of increased cooperation at The Geysers.

Enedy, Steve; Enedy, Kathy; Maney, John

1991-01-01T23:59:59.000Z

150

Resistivity measurements before and after injection Test 5 at Raft River  

Open Energy Info (EERE)

measurements before and after injection Test 5 at Raft River measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Details Activities (2) Areas (1) Regions (0) Abstract: Resistivity measurements were made prior to, and after an injection test at Raft River KGRA, Idaho. The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the

151

Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma  

SciTech Connect

We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

152

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

153

LIFAC Sorbent Injection Desulfurization Demonstration Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the flue gas in a separate activation reactor, which increases SO 2 removal. An electrostatic precipitator downstream from the point of injection captures the reaction...

154

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

155

Geothermal: Sponsored by OSTI -- Injection through fractures  

Office of Scientific and Technical Information (OSTI)

Injection through fractures Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

156

NSLS-II INJECTION STRAIGHT DIAGNOSTICS  

Science Conference Proceedings (OSTI)

The ultra-bright light source being developed by the NSLS-II project will utilize top-up injection and fine tuning of the injection process is mandatory. In this paper we present the diagnostics installed in the injection straight. Its use for commissioning and tuning of the injection cycle is also described. The NSLS-II storage ring will utilize a 9.3 meter long injection straight section shown in Fig. 1. Injection will be preformed with two septa (one pulsed, one DC) and four kickers. The stored beam will be shifted towards the pulsed septum up to IS mm and the nominal distance between centers of the injected and the bumped beam is 9.5mm. The NSLS-II beam position monitors will have turn-by-turn and first-turn capabilities and will be used for the commissioning and tuning the injection process. However, there are three additional BPMs and two beam intercepting OTR screens (flags) installed in the injection straight.

Pinayev, I.; Blednykh, A.; Ferreira, M.; Fliller, R.; Kosciuk, B.; Shaftan, T.V.; Wang, G.

2011-03-28T23:59:59.000Z

157

Powder Injection Molding - Available Technologies - PNNL  

Summary. Presented here is a novel and innovative means of powder injection molding (PIM) of reactive refractory metals, such as titanium and its ...

158

Energy-efficient control in injection molding.  

E-Print Network (OSTI)

??xviii, 209 leaves : ill. ; 30 cm HKUST Call Number: Thesis CENG 2008 Yao As an energy-intensive process, in injection molding, energy cost is… (more)

Yao, Ke

2008-01-01T23:59:59.000Z

159

BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES  

DOE Patents (OSTI)

This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

Treshow, M.

1963-04-30T23:59:59.000Z

160

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Sharon Sjostrom

2005-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

162

Injection Molding of Plastics from Agricultural Materials  

SciTech Connect

The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

Bhattacharya, M.; Ruan, R.

2001-02-22T23:59:59.000Z

163

Ultra low injection angle fuel holes in a combustor fuel nozzle  

Science Conference Proceedings (OSTI)

A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

York, William David

2012-10-23T23:59:59.000Z

164

A simulation study to verify Stone's simultaneous water and gas injection performance in a 5-spot pattern  

E-Print Network (OSTI)

Water alternating gas (WAG) injection is a proven technique to enhance oil recovery. It has been successfully implemented in the field since 1957 with recovery increase in the range of 5-10% of oil-initially-in-place (OIIP). In 2004, Herbert L. Stone presented a simultaneous water and gas injection technique. Gas is injected near the bottom of the reservoir and water is injected directly on top at high rates to prevent upward channeling of the gas. Stone's mathematical model indicated the new technique can increase vertical sweep efficiency by 3-4 folds over WAG. In this study, a commercial reservoir simulator was used to predict the performance of Stone's technique and compare it to WAG and other EOR injection strategies. Two sets of relative permeability data were considered. Multiple combinations of total injection rates (water plus gas) and water/gas ratios as well as injection schedules were investigated to find the optimum design parameters for an 80 acre 5-spot pattern unit. Results show that injecting water above gas may result in better oil recovery than WAG injection though not as indicated by Stone. Increase in oil recovery with SSWAG injection is a function of the gas critical saturation. The more gas is trapped in the formation, the higher oil recovery is obtained. This is probably due to the fact that areal sweep efficiency is a more dominant factor in a 5-spot pattern. Periodic shut-off of the water injector has little effect on oil recovery. Water/gas injection ratio optimization may result in a slight increase in oil recovery. SSWAG injection results in a steady injection pressure and less fluctuation in gas production rate compared to WAG injection.

Barnawi, Mazen Taher

2008-05-01T23:59:59.000Z

165

Steam deflector assembly for a steam injected gas turbine engine  

SciTech Connect

A steam injected gas turbine engine is described having a combustor, a casing for the combustor and an annular manifold comprising a part of the casing, the annular manifold having an exterior port formed therein and a plurality of holes formed in the manifold leading to the interior of the combustor, the improvement comprising a steam carrying line connected to the port and a steam deflector means for protecting the casing from direct impingement by the steam from the steam line and for distributing the steam about the annular manifold, the steam deflector means being mounted adjacent the port and within the manifold.

Holt, G.A. III.

1993-08-31T23:59:59.000Z

166

Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone  

Science Conference Proceedings (OSTI)

The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)

2010-04-15T23:59:59.000Z

167

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

168

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

1991-02-19T23:59:59.000Z

169

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

1991-01-01T23:59:59.000Z

170

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

171

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

172

Efficiency evaluation of the DISC (direct-injection stratified charge), DHC (dilute homogeneous charge), and DI Diesel engines (direct-injection diesel)  

DOE Green Energy (OSTI)

The thermodynamic laws governing the Otto and diesel cycle engines and the possible approaches that might be taken to increase the delivered efficiency of the reciprocating piston engine are discussed. The generic aspects of current research are discussed and typical links between research and the technical barriers to the engines' development are shown. The advanced engines are discussed individually. After a brief description of each engine and its advantages, the major technical barriers to their development are discussed. Also included for each engine is a discussion of examples of the linkages between these barriers and current combustion and thermodynamic research. For each engine a list of questions is presented that have yet to be resolved and could not be resolved within the scope of this study. These questions partially indicate the limit to the state of knowledge regarding efficiency characteristics of the advanced engine concepts. The major technical barriers to each of the engines and their ranges of efficiency improvement are summarized.

Hane, G.J.

1983-09-01T23:59:59.000Z

173

Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection  

SciTech Connect

The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

1985-05-01T23:59:59.000Z

174

Selection and development of air-injected frit slurry blasting for decontamination of DWPF canisters  

Science Conference Proceedings (OSTI)

Canisters of waste glass produced in the Defense Waste Processing Facility at the Savannah River Plant will be decontaminated by air-injected frit slurry blasting. The byproduct of this operation, contaminated frit slurry, will be used as part of the feed stock for the glass-making process. Therefore, no secondary waste will be created. Scouting tests of four different frit blasting techniques were conducted by the Savannah River Laboratory. The techniques investigated were dry blasting, direct pump slurry blasting, air-aspirated slurry blasting, and air-injected slurry blasting. The air-injected slurry blasting technique was chosen for development, based on results of these scouting tests. A detailed development program was undertaken to optimize the air-injected frit slurry blasting process. 3 references, 28 figures.

Ward, C.R.

1984-09-01T23:59:59.000Z

175

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

176

Intradermal needle-free powdered drug injection  

E-Print Network (OSTI)

This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

Liu, John (John Hsiao-Yung)

2012-01-01T23:59:59.000Z

177

Injection of Electrons and Holes into Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Injection of Electrons and Holes into Nanostructures Injection of Electrons and Holes into Nanostructures This program targets fundamental understanding of nanoscale charge transfer processes. The proposed work draws on the strengths of the Brookhaven Chemistry Department in the areas of electron transfer experiment and theory, and extends the area of inquiry to nanoscale processes. Electron/hole injection into a wire, a nanocrystal, a nanotube or other nanostructure in solution may be brought about by light absorption, by an electron pulse (pulse radiolysis, LEAF), by a chemical reagent, or through an electrode. These processes are being studied by transient methods by following conductivity, current, but most generally, spectroscopic changes in the solutions to determine the dynamics of charge injection. The observed transient spectra can also provide values for electron-transfer coupling elements and energetics. Theoretical/computational studies can help in materials design and in the interpretation of the experimental results. The experimental systems being examined include molecular wires and metal nanoclusters.

178

Studies of injection into naturally fractured reservoirs  

DOE Green Energy (OSTI)

A semi-analytical model for studies of cold water injection into naturally fractured reservoirs has been developed. The model can be used to design the flow rates and location of injection wells in such systems. The results obtained using the model show that initially the cold water will move very rapidly through the fracture system away from the well. Later on, conductive heat transfer from the rock matrix blocks will retard the advancement of the cold water front, and eventually uniform energy sweep conditions will prevail. Where uniform energy sweep conditions are reached the cold waer movement away from the injection well will be identical to that in a porous medium; consequently maximum energy recovery from the rock matrix will be attained. The time of uniform energy sweep and the radial distance from the injection well where it occurs are greatly dependent upon the fracture spacing, but independent of the fracture aperture.

Boedvarsson, G.S.; Lai, C.H.

1982-10-01T23:59:59.000Z

179

Efficient Spin Injection using Tunnel Injectors  

Science Conference Proceedings (OSTI)

Semiconductor spintronics aims to develop novel sensor, memory and logic devices by manipulating the spin states of carriers in semiconducting materials. This talk will focus on electrical spin injection into semiconductors, which is a prerequisite for ...

Xin Jiang

2005-07-01T23:59:59.000Z

180

Smart Materials for Fuel Injection Actuation  

DOE Green Energy (OSTI)

The demands of stringent emissions and a robust engine dynamic torque response characteristic require innovative, accurate and repeatable control of the fuel injection event. Recent advances in piezo-material actuators have warranted the pursuit of its application to advanced heavy-duty truck fuel injection systems. This presentation will report on design and testing of an advanced electronic unit injector for the Detroit Diesel Series 60 truck engine.

Hakim, Nabil

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cerro Prieto cold water injection: effects on nearby production wells  

E-Print Network (OSTI)

reservoir wells close to injection well E-6 along with theMeeting. Most of the injection wells are open to the Alphaand completing new injection wells is lower than in the East

Truesdell, A.H.

2010-01-01T23:59:59.000Z

182

EU Metric Directive  

Science Conference Proceedings (OSTI)

... View EU Metric Directive Commission Services Working Document PDF ... of European Union (EU) Meeting on Metric Directives (2005); Packaging ...

2012-12-13T23:59:59.000Z

183

U-058: Apache Struts Conversion Error OGNL Expression Injection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Apache Struts Conversion Error OGNL Expression Injection Vulnerability U-058: Apache Struts Conversion Error OGNL Expression Injection Vulnerability December 12, 2011 - 9:00am...

184

Calculating the probability of injected carbon dioxide plumes encountering faults  

E-Print Network (OSTI)

Change Special Report on Carbon Dioxide Capture and Storage,Probability of Injected Carbon Dioxide Plumes Encounteringthe probability of injected carbon dioxide encountering and

Jordan, P.D.

2013-01-01T23:59:59.000Z

185

Texas Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Injections into Underground Storage (Million Cubic Feet) Texas Natural Gas Injections into Underground...

186

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

187

Trona Injection Tests: Mirant Potomac River Station, Unit 1,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

188

Idaho Natural Gas Underground Storage Injections All Operators...  

Gasoline and Diesel Fuel Update (EIA)

Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

189

Connecticut Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

190

Alaska Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

191

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

192

Wisconsin Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

193

Georgia Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

194

New Jersey Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

195

South Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

196

North Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

197

Illinois Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Illinois Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

198

Epidemiology of HIV Among Injecting and Non-injecting Drug Users: Current Trends and Implications for Interventions  

E-Print Network (OSTI)

might inject drugs worldwide [1•]. China, the United States,China, the United States, and Russia, the three leading countries for injecting drugChina Russia USA Fig. 1 Number and proportion of HIV infection among injecting drug

Strathdee, Steffanie A.; Stockman, Jamila K.

2010-01-01T23:59:59.000Z

199

Model study of historical injection in the Southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. the migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. while both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injectate as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

200

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

202

Supported-sorbent injection. Final report  

Science Conference Proceedings (OSTI)

A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

Nelson, S. Jr.

1997-07-01T23:59:59.000Z

203

Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells  

E-Print Network (OSTI)

Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells in the Nine Township Area ­ 2009 September 2009 Prepared by Delaware Basin Drilling from EPA to DOE dated 7/16/2009) 1 Solution Mining Practices 1 Recent Well Failures 2 The Mechanism

204

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network (OSTI)

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

205

Definition: Injectivity Test | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Injectivity Test Jump to: navigation, search Dictionary.png Injectivity Test A well testing technique conducted upon completion of a well. Water is pumped into the well at a constant rate until a stable pressure is reached then the pump is turned off and the rate at which pressure decreases is measured. The pressure measurements are graphed and well permeability can be calculated.[1] References ↑ https://pangea.stanford.edu/ERE/pdf/IGAstandard/ISS/2008Croatia/Hole03.pdf Ret LikeLike UnlikeLike You and one other like this.One person likes this. Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Injectivity_Test&oldid=688681"

206

Energy Injection in GRB Afterglow Models  

E-Print Network (OSTI)

We extend the standard fireball model, widely used to interpret gamma-ray burst (GRB) afterglow light curves, to include energy injections, and apply the model to the afterglow light curves of GRB 990510, GRB 000301C and GRB 010222. We show that discrete energy injections can cause temporal variations in the optical light curves and present fits to the light curves of GRB 000301C as an example. A continuous injection may be required to interpret other bursts such as GRB 010222. The extended model accounts reasonably well for the observations in all bands ranging from X-rays to radio wavelengths. In some cases, the radio light curves indicate that additional model ingredients may be needed.

Gudlaugur Johannesson; Gunnlaugur Bjornsson; Einar H. Gudmundsson

2006-05-11T23:59:59.000Z

207

A study on Raman Injection Laser  

E-Print Network (OSTI)

The Raman Injection Laser is a new type of laser which is based on triply resonant stimulated Raman scattering between quantum confined states within the active region of a Quantum Cascade Laser that serves as an internal optical pump. The Raman Injection Laser is driven electrically and no external laser pump is required. Triple resonance leads to an enhancement of orders of magnitude in the Raman gain, high conversion efficiency and low threshold. We studied this new type of laser and conclude some basic equations. With reasonable experimental parameters, we calculated the laser gain, losses and the output power of the Raman Injection Laser by using Mathematica and FEMLab. Finally we compared the theoretical and experimental results.

Liu, Debin

2005-08-01T23:59:59.000Z

208

Turbo-Charged Lighting Design  

E-Print Network (OSTI)

The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds of possible lamps. The designer who can consider the most combinations of these items guarantees each client the optimal lighting conditions and the best energy efficiency. This kind of professional service, however, is not available from the software design programs presently on the market. These programs generally let the designer analyze one room at a time, while providing perhaps three possible fixtures to choose from. Additional choices can be accessed from the software’s data base, though at considerable expense in time and patience. This is a real hindrance when designing for a complex structure such as a hospital, which has many spaces with different task-specific lighting standards. The author was challenged by lighting-level requirements that spanned the range of possibilities, and was able to devise an accurate, expedient solution using a dBase language program. The result was a powerful tool integrating the entire gamut of design possibilities provided by the luminaire industry.

Clark, W. H. II

1992-05-01T23:59:59.000Z

209

Difficulty Accessing Syringes Mediates the Relationship Between Methamphetamine Use and Syringe Sharing Among Young Injection Drug Users  

E-Print Network (OSTI)

Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Injection drug users (IDU) who use methamphetamine (MA) are at an increased risk of HIV infection due to engagement in injection-related risk behavior including syringe sharing. In this cohort study of young IDU aged 18-30, we investigated the relationship between injection MA use and syringe sharing, and whether difficulty accessing sterile syringes mediated this association. Behavioral questionnaires were completed by 384 IDU in Vancouver, Canada between October 2005 and May 2008. Generalized estimating equations were used to estimate direct and indirect effects. The median age of participants was 24 (IQR: 22–27) and 214 (55.7%) were male. Injecting MA was independently associated with syringe sharing. Mediation analyses revealed that difficulty accessing sterile syringes partially mediated the association between injecting MA and syringe sharing. Interventions to reduce syringe sharing among young methamphetamine injectors

Evan Wood; Thomas L. Patterson; Thomas Kerr; E. Wood; T. Kerr; T. L. Patterson

2011-01-01T23:59:59.000Z

210

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

211

Neutral beam injection in 2XIIB  

SciTech Connect

Integrated into the operation of the 2XIIB controlled fusion experiment is a 600-A, 20-keV neutral injection system: the highest neutral-beam current capacity of any existing fusion machine. This paper outlines the requirements of the injection system and the design features to which they led. Both mechanical and electrical aspects are discussed. Also included is a brief description of some operational aspects of the system and some of the things we have learned along the way, as well as a short history of the most significant developments. (auth)

Hibbs, S.M.

1975-11-01T23:59:59.000Z

212

Injected Beam Dynamics in SPEAR3  

SciTech Connect

For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Huang, Xiaobiao; /SLAC; Safranek, James; /SLAC; Westerman, Stuart; /SLAC; Cheng, Weixing; /Brookhaven; Mok, Walter; /Unlisted

2012-06-21T23:59:59.000Z

213

Mixed Mode Fuel Injector And Injection System  

DOE Patents (OSTI)

A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

Stewart, Chris Lee (Normal, IL); Tian, Ye (Bloomington, IL); Wang, Lifeng (Normal, IL); Shafer, Scott F. (Morton, IL)

2005-12-27T23:59:59.000Z

214

Interphase power controller with voltage injection  

Science Conference Proceedings (OSTI)

This paper introduces a new family of Interphase Power Controllers (IPC) based on the principle of voltage injection commonly used in phase-shifting transformers (PST). The voltage injection IPC exhibits power (active and reactive) control characteristics similar to previously defined IPC's and retains their inherent qualities: passive control, short circuit limitation and voltage decoupling. It also provides more flexibility for the adjustment of the operating points. Two promising topologies are described in more detail. One of them offers the potential of retrofitting existing phase-shifting transformers into full-fledged IPC's.

Beauregard, F.; Brochu, J.; Morin, G.; Pelletier, P. (Centre d'Innovation sur le Transport d'Energie du Quebec, Varennes, Quebec (Canada))

1994-10-01T23:59:59.000Z

215

Non-isothermal CO2 flow through an injection well  

E-Print Network (OSTI)

Non-isothermal CO2 flow through an injection well Orlando SilvaOrlando Silva #12; The Problem CO2 or gas injection well Questions Injection of scCO2 vs. gaseous CO2. Other relevant examples: - gas and therefore the CO2 injection rate. caprock reservoir geothermal gradient hydrostatic gradient well CO2 bubble

Politècnica de Catalunya, Universitat

216

Discussion on Cycle Water Injection Effect and Its Influencing Factors  

Science Conference Proceedings (OSTI)

Cyclic waterflooding is a kind of waterflood technique, which can improve the waterflood efficiency in low-permeability and fracture-porosity reservoir by changing periodically injected water volume. This article gives the principle and the applied conditions ... Keywords: water flooding, principle, the opportunity of water injection, water injection efficiency, water injection period

Shan Wuyi, Zhang Xue

2013-06-01T23:59:59.000Z

217

300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report  

Science Conference Proceedings (OSTI)

The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

2009-06-30T23:59:59.000Z

218

Diesel engine emissions reduction by multiple injections having increasing pressure  

DOE Patents (OSTI)

Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

2003-01-01T23:59:59.000Z

219

Passive safety injection system using borated water  

DOE Patents (OSTI)

A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

Conway, Lawrence E. (Allegheny, PA); Schulz, Terry L. (Westmoreland, PA)

1993-01-01T23:59:59.000Z

220

Type-checking injective pure type systems  

Science Conference Proceedings (OSTI)

Injective pure type systems form a large class of pure type systems for which one can compute by purely syntactic means two sorts elmt(?∣M) and sort(?∣M), where ? is a pseudo-context and M is a pseudo-term, ...

Gilles Barthe

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Principles Governing Departmental Directives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELEMENTS FROM: SAMUEL W. BODMA 4 SUBJECT: Principles Governing Departmental Directives The Department of Energy uses directives as its primary means to establish,...

222

directed acyclic word graph  

Science Conference Proceedings (OSTI)

... and R. Verin, Direct Construction of Compact Directed Acyclic Word Graphs, 8th Annual Symposium, CPM 97, Aarhus, Denmark, 116-129, 1997. ...

2013-08-23T23:59:59.000Z

223

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project  

SciTech Connect

We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

2010-02-01T23:59:59.000Z

224

Effects of EGR, water/N2/CO2 injection and oxygen enrichment on the availability destroyed due to combustion for a range of conditions and fuels.  

E-Print Network (OSTI)

??This study was directed at examining the effects of exhaust gas recirculation (EGR), water/N2/CO2 injections and oxygen enrichment on availability destroyed because of combustion in… (more)

Sivadas, Hari Shanker

2009-01-01T23:59:59.000Z

225

Direct process for explosives  

SciTech Connect

A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate.

Akst, Irving B. (1032 Duncan St., Pampa, TX 79065); Stinecipher, Mary M. (324 Connie St., Los Alamos, NM 87544)

1982-01-01T23:59:59.000Z

226

Optimizing injected solvent fraction in stratified reservoirs  

E-Print Network (OSTI)

Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a method whereby oil may be completely displaced from the reservoir, leaving no residual volume. Field results have demonstrated that solvent floods suffer from early solvent breakthrough and considerable oil by-passing owing to high solvent mobility. The injection of both water and solvent has been demonstrated to offer advantages. Water partially mitigates both the adverse mobility and high cost of solvent floods, while solvent mobilizes oil which would be left in the reservoir by water alone. The process is equally applicable to reservoirs currently at residual oil saturation (tertiary floods) and to reservoirs at maximum oil saturation (secondary floods). In stratified reservoirs high permeability layers may be preferentially swept by solvent floods, while low permeability layers may be scarcely swept at all. Presence or absence of transverse communication between layers can modify overall sweep efficiency. This work is a study of water-solvent injection in stratified reservoirs based on computer simulation results. Fractional oil recovery as a function of injected solvent fraction, permeability contrast between layers, initial oil saturation, and presence or absence of transverse communication between strata has been determined. Results are presented as a series of optimization curves. Permeability contrast between layers is shown to be the dominant control on fractional oil recovery. Transverse communicating reservoirs are shown to require a higher solvent-water ratio in order to attain recoveries comparable to transverse noncommunicating reservoirs. In actual field projects, water and solvent are injected alternately as discrete slugs. This process is known as "WAG" for "water-alternating-gas". In the simulations used in this study, continuous water-solvent injection at a fixed fraction rather than true WAG was employed. It is demonstrated that the two methods give equivalent results. In summary, this work is the first comprehensive study of the behavior of stratified reservoirs undergoing water-solvent injection.

Moon, Gary Michael

1993-01-01T23:59:59.000Z

227

Pilot-scale HCl control by dry alkaline injection for emissions from refuse incinerators. Technical report  

Science Conference Proceedings (OSTI)

One method of removing the HCl in an exhaust-gas stream is to directly inject finely divided sorbent particles into the gas stream upstream from particulate collection equipment, allowing enough time for the HCl to react with the sorbent in the duct. The study proposed to provide data on HCl removal from a simulated incinerator exhaust stream as a function of the in-duct reaction/residence time, the reaction temperature, and the sorbent-to-gas ratio. A 500-acfm pilot-scale HCl control system utilizing dry powdered sorbent was tested at the University of Washington. Powdered alkaline reagents including sodium bicarbonate and calcium hydroxide were injected into boiler flue gas spiked with hydrogen chloride gas. The acid gas reacts with the injected sorbent in a 20-inch diameter by 26-foot high vertical, down-flow vessel. HCl removal efficiency was measured as a function of sorbent stoichiometry, gas residence time in reactor, and reaction temperature.

Moore, D.; Pilat, M.

1988-11-08T23:59:59.000Z

228

Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

2007-06-01T23:59:59.000Z

229

Foreign Direct Investment  

Gasoline and Diesel Fuel Update (EIA)

Investment Investment Foreign Direct Investment Foreign Direct Investment Foreign Direct Investment in U.S. Energy in U.S. Energy in U.S. Energy in U.S. Energy in 1999 in 1999 in 1999 in 1999 June 2001 ii iii Contents Foreign Affiliates' Role in U.S. Energy Industry Operations ..............................................................................1 Foreign Direct Investment: The International Transactions Accounts ..............................................................8 U.S. Companies' Direct Investment Abroad in Energy ......................................................................................14 Conclusion...............................................................................................................................................................19

230

Fluid dynamics of sinking carbon dioxide hydrate particle releases for direct ocean carbon sequestration  

E-Print Network (OSTI)

One strategy to remove anthropogenic CO? from the atmosphere to mitigate climate change is by direct ocean injection. Liquid CO? can react with seawater to form solid partially reacted CO? hydrate composite particles (pure ...

Chow, Aaron C. (Aaron Chunghin), 1978-

2008-01-01T23:59:59.000Z

231

Development of the High-Pressure Direct-Injection ISX G Natural...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

IMPACT This project developed the heavy-duty ISX G natural gas engine with advanced emission reduction strategies, which demonstrated oxides of nitrogen (NO x ) emissions of 0.6 g...

232

ORNL/Sub/00-43892/01 MODELING OF DIRECT LIQUID INJECTION  

E-Print Network (OSTI)

BARRIER COATINGS January 15, 2003 Research sponsored by the U. S. Department of Energy, Office of Fossil barrier coatings for fossil energy systems. This report describes the modeling effort at the University. With Research sponsored by the U.S. Department of Energy, Fossil Energy Advanced Research Materials Program, DOE

233

Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy  

Science Conference Proceedings (OSTI)

The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

2010-01-01T23:59:59.000Z

234

Injection into a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100{sup 0}C water is injected into a 300{sup 0}C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.

Bodvarsson, G.S.; Tsang, C.F.

1980-05-01T23:59:59.000Z

235

Transient fault modeling and fault injection simulation  

E-Print Network (OSTI)

An accurate transient fault model is presented in this thesis. A 7-term exponential current upset model is derived from the results of a device-level, 3-dimensional, single-event-upset simulation. A curve-fitting algorithm is used to extract the numerical model from the empirical data. The model is implemented in a HSPICE simulation environment as a current-injection source for fault simulation. The current transient model is used to conduct electrical-level fault injection simulations on a static RAM cell and subcircuits from two commercial microprocessors. The results from the 7-term exponential model are compared with the results from the widely accepted double-exponential transient model. The experimental data indicate that, for a given charge level, the 7-term exponential fault model results in a higher chance of having a latch error. More importantly, different latch-error patterns are captured from the target circuits under the new fault model.

Yuan, Xuejun

1996-01-01T23:59:59.000Z

236

Combustion oscillation control by cyclic fuel injection  

SciTech Connect

A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

Richards, G.A.; Yip, M.J. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E. [EG& G Technical Services of West Virginia, Morgantown Energy Technology Center, WV (United States); Cowell, L.; Rawlins, D. [Solar Turbines, Inc., San Diedgo, CA (United States)

1995-04-01T23:59:59.000Z

237

PLT neutral injection ignitron accelerating supply  

SciTech Connect

A phase-controlled rectifier was designed for the accelerating supply on the PLT Neutral Beam Injection system at PPPL. The rectifier must furnish 70 amperes at up to 50 KV for 300 milliseconds, with a duty cycle of up to 10 percent. Protection of the injectors requires the supply to withstand repeated crowbarring. The rectifying element selected to satisfy these requirements was a commercially-available ignitron, installed in a supporting frame and using firing circuits and controls designed by PPPL. (auth)

Ashcroft, D.L.; Murray, J.G.; Newman, R.A.; Peterson, F.L.

1975-11-01T23:59:59.000Z

238

Thrombin Injection for Acute Hemorrhage Following Angiography  

SciTech Connect

Femoral arterial puncture is the main access for diagnostic and therapeutic intervention in vascular disease. Significant complications are unusual and include uncontrolled bleeding which usually requires surgery. We report the use of ultrasound-guided thrombin injection that prevented any immediate need for surgery in 2 cases of uncontrolled bleeding following femoral arteriography. Clinical presentations and treatment are reported, together with a review of the literature.

Richards, T., E-mail: tobyrichards@btinternet.com; Mussai, F. J.; Phillips-Hughes, J.; Uberoi, R.; Boardman, P. [John Radcliffe Hospital, Nuffield Department of Surgery and Department of Radiology (United Kingdom)

2007-07-15T23:59:59.000Z

239

Stanford Geothermal Program, reservoir and injection technology  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

240

PEP-II injection timing and controls  

SciTech Connect

Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings.

Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Ronan, M. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Economics of dry FGD by sorbent injection  

SciTech Connect

Increasingly stringent pollution control requirements for new power plants have nearly doubled the cost of producing electricity. The capital, operating and maintenance costs of wet flue gas desulfurization (FGD) systems are major, and considerable interest is currently being given to less expensive dry systems. One attractive alternative to wet scrubbing for FGD is to inject a dry, powdered reagent into the duct work between a coal-fired boiler and a FF (baghouse). The reagent (and fly ash) are collected on the fabric surface where the SO/sub 2//reagent contact occurs. The technical aspects of SO/sub 2/ removal using nahcolite and trona as sorbents have been investigated at laboratory-scale, demonstrated at full-scale, and are reported on briefly. These results indicate that injection of sodium based reagents is technically an attractive alternative to the many steps and processes involved in wet scrubbing. This paper summarizes a project to examine the economics of nahcolite/trona and furnace limestone injection FGD and compare them to those of the more advanced spray dryer FGD systems. Uncertainties in material handling, pulverization, and waste disposal were investigated and designs were produced as a basis for cost estimating.

Naulty, D.J.; Hooper, R.; Keeth, R.J.; McDowell, D.A.; Muzio, L.J.; Scheck, R.W.

1983-11-01T23:59:59.000Z

242

Improved Water Flooding through Injection Brine Modification  

Science Conference Proceedings (OSTI)

Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

2003-01-01T23:59:59.000Z

243

Heat transfer characteristics of a surface type direct contact boiler  

DOE Green Energy (OSTI)

Two direct contact heat exchangers were constructed and test results were obtained using water and refrigerant 113 as the working fluids. The heat exchangers were operated in a three-phase mode; the water remained liquid throughout the vessel and the liquid refrigerant 113 underwent vaporization following direct injection into the water. The effect of important operational parameters--operating heights, refrigerant 113 injection techniques, mass flow ratios, and temperatures--was studied to determine generalized trends important in the design and operation of a prototype three-phase direct contact heat exchanger. The primary system used in this study performed well overall. The initial favorable results of this study warrant further investigation of direct contact heat exchange as a means of utilizing geothermal energy.

Deeds, R.S.; Jacobs, H.R.; Boehm, R.F.

1976-03-01T23:59:59.000Z

244

Geothermal injection technology program. Annual progress report, FY-85  

DOE Green Energy (OSTI)

This report summarizes injection research conducted during FY-1985. The objective was to develop a better understanding of the migration and impact of fluids injected in geothermal reservoirs. Separate abstracts have been prepared for individual project summaries. (ACR)

Not Available

1986-02-01T23:59:59.000Z

245

Near-surface groundwater responses to injection of geothermal wastes  

DOE Green Energy (OSTI)

Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

Arnold, S.C.

1984-06-01T23:59:59.000Z

246

NETL: News Release - CO2 Injection Begins in Illinois  

NLE Websites -- All DOE Office Websites (Extended Search)

21, 2011 CO2 Injection Begins in Illinois Large-Scale Test to Inject 1 Million Metric Tons of Carbon Dioxide in Saline Formation Washington, D.C. - The Midwest Geological...

247

Direct Photons at RHIC  

E-Print Network (OSTI)

Abstract. The PHENIX experiment has measured direct photons in ? sNN = 200 GeV Au+Au collisions and p+p collisions. The fraction of photons due to direct

Saskia Mioduszewski; Phenix Collaboration

2004-01-01T23:59:59.000Z

248

Direct Loan Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

The Connecticut Development Authority’s Direct Loan Program provides direct senior and subordinated loans and mezzanine investments to companies creating or maintaining jobs. Up to $20,000 per job...

249

Direct process for explosives  

DOE Patents (OSTI)

A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate is described.

Akst, I.B.; Stinecipher, M.M.

1982-10-12T23:59:59.000Z

250

OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL  

E-Print Network (OSTI)

. ................................... 19 FIGURE 3.13: ONE-DIMENSIONAL MODEL WITH A PAIR OF INJECTION AND PRODUCTION WELLS. ................... 20 FIGURE 3.14: TWO-DIMENSIONAL MODEL WITH PRODUCTION AND INJECTION WELLS AT THE CENTER.......... 20 and an injection well was placed in the corner diagonally opposite. The maximum production rate of the well

Stanford University

251

Projective Space Codes for the Injection Metric  

E-Print Network (OSTI)

In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field. In this paper, the metric used is the so-called "injection distance", introduced by Silva and Kschischang. A Gilbert-Varshamov bound for such codes is derived. Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric.

Khaleghi, Azadeh

2009-01-01T23:59:59.000Z

252

Nonisothermal injection tests in fractured reservoirs  

DOE Green Energy (OSTI)

The paper extends the analysis of nonisothermal pressure transient data to fractured reservoirs. Two cases are considered: reservoirs with predominantly horzontal fractures and reservoirs with predominantly vertical fractures. Effects of conductive heat transfer between the fractures and the rock matrix are modeled, and the resulting pressure transients evaluated. Thermal conduction tends to retard the movement of the thermal front in the fractures, which significantly affects the pressure transient data. The purpose of the numerical simulation studies is to provide methods for analyzing nonisothermal injection/falloff data for fractured reservoirs.

Cox, B.L.; Bodvarsson, G.S.

1985-01-01T23:59:59.000Z

253

Nox reduction system utilizing pulsed hydrocarbon injection  

DOE Patents (OSTI)

Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

2001-01-01T23:59:59.000Z

254

Toroidal plasma rotation in the PLT tokamak with neutral-beam injection  

DOE Green Energy (OSTI)

Toroidal plasma rotation in the Princeton Large Torus, PLT, has been measured for various plasma and neutral beam injection conditions. Measurements of the plasma rotational velocities were made from Doppler shifts of appropriate spectral lines and include data from both hydrogen and deuterium beams and co- and counter-injection at several electron densities. Without injection, a small but consistent toroidal rotation exists in a direction opposite to the plasma current (counter-direction) in the plasma center but parallel to the current (co-direction) in the plasma periphery. Using these measured velocities and the plasma density and temperature gradients, radial electron fields can be determined from theory, giving E/sub r / approx. = 40 V/cm near the plasma center and E/sub r/ approx. = 10 V/cm near the plasma edge. Insertion of a local, 2.5 percent magnetic well produced no observable effect on the beam driven rotation. Modeling of the time evolution and radial distribution of the rotation allows one to deduce an effective viscosity of the order of (1 to 5) x 10/sup 4/ cm/sup 2//sec.

Suckewer, S.; Eubank, H.P.; Goldston, R.J.; McEnerney, J.; Sauthoff, N.R.; Towner, H.H.

1981-04-01T23:59:59.000Z

255

A study of steam injection in fractured media  

SciTech Connect

Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

1996-02-01T23:59:59.000Z

256

Numerical simulation of water injection into vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

Pruess, K.

1995-01-01T23:59:59.000Z

257

UP-GRADED RHIC INJECTION SYSTEM.  

Science Conference Proceedings (OSTI)

The design of the RHIC injection systems anticipated the possibility of filling and operating the rings with a 120 bunch pattern, corresponding to 110 bunches after allowing for the abort gap. Beam measurements during the 2002 run confirmed the possibility, although at the expense of severe transverse emittance growth and thus not on an operational basis. An improvement program was initiated with the goal of reducing the kicker rise time from 110 to {approx}95 ns and of minimizing pulse timing jitter and drift. The major components of the injection system are 4 kicker magnets and Blmlein pulsers using thyratron switches. The kicker terminating resistor and operating voltage was increased to reduce the rise time. Timing has been stabilized by using commercial trigger units and extremely stable dc supplies for the thyratron reservoir. A fiber optical connection between control room and the thyratron trigger unit has been provided, thereby allowing the operator to adjust timing individually for each kicker unit. The changes were successfully implemented for use in the RHIC operation.

HAHN,H.FISCHER,W.SEMERTZIDIS,Y.K.WARBURTON,D.S.

2003-05-12T23:59:59.000Z

258

Supersonic Jet Excitation using Flapping Injection  

E-Print Network (OSTI)

Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

2013-01-01T23:59:59.000Z

259

Analysis of thermally induced permeability enhancement in geothermal injection wells  

DOE Green Energy (OSTI)

Reinjection of spent geothermal brine is a common means of disposing of geothermal effluents and maintaining reservoir pressures. Contrary to the predictions of two-fluid models (two-viscosity) of nonisothermal injection, an increase of injectivity, with continued injection, is often observed. Injectivity enhancement and thermally-affected pressure transients are particularly apparent in short-term injection tests at the Los Azufres Geothermal Field, Mexico. During an injection test, it is not uncommon to observe that after an initial pressure increase, the pressure decreases with time. As this typically occurs far below the pressure at which hydraulic fracturing is expected, some other mechanism for increasing the near-bore permeability must explain the observed behavior. This paper focuses on calculating the magnitude of the nearbore permeability changes observed in several nonisothermal injection tests conducted at the Los Azufres Geothermal Field.

Benson, S.M.; Daggett, J.S.; Iglesias, E.; Arellano, V.; Ortiz-Ramirez, J.

1987-02-01T23:59:59.000Z

260

Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems  

E-Print Network (OSTI)

not just near the injection well. Note that because thisConcentrations at the injection well increase during thethe fractures away from the injection well is fast, solutes

Cotte, F.P.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Impact of Injection on Seismicity at The Geyses, California Geothermal Field  

E-Print Network (OSTI)

of thermoelastic stress on injection well fracturing. SPE38N) LBNL NCSN POWER PLANTS INJECTION WELLS EVENTS LBNLNCSN POWER PLANTS INJECTION WELLS EVENTS Aidlin 11 - LBNL

Majer, Ernest L.; Peterson, John E.

2008-01-01T23:59:59.000Z

262

Direct Photons at RHIC  

E-Print Network (OSTI)

The PHENIX experiment has measured direct photons in $\\sqrt{s_{NN}} = 200$ GeV Au+Au collisions and p+p collisions. The fraction of photons due to direct production in Au+Au collisions is shown as a function of $p_T$ and centrality. This measurement is compared with expectation from pQCD calculations. Other possible sources of direct photons are discussed.

S. Mioduszewski; for the PHENIX Collaboration

2004-09-29T23:59:59.000Z

263

Direct Photons at RHIC  

E-Print Network (OSTI)

A brief overview of direct-photon measurements in p+p and Au+Au collisions at sqrt(s_NN) = 200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) is given. Direct-photon yields for pT > 4 GeV/c and photon-hadron azimuthal correlations were determined with the aid of an electromagnetic calorimeter. By detecting e+e- pairs from the internal conversion of virtual photons direct-photon yields were measured between 1 direct-photon yield in this range.

Klaus Reygers; for the PHENIX Collaboration

2009-08-17T23:59:59.000Z

264

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

265

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

266

Boise geothermal injection well: Final environmental assessment  

DOE Green Energy (OSTI)

The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

NONE

1997-12-31T23:59:59.000Z

267

New type gas-injection plant readied  

SciTech Connect

A unique gas-injection plant is about to go on stream in Venezuela's Lake Maracaibo. The $10-million installation, designed for unattended operation, is a joint venture of Phillips Petroleum Co., as operator for itself, and Cia. Shell de Venezuela. The plant, housed on a 120 by 130-ft platform, will be the first in the world to use gas turbines to drive reciprocating compressors. The 130 MMscfd facility will use 2 General Electric 15,000-hp gas turbines with gear reducers to drive a pair of 4-stage Cooper- Bessemer LM-8 compressors. No previous attempt has ever been made to drive this type of unit by gas turbines. Phillips says the gas turbines were selected because of inherent flexibility reliability as prime movers, and lack of vibration--an important advantage in offshore gas plants.

Franco, A.

1967-07-17T23:59:59.000Z

268

D/sub 2/ - pellet injection system  

Science Conference Proceedings (OSTI)

For density build-up of a target plasma for neutral injection in the stellarator ''Wendelstein W VIIA''and for refuelling of the divertor tokamak ASSDEX, pellet light gas guns have been developed. In a continuous flow cryostat cooled by liquid helium with a comsumption of 2 - 3 liter liquid helium per hour deuterium was condensed and solidified. To prevent the propeller gas entering the torus was used. In one system a 3.6 mm guiding tube following the barrel was applied successfully. By optical diagnostics pellet velocity, pellet size and pellet trajectory is measured. For a pellet centrifuge system investigations of carbon fiber rotors were made up to surface velocities of 1500 m/s.

Buechl, K.; Andelfinger, C.; Kollotzek, H.; Lang, R.; Ulrich, M.

1981-01-01T23:59:59.000Z

269

direct_deposit_111609  

NLE Websites -- All DOE Office Websites (Extended Search)

PROTECT YOUR BANKING INFORMATION: PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby authorize Los Alamos National Laboratory, hereinafter called The Laboratory, to initiate credit entries and, if necessary, debit entries and adjustments for any credit entries in error to my account listed on this form. If deposit is for:

270

Directions and Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions & Maps Directions & Maps Plan Your Visit Visit About the Museum Museum Hours Directions & Maps When to Visit Arrange for a Visit Around Los Alamos Contact Us invisible utility element Directions and Maps Aerial View of Los Alamos Aerial approach to the Los Alamos airport Where we're located Los Alamos (elevation 7,355 feet) is perched high atop the Pajarito Plateau in the Jemez Mountains, 35 miles northwest of Santa Fe. The Bradbury Science Museum is located in downtown Los Alamos at the corner of Central Avenue and 15th Street. If you're driving here and using GPS navigation, our address is 1350 Central Avenue, Los Alamos, NM 87544. How to get here From Albuquerque take I-25 north to Santa Fe (take NM 599 for most direct route), then US 84/285 north to Pojoaque. At Pojoaque take the NM 502 exit

271

Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-05-01T23:59:59.000Z

272

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

273

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

274

T-731:Symantec IM Manager Code Injection Vulnerability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

T-731:Symantec IM Manager Code Injection Vulnerability T-731:Symantec IM Manager Code Injection Vulnerability T-731:Symantec IM Manager Code Injection Vulnerability September 30, 2011 - 8:30am Addthis PROBLEM: Symantec IM Manager Code Injection Vulnerability. PLATFORM: IM Manager versions prior to 8.4.18 are affected. ABSTRACT: Symantec IM Manager is prone to a vulnerability that will let attackers run arbitrary code. referecnce LINKS: Symantec Security Advisory SYM11-012 Symantec Security Updates Bugtraq ID: 49742 IMPACT ASSESSMENT: High Discussion: Symantec was notified of Cross-Site Scripting and Code injection/execution issues present in the Symantec IM Manager management console. The management console fails to properly filter/validate external inputs. Successful exploitation of SQL Injection or Remote Code execution might

275

INJECTION SYSTEM DESIGN FOR THE BSNS/RCS.  

SciTech Connect

The BSNS injection system is designed to take one uninterrupted long drift in one of the four dispersion-free straight sections to host all the injection devices. Painting bumper magnets are used for both horizontal and vertical phase space painting. Closed-orbit bumper magnets are used for facilitating the installation of the injection septa and decreasing proton traversal in the stripping foil. Even with large beam emittance of about 300 {pi}mm.mrad used, BSNS/RCS still approaches the space charge limit during the injection/trapping phase for the accumulated particles of 1.9*10{sup 13} and at the low injection energy of 80 MeV. Uniform-like beam distribution by well-designed painting scheme is then obtained to decrease the tune shift/spread. ORBIT code is used for the 3D simulations. Upgrading to higher injection energy has also been considered.

WEI, J.; TANG, J.Y.; CHEN, Y.; CHI, Y.L.; JIANG, Y.L.; KANG, W.; PANG, J.B.; QIN, Q.; QIU, J.; SHEN, L.; WANG, W.

2006-06-23T23:59:59.000Z

276

The Impact of Injection on Seismicity at The Geyses, California Geothermal Field  

E-Print Network (OSTI)

have been injecting steam condensate, local rain and streamhave been injecting steam condensate, local rain and stream

Majer, Ernest L.; Peterson, John E.

2008-01-01T23:59:59.000Z

277

INTENSITY OF BETATRON RADIATION AS FUNCTION OF INJECTION VOLTAGE  

SciTech Connect

The intensity of betatron radiation emission as a function of injection voltage was studied using a 25-Mev betatron with a 350-kw external electron injector. The injection voltage was measured every 20 to 30 kw from 50 to 250 kw. The results showed that up to 250 kw, emission intensity increases according to theory. It is suggested that an increase in injection intensity up to 1000 kw and over should result in a considerable rise in emission intensity. (R.V.J.)

Moskalev, V.A.; Okulov, B.V.

1962-09-01T23:59:59.000Z

278

Numerical modeling of injection experiments at The Geysers  

DOE Green Energy (OSTI)

Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and over-recovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

Pruess, K. [Lawrence Berkeley Lab., CA (United States); Enedy, S. [Northern California Power Agency, Middletown, CA (United States)

1993-01-01T23:59:59.000Z

279

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents (OSTI)

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

280

Experimental investigation of caustic steam injection for heavy oils  

E-Print Network (OSTI)

An experimental study has been conducted to compare the effect of steam injection and caustic steam injection in improving the recovery of San Ardo and Duri heavy oils. A 67 cm long x 7.4 cm O.D (outer diameter), steel injection cell is used in the study. Six thermocouples are placed at specific distances in the injection cell to record temperature profiles and thus the steam front velocity. The injection cell is filled with a mixture of oil, water and sand. Steam is injected at superheated conditions of 238oC with the cell outlet pressure set at 200 psig, the cell pressure similar to that found in San Ardo field. The pressure in the separators is kept at 50 psig. The separator liquid is sampled at regular intervals. The liquid is centrifuged to determine the oil and water volumes, and oil viscosity, density and recovery. Acid number measurements are made by the titration method using a pH meter and measuring the EMF values. The interfacial tensions of the oil for different concentrations of NaOH are also measured using a tensionometer. Experimental results show that for Duri oil, the addition of caustic results in an increase in recovery of oil from 52% (steam injection) to 59 % (caustic steam injection). However, caustic has little effect on San Ardo oil where oil recovery is 75% (steam injection) and 76 % (caustic steam injection). Oil production acceleration is seen with steam-caustic injection. With steam caustic injection there is also a decrease in the produced oil viscosity and density for both oils. Sodium hydroxide concentration of 1 wt % is observed to give the lowest oil-caustic interfacial tension. The acid numbers for San Ardo and Duri oil are measured as 6.2 and 3.57 respectively.

Madhavan, Rajiv

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: News Release - DOE Technology Monitors CO2 Injection in...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2008 DOE Technology Monitors CO2 Injection in Australian Gas Field CSLF Project Demonstrates Unique Carbon Sequestration Technologies WASHINGTON, D.C. - Australia has launched...

282

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

283

Injection Phenomena in the PS Converter - The Teachings of J ...  

Science Conference Proceedings (OSTI)

blockage and punching); the concept of “high pressure” or sonic injection including a review of the ... to the representatives of the technology suppliers as well as.

284

Injection of Alternative Carbon Containing Materials in the BF  

Science Conference Proceedings (OSTI)

By injection of the materials preparation methods in terms e.g. drying and/or ... Efficiency in recovery of valuable compounds as well as the behaviour of ...

285

Application of Metal Injection Molding to Soft Magnetic Materials  

Science Conference Proceedings (OSTI)

Advances in Current Activated Tip-Based Sintering (CATS) · Advances in Synthesis and Densification of Heterogeneous Materials · Application of Metal Injection ...

286

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents (OSTI)

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

287

Interpretation of self-potential measurements during injection...  

Open Energy Info (EERE)

self-potential measurements during injection tests at Raft River, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of...

288

Dry sorbent injection may serve as a key pollution control ...  

U.S. Energy Information Administration (EIA)

Dry sorbent injection (DSI) is a pollution control technology that may play a role in the United States' electric power sector's compliance with the Mercury and Air ...

289

Single Well Injection Withdrawl Tracer Tests for Proppant ...  

A large question preventing optimal natural gas production from "hydrofracked" shales is how far proppants, injected to keep shale fractures open, ...

290

Improvement of Mechanical Properties of Injection Molded Wood  

Science Conference Proceedings (OSTI)

... by one double-gate injection mould integrated an ultrasonic generator unit. ... Polymer Based Composite and Hybrid Materials for Wind Power Generation.

291

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

292

Resistivity measurements before and after injection Test 5 at...  

Open Energy Info (EERE)

Facebook icon Twitter icon Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search GEOTHERMAL...

293

Duct injection technology prototype development: Evaluation of engineering data  

SciTech Connect

The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

Not Available

1990-07-01T23:59:59.000Z

294

Alaska Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

295

Rhode Island Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

296

Surface Wind Direction Variability  

Science Conference Proceedings (OSTI)

Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a ...

Larry Mahrt

2011-01-01T23:59:59.000Z

297

2013 FCMN Directions  

Science Conference Proceedings (OSTI)

... $100 (one way). Driving directions: Take I-95S to Exit 4B towards Washington.Merge onto I-495 to Exit 27 towards Silver Spring.Slight right onto ...

2013-02-27T23:59:59.000Z

298

Direct nuclear pumped laser  

DOE Patents (OSTI)

There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

1978-01-01T23:59:59.000Z

299

Maps & Directions | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Maps & Directions ORNL is located in Roane County, Tennessee, about 7 miles from the center of the city of Oak Ridge and about 25 miles from the McGhee Tyson Airport near...

300

Refrigerant directly cooled capacitors  

DOE Patents (OSTI)

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Outline Development of Direct PCR Benefits of Direct PCR ...  

Science Conference Proceedings (OSTI)

... 1 Direct PCR Amplification of STR Loci: Protocols and Performance ... Benefits of direct PCR • Collection media: FTA and 903 paper ...

2011-05-31T23:59:59.000Z

302

Development of beam-plasma instability during the injection a low-energy electron beam into the ionospheric plasma  

SciTech Connect

Results are presented from an active experiment on the injection of charged particle beams into the ionospheric plasma. The experiment was carried out in 1992 onboard the Intercosmos-25 satellite and the Magion-3 daughter satellite (APEX). A specific feature of this experiment was that both the ion and electron beams were injected upward, in the same direction along the magnetic field. The most interesting results are the excitation of HF and VLF-LF waves and the generation of fast charged particle flows, which were recorded on both satellites.

Baranets, N. V.; Sobolev, Ya. P. [Russian Academy of Sciences, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Russian Federation); Ciobanu, M. [Institute for Gravitation and Space Sciences (Romania); Vojta, J.; Smilauer, J. [Academy of Sciences of the Czech Republic, Institute of Atmospheric Physics (Czech Republic); Klos, Z.; Rothkaehl, H.; Kiraga, A. [Polish Academy of Sciences, Space Research Center (Poland); Kudela, K.; Matisin, J. [Slovak Academy of Sciences, Institute of Experimental Physics (Slovakia); Afonin, V. V. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Ryabov, B. S.; Isaev, N. V. [Russian Academy of Sciences, Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Russian Federation)

2007-12-15T23:59:59.000Z

303

Surface acoustic wave controlled carrier injection into self-assembled quantum dots and quantum posts  

E-Print Network (OSTI)

We report on recent progress in the acousto-electrical control of self-assembled quantum dot and quantum post using radio frequency surface acoustic waves (SAWs). We show that the occupancy state of these optically active nanostructures can be controlled via the SAW-induced dissociation of photogenerated excitons and the resulting sequential bipolar carrier injection which strongly favors the formation of neutral excitons for quantum posts in contrast to conventional quantum dots. We demonstrate high fidelity preparation of the neutral biexciton which makes this approach suitable for deterministic entangled photon pair generation. The SAW driven acoustic charge conveyance is found to be highly efficient within the wide quantum well surrounding the quantum posts. Finally we present the direct observation of acoustically triggered carrier injection into remotely positioned, individual quantum posts which is required for a low-jitter SAW-triggered single photon source.

Hubert J. Krenner; Stefan Völk; Florian J. R. Schülein; Florian Knall; Achim Wixforth; Dirk Reuter; Andreas D. Wieck; Hyochul Kim; Tuan A. Truong; Pierre M. Petroff

2011-10-20T23:59:59.000Z

304

Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil.  

E-Print Network (OSTI)

??Generating enough heat to convert water into steam is a major expense for projects that inject steam into reservoirs to enhance hydrocarbon recovery. If the… (more)

Nesse, Thomas

2005-01-01T23:59:59.000Z

305

Analytical steam injection model for layered systems  

SciTech Connect

Screening, evaluation and optimization of the steam flooding process in homogeneous reservoirs can be performed by using simple analytical predictive models. In the absence of any analytical model for layered reservoirs, at present, only numerical simulators can be used. And these are expensive. In this study, an analytical model has been developed considering two isolated layers of differing permeabilities. The principle of equal flow potential is applied across the two layers. Gajdica`s (1990) single layer linear steam drive model is extended for the layered system. The formulation accounts for variation of heat loss area in the higher permeability layer, and the development of a hot liquid zone in the lower permeability layer. These calculations also account for effects of viscosity, density, fractional flow curves and pressure drops in the hot liquid zone. Steam injection rate variations in the layers are represented by time weighted average rates. For steam zone calculations, Yortsos and Gavalas`s (1981) upper bound method is used with a correction factor. The results of the model are compared with a numerical simulator. Comparable oil and water flow rates, and breakthrough times were achieved for 100 cp oil. Results with 10 cp and 1000 cp oils indicate the need to improve the formulation to properly handle differing oil viscosities.

Abdual-Razzaq; Brigham, W.E.; Castanier, L.M.

1993-08-01T23:59:59.000Z

306

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

307

Bibliography: injection technology applicable to geothermal utilization  

DOE Green Energy (OSTI)

This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

Darnell, A.J.; Eichelberger, R.L.

1982-03-19T23:59:59.000Z

308

Direct Photons at RHIC  

E-Print Network (OSTI)

Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum ($p_T$) range. The $p$ + $p$ measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high $p_T$ direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring "almost real" virtual photons which appear as low invariant mass $e^+e^-$ pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

G. David; for the PHENIX Collaboration

2008-10-06T23:59:59.000Z

309

Adaptable Inverter for Injection of Fuel Cell and Photovoltaic Power  

E-Print Network (OSTI)

important to apply renewable energies and efficient technologies. For power injection of photovoltaic with different energy sources such as photovoltaic, fuel cell and battery. It is possible to adjust active inverter. These inverters for injection of photovoltaic energy are developed only for this purpose

Kulig, Stefan

310

NETL: Mercury Emissions Control Technologies - Sorbent Injection for Small  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas URS Group and their test team will evaluate sorbent injection for mercury control on sites with low-SCA ESPs, burning low sulfur Eastern bituminous coals. Full-scale tests will be performed at Plant Yates Units 1 and 2 to evaluate sorbent injection performance across a cold-side ESP/wet FGD and a cold-side ESP with a dual NH3/SO3 flue gas conditioning system, respectively. Short-term parametric tests on Units 1 and 2 will provide data on the effect of sorbent injection rate on mercury removal and ash/FGD byproduct composition. Tests on Unit 2 will also evaluate the effect of dual-flue gas conditioning on sorbent injection performance. Results from a one-month injection test on Unit 1 will provide insight to the long-term performance and variability of this process as well as any effects on plant operations. The goals of the long-term testing are to obtain sufficient operational data on removal efficiency over time, effects on the ESP and balance of plant equipment, and on injection equipment operation to prove process viability.

311

An immiscible WAG injection project in the Kuparuk River Unit  

SciTech Connect

Immiscible water-alternating-gas (WAG) injection has been successfully used in the Kuparuk River Unit as a means of controlling excess gas production. Additionally, simulation results have indicated that WAG injection can increase economic oil recovery by improving waterflood conformance. WAG recovery mechanisms, simulation results, field performance, and field surveillance are discussed.

Champion, J.H.; Sheldon, J.B.

1989-05-01T23:59:59.000Z

312

PROGRESS WITH NSLS-II INJECTION STRAIGHT SECTION DESIGN  

SciTech Connect

The NSLS-II injection straight section (SR) consists of pulsed and DC bumps, septa system, beam trajectory correction and diagnostics systems. In this paper we discuss overall injection straight layout, preliminary element designs, specifications for the pulsed and DC magnets and their power supplies, vacuum devices and chambers and diagnostics devices. Prior to selecting the current 'conventional' design of the injection straight section we analyzed an option of injection via pulsed multipole pioneered at PF-AR. We found that this promising approach was not suited to the NSLS-II storage ring optics, since it would require a impractically compact arrangement of the injection straight section components and a complex modification of the transport line optics due to the strong focusing of the injected beam passing off the pulsed multipole axis. In addition, the requirement for a small injection transient of the stored beam orbit severely constrains the vertical alignment tolerance of the pulsed multipole. The design of the NSLS-II injection straight section is now completed with exception of transition chamber details, which will be adjusted to accommodate the actual layouts of the pulsed magnets.

Shaftan, T.; Blednykh, A.; Casey, B.; Dalesio, B.; Faussete, R.; Ferreira, M.; Fliller, R.; Ganetis, G.; Heese, R.; Hseuh, H.-C.; Job, P.K.; Johnson, E.; Kosciuk, B.; Kowalski, S.; Padrazo, D.; Parker, B.; Pinayev, I.; Sharma, S.; Singh, O.; Spataro, C.

2011-03-28T23:59:59.000Z

313

Medium energy pitch angle distribution during substorm injected electron clouds  

E-Print Network (OSTI)

Medium energy pitch angle distribution during substorm injected electron clouds A. A° snes,1 J, N. �stgaard, and M. Thomsen (2005), Medium energy pitch angle distribution during substorm injected to obtain pitch angle resolved electron distribution data for measurements at energies 10 eV to 47 keV. [3

Bergen, Universitetet i

314

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

315

Time-of-flight direct recoil ion scattering spectrometer  

DOE Patents (OSTI)

A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downers Grove, IL); Lamich, George J. (Orland Park, IL)

1994-01-01T23:59:59.000Z

316

U-174: Serendipity Unspecified SQL Injection Vulnerability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Serendipity Unspecified SQL Injection Vulnerability 4: Serendipity Unspecified SQL Injection Vulnerability U-174: Serendipity Unspecified SQL Injection Vulnerability May 22, 2012 - 7:00am Addthis PROBLEM: Serendipity Unspecified SQL Injection Vulnerability PLATFORM: 1.6.1 and prior versions ABSTRACT: A vulnerability was reported in Serendipity. A remote user can inject SQL commands. Reference Links: SecurityTracker Alert ID: 1027079 Secunia Advisory SA49234 CVE-2012-2762 IMPACT ASSESSMENT: Medium Discussion: The 'include/functions_trackbacks.inc.php' script does not properly validate user-supplied input. A remote user can supply a specially crafted parameter value to execute SQL commands on the underlying database. Impact: A remote user can execute SQL commands on the underlying database. Solution: The vendor has issued a fix (1.6.2).

317

V-170: Apache Subversion Hook Scripts Arbitrary Command Injection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Apache Subversion Hook Scripts Arbitrary Command Injection 0: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability V-170: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability June 4, 2013 - 12:17am Addthis PROBLEM: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability PLATFORM: Apache Subversion 1.x ABSTRACT: A vulnerability has been reported in Apache Subversion. REFERENCE LINKS: Apache Original Advisory Secunia Advisory SA53727 CVE-2013-2088 IMPACT ASSESSMENT: Medium DISCUSSION: The vulnerability is caused due to an input validation error in the svn-keyword-check.pl hook script while processing filenames and can be exploited to inject and execute arbitrary shell commands via a specially crafted request. Successful exploitation requires that contrib scripts are used on the

318

U-251: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Bugzilla LDAP Injection and Information Disclosure 1: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities U-251: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities September 5, 2012 - 6:00am Addthis PROBLEM: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities PLATFORM: Bugzilla 2.x Bugzilla 3.x Bugzilla 4.x ABSTRACT: Bugzilla is prone to an LDAP-injection vulnerability and an information-disclosure vulnerability reference LINKS: Bugzilla Homepage Bugzilla Security Advisory Bugtraq ID: 55349 Secunia Advisory SA50433 CVE-2012-3981 CVE-2012-4747 IMPACT ASSESSMENT: Medium Discussion: A vulnerability and a security issue have been reported, which can be exploited by malicious people to disclose potentially sensitive information and manipulate certain data. 1) Input passed via the username is not properly escaped before being used

319

Underground Injection Control (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control (West Virginia) Injection Control (West Virginia) Underground Injection Control (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners

320

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Temperature histories in geothermal wells: survey of rock thermomechanical properties and drilling, production, and injection case studies  

DOE Green Energy (OSTI)

Thermal and mechanical properties for geothermal formations are tabulated for a range of temperatures and stress conditions. Data was obtained from the technical literature and direct contacts with industry. Thermal properties include heat capacity, conductivity, and diffusivity. Undisturbed geothermal profiles are also presented. Mechanical properties include Youngs modulus and Poisson ratio. GEOTEMP thermal simulations of drilling, production and injection are reported for two geothermal regions, the hot dry rock area near Los Alamos and the East Mesa field in the Imperial Valley. Actual drilling, production, and injection histories are simulated. Results are documented in the form of printed GEOTEMP output and plots of temperatures versus depth, radius, and time. Discussion and interpretation of the results are presented for drilling and well completion design to determine: wellbore temperatures during drilling as a function of depth; bit temperatures over the drilling history; cement temperatures from setting to the end of drilling; and casing and formation temperatures during drilling, production, and injection.

Goodman, M.A.

1981-07-01T23:59:59.000Z

322

Direct Card. SPECIAL SITUATIONS  

E-Print Network (OSTI)

will be deducted. Rental cars Your Direct Card can be used to pay your final balance. Some companies may require cash at ATMs and banks No checks. No lines. No hassles. 24/7 Customer Support Get Account Information number or your date of birth (mm/dd). By activating your card, you accept the Terms and Conditions

Reynolds, Albert C.

323

Direct fired heat exchanger  

DOE Patents (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

324

Directional gamma detector  

DOE Patents (OSTI)

An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

LeVert, Francis E. (Downers Grove, Knoxville, TN); Cox, Samson A. (Downers Grove, IL)

1981-01-01T23:59:59.000Z

325

Response of plasma and salivary cortisol to the administration of single or multiple injections of ACTH in barrows  

E-Print Network (OSTI)

Two experiments were designed to determine if salivary cortisol can be used instead of total plasma cortisol measurements in pigs. In Exp. I., seven barrows averaging I I wk and 25 kg were assigned to the following treatments: (1) 2.25 fU/kg BW adrenocorticotropin (ACTH) in gel injected i.m (ACTH-G); (2).75 IU/kg BW ACTH in saline injected i.v. (ACTH-S); (3) saline injected i.m. (SAL). Concurrent blood and saliva samples were obtained at-.33 , 0, .33, .66, 1, 1.5, 2, 3, 5, 7, 10, 14, 24, 31, 38, and 48 h. In Exp. 2., seven barrows averaging 10 wk and 15 kg were assigned to two treatments of 8 injections every 6 h for 48 h of-. (1) 2.25 IU/kg BW ACTH in gel injected i.m. (ACTH-G)-, or (2) gel carrier injected i.m. (GEL). Concurrent blood and saliva samples were obtained at-.33, 0, I and then every 3 h until 72 h, after which samples were obtained at 78, 84, 96, 99, 108, and 120 h. In Exp. 1, salivary cortisol increased and the pattern of salivary cortisol mimicked that of total plasma for ACTH-G, but not ACTH-S barrows. Plasma cortisol area under the curve (AUC) for ACTH-G and ACTH-S differed (P=.0052), whereas salivary AUC's for these treatments did not differ (P=.26). Correlations between total plasma and salivary cortisol were: SAL, r--.60, P=.0023; ACTH-G, r--.79, P=.OOOI; ACTH-S, r--.58, P=.OOI 1. In Exp. 2, salivary cortisol had similar peaks over the 45 h of injections compared to plasma cortisol where injection peaks decreased. After ACTH injections ceased, total plasma cortisol for ACTH-G remained at low concentrations for 36 h following the last injection indicating a disruption in normal daily rhythms which did not occur in salivary cortisol. This difference in salivary and total plasma cortisol in both Exp. I and Exp. 2 indicates that there is not a direct consistent relationship between salivary and total plasma cortisol. However, if salivary cortisol reflects unbound cortisol as it does in humans, then this difference may be important to researchers interested in the changes in the biologically-active fraction of circulating cortisol concentrations.

Bushong, Diana M

1996-01-01T23:59:59.000Z

326

Injection and energy recovery in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical studies of the effects of injection on the behavior of production wells completed in fractured two-phase geothermal reservoirs are presented. In these studies the multiple-interacting-continua (MINC) method is employed for the modeling of idealized fractured reservoirs. Simulations are carried out for a five-spot well pattern with various well spacings, fracture spacings, and injection fractions. The production rates from the wells are calculated using a deliverability model. The results of the studies show that injection into two-phase fractured reservoirs increases flow rates and decreases enthalpies of producing wells. These two effects offset each other so that injection tends to have small effects on the usable energy output of production wells in the short term. However, if a sufficiently large fraction of the produced fluids is injected, the fracture system may become liquid-filled and an increased steam rate is obtained. Our studies show that injection greatly increases the long-term energy output from wells, as it helps extract heat from the resrvoir rocks. If a high fraction of the produced fluids is injected, the ultimate energy recovery will increase manyfold.

Bodvarsson, G.S.; Pruess, K.; O'Sullivan, M.J.

1983-01-01T23:59:59.000Z

327

Electron bunch injection at an angle into a laser wakefield  

E-Print Network (OSTI)

External injection of electron bunches longer than the plasma wavelength in a laser wakefield accelerator can lead to the generation of femtosecond ultrarelativistic bunches with a couple of percent energy spread. Extensive study has been done on external electron bunch (e.g. one generated by a photo-cathode rf linac) injection in a laser wakefield for different configurations. In this paper we investigate a new way of external injection where the electron bunch is injected at a small angle into the wakefield. This way one can avoid the ponderomotive scattering as well as the vacuum-plasma transition region, which tend to destroy the injected bunch. In our simulations, the effect of the laser pulse dynamics is also taken into account. It is shown that injection at an angle can provide compressed and accelerated electron bunches with less than 2% energy spread. Another advantage of this scheme is that it has less stringent requirements in terms of the size of the injected bunch and there is the potential to tr...

Luttikhof, M J H; Van Goor, F A; Boller, K -J

2008-01-01T23:59:59.000Z

328

High beta studies on ISX-B with neutral beam injection  

DOE Green Energy (OSTI)

Injection of H/sup 0/ into D/sup +/ plasmas with beam power P/sub b/ of up to 1.7 MW has produced rms betas of approx. 4%, volume-averaged betas of approx. 3%, and central betas of approx. 10% in the ISX-B tokamak. Although theoretical calculations indicate that the observed equilibria may be unstable to ballooning modes, no catastrophic loss of confinement has been observed, and beta continues to increase with injection power. In these beam-dominated high-beta discharges the electron and ion energy confinement times are still similar to those obtained with ohmic heating: ion energy confinement is neoclassical within a factor of approx. 2, and electron energy confinement follows the usual Alcator scaling. In high-power injection discharges the character of the magnetohydrodynamic (MHD) behavior changes, the particle confinement time decreases, and the inward impurity transport appears to be inhibited. These effects, however, may not be linked directly to beta.

Sheffield, J.; Bates, S.C.; Bush, C.E.

1980-01-01T23:59:59.000Z

329

Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model  

SciTech Connect

The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

1985-05-01T23:59:59.000Z

330

Direct insolation models  

DOE Green Energy (OSTI)

Several recently published models of the direct component of the broadband insolation are compared for clear sky conditions. The comparison includes seven simple models and one rigorous model that is used as a basis for determining accuracy. Where possible, the comparison is made between the results of each model for each atmospheric constituent (H/sub 2/O, CO/sub 2/, O/sub 3/, O/sub 2/, aerosol and molecular scattering) separately as well as for the combined effect of all of the constituents. Two optimum simple models of varying degrees of complexity are developed as a result of this comparison. The study indicates: aerosols dominate the attenuation of the direct beam for reasonable atmospheric conditions; molecular scattering is next in importance; water vapor is an important absorber; and carbon dioxide and oxygen are relatively unimportant as attenuators of the broadband solar energy.

Bird, R.; Hulstrom, R.L.

1980-01-01T23:59:59.000Z

331

Spin Injection Across a Heterojunction: A Ballistic Picture  

SciTech Connect

Spin injection across heterojunctions plays a decisive role in the new field of spintronics. Within the ballistic transport regime, we state a general expression for the spin-injection rate in a heterojunction made of two ballistic electrodes. Both the spin-orbit interaction and interface scattering effect are taken into account. Our model is consistent with the well-documented results of ferromagnetic-metal junctions. It explains the recent experimental results of a dilute-magnetic-semiconductor/semiconductor junction and predicts solutions to enhance the spin-injection rate across a ferromagnetic-semiconductor junction.

Hu, C.-M.; Matsuyama, T.

2001-08-06T23:59:59.000Z

332

Fluid injection profiles: modern analysis of wellbore temperature survey  

DOE Green Energy (OSTI)

Exact and approximate solutions for heat flow in a fluid injection well are presented. By using the approximate results, temperature surveys can be quickly analyzed in the field, and the well depths where fluids leave and the departing flow rates at these depths can be precisely determined. Although this method eliminates the need for indigenous and post injection shut-in temperatures, several surveys must be taken just before and during the injection period which can be as short as several hours. In the application described the method was used to locate the depths where hydraulic fractures were initiated in a hot dry rock geothermal well.

Murphy, H.D.

1977-01-01T23:59:59.000Z

333

Compendium of Regulatory Requirements Governing Underground Injection of Drilling Wastes  

Science Conference Proceedings (OSTI)

This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies.

Puder, Markus G.; Bryson, Bill; Veil, John A.

2003-03-03T23:59:59.000Z

334

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

335

Alkaline injection for enhanced oil recovery: a status report  

SciTech Connect

In the past several years, there has been renewed interest in enhanced oil recovery (EOR) by alkaline injection. Alkaline solutions also are being used as preflushes in micellar/polymer projects. Several major field tests of alkaline flooding are planned, are in progress, or recently have been completed. Considerable basic research on alkaline injection has been published recently, and more is in progress. This paper summarizes known field tests and, where available, the amount of alkali injected and the performance results. Recent laboratory work, much sponsored by the U.S. DOE, and the findings are described. Alkaline flood field test plans for new projects are summarized.

Mayer, E.H.; Berg, R.L.; Carmichael, J.D.; Weinbrandt, R.M.

1983-01-01T23:59:59.000Z

336

CarbFix CO2 Injection Pilot Project, J. M. Matter, M. Stute & W. Broecker  

E-Print Network (OSTI)

Fix Injection Site #12;A Conceptual Carbonation Model Injec8on well: CO2 fully dissolvedCarbFix CO2 Injection Pilot Project, Iceland J. M. Matter, M. Stute & W. Broecker Lamont Pétursson #12;CarbFix Injection Site #12;CarbFix CO2 Injection Site #12;CarbFix Injection Site 2

337

Letter: Direction and Guidance for Implementing Direct DOE Relationship &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter: Direction and Guidance for Implementing Direct DOE Letter: Direction and Guidance for Implementing Direct DOE Relationship & Funding for EMSSABs Letter: Direction and Guidance for Implementing Direct DOE Relationship & Funding for EMSSABs From: Assistant Secretary, Jessie Hill Roberson (EM-11) To: Mr. Monte Wilson, Chair, INEEL Citizens Advisory Board This letter is in response to a November 21, 2003 letter regarding direction and guidance for implementing direct DOE relationship and funding for Environmental Management Site Specific Advisory Boards. Roberson Letter - December 12, 2003 More Documents & Publications Letter: Progress in Implementing a Direct DOE Relationship & Funding for the EMSSABs Letter: Mission, Objectives & Scope of the Site Specific Advisory Board Memorandum: Direction and Guidance for Implementing Direct DOE Relationship

338

Letter: Direction and Guidance for Implementing Direct DOE Relationship &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter: Direction and Guidance for Implementing Direct DOE Letter: Direction and Guidance for Implementing Direct DOE Relationship & Funding for EMSSABs Letter: Direction and Guidance for Implementing Direct DOE Relationship & Funding for EMSSABs From: Assistant Secretary, Jessie Hill Roberson (EM-11) To: Mr. Monte Wilson, Chair, INEEL Citizens Advisory Board This letter is in response to a November 21, 2003 letter regarding direction and guidance for implementing direct DOE relationship and funding for Environmental Management Site Specific Advisory Boards. Roberson Letter - December 12, 2003 More Documents & Publications Letter: Progress in Implementing a Direct DOE Relationship & Funding for the EMSSABs Letter: Mission, Objectives & Scope of the Site Specific Advisory Board Memorandum: Direction and Guidance for Implementing Direct DOE Relationship

339

TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEAM TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR AGE MO TOR Michigan Technological University Through-the-road Parallel 2.0-L 4 Cylinder Spark Ignition Reformulated Gasoline 4-speed Automatic COBASYS, Nickel Metal Hydride - 288V 50 kW Solectria AC Induction Transaxle Mississippi State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) GM F40 6-speed Manual Johnson Controls, Nickel Metal Hydride - 330V 45 kW Ballard Integrated Power Transaxle The Ohio State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) Aisin-Warner AF40 6-speed Automatic Transaxle Panasonic, Nickel Metal Hydride - 300V 67 kW Ballard AC Induction Transaxle /10.6 kW Kollmorgen Brushless DC Generator Pennsylvania State

340

Goa, India How far does Surface Heave Propagate? A Discussion on Analytical and Numerical Modeling of the Surface Heave Induced by Subsurface Fluid Injection  

E-Print Network (OSTI)

ABSTRACT: Reservoir dilations occur due to variety of subsurface injection operations including waste disposal, waterflooding, steam injection, CO 2 sequestration and aquifer storage recovery. These reservoir dilations propagate to the surrounding formations and extend up to the ground surface resulting in surface heaves. This paper discusses modelling of the surface heave by applying both analytical and numerical methods. Results of the study demonstrate that the lateral extent of a finite element model has a direct impact on the surface heave profile and if the lateral boundaries are too close to the line of symmetry there will be significant errors in the finite element results. This paper proposes a rapid way of estimating a sufficient lateral extent for the finite element model by using a new chart. The chart contains a family of curves which can be used to estimate the surface heave propagation distance under various injection depths, injection periods and soil properties. 1

Asanga S. Nanayakkara; Ron C. K. Wong

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Interpretation of self-potential measurements during injection tests at  

Open Energy Info (EERE)

self-potential measurements during injection tests at self-potential measurements during injection tests at Raft River, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of self-potential measurements during injection tests at Raft River, Idaho. Final report Details Activities (1) Areas (1) Regions (0) Abstract: Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the protection system. Furthermore, similar changes are observed for two

342

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Injection in Kansas Oilfield Could Greatly Increase Production, CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

343

one mile underground into a deep saline formation. The injection  

NLE Websites -- All DOE Office Websites (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

344

Controlled air injection for a fuel cell system  

DOE Patents (OSTI)

A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

Fronk, Matthew H. (Honeove Falls, NY)

2002-01-01T23:59:59.000Z

345

Underground Injection Control Program Rules and Regulations (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to preserve the quality of the groundwater of the State and thereby protect groundwater contamination from contamination by discharge from injection wells and...

346

The reduction of supersonic jet noise using pulsed microjet injection  

E-Print Network (OSTI)

This thesis is concerned with the active control of supersonic jet noise using pulsed microjet injection at the nozzle exit. Experimental investigations were carried out using this control method on an ideally expanded ...

Ragaller, Paul Aaron

2007-01-01T23:59:59.000Z

347

The design, manufacturing and use of economically friendly injection molds  

E-Print Network (OSTI)

Much of the polymer manufacturing done today involves the process of injection molding. It can be difficult to gain experience in the art of designing and building tooling for this process outside of industry. The goal of ...

Buchok, Aaron (Aaron J.)

2008-01-01T23:59:59.000Z

348

Non-uniform emission studies of a magnetron injection gun  

E-Print Network (OSTI)

This thesis investigates the experimental measurement and theoretical simulation of the effects of azimuthal emission non-uniformity of a 96 kV, 40 amp magnetron injection gun (MIG) used in a gyrotron. The accomplishments ...

Marchewka, Chad D. (Chad Daniel)

2006-01-01T23:59:59.000Z

349

Cost Estimate of Activated Carbon Injection for Controlling Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

mercury reductions of between 60% and 70% at injection rates around 10-15 lbsmillion acf (see Figure 1). Although regression analysis of full-scale ACIESP data shows that it...

350

Lithium pellet injection into high pressure magnetically confined plasmas  

E-Print Network (OSTI)

The ablation of solid pellets injected into high temperature magnetically confined plasmas is characterized by rapid oscillations in the ablation rate, and the formation of field aligned filaments in the ablatant. High ...

Böse, Brock (Brock Darrel)

2010-01-01T23:59:59.000Z

351

Improved screen-bowl centrifuge recovery using polymer injection technology  

Science Conference Proceedings (OSTI)

The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

2006-08-15T23:59:59.000Z

352

Victor J. Daniel Jr. CO2 Injection Test Site Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Test Site JAF02664.PPT 1 1.1 SITE BACKGROUND 1.2 GENERAL IDENTIFICATION DATA 1.3 REGULATORY CLASSIFICATION 1.4 WELL DATA - INJECTION WELL NO. 1 1.5 WELL DATA -...

353

Collagen scaffolds and injectable biopolymer gels for cardiac tissue engineering  

E-Print Network (OSTI)

Three-dimensional biomaterial scaffolds have begun to shown promise for cell delivery for cardiac tissue engineering. Although various polymers and material forms have been explored, there is a need for: injectable gels ...

Ng, Karen Kailin

2012-01-01T23:59:59.000Z

354

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

355

NETL: News Release - Illinois CO2 Injection Project Moves Another...  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2010 Illinois CO2 Injection Project Moves Another Step Forward Baseline Data Important for CCS Project's Planned 2011 Startup Washington, D.C. - The recent completion of a...

356

Injection locked oscillator system for pulsed metal vapor lasers  

SciTech Connect

An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1988-01-01T23:59:59.000Z

357

Fractured reservoir characterization through injection, falloff, and flowback tests  

SciTech Connect

This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

Peng, C.P.; Singh, P.K. (Amoco Production Co., Tulsa, OK (United States)); Halvorsen, H. (Amoco Norway Oil Co., Stavanger (NO)); York, S.D. (Amoco Production Co., Houston, TX (United States))

1992-09-01T23:59:59.000Z

358

Apparatus and method for downhole injection of radioactive tracer  

SciTech Connect

The disclosure relates to downhole injection of radioactive .sup.82 Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular .sup.82 Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the .sup.82 Br into surrounding fractured strata. A sensor in a remote borehole reads progress of the radioactive material through fractured structure.

Potter, Robert M. (Los Alamos, NM); Archuleta, Jacobo R. (Espanola, NM); Fink, Conrad F. (Los Alamos, NM)

1983-01-01T23:59:59.000Z

359

Optoelectronic device with nanoparticle embedded hole injection/transport layer  

DOE Patents (OSTI)

An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

2012-01-03T23:59:59.000Z

360

Our purpose and direction Our purpose and direction  

E-Print Network (OSTI)

1 Our purpose and direction #12;Our purpose and direction Contents MINISTERS' FOREWORD 3 organisation 8 Our People 8 Our finances 8 Business sustainability ­ `Greenerways' 9 OUR DIRECTION 10 Our: Financial resources 56 2 #12;Our purpose and direction Ministers' Foreword I am very pleased to be providing

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Introduction Direct seeding, also known as direct sowing, is  

E-Print Network (OSTI)

Introduction Direct seeding, also known as direct sowing, is an ancient method of woodland that control of competing vegetation is essential for successful tree establishment using direct sowing. Hand, Willoughby (2002) suggests total overall herbicide inputs may be lower in direct seeded woodland due

362

Our purpose and direction Our purpose and direction  

E-Print Network (OSTI)

1 Our purpose and direction #12;Our purpose and direction Contents MINISTERS' FOREWORD 3 8 Our People 8 Our finances 8 Business sustainability ­ `Greenerways' 9 OUR DIRECTION 10 Our Appendix 2: Business measures 55 Appendix 3: Financial resources 56 2 #12;3 Our purpose and direction

363

Breakout Session -- TEC Direction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

III: TEC III: TEC Direction and Priorities Presented to: Transportation External Coordination Working Group Presented by: Alex Thrower Office of Logistics Management February 7, 2008 San Antonio, Texas 2 Topics of Discussion * Transportation External Coordination Working Group (TEC) charter and membership * Topic group functions * Meeting format 3 TEC Charter and Membership * Mission - TEC was formed in 1992 to improve coordination among the Department of Energy (DOE) and external groups interested in the Department's transportation activities The Office of Civilian Radioactive Waste Management (OCRWM) co-chairs TEC with DOE's Environmental Management Program Provides an opportunity for broad based input and information exchange from varied organizations - Members meet semi-annually to participate in

364

Omni-directional railguns  

DOE Patents (OSTI)

This invention is comprised of a device for electromagetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

Shahinpoor, M.

1994-12-31T23:59:59.000Z

365

Booster gold beam injection efficiency and beam loss  

SciTech Connect

The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide gold beam with the intensity of 10{sup 9} ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold ion beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam.

Zhang, S.Y.; Ahrens, L.A.

1998-08-01T23:59:59.000Z

366

Geothermal injection treatment: process chemistry, field experiences, and design options  

DOE Green Energy (OSTI)

The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

1984-09-01T23:59:59.000Z

367

Hydrothermal Injection Research Program. Annual progress report, FY 1983  

DOE Green Energy (OSTI)

The test program was initiated at the Raft River Geothermal Field in southern Idaho in September of 1982. A series of eight short-term injection and backflow tests followed by a long-term injection test were conducted on one well in the field. Tracers were added during injection and monitored during backflow of the well. The test program was successful, resulting in a unique data set which shows promise as a means to improve understanding of the reservoir characteristics. In December of 1982 an RFP was issued to obtain an industrial partner to obtain follow-on data on the injection/backflow technique in a second field and to study any alternate advanced concepts for injection testing which the industrial community might recommend. Republic Geothermal, Inc. and the East Mesa Geothermal Field were selected for the second test series. Two wells were utilized for testing, and a series of ten tests were conducted in July and August of 1983 aimed principally at further evaluation of the injection/backflow technique. This test program was also successfully completed. This report describes in detail the analysis conducted on the Raft River data, the supporting work at EG and G Idaho and at ESL/UURI, and gives an overview of the objectives and test program at East Mesa.

Blackett, R.E.; Kolesar, P.T.; Capuano, R.G.; Sill, W.R.; Allman, D.W.; Hull, L.C.; Large, R.M.; Miller, J.D.; Skiba, P.A.; Downs, W.F.; Koslow, K.N.; McAtee, R.E.; Russell, B.F.

1983-11-01T23:59:59.000Z

368

Analysis of injection tests in liquid-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

The objective was to develop procedures for analyzing nonisothermal injection test data during the early phases of injection. In particular, methods for determining the permeability-thickness of the formation, skin factor of the well and tracking the movement of the thermal front have been developed. The techniques developed for interpreting injection pressure transients are closely akin to conventional groundwater and petroleum techniques for evaluating these parameters. The approach taken was to numerically simulate injection with a variety of temperatures, reservoir parameters and flowrates, in order to determine the characteristic responses due to nonisothermal injection. Two characteristic responses were identified: moving front dominated behavior and composite reservoir behavior. Analysis procedures for calculating the permeability-thickness of the formation and the skin factor of the well have been developed for each of these cases. In order to interpret the composite reservior behavior, a new concept has been developed; that of a ''fluid skin factor'', which accounts for the steady-state pressure buildup due to the region inside the thermal front. Based on this same concept, a procedure for tracking the movement of the thermal front has been established. The results also identify the dangers of not accounting the nonisothermal effects when analyzing injection test data. Both the permeability-thickness and skin factor of the well can be grossly miscalculated if the effects of the cold-region around the well are not taken into consideration. 47 refs., 30 figs., 14 tabs.

Benson, S.M.

1984-12-01T23:59:59.000Z

369

Pressure buildup during supercritical carbon dioxide injection from a partially penetrating borehole into gas reservoirs  

E-Print Network (OSTI)

the vicinity of the injection well. While a large injectionby pumping it down into an injection well. While the actuala small part of the injection well (typically, a few meters

Mukhopadhyay, S.

2013-01-01T23:59:59.000Z

370

Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria  

E-Print Network (OSTI)

is centered on one CO 2 injection well and consists of about1.5 km) horizontal injection wells. In an ongoing researchabove active CO 2 injection wells and the uplift pattern

Rutqvist, J.

2010-01-01T23:59:59.000Z

371

Continuous active-source seismic monitoring of CO2 injection in a brine aquifer  

E-Print Network (OSTI)

source deployed in the injection well. We first present thehas two wells, an injection well and a dedicated monitoringa sonic log of the injection well. We assumed the volume

Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

2008-01-01T23:59:59.000Z

372

BOOSTER EXTRACTION, BOOSTER-TO-STORAGE RING TRANSPORT AND STORAGE RING INJECTION FOR THE ALS  

E-Print Network (OSTI)

Storage Ring Injection for the ALS M.S. Zisman March 1988Ring Injection for the ALS Michael S. Zisman Exploratoryon the design of the ALS injection system is presented. The

Zisman, M.S.

2010-01-01T23:59:59.000Z

373

Identification of the Permeability Field of Porous Medium from the Injection of Passive Tracer  

Science Conference Proceedings (OSTI)

In this paper, a method was proposed which focused on the question, namely on how to invert data on arrival times at various (and numerous) points in the porous medium to map the permeability field. The method, elements of which were briefly described in (9), is based on a direct inversion of the data, as will be described below , rather than on the optimization of initial random (or partly constrained) guesses of the permeability field, to match the available data, as typically done in the analogous problem of pressure transients. The direct inversion is based on two conditions, that Darcy's law for single-phase flow in porous media is valid, and that dispersion of the concentration of the injected tracer is negligible. While the former is a well-accepted premise, the latter depends on injection and field conditions, and may not necessarily apply in all cases. Based on these conditions, we formulate a nonlinear boundary value problem, the coefficients of which depend on the experimental arrival time data.

Zhan, Lang; Yortsos, Y.C.

1999-10-18T23:59:59.000Z

374

A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen  

SciTech Connect

The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

1992-08-01T23:59:59.000Z

375

Home: Directives, Delegations, and Requirements  

NLE Websites -- All DOE Office Websites

content. | Skip to navigation content. | Skip to navigation Site Map Contact Us Current Documents Archived Documents Entire Site only in current section Advanced Search... U.S. Department of Energy Office of Management Directives, Delegations, and Requirements Sections Home Directives Current Directives Draft Directives Archives Delegations Current Delegations Current Designations Rescinded Organizations' Assignment of Responsibility Development & Review RevCom Writers' Tools DPC Corner References News and Updates Help Personal tools You are here: Office of Management » Directives, Delegations, and Requirements Info Home Directives are the Department of Energy's primary means of establishing policies, requirements, responsibilities, and procedures for Departmental elements and contractors. Directive

376

Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-12-31T23:59:59.000Z

377

Matched boundary extrapolation solutions for CO2 well injection into a saline aquifer  

E-Print Network (OSTI)

interface solution for carbon dioxide injection  into Interface  Solutionfor  Carbon  Dioxide  Injection  into IPCC  Special  Report  on  Carbon  Dioxide  Capture  and 

Houseworth, J.

2012-01-01T23:59:59.000Z

378

Collection and analyses of physical data for deep injection wells in Florida.  

E-Print Network (OSTI)

??Deep injection wells (DIW) in Florida are regulated by the U.S. Environmental Protection Agency (USEPA) and the state of Florida through the Underground Injection Control… (more)

Gao, Jie.

2010-01-01T23:59:59.000Z

379

Laser triggered injection of electrons in a laser wakefield accelerator with the colliding pulse method  

E-Print Network (OSTI)

Laser Triggered Injection ofElectrons in a Laser Wake?eld Accelerator with the CollidingAn injection scheme for a laser wake?eld accelerator that

2004-01-01T23:59:59.000Z

380

U-157: Ruby Mail Gem Directory Traversal and Shell Command Injection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

57: Ruby Mail Gem Directory Traversal and Shell Command Injection Vulnerabilities U-157: Ruby Mail Gem Directory Traversal and Shell Command Injection Vulnerabilities April 27,...

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Elastic and elastoplastic finite element simulations of injection into porous reservoirs.  

E-Print Network (OSTI)

??Underground gas injection has attracted remarkable attention for natural gas storage and carbon dioxide (CO2) geologic sequestration applications. Injection of natural gas into depleted hydrocarbon… (more)

Chamani, Amin

2013-01-01T23:59:59.000Z

382

SRNL - Directions and Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Map of SRS, with Georgia and South Carolina Map of SRS, with Georgia and South Carolina Directions and Maps The Savannah River National Laboratory is located at the Savannah River Site , a 310 square mile site located in the southeastern coastal area of the United States in the state of South Carolina. It is bordered to the west by the Savannah River and Georgia, and is close to several major cities, including Augusta and Savannah (Ga.), Columbia, Greenville, and Charleston (S.C.). It is in an area residents refer to as the Central Savannah River Area, or CSRA. The Aiken County Technology Laboratory (which houses SRNL's biotechnology laboratories and certain waste treatment technology laboratories) and the Center for Hydrogen Research are located at Aiken County's Savannah River Research Campus, located adjacent to SRS.

383

Conclusions and Policy Directions,  

SciTech Connect

This chapter briefly revisits the constraints and opportunities of mitigation and adaptation, and highlights and the multiple linkages, synergies and trade-offs between mitigation, adaptation and urban development. The chapter then presents future policy directions, focusing on local, national and international principles and policies for supporting and enhancing urban responses to climate change. In summary, policy directions for linking climate change responses with urban development offer abundant opportunities; but they call for new philosophies about how to think about the future and how to connect different roles of different levels of government and different parts of the urban community. In many cases, this implies changes in how urban areas operate - fostering closer coordination between local governments and local economic institutions, and building new connections between central power structures and parts of the population who have often been kept outside of the circle of consultation and discourse. The difficulties involved in changing deeply set patterns of interaction and decision-making in urban areas should not be underestimated. Because it is so difficult, successful experiences need to be identified, described and widely publicized as models for others. However, where this challenge is met, it is likely not only to increase opportunities and reduce threats to urban development in profoundly important ways, but to make the urban area a more effective socio-political entity, in general - a better city in how it works day to day and how it solves a myriad of problems as they emerge - far beyond climate change connections alone. It is in this sense that climate change responses can be catalysts for socially inclusive, economically productive and environmentally friendly urban development, helping to pioneer new patterns of stakeholder communication and participation.

Wilbanks, Thomas J [ORNL; Romero-Lankao, Paty [National Center for Atmospheric Research (NCAR); Gnatz, P [National Center for Atmospheric Research (NCAR)

2011-01-01T23:59:59.000Z

384

BOOSTER GOLD BEAM INJECTION EFFICIENCY AND BEAM LOSS  

SciTech Connect

The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10{sup 9} ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere.

ZHANG,S.Y.; AHRENS,L.A.

1998-06-22T23:59:59.000Z

385

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

Science Conference Proceedings (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

386

Foreign Direct Investment in U  

Gasoline and Diesel Fuel Update (EIA)

Foreign Direct Investment in U.S. Energy in 1998 Foreign Direct Investment in U.S. Energy in 1998 Foreign Direct Investment Foreign Direct Investment Foreign Direct Investment Foreign Direct Investment in U.S. Energy in U.S. Energy in U.S. Energy in U.S. Energy in 1998 in 1998 in 1998 in 1998 November 2000 Energy Information Administration/Foreign Direct Investment in U.S. Energy in 1998 Contacts This report was prepared in the Office of Energy Markets and End Use of the Energy Information Administration, U.S. Department of Energy, under the general direction of W. Calvin Kilgore. The project was directed by Mark E. Rodekohr, Director of the Energy Markets and Contingency Information Division (202) 586-1441, and Mary E. Northup, the Team Leader for Financial Analysis (202) 586-1383. Specific technical information concerning this

387

NETL: News Release - Alabama Injection Project Aimed at Enhanced Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

March 1, 2010 March 1, 2010 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage DOE-Sponsored Citronelle Project Appears Ideal Location for Concurrent CO2 Sequestration and EOR Operations Washington, D.C. - Carbon dioxide (CO2) injection - an important part of carbon capture and storage (CCS) technology - is underway as part of a pilot study of CO2 enhanced oil recovery (EOR) in the Citronelle Field of Mobile County, Alabama. A project team led by the University of Alabama at Birmingham is conducting the injection. Study results of the 7,500-ton CO2 injection will provide estimates of oil yields from EOR and CO2 storage capacity in depleted oil reservoirs. In the United States, CO2 injection has already helped recover nearly 1.5 billion barrels of oil from mature oil fields, yet the technology has not been deployed widely. It is estimated that nearly 400 billion barrels of oil still remain trapped in the ground. Funded through the Department of Energy's Office of Fossil Energy, the primary goal of the Citronelle Project is to demonstrate that remaining oil can be economically produced using CO2-EOR technology in untested areas of the United States, thereby reducing dependency on oil imports, providing domestic jobs, and preventing the release of CO2 into the atmosphere.

388

Analysis of PWR RCS Injection Strategy During Severe Accident  

Science Conference Proceedings (OSTI)

Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

2004-05-15T23:59:59.000Z

389

Memorandum: Direction and Guidance for Implementing Direct DOE Relationship  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direction and Guidance for Implementing Direct DOE Direction and Guidance for Implementing Direct DOE Relationship & Funding for the EMSSAB Memorandum: Direction and Guidance for Implementing Direct DOE Relationship & Funding for the EMSSAB From: Designated Federal Officer, Sandra L. Waisley (EM-11) To: SSAB Members (G. Stegner, J. Reising, G. Bowman, T. Taylor, C. Gertz, B. Murphie, S. McCracken, M. Marvin, J. Rampe, A. Doswell, C. Anderson, B. Wethington, S. Brennan, K. Kozeliski, D. Dollins, P. Halsey, Y. Sherman, L. Bratcher, R. Warther, K. Klein, R. Schepens, F. Lockhart, J. Allison, R. Erickson, E. Sellers, K. Carlson, G. Boyd, R. Butler) The memorandum informs of Assistant Secrectary Roberson's direction and guidance for implementing a DOE direct relationship and funding approach for EM's Site-Specific Advisory Board (EMSSAB).

390

Measuring Dark Matter Distribution in Directional Direct Detection  

E-Print Network (OSTI)

Direct detection of dark matter with directional sensitivity offers not only measurement of both recoil energy and direction of dark matter, but also a way to understand dark matter distribution in the Galaxy. Maxwell distribution is usually supposed as the distribution near the Earth, however, deviation from that, caused by tidal streams in the Galaxy, has been suggested. We explore the possibility of distinguishing the distribution by direct detection using nuclear emulsions.

Keiko I. Nagao

2013-12-11T23:59:59.000Z

391

Directional Response of Ocean Waves to Changing Wind Direction  

Science Conference Proceedings (OSTI)

When analysing wave measurements in turning winds, one usually assumes that the rate of change of mean wave direction is determined by the angle between ?w, the wind direction, and ?o, the mean wave direction; however, it is well known that this ...

Gao Quanduo; Gerbrand Komen

1993-07-01T23:59:59.000Z

392

The Response of Wave Directions to Changing Wind Directions  

Science Conference Proceedings (OSTI)

From the premise that the net growth of wave energy induced by wind is centered around the wind direction, a relaxation model for the response of the main wave direction to changes in the wind direction for young sea states is derived. The time ...

L. H. Holthuijsen; A. J. Kuik; E. Mosselman

1987-07-01T23:59:59.000Z

393

Simulations of laser-wakefield acceleration with external electron-bunch injection for REGAE experiments at DESY  

Science Conference Proceedings (OSTI)

We present particle-in-cell simulations for future laser-plasma wakefield experiments with external bunch injection at the REGAE accelerator facility at DESY, Hamburg, Germany. Two effects have been studied in detail: emittance evolution of electron bunches externally injected into a wake, and longitudinal bunch compression inside the wakefield. Results show significant transverse emittance growth during the injection process, if the electron bunch is not matched to its intrinsic betatron motion inside the wakefield. This might introduce the necessity to include beam-matching sections upstream of each plasma-accelerator section with fundamental implications on the design of staged laser wakefield accelerators. When externally injected at the zero-field crossing of the laser-driven wake, the electron bunch may undergo significant compression in longitudinal direction and be accelerated simultaneously due to the gradient in the acting force. The mechanism would allow for production of single high-energy, ultra-short (on the order of one femtosecond) bunches at REGAE. The optimal conditions for maximal bunch compression are discussed in the presented studies.

Grebenyuk, Julia; Mehrling, Timon; Tsung, Frank S.; Floettman, Klaus; Osterhoff, Jens [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Institut fuer Experimentalphysik, Universitaet Hamburg, 22761 Hamburg (Germany); University of California, Los Angeles, CA 90095 (United States); Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Institut fuer Experimentalphysik, Universitaet Hamburg, 22761 Hamburg (Germany)

2012-12-21T23:59:59.000Z

394

CO2 Injection Begins in Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Begins in Illinois Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. "Establishing long-term, environmentally safe and secure underground CO2 storage is a critical component in achieving successful commercial

395

PHYSICS PROCESSES IN DISRUPTION MITIGATION USING MASSIVE NOBLE GAS INJECTION  

SciTech Connect

Methods for detecting imminent disruptions and mitigating disruption effects using massive injection of noble gases (He, Ne, or Ar) have been demonstrated on the DIII-D tokamak [1]. A jet of high injected gas density (> 10{sup 24} m{sup -3}) and pressure (> 20 kPa) penetrates the target plasma at the gas sound speed ({approx}300-500 m/s) and increases the atom/ion content of the plasma by a factor of > 50 in several milliseconds. UV line radiation from the impurity species distributes the plasma energy uniformly on the first wall, reducing the thermal load to the divertor by a factor of 10. Runaway electrons are almost completely eliminated by the large density of free and bound electrons supplied by the gas injection. The small vertical plasma displacement before current quench and high ratio of current decay rate to vertical growth rate result in a 75% reduction in peak halo current amplitude and attendant forces.

D.A. HUMPHREYS; D.G. WHYTE; T.C. JERNIGAN; T.E.EVANS; D.S. GRAY; E.M. HOLLMANN; A.W. HYATT; A.G. KELLMAN; C.J. LASNIER; P.B. PARKS; P.L. TAYLOR

2002-07-01T23:59:59.000Z

396

Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs  

SciTech Connect

Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing reservoir pressures,production well flow rates, and long-term sustainability of steamproduction, injection has also been shown to reduce concentrations ofnon-condensible gases (NCGs) in produced steam. The latter effectimproves energy conversion efficiency and reduces corrosion problems inwellbores and surface lines.This report reviews thermodynamic andhydrogeologic conditions and mechanisms that play an important role inreservoir response to water injection. An existing general-purposereservoir simulator has been enhanced to allow modeling of injectioneffects in heterogeneous fractured reservoirs in three dimensions,including effects of non-condensible gases of different solubility.Illustrative applications demonstrate fluid flow and heat transfermechanisms that are considered crucial for developing approaches to insitu abatement of NCGs.

Pruess, Karsten

2006-11-06T23:59:59.000Z

397

Steam-injection profile control using limited-entry perforations  

SciTech Connect

A completion technique for steam-injection wells that ensures improved profile distribution of steam into several independent sands is being used at the South Belridge field in California. Previously, steam profiles were poor for many of the conventionally perforated (two 3/8-in. (9.5-mm) -diameter holes per foot) injection wells. This standard completion does not guarantee that the thicker, higher-permeability sands will not act as thief zones with respect to the thinner, tighter sands open in the same wellbore. Limited-entry perforating (typically one hole per 15 to 20 ft (4.6 to 6.1m) of gross interval with at least one in each major sand member) provides the best assurance of achieving a uniform injection profile in single-wellbore multisand completions.

Small, G.P.

1986-09-01T23:59:59.000Z

398

Steam-injection profile control using limited-entry perforations  

Science Conference Proceedings (OSTI)

A completion technique for steam injection wells that assures improved profile distribution of steam into several independent sands is being used at the South Belridge Field, California. Previously, steam profiles were poor for many of the conventionally perforated (two-3/8'' diameter holes per foot) injection wells. This standard completion does not guarantee that the thicker, higher permeability sands will not act as thief zones with respect to the thinner, tighter sands open in the same wellbore. Limited entry perforating (typically one hole per 15-20' of gross interval with at least one in each major sand member) provides the best assurance of achieving a uniform injection profile in single wellbore multi-sand completions.

Small, G.P.

1985-03-01T23:59:59.000Z

399

Human Collagen Injections to Reduce Rectal Dose During Radiotherapy  

Science Conference Proceedings (OSTI)

Objectives: The continuing search for interventions, which address the incidence and grade of rectal toxicities associated with radiation treatment of prostate cancer, is a major concern. We are reporting an investigational trial using human collagen to increase the distance between the prostate and anterior rectal wall, thereby decreasing the radiation dose to the rectum. Methods: This is a pilot study evaluating the use of human collagen as a displacing agent for the rectal wall injected before starting a course of intensity-modulated radiotherapy (IMRT) for prostate cancer. Using a transperineal approach, 20 mL of human collagen was injected into the perirectal space in an outpatient setting. Computerized IMRT plans were performed pre- and postcollagen injection, and after a patient completed their radiotherapy, to determine radiation dose reduction to the rectum associated with the collagen injection. Computed tomography scans were performed 6 months and 12 months after completing their radiotherapy to evaluate absorption rate of the collagen. All patients were treated with IMRT to a dose of 75.6 Gy to the prostate. Results: Eleven patients were enrolled into the study. The injection of human collagen in the outpatient setting was well tolerated. The mean separation between the prostate and anterior rectum was 12.7 mm. The mean reduction in dose to the anterior rectal wall was 50%. All men denied any rectal symptoms during the study. Conclusions: The transperineal injection of human collagen for the purpose of tissue displacement is well tolerated in the outpatient setting. The increased separation between the prostate and rectum resulted in a significant decrease in radiation dose to the rectum while receiving IMRT and was associated with no rectal toxicities.

Noyes, William R., E-mail: noyes@cancercenternd.com [Department of Radiation Oncology, Cancer Center of North Dakota, Grand Forks, ND (United States); Hosford, Charles C. [Department of Medical Statistics, University of North Dakota School of Medicine, Grand Forks, ND (United States); Schultz, Steven E. [Department of Urology, RiverView Health, Grand Forks, ND (United States)

2012-04-01T23:59:59.000Z

400

Geothermal Technologies Program: Direct Use  

DOE Green Energy (OSTI)

This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

Not Available

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Turbo-Charging Research and Development  

SciTech Connect

The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.

None

2008-02-27T23:59:59.000Z

402

Microsoft Word - TURBO EXPO CO2 draft  

NLE Websites -- All DOE Office Websites (Extended Search)

- Oilfree compression. - Higher speed, better matched to the high-speed drivers (electric motors or steam turbines) commonly used in the 10-40MW range. - By design, they...

403

Proceedings of ASME Turbo Expo 2003  

E-Print Network (OSTI)

. The objectives are the minimization of NOx emissions and the reduction of pressure pulsations of the °ame tests) indicates a possible 30% improvement in NOx emisssions and a possible 20% pulsation reduction tests indicates a possible 20% improvement in NOx emisssions and a possible 30% pulsa- tion reduction

Coello, Carlos A. Coello

404

Zero Emissions Coal Syngas Oxygen Turbo Machinery  

SciTech Connect

Siemens Energy, Inc. (formerly Siemens Westinghouse Power Corporation) worked with Clean Energy Systems and Florida Turbine Technologies to demonstrate the commercial feasibility of advanced turbines for oxy-fuel based power systems that discharge negligible CO{sub 2} into the atmosphere. The approach builds upon ultra supercritical steam turbine and advanced gas turbine technology with the goal of attaining plant efficiencies above 50% in the 2015 timeframe. Conceptual designs were developed for baseline, near term, and long term oxy-fuel turbine cycles, representing commercial introductions of increasingly advanced thermal conditions and increasing exposure to steam-CO{sub 2} mixtures. An economic analysis and market demand study was performed by Science Applications International Corp. (SAIC), and indicated that long-term oxy-fuel turbine cycles start to look attractive in 2025 when the CO{sub 2} tax is assumed to reach $40/ ton, and by 2030 it has a clear advantage over both IGCC with sequestration and pulverized coal with sequestration. A separate risk analysis of the oxy-fuel combustor, HP turbine, re-heater, and IP turbine of the long-term cycle identified and categorized risks and proposed mitigation measures. In 2007 the program began to focus on a potential oxy-fuel turbine power generation demonstration project in the 2012 -13 time period while still maintaining a link to the requirements of the long-term oxy-syngas cycle. The SGT-900 turbine was identified as the best fit for modification into an intermediate pressure turbine (IPT) for this application. The base metals, bond coats, thermal barrier coatings (TBCs), and rotor materials used in the SGT-900 were tested for their ability to operate in the steam- CO{sub 2} environment of the oxy-fuel OFT-900. Test results indicated that these same materials would operate satisfactorily, and the plan, is to use SGT-900materials for the OFT-900. Follow-on programs for corrosion testing and evaluation of crack growth rates in oxy-fuel environments have been proposed to build on these results and provide quantifiable assessments of the effects of oxy-fuel environments on the service lives of turbine components.

Dennis Horazak

2010-12-31T23:59:59.000Z

405

Low emission turbo compound engine system  

SciTech Connect

A diesel or HHCI engine has an air intake and an exhaust for products of combustion. A pair of turbochargers receive the products of combustion in a series relationship and an exhaust aftertreatment device receive the products of combustion from the downstream turbine. A power turbine receives the output from the exhaust aftertreatment device and an EGR system of the power turbine passes a selected portion of the output to a point upstream of the upstream turbocharger compressor. A device adds fuel to the aftertreatment device to regenerate the particulate filter and the power turbine recoups the additional energy. The power turbine may be used to drive accessories or the prime output of the engine.

Vuk; Carl T. (Denver, IA)

2011-05-31T23:59:59.000Z

406

FIRE EXTINGUISHING OF GAS TURBO COMPRESSOR ...  

Science Conference Proceedings (OSTI)

... This process is two-phase flow of water-gas mixture in pipeline and atomization water by pressure 30-35 bar to drops average size 50 µm moving ...

2011-10-27T23:59:59.000Z

407

Negative ion-based neutral injection on DIII-D  

SciTech Connect

High energy negative ion-based neutral beam injection is a strong candidate for heating and non-inductive current drive in tokamaks. Many of the questions related to the physics and engineering of this technique remain unanswered. In this paper, we consider the possibility of negative ion-based neutral beam injection on DIII-D. We establish the desired parameter space by examining physics trades. This is combined with potential design constraints and a survey of component technology options to establish an injector concept. Injector performance is estimated assuming particular component technologies, and concept flexibility with respect to incorporating alternate technologies is described. 9 refs., 6 figs., 4 tabs.

Stewart, L.D.; Bhadra, D.K.; Colleraine, A.P.; Kim, J.

1990-01-01T23:59:59.000Z

408

Charge - dependent increase in coherence of synchrotron oscillation at injection  

SciTech Connect

Because of coupled bunch instability and/or because of some unidentified mechanism, bunches from the 8 GeV Booster accelerator at Fermilab arrive in the Main Injector synchrotron with a complicated centroid distribution in phase and energy. The currently installed broad band kicker provides a maximum of 2 kV, insufficient to remove injection errors before the oscillations would de-cohere, ignoring the influence of bunch charge. Perhaps surprisingly, for sufficient but generally modest charge, the effect of potential well distortion is to maintain bunch integrity. This talk illustrates the phenomenon for injection into the Fermilab Main Injector and offers an explanation sufficiently general to apply elsewhere.

MacLachlan, J.A.; /Fermilab

2004-11-01T23:59:59.000Z

409

Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986  

DOE Green Energy (OSTI)

This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

Not Available

1987-07-01T23:59:59.000Z

410

Blue light emitting diode internal and injection efficiency  

Science Conference Proceedings (OSTI)

A simple experimental method of light emitting diode(LED) injection efficiency (IE) determination was suggested. IE and internal quantum efficiency(IQE) calculation is an actual and difficult problem in LED science. In this paper IE and IQE of blue LEDs were determined separately. The method is based on electroluminescence data fitting by the modified rate equation model. Efficiency droop caused by Auger recombination and poor injection were taken into account. Only one reasonable assumption was accepted during the calculations: IE tends to 1 at low current densities.

Ilya E. Titkov; Denis A. Sannikov; Young-Min Park; Joong-Kon Son

2012-01-01T23:59:59.000Z

411

Conditioning of geothermal brine effluents for injection: use of coagulants  

DOE Green Energy (OSTI)

The use of various chemical coagulants and flocculants with spent geothermal brine for enhancing the removal of colloidal solids prior to injection was studied. Brine at 80 to 85/sup 0/C was obtained from the injection line of the SDG and E/DOE Geothermal Loop Experimental Facility during a period of operation with Magmamax No. 1 Fluid. The solids consist primarily of an iron-rich amorphous silica and heavy metal sulfides, principally lead. Standard jar testing equipment was used to carry out the tests.

Quong, R.; Shoepflin, F.; Stout, N.D.

1978-02-01T23:59:59.000Z

412

High-resolution seismic studies applied to injected geothermal fluids  

DOE Green Energy (OSTI)

The application of high-resolution microseismicity studies to the problem of monitoring injected fluids is one component of the Geothermal Injection Monitoring Project at LLNL. The evaluation of microseismicity includes the development of field techniques, and the acquisition and processing of events during the initial development of a geothermal field. To achieve a specific detection threshold and location precision, design criteria are presented for seismic networks. An analysis of a small swarm near Mammoth Lakes, California, demonstrates these relationships and the usefulness of high-resolution seismic studies. A small network is currently monitoring the Mammoth-Pacific geothermal power plant at Casa Diablo as it begins production.

Smith, A.T.; Kasameyer, P.

1985-01-01T23:59:59.000Z

413

Effect of Temperature on NOx Reduction by Nitrogen Atom Injection  

DOE Green Energy (OSTI)

Chemical reduction of NO{sub x} can be accomplished by injection of nitrogen atoms into the diesel engine exhaust stream. The nitrogen atoms can be generated from a separate stream of pure N{sub 2} by means of plasma jets or non-thermal plasma reactors. This paper examines the effect of exhaust temperature on the NO{sub x} reduction efficiency that can be achieved by nitrogen atom injection. It is shown that to achieve a high NO{sub x} reduction efficiency at a reasonable power consumption penalty, the exhaust temperature needs to be 100 C or less.

Penetrante, B

1999-10-28T23:59:59.000Z

414

Boiling Water Reactor (BWR) Zinc Injection Strategy Evaluation  

Science Conference Proceedings (OSTI)

All U.S. boiling water reactors (BWRs) inject depleted zinc oxide (DZO) into the reactor feedwater for the purpose of suppressing drywell shutdown radiation dose rates. Current guidance in BWRVIP-190: BWR Vessel and Internals Project, BWR Water Chemistry Guidelines2008 Revision (EPRI report 1016579) is to inject sufficient zinc to achieve a Co-60(s)/Zn(s) ratio of Utility-specific goals may encourage even lower Co-60(s)/Zn(s) levels. This may be in part because BWR e...

2010-11-24T23:59:59.000Z

415

Optimization of beam injection into the first accelerating module at TTF with cavity dipole mode signals  

E-Print Network (OSTI)

Optimization of beam injection into the first accelerating module at TTF with cavity dipole mode signals

Baboi, N; Kreps, G; McCormick, D; Napoly, O; Paparella, R G; Ross, M; Schlarb, H; Smith, T; Wendt, M

2005-01-01T23:59:59.000Z

416

The application of high frequency seismic monitoring methods for the mapping of fluid injections  

DOE Green Energy (OSTI)

This paper describes experimental work using seismic methods for monitoring the path of fluid injections. The most obvious application is the high pressure fluid injections for the purpose of hydrofracturing. Other applications are the injection of grout into shallow subsurface structures and the disposal of fluids in the geothermal and toxic waste industries. In this paper hydrofracture monitoring and grout injections will be discussed.

Majer, E.L.

1987-04-01T23:59:59.000Z

417

Presidential Policy Directive / PPD-8 National Preparedness  

Science Conference Proceedings (OSTI)

... Homeland Security Presidential Directives, National Security Presidential Directives, and national ... days from the date of this directive, the Secretary ...

2011-10-20T23:59:59.000Z

418

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1991-01-01T23:59:59.000Z

419

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1990-01-01T23:59:59.000Z

420

The Role of Hydrate Films in the Effectiveness of Direct CO2 Injection as an Ocean Carbon Sequestration Strategy  

DOE Green Energy (OSTI)

About one-third of the carbon dioxide (2 Pg C/yr of 6 Pg C/yr) we emit into the atmosphere is already being sequestered naturally by the ocean by the process of CO{sub 2} gas transfer across the air-sea interface. Over twenty years ago Brewer (1978) and Chen and Millero (1979) presented the first fundamental estimates of anthropogenic CO{sub 2} in the ocean based the hypothesis of CO{sub 2} penetration along isopycnal surfaces and observations of total inorganic carbon (TCO2) and total alkalinity (TA). At that time the anthropogenic CO{sub 2} signal was not as large as today and given the uncertainty of the approach, the uncertainties of the results were generally regarded as relatively large. However, since then, variations of this approach have been used to estimate anthropogenic CO{sub 2} in many areas of the world ocean. A recent modeling study using the DOCS model, confirms that penetration along isopycnal surfaces is the dominate mode of natural carbon sequestration by the ocean.

Goyet, C

2004-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility  

SciTech Connect

With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

Metz, Paul; Bolz, Patricia

2013-03-25T23:59:59.000Z

422

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network (OSTI)

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

423

Wear, durability, and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled direct injection compression ignition engine  

Science Conference Proceedings (OSTI)

Depletion of fossil fuel resources and resulting associated environmental degradation has motivated search for alternative transportation fuels. Blending small quantity of Karanja oil (straight vegetable oil) with mineral diesel is one of the simplest available alternatives

Avinash Kumar Agarwal; Atul Dhar

2012-01-01T23:59:59.000Z

424

Three dimensional modelling of combustion in a direct injection diesel engine using a new unstructured parallel solver  

Science Conference Proceedings (OSTI)

A new code for numerical simulation of transient three-dimensional chemically reacting fluid flows with sprays is presented. This code uses unstructured hexahedral grids, it has been optimized for superscalar machine and has been parallelized based on ...

Julien Bohbot; Marc Zolver; Diego Klahr; Arnaud Torres

2003-05-01T23:59:59.000Z

425

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network (OSTI)

the compression stroke. The residues calculated from the proposed model were validated with those generated from to detect the fuel ethanol concentration by placing them in the tank or in the fuel line. However by means of the closed-loop air/fuel ratio correction signal based on the Exhaust Gas Oxygen (EGO) sensor

Stefanopoulou, Anna

426

Carbon dioxide injection and resultant alteration of Weber Sandstone (Pennsylvanian-Permian), Rangely field, Colorado  

SciTech Connect

Geologic interpretations made during the current EOR (enhanced oil recovery) project at Rangely field (Rio Blanco County, Colorado), have made interesting connections between alteration of reservoir mineralogy and texture, changes in produced water composition, and increased production problems. Carbon dioxide is being injected into the Weber Sandstone in portions of Rangely field. The carbon dioxide injection is part of a very successful tertiary recovery project initiated in late 1986. The bottomhole pH of Weber brine has decreased from approximately 7.5 to 4.5 with the addition of CO/sub 2/. Changes in the chemistry of produced water are associated with alteration of reservoir mineralogy. The CO/sub 2/ flood has caused a substantial increase in the concentrations of iron, calcium, magnesium, and strontium in the produced brine. The amount of increase is directly related to the volume of CO/sub 2/ produced in each well. This increase resulted from the dissolution of carbonate cements, authigenic clays, and detrital feldspars. An increase in the calculated scaling potential of the produced water is a result of this change in chemistry. Hypotheses based on the water-chemistry changes were confirmed in pressure-cell and core-flood experiments. Core-flood experiments also indicate no net change in permeability following carbon dioxide injection: the increase in permeability due to the dissolution of carbonate cements is being offset by a decrease caused by migratory clays plugging pore throats. The clays, which coat the authigenic carbonates, are liberated when the carbonates are dissolved.

Bowker, K.A.; Shuler, P.J.

1989-03-01T23:59:59.000Z

427

Injection in basin and range-type reservoirs: the Raft River experience  

DOE Green Energy (OSTI)

Injection testing at the Raft River KGRA has yielded some interesting results which can be useful in planning injection systems in Basin and Range type reservoirs. Because of inhomogeneities and possible fracturing in basin fill sediment, rapid pressure response to injection has been observed in one shallow monitor well, but not others. In some monitor wells in the injection field, pressure drops are observed during injection suggesting plastic deformation of the sediments. Seismicity, however, has not accompanied these observed water level changes.

Petty, S.; Spencer, S.

1981-01-01T23:59:59.000Z

428

Ultra Bright LED Light Injection Calibration System for MINOS  

E-Print Network (OSTI)

We describe here a proposal for a light injection calibration system for the MINOS detectors based on ultra bright blue LEDs as the light source. We have shown that these LEDs are bright enough to span over two orders of magnitude in light intensity, commensurate with that expected in a single scintillator strip in the MINOS neutrino detectors.

Anderson, B; Dervan, P J; Lauber, J A; Thomas, J

1999-01-01T23:59:59.000Z

429

Overview of Recent Developments in Pellet Injection for ITER  

Science Conference Proceedings (OSTI)

Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outerwall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate ofeach injector is to be up to 120 Pa-m3/s, which will require the formation of solid D-T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectorsduring the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities will be presented, highlighting recent progress.

Combs, Stephen Kirk [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Caughman, John B [ORNL; Rasmussen, David A [ORNL; Maruyama, So [ITER Organization, Cadarache, France

2012-01-01T23:59:59.000Z

430

Diffusion of a plasma subject to neutral beam injection  

SciTech Connect

Two-dimensional numerical plasma simulations have been carried out in a uniform magnetic field to study the effects of neutral beam injection on plasma diffusion. Neutral beams injected across a magnetic field are assumed to be ionized by various ionization processes in a plasma. It is found that the suprathermal convective motion of a plasma generated by the injection of neutral beams is dissipated via anomalous viscosity, leading to enhanced cross-field diffusion. The diffusion coefficient depends weakly on the magnetic field and plasma density, similar to the diffusion due to thermally excited convective cells. The magnitude of the diffusion increases with the injection energy and is much larger than the thermal diffusion because of the presence of suprathermal plasma convection. It is shown that a similar anomalous plasma diffusion may occur in a plasma subject to radio frequency (RF) wave heating where only a localized region of plasma across a magnetic field is heated to a temperature much higher than the surrounding temperature. Theoretical investigations are given on the scaling of enhanced plasma diffusion.

Okuda, H.; Hiroe, S.

1986-10-01T23:59:59.000Z

431

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.

1991-01-01T23:59:59.000Z

432

Highly efficient 6-stroke engine cycle with water injection  

Science Conference Proceedings (OSTI)

A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

Szybist, James P; Conklin, James C

2012-10-23T23:59:59.000Z

433

PREFAIL: a programmable tool for multiple-failure injection  

Science Conference Proceedings (OSTI)

As hardware failures are no longer rare in the era of cloud computing, cloud software systems must "prevail" against multiple, diverse failures that are likely to occur. Testing software against multiple failures poses the problem of combinatorial explosion ... Keywords: distributed systems, fault injection, testing

Pallavi Joshi; Haryadi S. Gunawi; Koushik Sen

2011-10-01T23:59:59.000Z

434

Influence of spectral width on power fluctuations of injection lasers  

SciTech Connect

An experimental investigation was made of the noise of AlGaAs injection lasers in the 10--100 MHz frequency range. It was found that under steady-state conditions the fluctuation level is governed by the width of the laser emission spectrum.

Bessonov, Y.L.; Kurlenkov, S.S.; Morozov, V.N.; Sapozhnikov, S.M.; Thai, C.t.; Shidlovskii, V.P.

1985-02-01T23:59:59.000Z

435

Intracluster gas pressure, entropy injection and redshift evolution  

E-Print Network (OSTI)

We study the effect of entropy injection in the intracluster medium (ICM) in light of the recent observationally determined universal pressure profile of the ICM. Beginning with a power-law entropy profile that is expected in the absence of any feedback, we show that a simple universal prescription of entropy injection results in the final, observed universal pressure profile. This simple prescription has two components, one associated with an overall increase in entropy and another associated with injection in the central parts of the cluster. Importantly, both the components of entropy injection are needed to produce the final universal pressure profile. This is indicative of a need of both preheating the ICM as well {\\it in situ} AGN/SNe heating. We demonstrate the usefulness of the method by extending the calculations to clusters at high redshift, and predict redshift evolution of cluster scaling relations that can be tested against data. We show that the self-similar evolution of the universal pressure p...

Nath, Biman B

2011-01-01T23:59:59.000Z

436

Development of Improved Oil Field Waste Injection Disposal Techniques  

Science Conference Proceedings (OSTI)

The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

Terralog Technologies USA Inc.

2001-12-17T23:59:59.000Z

437

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

Corey, John C. (212 Lakeside Dr., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

438

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

Corey, J.C.

1993-02-16T23:59:59.000Z

439

Applications of geochemistry to problems in geothermal injection  

DOE Green Energy (OSTI)

Conventional reservoir engineering studies have, in the past, dealt mainly with interpretation of pressure transient effects in a reservoir. Present-day techniques can be used in many reservoirs to forecast with some reliability the probability, magnitude and timing of pressure interference among wells. However, forecasting fluid breakthrough from an injection well to a production well in geologically complex geothermal reservoirs is not presently possible with any reliability, and forecasting thermal breakthrough is even more difficult. In addition, the chemical effects of injection are poorly understood at present, and it is not possible to predict beforehand the full range of scaling and aquifer plugging problems that may be encountered. This report discusses development of chemical tracers specifically designed for geothermal applications so that breakthrough of injectate can be detected early, and field and laboratory studies on the chemical interactions among reservoir fluids, reservoir rocks and injected fluids so that these interactions can be quantified and models developed for predicting any degradation (or enhancement) of permeability.

Wright, P.M.

1985-02-01T23:59:59.000Z

440

Processing of high salinity brines for subsurface injection  

DOE Green Energy (OSTI)

Different chemical pretreatments and filtration methods were evaluated as a possible means of clarifying and improving the injectivity of hypersaline brines. Six different downflow media combinations were evaluated over three geopressurized sites, using test data from 4 inch diameter filters. Also, tests were conducted with one hollow fiber ultrafilter unit and two types of disposable cartridge filters. The test procedures are mentioned briefly. (MHR)

Thompson, R.E.; Raber, E.

1979-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cerro Prieto cold water injection: effects on nearby production wells  

DOE Green Energy (OSTI)

The liquid-dominated Cerro Prieto geothermal field of northern Baja California, Mexico has been under commercial exploitation since 1973. During the early years of operation, all waste brines were sent to an evaporation pond built west of the production area. In 1989, cooled pond brines began to be successfully injected into the reservoir along the western boundary of the geothermal system. The injection rate varied over the years, and is at present about 20% of the total fluid extracted. As expected under the continental desert conditions prevailing in the area, the temperature and salinity of the pond brines change with the seasons, being higher during the summer and lower during the winter. The chemistry of pond brines is also affected by precipitation of silica, oxidation of H{sub 2}S and reaction with airborne clays. Several production wells in the western part of the field (CP-I area) showed beneficial effects from injection. The chemical (chloride, isotopic) and physical (enthalpy, flow rate) changes observed in producers close to the injectors are reviewed. Some wells showed steam flow increases, in others steam flow decline rates flattened. Because of their higher density, injected brines migrated downward in the reservoir and showed up in deep wells.

Truesdell, A.H.; Lippmann, M.J.; De Leon, J.; Rodriguez, M.H.

1999-07-01T23:59:59.000Z

442

DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION  

Science Conference Proceedings (OSTI)

OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

2002-10-01T23:59:59.000Z

443

Development of Improved Oil Field Waste Injection Disposal Techniques  

Science Conference Proceedings (OSTI)

The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

Terralog Technologies

2002-11-25T23:59:59.000Z

444

NOx reduction by electron beam-produced nitrogen atom injection  

DOE Patents (OSTI)

Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

Penetrante, Bernardino M. (San Ramon, CA)

2002-01-01T23:59:59.000Z

445

POROSITY AND PERMEABILITY EVOLUTION ACCOMPANYING HOT FLUID INJECTION  

E-Print Network (OSTI)

. Additionally, funding was provided by the SUPRI-A Industrial Affiliates and the President's Fund of Stanford to the setup used by Koh et al. (1996), but it allows for measurement of porosity by CT scanning. A Blue-M oven to the oven set- point temperature. System pressure is elevated by a back-pressure regulator and injection

446

New Pellet Injection Schemes on DIII-D  

SciTech Connect

The pellet fueling system on DIII-D has been modified for injection of deuterium pellets from two vertical ports and two inner wall locations on the magnetic high-field side (HFS) of the tokamak. The HFS pellet injection technique was first employed on ASDEX-Upgrade with significant improvements reported in both pellet penetration and fueling efficiency. The new pellet injection schemes on DIII-D required the installation of new guide tubes. These lines are {approx_equal}12.5 m in total length and are made up of complex bends and turns (''roller coaster'' like) to route pellets from the injector to the plasma, including sections inside the torus. The pellet speed at which intact pellets can survive through the curved guide tubes is limited ({approx_equal}200-300 m/s for HFS injection schemes). Thus, one of the three gas guns on the injector was modified to provide pellets in a lower speed regime than the original guns (normal speed range {approx_equal}500 to 1000 m/s). The guide tube installations and gun modifications are described along with the injector operating parameters, and the latest test results are highlighted.

Anderson, P.M.; Baylor, L.R.; Combs, S.K.; Foust, C.R.; Jernigan, T.C.; Robinson, J.I.

1999-11-13T23:59:59.000Z

447

Ultra Bright LED Light Injection Calibration System for MINOS  

E-Print Network (OSTI)

We describe here a proposal for a light injection calibration system for the MINOS detectors based on ultra bright blue LEDs as the light source. We have shown that these LEDs are bright enough to span over two orders of magnitude in light intensity, commensurate with that expected in a single scintillator strip in the MINOS neutrino detectors.

B. Anderson; A. Anjomshoaa; P. Dervan; J. A. Lauber; J. Thomas

1998-10-26T23:59:59.000Z

448

Ultra Bright LED Light Injection Calibration System for MINOS  

E-Print Network (OSTI)

We describe here a proposal for a light injection calibration system for the MINOS detectors based on ultra bright blue LEDs as the light source. We have shown that these LEDs are bright enough to span over two orders of magnitude in light intensity, commensurate with that expected in a single scintillator strip in the MINOS neutrino detectors. 1

B. Anderson; A. Anjomshoaa; P. Dervan; J. A. Lauber; J. Thomas

2008-01-01T23:59:59.000Z

449

Monte Carlo simulation of neutral beam injection into fusion reactors  

SciTech Connect

Motivations and techniques for the Monte Carlo computer simulation of energetic neutral beam injection for fusion reactors are described. The versatility of this approach allows a significantly more sophisticated treatment of charge transfer collision phenomena and consequent effects on engineering design than available from prior work. Exemplary results for a mirror Fusion Engineering Research Facility (FERF) are discussed. (auth)

Miller, R.L.

1975-09-15T23:59:59.000Z

450

Injection/withdrawal scheduling for natural gas storage facilities  

Science Conference Proceedings (OSTI)

Control decisions for gas storage facilities are made in the face of extreme uncertainty over future natural gas prices on world markets. We examine the problem faced by owners of storage contracts of how to manage the injection/withdrawal schedule of ... Keywords: natural gas storage, optimization, scheduling

Alan Holland

2007-03-01T23:59:59.000Z

451

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

452

Compendium of regulatory requirements governing underground injection of drilling waste.  

Science Conference Proceedings (OSTI)

Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

Puder, M. G.; Bryson, B.; Veil, J. A.

2002-11-08T23:59:59.000Z

453

Experimental and computational studies of film cooling with compound angle injection  

DOE Green Energy (OSTI)

The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V.; Simon, T.W. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

454

Influence of Thermalisation on Electron Injection in Supernova Remnant Shocks  

E-Print Network (OSTI)

Within a test-particle description of the acceleration process in parallel nonrelativistic shocks, we present an analytic treatment of the electron injection. We estimate the velocity distribution of the injected electrons as the product of the post-shock thermal distribution of electrons times the probability for electrons with a given velocity to be accelerated; the injection efficiency is then evaluated as the integral of this velocity distribution. We estimate the probability of a particle to be injected as that of going back to the upstream region at least once. This is the product of the probability of returning to the shock from downstream times that of recrossing the shock from downstream to upstream. The latter probability is expected to be sensitive to details of the process of electron thermalisation within the (collisionless) shock, a process that is poorly known. In order to include this effect, for our treatment we use results of a numerical, fully kinetic study, by Bykov & Uvarov (1999). According to them, the probability of recrossing depends on physics of thermalisation through a single free parameter (Gamma), which can be expressed as a function of the Mach number of the shock, of the level of electron-ion equilibration, as well as of the spectrum of turbulence. It becomes apparent, from our analysis, that the injection efficiency is related to the post-shock electron temperature, and that it results from the balance between two competing effects: the higher the electron temperature, the higher the fraction of downstream electrons with enough velocity to return to the shock and thus to be ready to cross the shock from downstream to upstream; at the same time, however, the higher the turbulence, which would hinder the crossing.

O. Petruk; R. Bandiera

2006-06-05T23:59:59.000Z

455

TRACER STABILITY AND CHEMICAL CHANGES IN AN INJECTED GEOTHERMAL FLUID DURING INJECTION-BACKFLOW TESTING AT THE EAST MESA GEOTHERMAL FIELD  

DOE Green Energy (OSTI)

The stabilities of several tracers were tested under geothermal conditions while injection-backflow tests were conducted at East Mesa. The tracers I and Br were injected continuously while SCN (thiocyanate), B, and disodium fluorescein were each injected as a point source (slug). The tracers were shown to be stable, except where the high concentrations used during slug injection induced adsorption of the slug tracers. However, adsorption of the slug tracers appeared to ''armor'' the formation against adsorption during subsequent tests. Precipitation behavior of calcite and silica as well as Na/K shifts during injection are also discussed.

Adams, M.C.

1985-01-22T23:59:59.000Z

456

Study of diesel-spray characteristics at high injection. Final report  

SciTech Connect

The research was directed at investigating characteristics of diesel-fuel spray at high injection pressures. The characteristics investigated in this study are: spray penetration, spray cone angle and droplet sizes and their distribution. Measurement of diesel-fuel bulk modulus at high fuel pressures were also made during this investigation. Experiments were conducted by generating high fuel pressures using a pressure intensifier. Fuel was sprayed in a chamber containing nitrogen gas at different densities and room temperature. Based on the experimental results, correlations are derived to predict spray penetration and spray cone angles. Effects of operating and design parameters on droplet sizes are also discussed. Difficulties associated with droplet size measurements are also identified.

Varde, K.S.; Popa, D.M.; Varde, L.K.

1983-01-01T23:59:59.000Z

457

A study of solitary wave trains generated by injection of a blob into plasmas  

Science Conference Proceedings (OSTI)

We have investigated the evolution of consecutive electrostatic solitary waves (ESWs) generated upon injection of a finite-sized blob into plasmas using one-dimensional electrostatic particle-in-cell simulations. Strong charge separation developed at the leading edge of the blob, producing a huge electrostatic potential in which electrons were trapped and heated. Ions were reflected from the boundaries of the blob, forming fast, cold ion beams in the forward and backward directions. The forward ion beams interacted with the hot electrons, which were escaping from the potential developed at the leading edge of the blob, to produce successive ESWs. On the other hand, the backward ion beams formed ion phase space holes as a result of the ion two-stream instability. The present study demonstrates that localized density perturbations in plasmas can be a viable source of consecutive ESWs observed in space.

Choi, C.-R.; Choi, E.-J.; Min, K.-W. [Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701 (Korea, Republic of); Rha, K.-C.; Ryu, C.-M. [Department of Physics, POSTECH, San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Lee, E. [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Parks, G. K. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

2012-10-15T23:59:59.000Z

458

NREL: Learning - Geothermal Direct Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Use Direct Use Photo of alligators on a farm. Geothermally heated waters allow alligators to thrive on a farm in Colorado, where temperatures can drop below freezing. Geothermal reservoirs of hot water, which are found a few miles or more beneath the Earth's surface, can be used to provide heat directly. This is called the direct use of geothermal energy. Geothermal direct use has a long history, going back to when people began using hot springs for bathing, cooking food, and loosening feathers and skin from game. Today, hot springs are still used as spas. But there are now more sophisticated ways of using this geothermal resource. In modern direct-use systems, a well is drilled into a geothermal reservoir to provide a steady stream of hot water. The water is brought up through

459

Experimental Study of Solvent Based Emulsion Injection to Enhance Heavy Oil Recovery  

E-Print Network (OSTI)

This study presents the results of nano-particle and surfactant-stabilized solvent-based emulsion core flooding studies under laboratory conditions that investigate the recovery mechanisms of chemical flooding in a heavy oil reservoir. In the study, bench tests, including the phase behavior test, rheology studies and interfacial tension measurement are performed and reported for the optimum selecting method for the nano-emulsion. Specifically, nano-emulsion systems with high viscosity have been injected into sandstone cores containing Alaska North Slope West Sak heavy oil with 16 API, which was dewatered in the laboratory condition. The experiment results suggest that the potential application of this kind of emulsion flooding is a promising EOR (enhanced oil recovery) process for some heavy oil reservoirs in Alaska, Canada and Venezuela after primary production. Heavy oil lacks mobility under reservoir conditions and is not suitable for the application of the thermal recovery method because of environmental issues or technical problems. Core flooding experiments were performed on cores with varied permeabilities. Comparisons between direct injection of nano-emulsion systems and nano-emulsion injections after water flooding were conducted. Oil recovery information is obtained by material balance calculation. In this study, we try to combine the advantages of solvent, surfactant, and nano-particles together. As we know, pure miscible solvent used as an injection fluid in developing the heavy oil reservoir does have the desirable recovery feature, however it is not economical. The idea of nano-particle application in an EOR area has been recently raised by researchers who are interested in its feature-reaction catalysis-which could reduce in situ oil viscosity and generate emulsion without surfactant. Also, the nano-particle stabilized emulsions can long-distance drive oil in the reservoir, since the nano-particle size is 2-4 times smaller than the pore throat. In conclusion, the nano-emulsion flooding can be an effective enhancement for an oil recovery method for a heavy oil reservoir which is technically sensitive to the thermal recovery method.

Qiu, Fangda

2010-05-01T23:59:59.000Z

460

Quality Assurance: Policy and Directives  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy and Directives The Office of Quality Assurance is responsible for DOE's quality assurance (QA) policy and requirements, and for providing assistance with QA implementation....

Note: This page contains sample records for the topic "turbo direct injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE Directives | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work Plan Mission About Us...

462

Direct cooled power electronics substrate  

DOE Patents (OSTI)

The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

Wiles, Randy H. (Powell, TN), Wereszczak, Andrew A. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN); Lowe, Kirk T. (Knoxville, TN)

2010-09-14T23:59:59.000Z

463

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

464

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Kansas Oilfield Could Greatly Increase Production, in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

465

Apparatus and method for controlling the secondary injection of fuel  

SciTech Connect

A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

2013-03-05T23:59:59.000Z

466

Pulser injection with subsequent removal for gamma-ray spectrometry  

DOE Patents (OSTI)

An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes. 7 figs.

Hartwell, J.K.; Goodwin, S.G.; Johnson, L.O.; Killian, E.W.

1989-02-01T23:59:59.000Z

467

Electrically injected visible vertical cavity surface emitting laser diodes  

DOE Patents (OSTI)

Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

Schneider, R.P.; Lott, J.A.

1994-09-27T23:59:59.000Z

468

Optical injection and terahertz detection of the macroscopic Berry curvature  

E-Print Network (OSTI)

We propose an experimental scheme to probe the Berry curvature of solids. Our method is sensitive to arbitrary regions of the Brillouin zone, and employs only basic optical and terahertz techniques to yield a background free signal. Using semiconductor quantum wells as a prototypical system, we discuss how to inject Berry curvature macroscopically, and probe it in a way that provides information about the underlying microscopic Berry curvature.

Kuljit S. Virk; J. E. Sipe

2011-08-19T23:59:59.000Z

469

Optical injection and terahertz detection of the macroscopic Berry curvature  

E-Print Network (OSTI)

We propose an experimental scheme to probe the Berry curvature of solids. Our method is sensitive to arbitrary regions of the Brillouin zone, and employs only basic optical and terahertz techniques to yield a background free signal. Using semiconductor quantum wells as a prototypical system, we discuss how to inject Berry curvature macroscopically, and probe it in a way that provides information about the underlying microscopic Berry curvature.

Virk, Kuljit S

2011-01-01T23:59:59.000Z

470

Dry Sorbent Injection Workshop Summary: Workshop Held November 11, 2011  

Science Conference Proceedings (OSTI)

A day-long dry sorbent injection (DSI) workshop was held in Charlotte, North Carolina, on November 20, 2011. The workshop was attended by representatives of over 20 electric power companies. Introductory remarks were made by Electric Power Research Institute (EPRI) staff, followed by presentations by 10 electric power companies describing their efforts and results from testing DSI technology for control of acid gases from flue gas. These testing efforts considered sulfur trioxide (SO3)/sulfuric acid, hyd...

2012-04-20T23:59:59.000Z

471

Stanford Geothermal Program, reservoir and injection technology. Fourth annual report  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

472

Flue gas injection control of silica in cooling towers.  

Science Conference Proceedings (OSTI)

Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

2011-06-01T23:59:59.000Z

473

DOE Directives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Directives DOE Directives DOE Directives Directives are the Department of Energy's primary means to communicate and institutionalize directives and policies and to establish requirements, responsibilities, and procedures for Departmental elements and contractors. DOE O 413.3A - Program and Project Management for the Acquisition of Capital Assets DOE G 413.3-1 - Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A DOE G 413.3-2 - Quality Assurance Guide for Project Management DOE G 413.3-3 - Safeguards and Security for Program and Project Management DOE G 413.3-8 - Environmental Management (EM) Cleanup Projects DOE G 413.3-9 - U.S. Department of Energy Project Review Guide for Capital Asset Projects DOE G 413.3-10 - Earned Value Management System (EVMS)

474

Office of Nuclear Safety - Directives  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives The HSS Office of Nuclear Safety is the responsible office for the development, interpretation, and revision of the following Department of Energy (DOE) directives. Go to DOE's Directives Web Page to view these directives. DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

475

Efficient Placement of Directional Antennas  

SciTech Connect

Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

2010-09-20T23:59:59.000Z

476

Three-dimensional computer modeling of hydrogen injection and combustion  

DOE Green Energy (OSTI)

The hydrodynamics of hydrogen gas injection into a fixed-volume combustion chamber is analyzed and simulated using KIVA-3, a three-dimensional, reactive flow computer code. Comparisons of the simulation results are made to data obtained at the Combustion Research Facility at Sandia National Laboratory-California (SNL-CA). Simulation of the gas injection problem is found to be of comparable difficulty as the liquid fuel injection in diesel engines. The primary challenge is the large change of length scale from the flow of gas in the orifice to the penetration in the combustion chamber. In the current experiments, the change of length scale is about 4,000. A reduction of the full problem is developed that reduces the change in length scale in the simulation to about 400, with a comparable improvement in computational times. Comparisons of the simulation to the experimental data shows good agreement in the penetration history and pressure rise in the combustion chamber. At late times the comparison is sensitive to the method of determination of the penetration in the simulations. In a comparison of the combustion modeling of methane and hydrogen, hydrogen combustion is more difficult to model, and currently available kinetic models fail to predict the observed autoignition delay at these conditions.

Johnson, N.L.; Amsden, A.A. [Los Alamos National Lab., NM (United States). Theoretical Division; Naber, J.D.; Siebers, D.L. [Sandia National Lab., Livermore, CA (United States)

1995-02-01T23:59:59.000Z

477

Simulations of plasma behavior during pellet injection in ITER  

SciTech Connect

Plasma behavior during pellet injection in ITER is investigated using a 1.5D BALDUR integrated predictive modeling code. In these simulations, the pellet ablation is described using the neutral gas shielding (NGS) model developed by Parks and Turnbull [Phys. Fluids 21, 1735 (1978)]. The NGS pellet ablation model that includes the {nabla}B drift effect is coupled with a plasma core transport model, which is a combination of an MMM95 anomalous transport model and an NCLASS neoclassical transport model. The combination of core transport models, together with pellet model, is used to simulate the time evolution of plasma current, ion and electron temperatures, and density profiles for ITER standard type-I ELMy H-mode discharges during the pellet injection. It is found that the injection of pellet can result in either enhancement or degradation of plasma performance. The {nabla}B drift effect on the pellet deposition is very