Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nordic Turbines Inc formerly Vista Dorada Corporation | Open Energy  

Open Energy Info (EERE)

Inc formerly Vista Dorada Corporation Inc formerly Vista Dorada Corporation Jump to: navigation, search Name Nordic Turbines Inc (formerly Vista Dorada Corporation) Place Centerville, Massachusetts Zip 02632-2933 Sector Wind energy Product Massachusetts-based manufacturer of large scale two-blade wind turbines. Coordinates 45.751935°, -120.902959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.751935,"lon":-120.902959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

3

trans Fat and trans Fat Alternatives  

Science Conference Proceedings (OSTI)

trans fat is the common name for unsaturated fat with trans-isomer fatty acid(s). Find out more information about trans fat alternatives as well as analysis of trans fatty acids as well as analytical methods for the determination on trans fat in food. tran

4

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

5

Broadwind Energy Formerly Tower Tech Holdings | Open Energy Information  

Open Energy Info (EERE)

Broadwind Energy Formerly Tower Tech Holdings Broadwind Energy Formerly Tower Tech Holdings Jump to: navigation, search Name Broadwind Energy (Formerly Tower Tech Holdings) Place Manitowoc, Wisconsin Zip 54221-1957 Sector Wind energy Product US-based manufacturer of wind turbine towers, turbine assemblies such as nacelles, and monopiles. References Broadwind Energy (Formerly Tower Tech Holdings)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Broadwind Energy (Formerly Tower Tech Holdings) is a company located in Manitowoc, Wisconsin . References ↑ "Broadwind Energy (Formerly Tower Tech Holdings)" Retrieved from "http://en.openei.org/w/index.php?title=Broadwind_Energy_Formerly_Tower_Tech_Holdings&oldid=343059"

6

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

7

Trans Fats Alternatives  

Science Conference Proceedings (OSTI)

Trans Fats Alternatives is an indispensable guide for everyone who is interested in trans fatsfrom food product manufacturers who provide the trans fat solutions to the researchers who would like to create innovative solutions. Trans Fats Alternatives He

8

trans fat Books  

Science Conference Proceedings (OSTI)

AOCS publications dealing with trans fat. trans fat Books trans Fat aocs articles Cd 14-95 Ce 1h-05 dietary fat edible fats food Hydrogenated Soybean Oil methods Non-Hydrogenated Soybean Oil oils saturated fat scientific trans trans fat trans fat

9

Former Worker Medical Screening Program - Pantex Former Workers  

NLE Websites -- All DOE Office Websites (Extended Search)

Pantex Former Workers Former Worker Medical Screening Program (FWP) Project Name: Former Pantex Worker Medical Surveillance Program Covered DOE Site: Pantex Worker Population...

10

Former Worker Medical Screening Program - Ames Laboratory Former...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ames Laboratory Former Workers Former Worker Medical Screening Program (FWP) Project Name: Medical Monitoring of Former Workers at the Ames National Laboratory Covered DOE Site:...

11

Focus on trans Fat  

Science Conference Proceedings (OSTI)

This comprehensive CD-ROM contains a surplus of information regarding trans fats. Focus on trans Fat Health Nutrition Biochemistry Trans DVD & CD-ROMs Health - Nutrition - Biochemistry Food Science This comprehensive CD-ROM contains a

12

Trans Labeling Package  

Science Conference Proceedings (OSTI)

A special collection of books and CD-ROMS on the topic of trans fat. Trans Labeling Package Health Nutrition Biochemistry Trans Health - Nutrition - Biochemistry Value Packages This Value Package includes: ...

13

Net Trans - TMS  

Science Conference Proceedings (OSTI)

Net Trans ... RESERVE A CLASSIFIED SUBSCRIPTIONS ... "Italia Online Offers Convenient USENET Access" (Net Trans), J.J. Robinson, March 1998, p. 11.

14

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

15

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

16

Cambrian Caledonian Ltd formerly Cambrian Engineering Ltd | Open Energy  

Open Energy Info (EERE)

Ltd formerly Cambrian Engineering Ltd Ltd formerly Cambrian Engineering Ltd Jump to: navigation, search Name Cambrian Caledonian Ltd (formerly Cambrian Engineering Ltd) Place Bangor, Gwynedd, United Kingdom Zip LL57 4YH Sector Renewable Energy, Wind energy Product Manufactures wind turbine towers and monopile foundations for the onshore and offshore renewable energy sector. References Cambrian Caledonian Ltd (formerly Cambrian Engineering Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cambrian Caledonian Ltd (formerly Cambrian Engineering Ltd) is a company located in Bangor, Gwynedd, United Kingdom . References ↑ "Cambrian Caledonian Ltd (formerly Cambrian Engineering Ltd)" Retrieved from

17

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

18

Former Worker Medical Screening Program - Pinellas Former Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pinellas Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Pinellas...

19

Former Worker Medical Screening Program - Amchitka Former Workers  

NLE Websites -- All DOE Office Websites (Extended Search)

Amchitka Former Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Amchitka Worker Population...

20

Former Worker Medical Screening Program - Nevada Former Workers  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Former Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: NNSS and other DOE locations in Las Vegas...

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Former Worker Medical Screening Program - Kansas City Plant Former...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas City Plant Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medicl Screening Program Covered DOE Site: Kansas...

22

Green Wind Energy formerly Solund Invest | Open Energy Information  

Open Energy Info (EERE)

Solund Invest Solund Invest Jump to: navigation, search Name Green Wind Energy (formerly Solund Invest) Place DK-3460 Birkerød, Denmark Zip DK-3460 Sector Wind energy Product Danish investment company specializing in structuring and selling wind turbine projects in Denmark and abroad to private investors. References Green Wind Energy (formerly Solund Invest)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Wind Energy (formerly Solund Invest) is a company located in DK-3460 Birkerød, Denmark . References ↑ "[ Green Wind Energy (formerly Solund Invest)]" Retrieved from "http://en.openei.org/w/index.php?title=Green_Wind_Energy_formerly_Solund_Invest&oldid=346065"

23

OF THE FORMER  

Office of Legacy Management (LM)

pir. 5%7 pir. 5%7 (8 / 35-1 pM3-b - RADIOLOGICAL SURVEY OF THE FORMER ' - BLISS AND LAUGHLIN STEEL COMPANY FACILITY t ' - BUFFALO, NEW YORK y-- \ ' - -A- J. D. BERGER -- Prepared for the Office of Environmental Restoration U.S. Department of Energy -- .I. ,.,. ;:..:J" ;- ,,.::;:p Associated Post Office Box 117 Oak Ridge, Tennessee 37831-01 17 Energy Enwronment Systems DIVISIC~: July 10, 1992 Dr. Alexander Williams Designation and Certification Manager Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration US. Department of Energy Washington, DC 20555 SUBJECT: RADIOLOGICAL SURVEY OF THE FORMER BLISS AND LAUGHLIN STEEL COMPANY FACILITY, BUFFALO, NEW YORK Dear Dr. Williams: Enclosed are six copies of the final report of the radiological survey at the former Bliss and

24

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

25

Renewable Energy Resources Inc formerly Internal Hydro International Inc |  

Open Energy Info (EERE)

Internal Hydro International Inc Internal Hydro International Inc Jump to: navigation, search Name Renewable Energy Resources Inc (formerly Internal Hydro International Inc) Place Tampa, Florida Zip 33603 Sector Hydro Product Internal Hydro's technology takes waste, pumped pressures of fluids, gases or the constantly available natural flows of water and extracts power from them via a turbine. References Renewable Energy Resources Inc (formerly Internal Hydro International Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources Inc (formerly Internal Hydro International Inc) is a company located in Tampa, Florida . References ↑ "Renewable Energy Resources Inc (formerly Internal Hydro

26

Fermi National Acceleratory Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Fermi National Acceleratory Laboratory, Former Production Workers Screening Projects...

27

Ames Laboratory, Former Production Workers Screening Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Ames Laboratory, Former Production Workers...

28

Sandia National Laboratory (NM) Former Workers, Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers, Construction Worker Screening Projects Sandia National Laboratory (NM) Former Workers, Construction Worker Screening Projects...

29

Argonne National Laboratory, Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Production Workers Screening Projects Argonne National Laboratory, Former Production Workers...

30

Former Worker Program - Worker Testimonials  

NLE Websites -- All DOE Office Websites (Extended Search)

the NSSP provided me with this opportunity. I owe my health to this program." - Kansas City Plant former worker "I am a former contract worker from all three of the Laboratories...

31

Former Worker Medical Screening Program  

Energy.gov (U.S. Department of Energy (DOE))

The Former Worker Medical Screening Program (FWP) provides ongoing medical screening examinations, at no cost, to all former DOE Federal, contractor, and subcontractor workers who may be at risk for occupational diseases.

32

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

33

Pages that link to "Nordic Turbines Inc formerly Vista Dorada...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

34

Changes related to "Nordic Turbines Inc formerly Vista Dorada...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

35

Former Sites Restoration. Division  

Office of Legacy Management (LM)

@j&s* **$r* :. .+:., @j&s* **$r* :. .+:., II' .,.. I .&i. , :"': T.1 . i *&+t&&., @i i -:.+; L I. * . . .p.isit-!'..r'ir~i _, +.&.., . I. :?I,?.* .L,! j?' aa&* pi 4 L', ..b,- ., .e /w.1( ,v_.c ~A&$?>*:, ,..:.' .1 > . . . . . *. ,.. .I., .( j .~.~:,;;,.".,Certificafion ,Dockef for The ;,il' t:i~>$:+-.. ~~y:Remeciial Action. Performed "' . ::;:cxcgt the @+zb Gate Site in . ;' ! ,Oak Ridge, Tennessee, 7.99 7- 7 992 -.. Department .of Energy Former Sites Restoration. Division . ,Oak Ridge Operations .Office _. February 7 994 @ Printed on recycledhcy&ble paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE ELZA GAP SITE IN OAK RIDGE, TENNESSEE, 1991-1992 FEBRUARY 1994 I Prepared for UNITED STATES DEPARTMENT OF ENERGY

36

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

37

Helix Wind Inc formerly ClearView Acquisitions | Open Energy Information  

Open Energy Info (EERE)

Helix Wind Inc formerly ClearView Acquisitions Helix Wind Inc formerly ClearView Acquisitions Jump to: navigation, search Name Helix Wind Inc. (formerly ClearView Acquisitions) Place San Diego, California Zip 92113 Sector Wind energy Product California-based manufacturer of small scale wind turbines. References Helix Wind Inc. (formerly ClearView Acquisitions)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Helix Wind Inc. (formerly ClearView Acquisitions) is a company located in San Diego, California . References ↑ "Helix Wind Inc. (formerly ClearView Acquisitions)" Retrieved from "http://en.openei.org/w/index.php?title=Helix_Wind_Inc_formerly_ClearView_Acquisitions&oldid=346471"

38

Former Worker Medical Screening Program - Mound Former Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Mound Worker Population...

39

Former Worker Medical Screening Program - Mound Former Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: Mound Worker Population Served: Production Workers...

40

Former Worker Medical Screening Program - Pinellas Former Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Workers Former Worker Medical Screening Program (FWP) Project Name: National Supplemental Screening Program Covered DOE Site: Pinellas Worker Population Served:...

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Former Worker Medical Screening Program - Fernald Former Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Fernald Worker Population...

42

Pantex Former Workers, Construction Worker Screening Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Former Workers, Construction Worker Screening Project Pantex Former Workers, Construction Worker Screening Project Project Name: Former Pantex Worker Medical Surveillance...

43

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

44

Mallinckrodt Chemical Co., Former Construction Worker Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Project Name: Building Trades...

45

Lawrence Berkeley National Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Lawrence Berkeley National Laboratory, Former Production Workers Screening Projects Project Name: Worker Health Protection...

46

Lawrence Livermore National Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Lawrence Livermore National Laboratory, Former Production Workers Screening Projects Project Name: Worker Health Protection...

47

Pinellas, Former Production Workers Screening Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinellas, Former Production Workers Screening Projects Pinellas, Former Production Workers Screening Projects Project Name: National Supplemental Screening Program Covered DOE...

48

Sandia National Laboratory (CA) Former Workers, Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers, Construction Worker Screening Projects Sandia National Laboratory (CA) Former Workers, Construction Worker Screening Projects Project Name: Worker Health...

49

Guodian United Power Technology Co Ltd formerly Guodian Union Power | Open  

Open Energy Info (EERE)

United Power Technology Co Ltd formerly Guodian Union Power United Power Technology Co Ltd formerly Guodian Union Power Jump to: navigation, search Name Guodian United Power Technology Co Ltd (formerly Guodian Union Power) Place Beijing, Beijing Municipality, China Zip 100044 Sector Wind energy Product China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References Guodian United Power Technology Co Ltd (formerly Guodian Union Power)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guodian United Power Technology Co Ltd (formerly Guodian Union Power) is a company located in Beijing, Beijing Municipality, China . References ↑ "Guodian United Power Technology Co Ltd (formerly Guodian

50

EMD International AS formerly Energi og Milj data | Open Energy Information  

Open Energy Info (EERE)

EMD International AS formerly Energi og Milj data EMD International AS formerly Energi og Milj data Jump to: navigation, search Name EMD International AS (formerly Energi-og Miljødata) Place Aalborg Ã~, Denmark Zip 9220 Sector Biomass, Wind energy Product An independent software developer supplying companies and institutions worldwide with wind assessment/turbine siting software. Also provides software for gossil fuel and biomass projects. References EMD International AS (formerly Energi-og Miljødata)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. EMD International AS (formerly Energi-og Miljødata) is a company located in Aalborg Ã~, Denmark . References ↑ "[ EMD International AS (formerly Energi-og Miljødata)]"

51

MetTrans Journal Home  

Science Conference Proceedings (OSTI)

Metallurgical and Materials Transactions Home Page ... MET. TRANS. HOME Journal descriptions and information [MORE]; SUBMIT A PAPER Review author...

52

Single Rotor Turbine  

DOE Patents (OSTI)

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

53

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

54

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

55

BNFL Report Glass Formers Characterization  

Science Conference Proceedings (OSTI)

The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

Schumacher, R.F.

2000-07-27T23:59:59.000Z

56

BNFL Report Glass Formers Characterization  

Science Conference Proceedings (OSTI)

The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

Schumacher, R.F.

2000-07-27T23:59:59.000Z

57

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

58

Portsmouth Gaseous Diffusion Plant, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant, Former Production Workers Screening Projects Portsmouth Gaseous Diffusion Plant, Former Production Workers Screening Projects Project Name: Worker Health Protection Program...

59

Nevada, Former Production Workers Screening Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada, Former Production Workers Screening Projects Nevada, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site: NNSS and...

60

Hawkeye Renewables formerly Midwest Renewables | Open Energy...  

Open Energy Info (EERE)

(formerly Midwest Renewables) Place Iowa Falls, Iowa Zip 50126 Product Midwest bioethanol producer References Hawkeye Renewables (formerly Midwest Renewables)1 LinkedIn...

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Former Worker Medical Screening Program - Battelle Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Jefferson Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle...

62

Former Worker Medical Screening Program - Battelle Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

King Avenue Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle...

63

Former Worker Medical Screening Program Implementation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Worker Medical Screening Program Implementation Former Worker Medical Screening Program Implementation Program implementation focuses on four specific activities, which are:...

64

Former Workers Medical Facilities with Experience Evaluating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease April...

65

Former Worker Medical Screening Program - Lawrence Livermore...  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Former Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: LLNL...

66

Former Worker Medical Screening Program - Mallinckrodt Chemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mallinckrodt Chemical Co. Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE...

67

Hanford, Former Production Workers Screening Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford, Former Production Workers Screening Projects Hanford, Former Production Workers Screening Projects Project Name: National Supplemental Screening Program Covered DOE Site:...

68

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

69

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

70

Design Evolution, Durability and Reliability of Alstom Heavy-Duty Gas Turbines: Pedigree Matrices, Volume 5  

Science Conference Proceedings (OSTI)

Advanced technology heavy-duty gas turbines carry a degree of technical risk because of new technologies used in their design. This report reviews the design evolution of specific Alstom (formerly ABB) industrial gas turbines in a standard format, which allows a qualitative and quantitative assessment of the technical risks involved in their operation. The report establishes a pedigree matrix, or qualitative analysis, for standard production and newly introduced heavy-duty gas turbines, including ...

2013-12-19T23:59:59.000Z

71

Design Evolution, Durability, and Reliability of Alstom Heavy-Duty Combustion Turbines: Pedigree Matrices, Volume 5  

Science Conference Proceedings (OSTI)

Advanced technology heavy-duty combustion turbines carry a degree of technical risk because of new technologies used in their design. This report reviews the design evolution of specific Alstom (formerly ABB) industrial combustion turbines in a standard format, which allows a qualitative and quantitative assessment of the technical risks involved in their operation. The report establishes a pedigree matrix, or qualitative analysis, for standard production and newly introduced heavy-duty combustion turbin...

2011-12-28T23:59:59.000Z

72

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

73

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

74

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...

75

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

76

Freewatt Ltd formerly Lincolnshire Windpower Ltd | Open Energy Information  

Open Energy Info (EERE)

Freewatt Ltd formerly Lincolnshire Windpower Ltd Freewatt Ltd formerly Lincolnshire Windpower Ltd Jump to: navigation, search Name Freewatt Ltd (formerly Lincolnshire Windpower Ltd) Place Lincolnshire, England, United Kingdom Zip LN9 5JF Sector Renewable Energy, Solar, Wind energy Product Lincolnshire-based firm specialising in the installation of renewable energy apparatus such as wind turbines, solar photovoltaic/thermal panels and heat pumps. Coordinates 38.22516°, -85.620464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.22516,"lon":-85.620464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Argonne Transportation - TransForum Intro  

NLE Websites -- All DOE Office Websites (Extended Search)

PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC TransForum Banner TransForum is...

78

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

79

Wind Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

This guideline provides component-level information regarding the maintenance of major components associated with a wind turbine. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of wind turbine facilities.

2012-06-29T23:59:59.000Z

80

ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM  

DOE Green Energy (OSTI)

Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

Frank Macri

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sandia National Laboratory (NM), Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Former Production Workers Screening Projects Sandia National Laboratory (NM), Former Production Workers Screening Projects...

82

Turbine Overspeed Trip Modernization  

Science Conference Proceedings (OSTI)

This report provides guidance for power plant engineers contemplating modernization of their main turbine overspeed trip systems. When a large power plant turbine suddenly loses its output shaft loading due to a generator or power grid problem, the steam flow driving the turbine must be cut off very quickly to prevent an overspeed event. The overspeed trip system protects personnel and plant systems by preventing missiles that can result when turbines disintegrate at higher than normal rotational speeds....

2006-12-04T23:59:59.000Z

83

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

84

DOE/NREL Advanced Wind Turbine Development Program  

DOE Green Energy (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

85

The wind turbine  

Science Conference Proceedings (OSTI)

In this paper we present the modeling of a wing turbine, using the Euler Lagrange method and circuits theory. We get the mathematical equation (modeling) that describes the wind turbine and we simulate it using the mathlab program. Keywords: modeling, simulation, wind turbine

Jos De Jess Rubio Avila; Andrs Ferreira Ramrez; Genaro Deloera Flores; Martn Salazar Pereyra; Fernando Baruch Santillanes Posada

2008-07-01T23:59:59.000Z

86

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

87

NETL: Turbines - Oxy-Fuel Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

88

Turbine Imaging Technology Assessment  

DOE Green Energy (OSTI)

The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

Moursund, Russell A.; Carlson, Thomas J.

2004-12-31T23:59:59.000Z

89

Former Worker Program - Beryllium Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Testing Beryllium Testing Former Worker Medical Screening Program (FWP) Beryllium is a naturally occurring metal and is not radioactive. Because of its properties, beryllium has been part of the atomic energy and nuclear weapons industries since the 1940s. Exposure to beryllium and certain beryllium compounds can result in beryllium sensitization, which may develop into a disease of the lungs called chronic beryllium disease (CBD). Beryllium sensitization is an "allergic" condition to beryllium that can develop primarily after a person breathes air containing beryllium mists, dusts, and fumes. Even brief or small exposures to beryllium can lead to sensitization and/or CBD. However, most people exposed to beryllium will NOT get the disease. Other beryllium-related disorders can affect the skin, liver, spleen, heart, eye, or kidney. These disorders often occur in the presence of CBD.

90

Geothermal turbine installation  

SciTech Connect

A geothermal turbine intallation in which high-pressure steam is separated from geothermal steam, which is a mixture of steam and water, with the high pressure steam connected to a high pressure turbine. Low pressure steam produced by flashing the hot water component of the geothermal steam is introduced to a low pressure turbine which is constructed and operates independently of the high pressure turbine. The discharge steam from the high pressure turbine is introduced to a steam condenser operating at a low vacuum while discharge steam from the low pressure turbine is introduced into a steam condenser operating at a high vacuum. The cooling water system of the high and low pressure condensers are connected in series with one another. A maximum power increase is obtained if the flow rates of the high and low pressure steams at the extraction ports of the high and low pressure turbines are made substantially equal to one another.

Nishioka, R.

1983-01-04T23:59:59.000Z

91

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

92

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

93

Stream-injected free-turbine-type gas turbine  

SciTech Connect

This patent describes an improvement in a free turbine type gas turbine. The turbine comprises: compressor means; a core turbine mechanically coupled with the compressor means to power it; a power turbine which is independent from the core turbine; and a combustion chamber for providing a heated working fluid; means for adding steam to the working fluid; means for providing a single flow path for the working fluid, first through the core turbine and then through the power turbine. The improvement comprises: means for preventing mismatch between the core turbine and the compressor due to the addition of steam comprising coupling a variable output load to the compressor.

Cheng, D.Y.

1990-02-13T23:59:59.000Z

94

LM Wind Power formerly LM Glasfiber AS | Open Energy Information  

Open Energy Info (EERE)

LM Glasfiber AS LM Glasfiber AS Jump to: navigation, search Name LM Wind Power (formerly LM Glasfiber AS) Place Kolding, Denmark Zip 6000 Sector Wind energy Product Denmark-based manufacturer of blades for large-scale wind turbines. Coordinates 55.486405°, 9.473455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.486405,"lon":9.473455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Demonstration Development Project: Solicitation and Selection of a Site to Test a Fish-Friendly Hydropower Turbine  

Science Conference Proceedings (OSTI)

With an increasing demand for renewable energy throughout the world, the ability to produce power while minimizing environmental impacts has become a driving force in the continued development of hydropower. A new hydropower turbine that has the potential to contribute to power demands while minimally impacting fish populations is the Alden turbine, which was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program and, more recently, Electric Power Research...

2011-01-03T23:59:59.000Z

96

Former Worker Medical Screening Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Former Worker Medical Screening Program Former Worker Medical Screening Program The Former Worker Medical Screening Program (FWP) provides ongoing medical screening examinations,...

97

DOE: Former Worker Medical Screening Program (FWP) | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Former Worker Medical Screening Program (FWP) DOE: Former Worker Medical Screening Program (FWP) Addthis Description FWP provides no-cost medical screenings to all former DOE...

98

CO2 Emissions - the Former German Democratic Republic  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany the Former German Democratic Republic Graphics CO2 Emissions from the Former German Democratic Republic Data graphic Data CO2 Emissions from the Former German Democratic...

99

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

100

Advanced coal-fueled gas turbine systems reference system definition update  

Science Conference Proceedings (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Brookhaven National Laboratory, Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Workers Screening Projects Brookhaven National Laboratory, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site:...

102

Former Worker Medical Screening Program - Portsmouth Gaseous...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Portsmouth Worker Population...

103

Former Worker Medical Screening Program - Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Brookhaven National Laboratory...

104

Former Worker Program Brochure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

employees about the benefits and services offered under the DOE Former Worker Medical Screening Program. Some of the topics described in the brochure include: a...

105

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

106

Former Worker Medical Screening Program - Related Documents ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workers at Los Alamos National Laboratory Former Worker Medical Screening Program for the Ames Laboratory and the Iowa Army Ammunition Plant National Supplemental Screening Program...

107

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

108

Ten years with turbine metering  

SciTech Connect

The operation and performance experience in using 110 turbine meters to monitor the gas flow in turbines used on natural gas pipelines are discussed. Information is included on turbine meter selection, installation, calibration, performance testing, failures, and maintenance. (LCL)

Judd, H.C.

1980-01-01T23:59:59.000Z

109

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469??476...

110

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration (more)

Flesland, Synnve Mangerud

2010-01-01T23:59:59.000Z

111

Economical Condensing Turbines?  

E-Print Network (OSTI)

Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. Letdown turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: Letdown turbines produce power based upon steam requirements and not based upon power requirements, and if all the steam letdown does not have a use, letdown turbines can become a very expensive way of producing electric power. Condensing turbines have the ability to handle rapid swings in electrical load. Unfortunately, they can only condense a small percentage of the steam, usually less than 14%. Therefore only a small percent of the heat of condensation is available for their use. Also equipment must be used to condense the remaining steam below atmospheric pressure. Extraction/condensing turbines both extract steam at a useful temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from drawing electrical power from the grid. The method for analyzing the cost of the condensing steam produced power is exactly the same in all cases. This paper will attempt to provide a frame work for preliminary economic analysis on electric power generation for condensing steam turbines.

Dean, J. E.

1997-04-01T23:59:59.000Z

112

Rampressor Turbine Design  

DOE Green Energy (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

113

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Syngas Particulate Deposition and Erosion at the Leading Edge of a Turbine Blade with Film Cooling Virginia Tech Danesh Tafti Project Dates: 812007 - 9302010 Area of...

114

Hermetic turbine generator  

DOE Patents (OSTI)

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

115

Real time wind turbine simulator.  

E-Print Network (OSTI)

??A novel dynamic real-time wind turbine simulator (WTS) is developed in this thesis, which is capable of reproducing dynamic behavior of real wind turbine. The (more)

Gong, Bing

2007-01-01T23:59:59.000Z

116

NETL: Turbine Projects - Efficiency Improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvemenet Turbine Projects Efficiency Improvemenet Advanced Hot Section Materials and Coatings Test Rig DataFact Sheets System Study for Improved Gas Turbine...

117

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01T23:59:59.000Z

118

Single rotor turbine engine  

SciTech Connect

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

119

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

120

Turbine disc sealing assembly  

SciTech Connect

A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

Diakunchak, Ihor S.

2013-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

122

trans Fatty Acid Content Laboratory Proficiency Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for trans fatty acid content. Samples include non-hydrogenated Soybean Oil and hydrogenated Soybean Oil. trans Fatty Acid Content Laboratory Proficiency Program Laboratory Proficiency Program (LPP) aocs applicants certifie

123

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

124

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

125

Ceramic Cerami Turbine Nozzle  

SciTech Connect

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

126

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

127

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

128

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine internals in situ by foaming an appropriate cleaning solution and injecting it through the turbine, dissolving the deposits and removing them from the system. Because disassembly of the turbine is not required, foam cleaning is a much faster and more cost-effective method of removing deposits. In recent years, HydroChem has removed copper deposits from over 130 Westinghouse and General Electric turbines nationwide using patented equipment.

Foster, C.; Curtis, G.; Horvath, J. W.

2000-04-01T23:59:59.000Z

129

MHK Technologies/Turbines OWC | Open Energy Information  

Open Energy Info (EERE)

OWC OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbines OWC.png Technology Profile Primary Organization Neo Aerodynamic Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The patent pending Neo Aerodynamic turbine invented by Phi Tran harnesses torque from both kinetic and pneumatic energy of the fluid flow wind or water Since the lift forces are caused by artificial flow of the fluid air wind around the center of the turbine the turbine s worst enemy turbulence is neutralized On the wind facing wind make side the flow are then redirect outward form the center It then causes the lift on airfoils to push it turning Once the device is turning it causes the center to have lower pressure the outside air then rushes in to fill those vacuums This flow is then redirected to cause lift on the airfoil When turning the special arrange of the airfoil allowing the volume of the air passing through the upper chamber are always more then of the lower chamber This also causes the lift to make the device turn In short Neo Aerodynamic uses the artificial flow of the air to cause the lift on its airfoils That s why it s called Neo AeroDy

130

Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power  

Open Energy Info (EERE)

Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Co Ltd Jump to: navigation, search Name Yinhe Avantis Wind Power Co Ltd (formerly known as Avantis Yinhe Wind Power Co Ltd ) Place Beihai, Guangxi Autonomous Region, China Zip 536000 Sector Wind energy Product Large scale wind turbine manufacturer developing 2.5MW turbines. Coordinates 21.484501°, 109.105309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.484501,"lon":109.105309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

132

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

133

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

1997-07-08T23:59:59.000Z

134

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

135

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

1997-07-08T23:59:59.000Z

136

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

137

Amchitka Former Workers, Construction Worker Screening Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amchitka Former Workers, Construction Worker Screening Projects Amchitka Former Workers, Construction Worker Screening Projects Amchitka Former Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Amchitka Worker Population Served: All workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by CPWR - The Center for Construction Research and Training, an applied

138

DOE: Former Worker Medical Screening Program (FWP)  

Energy.gov (U.S. Department of Energy (DOE))

FWP provides no-cost medical screenings to all former DOE Federal, contractor and subcontractor employees. The screening exams are offered by third party providers from universities, labor unions,...

139

Wind Turbine Acoustic Noise A white paper  

E-Print Network (OSTI)

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

140

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM  

Office of Legacy Management (LM)

" __.,__ " - " __.,__ " - ELIMINATION REPORT TIPPINS, INCORPORATED FORMERLY THE HEPPENSTALL COMPANY 4620 HATFIELD STREET PITTSBURGH, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration and Waste Madagement Office of Environmental Restoration Office of Eastern Area Programs CONTENTS INTRODUCTION . . . .,,,, ~l.. ,..,,. .<., .,, . . . . . . . . . . . . . . , . . .l BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . .l Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS . . . . . . . . . , . . : . . .I. . . . . .2 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .3 ELIMINATION REPORT TIPPINS, INCORPORATED FORMERLY THE HEPPENSTALL COMPANY 4620 HATFIELD STREET

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRANT NO. GRANT NO. DE-FG21-94MC32071; DOE WAIVER DOCKET W(A)-98-005 [ORO-736] Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Grantee"), has requested an advance waiver of worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Grant No. DE-FG21-94MC32071. The goal of the grant was to perform system analysis, selection and optimization to develop the next generation of gas-fired advanced turbine systems (ATS's) for green field and repowered electricity generation applications. The goal of the ATS program is to develop and commercialize ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base- load applications in the utility, independent power producer, and industrial markets. This work

142

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTRACT NO. CONTRACT NO. DE-AC21-95MC30247; DOE WAIVER DOCKET W(A)-98-006 [ORO-737] Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Contractor"), has requested an advance waiver of worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC21- 95MC30247. This contract covers Phase 2 of DOE's Advance Turbine System (ATS) program. The goal of the ATS program is to develop and commercialize ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. The purposes of Phase 2 were to complete conceptual design of a selected system, identify technical barrier issues and begin

143

NETL: Turbines Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

144

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

145

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

146

Micro Turbine Generator Program  

Science Conference Proceedings (OSTI)

A number of micro turbines generators have recently been announced as currently commercially available for sale to customers, such as end users, utilities, and energy service providers. Manufacturers and others are reporting certain performance capabilities ...

Stephanie L. Hamilton

2000-01-01T23:59:59.000Z

147

NETL: Turbines - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

- Catalytic Combustion PDF-855KB 41892 - Praxair Final Report - Low NOx Fuel Flexible Gas Turbine PDF-214KB 42176 - GT 2006 Annual Report PDF-504KB 42495 - UTEP H2 Kinetics...

148

Turbines in the sky  

SciTech Connect

Gas turbines are being investigated as power sources for the proposed Star Wars weapons flatforms. The gas turbine engine offers the best opportunity for exploiting the high-temperature potential of both nuclear and chemical combustion. The use of mature gas turbine technology and existing materials would result in highly reliable PCUs capable of meeting SDI's requirements. However, operation under the temperature limits imposed by existing materials would result in a prohibitively heavy system. Cooled blades would somewhat increase temperature capability; however the turbine's mass, though reduced, would still be unacceptably large. The greatest improvements would result from the ability to operate at temperatures of up to 2000 K, pressures up to 14 MPa, and stress up to 690 MPa.

Boyle, R.V.; Riple, J.C.

1987-07-01T23:59:59.000Z

149

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for green energy 1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

150

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for green energy1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

151

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30T23:59:59.000Z

152

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

Norton, P.F.; Shaffer, J.E.

1996-01-30T23:59:59.000Z

153

SPACE HANDBOOK TURBINES  

SciTech Connect

Turbine specific weight vs. power plant output was investigated for rubidium, potassium, and sodium at several inlet temperatures to obtain order of magnitude performance and weight of possible nuclear power plant systems. (W.L.H.)

Grimaldi, J.

1960-08-29T23:59:59.000Z

154

Gas turbine noise control  

Science Conference Proceedings (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

155

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

156

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

157

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. June 26, 2013 Radial-Radial Single Rotor Turbine A rotor for use in...

158

CO2 Emissions - the Former Federal Republic of Germany  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany the Former Federal Republic of Germany CO2 Emissions from the Former Federal Republic of Germany Data graphic Data CO2 Emissions from the Former Federal Republic of...

159

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Turbine inner shroud and turbine assembly containing such inner shroud  

DOE Patents (OSTI)

A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Corman, Gregory Scot (Ballston Lake, NY); Dean, Anthony John (Scotia, NY); DiMascio, Paul Stephen (Clifton Park, NY); Mirdamadi, Massoud (Niskayuna, NY)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Covanta Energy Corporation formerly Ogden Martin Systems of Hillsborou...  

Open Energy Info (EERE)

Energy Corporation formerly Ogden Martin Systems of Hillsborough Inc Jump to: navigation, search Name Covanta Energy Corporation (formerly Ogden Martin Systems of Hillsborough Inc)...

162

Joint Outreach Task Group Former Workers Screening Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Outreach Task Group Former Workers Screening Program Joint Outreach Task Group Former Workers Screening Program The Joint Outreach Task Group (JOTG) includes representatives...

163

DOE's Former Rocky Flats Weapons Production Site to Become National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge July 12, 2007 -...

164

Green Energy Resources Inc formerly New York International Log...  

Open Energy Info (EERE)

Inc formerly New York International Log Lumber Company Jump to: navigation, search Name Green Energy Resources Inc (formerly New York International Log & Lumber Company) Place...

165

Imara Corp formerly Lion Cells | Open Energy Information  

Open Energy Info (EERE)

Menlo Park, California Zip 94025 Product California-based developer of lithium-ion battery technologies formerly known as Lion Cells. References Imara Corp (formerly Lion...

166

Rocky Flats, Former Production Workers Screening Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flats, Former Production Workers Screening Projects Rocky Flats, Former Production Workers Screening Projects Project Name: National Supplemental Screening Program Covered DOE...

167

Ricmore Capital PLC Formerly Energy Asset Management Plc | Open...  

Open Energy Info (EERE)

form History Facebook icon Twitter icon Ricmore Capital PLC Formerly Energy Asset Management Plc Jump to: navigation, search Name Ricmore Capital PLC (Formerly Energy Asset...

168

Former Worker Medical Screening Program - Lawrence Berkeley National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley National Laboratory Former Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: LBNL...

169

Former Worker Medical Screening Program - Brush Luckey Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brush Luckey Plant Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site:...

170

Former Worker Medical Screening Program - Weldon Spring Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weldon Spring Plant Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site:...

171

Former Worker Medical Screening Program - Sandia National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

CA) Former Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: SNL (CA) Worker Population Served: All workers...

172

Former Worker Medical Screening Program - Oak Ridge Y-12 and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 and Oak Ridge National Laboratory Former Production Workers Former Worker Medical Screening Program (FWP) Project Name: Worker Health Protection Program Covered DOE Site: Y-12...

173

Vestesen A S formerly Danvest Energy | Open Energy Information  

Open Energy Info (EERE)

Wind energy Product Vestesen (formerly known as Danvest Energy) provides hybrid power (wind-diesel) solutions for remote off-grid applications. References Vestesen AS (formerly...

174

Former Assistant Secretary Shares Experiences Leading EM: 'Extremely...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shares Experiences Leading EM: 'Best Job I Ever Had' Former EM Assistant Secretary Jessie Roberson now serves on the Defense Nuclear Facilities Safety Board. Former...

175

Sandia National Laboratory (CA), Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Former Production Workers Screening Projects Sandia National Laboratory (CA), Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered...

176

Former Worker Medical Screening Program - Iowa Army Ammunition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Former Worker Medical Screening Program (FWP) Project Name: Medical Monitoring of Former Atomic Weapons Workers at the Iowa Army Ammunition Plant (IAAP) in Burlington, Iowa...

177

Trony Solar Corporation formerly Shenzhen Trony Science Technology...  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name Trony Solar Corporation (formerly Shenzhen Trony Science &...

178

Kansas City Plant, Former Production Workers Screening Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas City Plant, Former Production Workers Screening Projects Kansas City Plant, Former Production Workers Screening Projects Project Name: National Supplemental Screening...

179

GCL Solar Energy Technology Holdings formerly GCL Silicon aka...  

Open Energy Info (EERE)

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name GCL Solar Energy Technology Holdings (formerly GCL...

180

China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...  

Open Energy Info (EERE)

Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...  

Open Energy Info (EERE)

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place...

182

HERO BX formerly Lake Erie Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name HERO BX (formerly Lake Erie Biofuels) Place Erie,...

183

AE Biofuels Inc formerly American Ethanol Inc | Open Energy Informatio...  

Open Energy Info (EERE)

AE Biofuels Inc formerly American Ethanol Inc Jump to: navigation, search Name AE Biofuels Inc. (formerly American Ethanol Inc.) Place Cupertino, California Zip CA 95014 Product...

184

Inner Mongolia Guodian Energy Investment Co Ltd formerly Inner...  

Open Energy Info (EERE)

Guodian Energy Investment Co Ltd formerly Inner Mongolia Energy Power Investment Co Jump to: navigation, search Name Inner Mongolia Guodian Energy Investment Co Ltd (formerly Inner...

185

Changes related to "Blue Spark Technologies formerly Thin Battery...  

Open Energy Info (EERE)

icon Twitter icon Changes related to "Blue Spark Technologies formerly Thin Battery Technologies Inc" Blue Spark Technologies formerly Thin Battery Technologies Inc...

186

Pages that link to "Blue Spark Technologies formerly Thin Battery...  

Open Energy Info (EERE)

icon Twitter icon Pages that link to "Blue Spark Technologies formerly Thin Battery Technologies Inc" Blue Spark Technologies formerly Thin Battery Technologies Inc...

187

Pages that link to "AEE Solar Inc formerly Alternative Energy...  

Open Energy Info (EERE)

Facebook icon Twitter icon Pages that link to "AEE Solar Inc formerly Alternative Energy Engineering" AEE Solar Inc formerly Alternative Energy Engineering Jump to:...

188

Changes related to "AEE Solar Inc formerly Alternative Energy...  

Open Energy Info (EERE)

Facebook icon Twitter icon Changes related to "AEE Solar Inc formerly Alternative Energy Engineering" AEE Solar Inc formerly Alternative Energy Engineering Jump to:...

189

China Singyes Solar Technologies Holdings Ltd formerly known...  

Open Energy Info (EERE)

Ltd formerly known as Singyes Curtain Wall Engineering Jump to: navigation, search Name China Singyes Solar Technologies Holdings Ltd (formerly known as Singyes Curtain Wall...

190

Chinese Renewable Energy Society CRES formerly Chinese Solar...  

Open Energy Info (EERE)

Chinese Renewable Energy Society CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy...

191

HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies...  

Open Energy Info (EERE)

HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies Inc Canada Inc Jump to: navigation, search Name HLT Energies 2006 Inc (formerly HLT Energies Inc, Heliotech...

192

Trans Fats in FoodChapter 8 Labeling of Trans Fatty Acids  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 8 Labeling of Trans Fatty Acids Food Science Health Nutrition eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 8 Labeli

193

Trans Fats in FoodChapter 1 Trans Fatty Acid Effects on Cardiovascular Disease  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 1 Trans Fatty Acid Effects on Cardiovascular Disease Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry AOCS 7D1218959FAE1721B6FEA28

194

Trans Fats in FoodChapter 5 Ruminant Trans Fatty Acids  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 5 Ruminant Trans Fatty Acids Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf of Chapt

195

Trans Fats in FoodChapter 6 Consumption of Trans Fatty Acids  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 6 Consumption of Trans Fatty Acids Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf of

196

Trans Fats in FoodChapter 2 Trans Fats and Cancer  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 2 Trans Fats and Cancer Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 2

197

Former Soviet refineries face modernization, restructuring  

Science Conference Proceedings (OSTI)

A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

Not Available

1993-11-29T23:59:59.000Z

198

Trans Tech Green Power | Open Energy Information  

Open Energy Info (EERE)

Tech Green Power" Retrieved from "http:en.openei.orgwindex.php?titleTransTechGreenPower&oldid352369" Categories: Clean Energy Organizations Companies Organizations...

199

TransForum Volume 13 Issue 1  

NLE Websites -- All DOE Office Websites (Extended Search)

glassblower Joe Gregar, the chambers are modeled after cells being used by Professor Peter Bruce's research group at University of St. Andrews, Scotland. TransForum | Volume...

200

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ceramic stationary gas turbine  

DOE Green Energy (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

202

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

203

Ceramics for ATS industrial turbines  

DOE Green Energy (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

204

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

205

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

206

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

207

Cavitation Erosion of Francis Turbines  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Presentation...

208

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

209

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

210

Wind turbine spoiler  

DOE Patents (OSTI)

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

211

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

212

Gas turbine sealing apparatus  

DOE Patents (OSTI)

A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

2013-02-19T23:59:59.000Z

213

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

214

Applications: Wind turbine structural health  

E-Print Network (OSTI)

of turbine system management. The data obtained from this multi-scale sensing capability will be fullyCapability Applications: Wind turbine structural health monitoring Individual turbine maintenance for active control in the field Limit damage propagation and maintenance costs Maximize return

215

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

216

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

217

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

218

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

219

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

220

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

222

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

223

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

that the average turbines rotor swept area has increasedthe average turbine hub height and rotor diameter also6. Average Turbine Capacity, Hub Height, and Rotor Diameter

Bolinger, Mark

2012-01-01T23:59:59.000Z

224

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

225

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

226

TransAtlas | Open Energy Information  

Open Energy Info (EERE)

TransAtlas TransAtlas Jump to: navigation, search Tool Summary Name: TransAtlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Evaluate Effectiveness and Revise as Needed Topics: Analysis Tools Resource Type: Dataset, Maps User Interface: Website Website: maps.nrel.gov/transatlas Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: TransAtlas TransAtlas is an interactive map with data sets related to transportation and alternative fuels in the United States How to Use This Tool

227

Former Worker Medical Screening Program Brochure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medical Screening Program Brochure Medical Screening Program Brochure Former Worker Medical Screening Program Brochure June 2012 The FWP brochure provides important information to inform former and current DOE Federal, contractor, and subcontractor employees about the benefits and services offered under the DOE Former Worker Medical Screening Program. Some of the topics described in the brochure include: a description of the program, how it is implemented, who is eligible to participate, what tests are offered, where exams are conducted, and what organizations provide the exams. Former Worker Medical Screening Program Brochure More Documents & Publications Former Worker Program Brochure Former Worker Program Summary of Services 2012 Former Worker Medical Screening Program Annual Report

228

NETL: Turbine Projects - Cost Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

229

Turbine vane structure  

DOE Patents (OSTI)

A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

Irwin, John A. (Greenwood, IN)

1980-08-19T23:59:59.000Z

230

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-12-31T23:59:59.000Z

231

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-01-01T23:59:59.000Z

232

Temperature stratified turbine compressors  

SciTech Connect

A method and apparatus for improving the efficiency of a compressor of a gas turbine engine is disclosed. The inlet gas entering the compressor is stratified into two portions of different temperatures. The higher temperature gas is introduced adjacent the outer tipe of the compressor blades to reduce the relative Mach number of the flow at the area.

Earnest, E.R.; Passinos, B.

1979-01-09T23:59:59.000Z

233

Former Worker Program - Joint Outreach Task Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Group Group Former Worker Medical Screening Program (FWP) The Joint Outreach Task Group (JOTG) includes representatives from HSS, Department of Labor (DOL), the National Institute for Occupational Safety and Health (NIOSH), the Offices of the Ombudsman for DOL and NIOSH, and the DOE-funded FWP projects. The JOTG was established in 2009 under the premise that agencies/programs with common goals can work together by combining resources and coordinating outreach efforts. Each involved agency has a different mission, but the missions are complementary. By working together, the agencies are better able to serve the DOE workforce. The JOTG focuses on educating the former workers on the programs and resources available to them. The JOTG has created a monthly calendar of community events to facilitate interagency and community involvement in these events.

234

Gateway Energy (formerly Econnergy) | Open Energy Information  

Open Energy Info (EERE)

(formerly Econnergy) (formerly Econnergy) Jump to: navigation, search Name Gateway Energy Services Address 400 Rella Blvd., Suite 300 Place Montebello, New York Zip 10901 Sector Services Product Green Power Marketer Website http://www.gesc.com/ Coordinates 41.11592°, -74.105664° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11592,"lon":-74.105664,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Encore Energy Systems formerly Energy Vision International formerly DeMarco  

Open Energy Info (EERE)

Encore Energy Systems formerly Energy Vision International formerly DeMarco Encore Energy Systems formerly Energy Vision International formerly DeMarco Energy Systems of Amer Jump to: navigation, search Name Encore Energy Systems (formerly Energy Vision International (formerly DeMarco Energy Systems of Amer Place Oxford, Massachusetts Zip 38655 Sector Geothermal energy Product Provider geothermal heat pumps primarily for heating and air conditioning. Coordinates 43.781517°, -89.571699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.781517,"lon":-89.571699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Turbine blade tip gap reduction system  

DOE Patents (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

237

SMART POWER TURBINE  

SciTech Connect

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

238

2012 Former Worker Medical Screening Program Annual Report | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Center » Worker » Former Worker Program » 2012 Information Center » Worker » Former Worker Program » 2012 Former Worker Medical Screening Program Annual Report 2012 Former Worker Medical Screening Program Annual Report February 2013 The 2012 Annual Report presents a detailed overview of the accomplishments, progress, and future endeavors of the U.S. Department of Energy Former Worker Medical Screening Program. The report describes how the program is implemented, what organizations are involved in the medical screening efforts, and what the medical findings have been to date. 2012 Former Worker Medical Screening Program Annual Report More Documents & Publications Former Worker Program Medical Protocol Former Worker Medical Screening Program Brochure Former Worker Program Brochure DOE Technical Standards Program

239

Siemens PG Wind Power Division formerly Bonus Energy A S | Open Energy  

Open Energy Info (EERE)

PG Wind Power Division formerly Bonus Energy A S PG Wind Power Division formerly Bonus Energy A S Jump to: navigation, search Name Siemens PG Wind Power Division (formerly Bonus Energy A/S) Place Brande, Denmark Zip DK-7330 Sector Wind energy Product A wind turbine manufacturer whose products range from 600kW to 2.3MW. Coordinates 55.94278°, 9.12803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.94278,"lon":9.12803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

XEMC Windpower Co Ltd formerly Hunan Hara XEMC Windpower Co Ltd | Open  

Open Energy Info (EERE)

Windpower Co Ltd formerly Hunan Hara XEMC Windpower Co Ltd Windpower Co Ltd formerly Hunan Hara XEMC Windpower Co Ltd Jump to: navigation, search Name XEMC Windpower Co Ltd (formerly Hunan Hara XEMC Windpower Co Ltd) Place Xiangtan, Hunan Province, China Sector Wind energy Product China-based MW scale wind turbine manufacturer with a 2MW direct drive model as its main product. Coordinates 27.859819°, 112.892067° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.859819,"lon":112.892067,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Technipower Systems formerly Solomon Technologies | Open Energy Information  

Open Energy Info (EERE)

Technipower Systems formerly Solomon Technologies Technipower Systems formerly Solomon Technologies Jump to: navigation, search Name Technipower Systems (formerly Solomon Technologies) Place Danbury, Connecticut Zip 6810 Sector Solar, Vehicles Product Connecticut-based manufacturer of electromechanical power systems. The firm provides solar ground mounted systems and electric hybrid technologies for electric vehicles. References Technipower Systems (formerly Solomon Technologies)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Technipower Systems (formerly Solomon Technologies) is a company located in Danbury, Connecticut . References ↑ "Technipower Systems (formerly Solomon Technologies)" Retrieved from

242

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

243

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

244

Turbine seal assembly  

SciTech Connect

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

245

Gas turbine sealing apparatus  

SciTech Connect

A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

Marra, John Joseph; Wessell, Brian J.; Liang, George

2013-03-05T23:59:59.000Z

246

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

247

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

248

Gas turbines for the future  

SciTech Connect

Utility gas turbine technology has been advancing fairly rapidly, one reason being that it shares in the benefits of the research and development for aviation gas turbines. In general, turbine progress is characterized by large, incremental advances in performance. At intervals of approx. 15 yr, new-generation turbines are introduced, refined, and eventually installed in relatively large numbers. A new generation of turbines is being readied for the market that will have power ratings into the 130- to 150-MW range (simple cycle), significantly higher than the 70 to 100 MW now in service. When the new turbines are installed in combined-cycle plants, the efficiency levels are expected to rise from the present value of approx. 42% higher heating value to approx. 46%.

Cohn, A.

1987-01-01T23:59:59.000Z

249

Snubber assembly for turbine blades  

DOE Patents (OSTI)

A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

Marra, John J

2013-09-03T23:59:59.000Z

250

Gas turbine premixing systems  

SciTech Connect

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

251

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

252

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

253

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

254

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

255

Former Worker Program - FWP Scientific Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

FWP Scientific Publications FWP Scientific Publications Former Worker Medical Screening Program (FWP) Scientific publications either directly studying former workers in the context of the screening program or recruiting former workers in the program as research participants for scientific studies funded by the National Institutes of Health or other research funding sources are summarized below according to publication date. Mikulski M., Gerke A., Lourens S., Czeczok T., Sprince N., Laney A., Fuortes L. Agreement between fixed-ratio and lower limit of normal spirometry interpretation protocols decreases with age - Is there a need for a new gold standard? Journal of Occupational and Environmental Medicine, 55(7): 802-808, 2013. To assess concordance between the fixed 70% ratio cutoff point with the fixed percent predicted values (Fixed-ratio) and the lower limit of normal (LLN) algorithms in interpreting spirometry results in an older population, spirometries were interpreted using Third National Health and Nutrition Examination Survey reference equations for 2,319 workers. The Fixed-ratio algorithm characterized 34.5% (n=801) results as abnormal, compared with 29.7% (n=689) by the LLN. There were almost twice as many obstructive and mixed airways spirometries identified under the Fixed-ratio compared to LLN. Rates of restrictive pattern physiology were virtually the same under each algorithm. Overall agreement between the algorithms decreased with age from "almost perfect" for those younger than 60 years to "substantial" for those older than 80 years. This study found age-related discordance between two algorithms possibly related to the lack of reference equations and standards for individuals older than 80 years.

256

TransWest Old | Open Energy Information  

Open Energy Info (EERE)

TransWest Old TransWest Old Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: TransWest Old EIS at {{{GeothermalArea}}} for {{{GeothermalDevelopmentPhases}}} {{{NEPA_Name}}} General NEPA Document Info Environmental Analysis Type EIS Applicant Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Techniques Time Frame (days) Participating Agencies Lead Agency none provided Funding Agency none provided Managing District Office none provided Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Relevant Numbers Lead Agency Doc Number Retrieved from "http://en.openei.org/w/index.php?title=TransWest_Old&oldid=686707"

257

Opportunistic infrastructure : the Trans-Manhattan Expressway  

E-Print Network (OSTI)

Urban Infrastructure: bridges, expressways, and on and off ramps often create barriers and uninhabitable spaces within the urban context. This phenomenon is evident in northern Manhattan where the Trans-Manhattan Expressway ...

O'Koren, Jason F

2010-01-01T23:59:59.000Z

258

Tornado type wind turbines  

DOE Patents (OSTI)

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

259

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

through a Tesla turbine microchannel . . . . . . . . . . .1.2 History of the Tesla Turbine 1.3 BackgroundCFD) Solution of Flow Through a Tesla Turbine 4.1 Summary of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

260

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network (OSTI)

of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

Boone, Donald H.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name Howden Wind Turbines Ltd Place United Kingdom Sector Wind energy Product Howden was a manufacturer of wind turbines in the...

262

NREL: Wind Research - Advanced Research Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control...

263

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

camera. Bottom: tested turbine rotor housing diameter isfound in Figure 1.1. The turbine rotor consists of severalpower was reached. The turbine rotor and nozzle can be seen

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

264

Microhydropower Turbines, Pumps, and Waterwheels  

Energy.gov (U.S. Department of Energy (DOE))

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity.

265

NETL Publications: 2012 University Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory Presentation PDF-7.41MB South Coast AQMD's Gas Turbine Experience-Regulations and Operations Mohsen Nazemi, Deputy Executive Officer,...

266

Engines, turbines and compressors directory  

SciTech Connect

This book is a directory of engines, turbines and compressors. It adds and deletes compressor engines in use by the gas industry.

1989-01-01T23:59:59.000Z

267

AE Biofuels Inc formerly Marwich II Ltd | Open Energy Information  

Open Energy Info (EERE)

AE Biofuels Inc formerly Marwich II Ltd AE Biofuels Inc formerly Marwich II Ltd Jump to: navigation, search Name AE Biofuels Inc. (formerly Marwich II Ltd.) Place West Palm Beach, Florida Zip 33414 Sector Biofuels Product Marwich II, Ltd. (OTC.BB: MWII.OB) merged in December 2007 with AE Biofuels, Inc., formerly American Ethanol. Subsequently Marwich II, Ltd. has changed its name to AE Biofuels (OTC: AEBF). References AE Biofuels Inc. (formerly Marwich II Ltd.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AE Biofuels Inc. (formerly Marwich II Ltd.) is a company located in West Palm Beach, Florida . References ↑ "[ AE Biofuels Inc. (formerly Marwich II Ltd.)]" Retrieved from "http://en.openei.org/w/index.php?title=AE_Biofuels_Inc_formerly_Marwich_II_Ltd&oldid=341812"

268

Cogenra Solar formerly SkyWatch Energy | Open Energy Information  

Open Energy Info (EERE)

Cogenra Solar formerly SkyWatch Energy Cogenra Solar formerly SkyWatch Energy Jump to: navigation, search Name Cogenra Solar (formerly SkyWatch Energy) Place Mountain View, California Zip 94043 Sector Solar Product California-based and founded by a former Applied Materials executive, Cogenra Solar is a stealth mode solar company. References Cogenra Solar (formerly SkyWatch Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cogenra Solar (formerly SkyWatch Energy) is a company located in Mountain View, California . References ↑ "Cogenra Solar (formerly SkyWatch Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Cogenra_Solar_formerly_SkyWatch_Energy&oldid=343766"

269

Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble...  

Open Energy Info (EERE)

Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind Power...

270

Li ion Motors Corp formerly EV Innovations Inc | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Li ion Motors Corp formerly EV Innovations Inc Jump to: navigation, search Name Li-ion Motors Corp (formerly EV...

271

Former Worker Medical Screening Program Summary of Services Available to Former Workers, February 1, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 1, 2013 Former Worker Medical Screening Program Summary of Services Available to Former Workers (Sites listed below are primary sites served, but multiple small sites are also served by the Building Trades National Medical Screening Program for construction workers and by the National Supplemental Screening Program for production workers) State DOE Site Worker Population/Medical Screening Program Provider Local Office Location and Phone Number Alaska Amchitka Island All workers, primarily construction CPWR - The Center for Construction Research & Training (CPWR)/Building Trades National Medical Screening Program (BTMed) 1-800-866-9663 California Lawrence Berkeley National Laboratory All workers Queens College (QC)/Worker Health Protection

272

Former Worker Medical Screening Program Summary of Services Available to Former Workers, February 1, 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

February 1, 2013 Former Worker Medical Screening Program Summary of Services Available to Former Workers (Sites listed below are primary sites served, but multiple small sites are also served by the Building Trades National Medical Screening Program for construction workers and by the National Supplemental Screening Program for production workers) State DOE Site Worker Population/Medical Screening Program Provider Local Office Location and Phone Number Alaska Amchitka Island All workers, primarily construction CPWR - The Center for Construction Research & Training (CPWR)/Building Trades National Medical Screening Program (BTMed) 1-800-866-9663 California Lawrence Berkeley National Laboratory All workers Queens College (QC)/Worker Health Protection

273

GE Upgrades Top Selling Advanced Gas Turbine  

Science Conference Proceedings (OSTI)

Oct 30, 2009 ... According to GE, a typical power plant operating two new 7FA gas turbines with a single steam turbine in combined cycle configuration would...

274

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Westwind Wind Turbines Jump to: navigation, search Name Westwind Wind Turbines Place Northern Ireland, United Kingdom Zip BT29 4TF Sector Wind energy Product Northern Ireland based...

275

Baldrige Award Recipients--Solar Turbines (1998)  

Science Conference Proceedings (OSTI)

... Incorporated With customers in 86 countries, Solar Turbines Incorporated is the world's largest supplier of mid-range industrial gas turbine systems. ...

2012-11-30T23:59:59.000Z

276

Trans Fats in FoodChapter 7 Zero/Low Trans Margarine  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 7 Zero/Low Trans Margarine Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry AOCS BE5E5B1D1ACDDD4CB5DD45065EA26BB5 Press ...

277

Trans Fats in FoodChapter 4 Metabolism of Trans and Cis Fatty Acid  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 4 Metabolism of Trans and Cis Fatty Acid Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry AOCS 0C05A4BDE92AAC84620807E63F87BEF4

278

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

279

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

280

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

282

Former Workers Medical Facilities with Experience Evaluating Chronic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers Medical Facilities with Experience Evaluating Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease April 2011 This document provides a listing of medical facilities within the United States with experience in evaluating Chronic Beryllium Disease (CBD). Because the medical community at large is not experienced in the evaluation and treatment of individuals with CBD, this list is offered to individuals in the Former Worker Medical Screening Program who have received an abnormal Beryllium Lymphocyte Proliferation Test and may need further medical monitoring for CBD. Former Worker Medical Facilities with Experience Evaluating Chronic Beryllium Disease More Documents & Publications

283

Aero Turbine | Open Energy Information  

Open Energy Info (EERE)

Aero Turbine Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine Energy Company Location Riverside County CA Coordinates 33.7437°, -115.9925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7437,"lon":-115.9925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Gas turbines face new challenges  

SciTech Connect

Gas turbines continue to increase the electric power generation market in both the peaking and the intermediate load categories. With the increase in unit size and operating efficiencies. capital costs per kilowatt are reduced. Clean fuels---gas, light oil, or alcohol-type fuel--are needed for the gas turbines. The most efficient method of power generation is now attained from gas turbines, but the shortage of clean fuels looms. Manufacturers are anticipating the availability of clean fuels and continue working on the development of high- pressure, high-temperature turbines. In the near-term, increased efficiency is sought by making use of the turbine exhaust heat. involving combined or regenerative cycles. (MCW)

Papamarcos, J.

1973-12-01T23:59:59.000Z

285

HydroGen Corporation formerly Chiste Corp | Open Energy Information  

Open Energy Info (EERE)

HydroGen Corporation formerly Chiste Corp HydroGen Corporation formerly Chiste Corp Jump to: navigation, search Name HydroGen Corporation (formerly Chiste Corp) Place Jefferson Hills, Pennsylvania Zip 15025 Sector Hydro, Hydrogen Product HydroGen Corporation is a manufacturer of multi-megawatt fuel cell systems utilizing its proprietary 400-kilowatt phosphoric acid fuel cell (PAFC) technology References HydroGen Corporation (formerly Chiste Corp)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HydroGen Corporation (formerly Chiste Corp) is a company located in Jefferson Hills, Pennsylvania . References ↑ "HydroGen Corporation (formerly Chiste Corp)" Retrieved from "http://en.openei.org/w/index.php?title=HydroGen_Corporation_formerly_Chiste_Corp&oldid=346722"

286

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

287

FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

FRV USA formerly Fotowatio Renewable Ventures LLC FRV USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name FRV USA (formerly Fotowatio Renewable Ventures LLC) Place San Francisco, California Zip 94104 Sector Renewable Energy Product A wholly-owned subsidiary of FRV which manages and operates renewable energy assets in the US. References FRV USA (formerly Fotowatio Renewable Ventures LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. FRV USA (formerly Fotowatio Renewable Ventures LLC) is a company located in San Francisco, California . References ↑ "FRV USA (formerly Fotowatio Renewable Ventures LLC)" Retrieved from "http://en.openei.org/w/index.php?title=FRV_USA_formerly_Fotowatio_Renewable_Ventures_LLC&oldid=345517"

288

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

289

Solera Sustainable Energies Company formerly Phantom Electron Corp | Open  

Open Energy Info (EERE)

Solera Sustainable Energies Company formerly Phantom Electron Corp Solera Sustainable Energies Company formerly Phantom Electron Corp Jump to: navigation, search Name Solera Sustainable Energies Company (formerly Phantom Electron Corp) Place Toronto, Ontario, Canada Zip M1V 5N2 Sector Solar Product Toronto-based provider of utility-grid connected solar power. References Solera Sustainable Energies Company (formerly Phantom Electron Corp)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solera Sustainable Energies Company (formerly Phantom Electron Corp) is a company located in Toronto, Ontario, Canada . References ↑ "Solera Sustainable Energies Company (formerly Phantom Electron Corp)" Retrieved from "http://en.openei.org/w/index.php?title=Solera_Sustainable_Energies_Company_formerly_Phantom_Electron_Corp&oldid=351467

290

Solargenix Energy LLC formerly Duke Solar | Open Energy Information  

Open Energy Info (EERE)

Energy LLC formerly Duke Solar Energy LLC formerly Duke Solar Jump to: navigation, search Name Solargenix Energy LLC (formerly Duke Solar) Place Raleigh, North Carolina Zip 27604 Sector Solar Product Manufactures and develops projects using a STEGS parabolic trough system, and also produces solar passive water heating systems. References Solargenix Energy LLC (formerly Duke Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solargenix Energy LLC (formerly Duke Solar) is a company located in Raleigh, North Carolina . References ↑ "Solargenix Energy LLC (formerly Duke Solar)" Retrieved from "http://en.openei.org/w/index.php?title=Solargenix_Energy_LLC_formerly_Duke_Solar&oldid=351379"

291

REN Electron srl formerly FIMI Group srl | Open Energy Information  

Open Energy Info (EERE)

Electron srl formerly FIMI Group srl Electron srl formerly FIMI Group srl Jump to: navigation, search Name REN Electron srl (formerly FIMI Group srl) Place Carugate (MI), Italy Zip 20061 Sector Solar Product Italian solar installers. References REN Electron srl (formerly FIMI Group srl)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. REN Electron srl (formerly FIMI Group srl) is a company located in Carugate (MI), Italy . References ↑ "[ REN Electron srl (formerly FIMI Group srl)]" Retrieved from "http://en.openei.org/w/index.php?title=REN_Electron_srl_formerly_FIMI_Group_srl&oldid=350281" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

292

Colexon Solar Invest AS Formerly Renewagy AS | Open Energy Information  

Open Energy Info (EERE)

Invest AS Formerly Renewagy AS Invest AS Formerly Renewagy AS Jump to: navigation, search Name Colexon Solar Invest AS (Formerly Renewagy AS) Place Virum, Denmark Zip DK-2830 Sector Solar, Wind energy Product Denmark-based development and investment company that focuses on wind and solar PV project development. References Colexon Solar Invest AS (Formerly Renewagy AS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Colexon Solar Invest AS (Formerly Renewagy AS) is a company located in Virum, Denmark . References ↑ "Colexon Solar Invest AS (Formerly Renewagy AS)" Retrieved from "http://en.openei.org/w/index.php?title=Colexon_Solar_Invest_AS_Formerly_Renewagy_AS&oldid=34

293

EIQ Energy Inc formerly Sympagis | Open Energy Information  

Open Energy Info (EERE)

EIQ Energy Inc formerly Sympagis EIQ Energy Inc formerly Sympagis Jump to: navigation, search Name eIQ Energy Inc (formerly Sympagis) Place San Jose, California Zip 95126 Product California-based PV power conditioner and parallel architecture system balance of plant equipment maker - basically, developing a microinverter equivalent. References eIQ Energy Inc (formerly Sympagis)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. eIQ Energy Inc (formerly Sympagis) is a company located in San Jose, California . References ↑ "eIQ Energy Inc (formerly Sympagis)" Retrieved from "http://en.openei.org/w/index.php?title=EIQ_Energy_Inc_formerly_Sympagis&oldid=344577" Categories: Clean Energy Organizations

294

Soliant Energy formerly Practical Instruments Inc | Open Energy Information  

Open Energy Info (EERE)

Soliant Energy formerly Practical Instruments Inc Soliant Energy formerly Practical Instruments Inc Jump to: navigation, search Name Soliant Energy (formerly Practical Instruments Inc) Place Pasadena, California Zip 91107 Product US-based designer and manufacturer of concentraing PV silicon modules, with tracking systems. Aims for the rooftop market. References Soliant Energy (formerly Practical Instruments Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Soliant Energy (formerly Practical Instruments Inc) is a company located in Pasadena, California . References ↑ "Soliant Energy (formerly Practical Instruments Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Soliant_Energy_formerly_Practical_Instruments_Inc&oldid=351479"

295

SeaEnergy PLC formerly Seaenergy Renewables | Open Energy Information  

Open Energy Info (EERE)

SeaEnergy PLC formerly Seaenergy Renewables SeaEnergy PLC formerly Seaenergy Renewables Jump to: navigation, search Name SeaEnergy PLC (formerly Seaenergy Renewables) Place United Kingdom Sector Wind energy Product Subsidiary of Aberdeen based energy investment firm Ramco Energy Plc, set up to develop, own and operate offshore wind farms. References SeaEnergy PLC (formerly Seaenergy Renewables)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SeaEnergy PLC (formerly Seaenergy Renewables) is a company located in United Kingdom . References ↑ "SeaEnergy PLC (formerly Seaenergy Renewables)" Retrieved from "http://en.openei.org/w/index.php?title=SeaEnergy_PLC_formerly_Seaenergy_Renewables&oldid=35070

296

Greenvironment plc formerly Greenvironment Oy | Open Energy Information  

Open Energy Info (EERE)

Greenvironment plc formerly Greenvironment Oy Greenvironment plc formerly Greenvironment Oy Jump to: navigation, search Name Greenvironment plc (formerly Greenvironment Oy) Place Berlin, Germany Zip 10243 Product Berlin-based company specializing in technology for the construction and operation of autonomous cogeneration plants for biogas and natural gas. References Greenvironment plc (formerly Greenvironment Oy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Greenvironment plc (formerly Greenvironment Oy) is a company located in Berlin, Germany . References ↑ "[ Greenvironment plc (formerly Greenvironment Oy)]" Retrieved from "http://en.openei.org/w/index.php?title=Greenvironment_plc_formerly_Greenvironment_Oy&oldid=346127"

297

Better Place Formerly Project Better Place | Open Energy Information  

Open Energy Info (EERE)

Place Formerly Project Better Place Place Formerly Project Better Place Jump to: navigation, search Name Better Place (Formerly Project Better Place) Place Palo Alto, California Zip 94304 Product Project Better Place will establish a widespread grid of electric charging spots to provide consumers with the energy to keep their cars charged and driving without the need to wait for electricity at any point. References Better Place (Formerly Project Better Place)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Better Place (Formerly Project Better Place) is a company located in Palo Alto, California . References ↑ "Better Place (Formerly Project Better Place)" Retrieved from "http://en.openei.org/w/index.php?title=Better_Place_Formerly_Project_Better_Place&oldid=342693

298

Applied Materials Switzerland SA Formerly HCT Shaping Systems SA | Open  

Open Energy Info (EERE)

Switzerland SA Formerly HCT Shaping Systems SA Switzerland SA Formerly HCT Shaping Systems SA Jump to: navigation, search Name Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA) Place Chezeaux, Switzerland Zip 1033 Product Manufacturer of wire saws for the semiconductor and photovoltaic wafer slicing industries. References Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA) is a company located in Chezeaux, Switzerland . References ↑ "[ Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA)]" Retrieved from "http://en.openei.org/w/index.php?title=Applied_Materials_Switzerland_SA_Formerly_HCT_Shaping_Systems_SA&oldid=342245"

299

Utica Energy LLC formerly Algoma Ethanol | Open Energy Information  

Open Energy Info (EERE)

Utica Energy LLC formerly Algoma Ethanol Utica Energy LLC formerly Algoma Ethanol Jump to: navigation, search Name Utica Energy LLC (formerly Algoma Ethanol) Place Oshkosh, Wisconsin Product Utica Energy, founded by 5 investing farmers built an ethanol plant west of Oshkosh, Wisconsin. References Utica Energy LLC (formerly Algoma Ethanol)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utica Energy LLC (formerly Algoma Ethanol) is a company located in Oshkosh, Wisconsin . References ↑ "Utica Energy LLC (formerly Algoma Ethanol)" Retrieved from "http://en.openei.org/w/index.php?title=Utica_Energy_LLC_formerly_Algoma_Ethanol&oldid=352687" Categories: Clean Energy Organizations Companies

300

Battery Park Industries Inc formerly Moltech Power Systems Inc | Open  

Open Energy Info (EERE)

Battery Park Industries Inc formerly Moltech Power Systems Inc Battery Park Industries Inc formerly Moltech Power Systems Inc Jump to: navigation, search Name Battery Park Industries Inc (formerly Moltech Power Systems, Inc) Place Gainesville, Florida Product Bundled rechargeable battery manufacturing assets of Moltech Power Systems, following that company's bankruptcy. References Battery Park Industries Inc (formerly Moltech Power Systems, Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Battery Park Industries Inc (formerly Moltech Power Systems, Inc) is a company located in Gainesville, Florida . References ↑ "Battery Park Industries Inc (formerly Moltech Power Systems, Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Battery_Park_Industries_Inc_formerly_Moltech_Power_Systems_Inc&oldid=342547"

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sanraa Media Limited India formerly Sanra Software | Open Energy  

Open Energy Info (EERE)

Sanraa Media Limited India formerly Sanra Software Sanraa Media Limited India formerly Sanra Software Jump to: navigation, search Name Sanraa Media Limited India (formerly Sanra Software) Place Chennai, Tamil Nadu, India Zip 600096 Sector Solar Product Chennai-based media and entertainment firm. Through its joint venture with Sanyo Gulf, the firm is planning to foray into solar power. References Sanraa Media Limited India (formerly Sanra Software)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sanraa Media Limited India (formerly Sanra Software) is a company located in Chennai, Tamil Nadu, India . References ↑ "Sanraa Media Limited India (formerly Sanra Software)" Retrieved from "http://en.openei.org/w/index.php?title=Sanraa_Media_Limited_India_formerly_Sanra_Software&oldid=350601

302

Parques Eolicas Reunidos Formerly Naturener Eolica SAU | Open Energy  

Open Energy Info (EERE)

Parques Eolicas Reunidos Formerly Naturener Eolica SAU Parques Eolicas Reunidos Formerly Naturener Eolica SAU Jump to: navigation, search Name Parques Eolicas Reunidos (Formerly Naturener Eolica SAU) Place Spain Sector Wind energy Product Subsidiary of Iberdrola. Operator of wind farms across Spain. References Parques Eolicas Reunidos (Formerly Naturener Eolica SAU)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Parques Eolicas Reunidos (Formerly Naturener Eolica SAU) is a company located in Spain . References ↑ "[ Parques Eolicas Reunidos (Formerly Naturener Eolica SAU)]" Retrieved from "http://en.openei.org/w/index.php?title=Parques_Eolicas_Reunidos_Formerly_Naturener_Eolica_SAU&oldid=349608"

303

Powered by Renewables formerly Nevada Wind | Open Energy Information  

Open Energy Info (EERE)

formerly Nevada Wind formerly Nevada Wind Jump to: navigation, search Name Powered by Renewables (formerly Nevada Wind) Place Las Vegas, Nevada Zip 89102 Sector Renewable Energy Product PBR develops, manages and sells utility-scale renewable energy projects. References Powered by Renewables (formerly Nevada Wind)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powered by Renewables (formerly Nevada Wind) is a company located in Las Vegas, Nevada . References ↑ "Powered by Renewables (formerly Nevada Wind)" Retrieved from "http://en.openei.org/w/index.php?title=Powered_by_Renewables_formerly_Nevada_Wind&oldid=349890" Categories: Clean Energy Organizations Companies

304

Noventi Venture Capital formerly CIR Ventures | Open Energy Information  

Open Energy Info (EERE)

Noventi Venture Capital formerly CIR Ventures Noventi Venture Capital formerly CIR Ventures Jump to: navigation, search Name Noventi Venture Capital (formerly CIR Ventures) Place Menlo Park, California Zip CA 94025 Product Noventi (formerly CIR Ventures, aka Cypress Ventures, part of the CIR Group) is an early-stage venture capital firm actively looking for investment opportunities that focus on the convergence of technology, energy, and the environment. References Noventi Venture Capital (formerly CIR Ventures)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Noventi Venture Capital (formerly CIR Ventures) is a company located in Menlo Park, California . References ↑ "Noventi Venture Capital (formerly CIR Ventures)"

305

Nanergy Inc formerly ObjectSoft Corporation | Open Energy Information  

Open Energy Info (EERE)

Nanergy Inc formerly ObjectSoft Corporation Nanergy Inc formerly ObjectSoft Corporation Jump to: navigation, search Name Nanergy Inc (formerly ObjectSoft Corporation) Place New York, New York Zip 8852 Sector Carbon, Hydro, Hydrogen Product A development-stage company working on nanotechnology products, particularly photovoltaic nanofilms and hydrogen storage using carbon nanotubes. References Nanergy Inc (formerly ObjectSoft Corporation)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Nanergy Inc (formerly ObjectSoft Corporation) is a company located in New York, New York . References ↑ "Nanergy Inc (formerly ObjectSoft Corporation)" Retrieved from "http://en.openei.org/w/index.php?title=Nanergy_Inc_formerly_ObjectSoft_Corporation&oldid=349005"

306

Chinese Renewable Energy Society CRES formerly Chinese Solar Energy Society  

Open Energy Info (EERE)

CRES formerly Chinese Solar Energy Society CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) Place Beijing, Beijing Municipality, China Sector Renewable Energy, Solar Product National academic association in renewable energy industry, formerly China Solar Energy society. References Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) is a company located in Beijing, Beijing Municipality, China . References ↑ "Chinese Renewable Energy Society (CRES) (formerly Chinese

307

Eden Cryogenics LLC formerly Brehon Cryogenics | Open Energy Information  

Open Energy Info (EERE)

Cryogenics LLC formerly Brehon Cryogenics Cryogenics LLC formerly Brehon Cryogenics Jump to: navigation, search Name Eden Cryogenics, LLC. (formerly Brehon Cryogenics) Place Plain City, Ohio Zip 43064 Sector Vehicles Product Will fabricate cryogenic hardware for use in alternative fueled vehicles, fueling stations, aerospace, energy, and industrial applications. References Eden Cryogenics, LLC. (formerly Brehon Cryogenics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Eden Cryogenics, LLC. (formerly Brehon Cryogenics) is a company located in Plain City, Ohio . References ↑ "[ Eden Cryogenics, LLC. (formerly Brehon Cryogenics)]" Retrieved from "http://en.openei.org/w/index.php?title=Eden_Cryogenics_LLC_formerly_Brehon_Cryogenics&oldid=344531

308

GEA Caldemon formerly known as Caldemon Iberica | Open Energy Information  

Open Energy Info (EERE)

Caldemon formerly known as Caldemon Iberica Caldemon formerly known as Caldemon Iberica Jump to: navigation, search Name GEA Caldemon (formerly known as Caldemon Iberica) Place Spain Sector Solar Product GEA Caldemon manufacturers shell and tube heat exchangers and surface condensers, commonly used in solar thermal power plants. References GEA Caldemon (formerly known as Caldemon Iberica)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GEA Caldemon (formerly known as Caldemon Iberica) is a company located in Spain . References ↑ "GEA Caldemon (formerly known as Caldemon Iberica)" Retrieved from "http://en.openei.org/w/index.php?title=GEA_Caldemon_formerly_known_as_Caldemon_Iberica&oldid=34572

309

Spire Semiconductor formerly Bandwidth Semiconductor LLC | Open Energy  

Open Energy Info (EERE)

Semiconductor formerly Bandwidth Semiconductor LLC Semiconductor formerly Bandwidth Semiconductor LLC Jump to: navigation, search Name Spire Semiconductor (formerly Bandwidth Semiconductor LLC) Place Hudson, New Hampshire Zip 3051 Product Spire-owned US-based manufacturer of gallium-arsenide (GaAs) cells; offers design and manufacturing capabilities of concentrator cells. References Spire Semiconductor (formerly Bandwidth Semiconductor LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spire Semiconductor (formerly Bandwidth Semiconductor LLC) is a company located in Hudson, New Hampshire . References ↑ "Spire Semiconductor (formerly Bandwidth Semiconductor LLC)" Retrieved from "http://en.openei.org/w/index.php?title=Spire_Semiconductor_formerly_Bandwidth_Semiconductor_LLC&oldid=351621"

310

US Geothermal Inc formerly US Cobalt Inc | Open Energy Information  

Open Energy Info (EERE)

Geothermal Inc formerly US Cobalt Inc Geothermal Inc formerly US Cobalt Inc Jump to: navigation, search Name US Geothermal Inc (formerly US Cobalt Inc) Place Boise, Idaho Zip 83706 Sector Geothermal energy Product Geothermal power project developer, concentrating on the Raft River region. References US Geothermal Inc (formerly US Cobalt Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Geothermal Inc (formerly US Cobalt Inc) is a company located in Boise, Idaho . References ↑ "US Geothermal Inc (formerly US Cobalt Inc)" Retrieved from "http://en.openei.org/w/index.php?title=US_Geothermal_Inc_formerly_US_Cobalt_Inc&oldid=352611" Categories: Clean Energy Organizations Companies

311

Technion Seed Formerly Technion Entrepreneurial Incubator Company | Open  

Open Energy Info (EERE)

Technion Seed Formerly Technion Entrepreneurial Incubator Company Technion Seed Formerly Technion Entrepreneurial Incubator Company Jump to: navigation, search Name Technion Seed (Formerly Technion Entrepreneurial Incubator Company) Place Israel Sector Services Product General Financial & Legal Services ( Academic / Research foundation ) References Technion Seed (Formerly Technion Entrepreneurial Incubator Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Technion Seed (Formerly Technion Entrepreneurial Incubator Company) is a company located in Israel . References ↑ "Technion Seed (Formerly Technion Entrepreneurial Incubator Company)" Retrieved from "http://en.openei.org/w/index.php?title=Technion_Seed_Formerly_Technion_Entrepreneurial_Incubator_Company&oldid=352066

312

Mercury Energy formerly Aquus Energy | Open Energy Information  

Open Energy Info (EERE)

Energy formerly Aquus Energy Energy formerly Aquus Energy Jump to: navigation, search Name Mercury Energy (formerly Aquus Energy) Place New Rochelle, New York Zip 10801 Sector Solar Product Integrator of solar energy systems for commercial and residential clients located in the mid-Atlantic and Northeast regions of the US through its wholly-owned subsidary Mercury Solar Energy. References Mercury Energy (formerly Aquus Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mercury Energy (formerly Aquus Energy) is a company located in New Rochelle, New York . References ↑ "Mercury Energy (formerly Aquus Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Energy_formerly_Aquus_Energy&oldid=348731

313

Naturener USA LLC formerly Great Plains Wind Energy | Open Energy  

Open Energy Info (EERE)

LLC formerly Great Plains Wind Energy LLC formerly Great Plains Wind Energy Jump to: navigation, search Name Naturener USA, LLC (formerly Great Plains Wind & Energy) Place San Francisco, California Zip 94111 Sector Wind energy Product Developer of a wind farm in Montana, has been sold to Naturener S.A. References Naturener USA, LLC (formerly Great Plains Wind & Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Naturener USA, LLC (formerly Great Plains Wind & Energy) is a company located in San Francisco, California . References ↑ "Naturener USA, LLC (formerly Great Plains Wind & Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Naturener_USA_LLC_formerly_Great_Plains_Wind_Energy&oldid=3491

314

Siemens Solar formerly ARCO Solar Corporation | Open Energy Information  

Open Energy Info (EERE)

Solar formerly ARCO Solar Corporation Solar formerly ARCO Solar Corporation Jump to: navigation, search Name Siemens Solar (formerly ARCO Solar Corporation) Place Arizona Product Built a 6MW CPV project in 1984, which was a technical failure due to encapsulation issues and was dismantled, absorbed by Siemens in 1990. References Siemens Solar (formerly ARCO Solar Corporation)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Siemens Solar (formerly ARCO Solar Corporation) is a company located in Arizona . References ↑ "Siemens Solar (formerly ARCO Solar Corporation)" Retrieved from "http://en.openei.org/w/index.php?title=Siemens_Solar_formerly_ARCO_Solar_Corporation&oldid=351054"

315

Ultralife Corporation formerly Ultralife Batteries Inc | Open Energy  

Open Energy Info (EERE)

Corporation formerly Ultralife Batteries Inc Corporation formerly Ultralife Batteries Inc Jump to: navigation, search Name Ultralife Corporation (formerly Ultralife Batteries Inc.) Place Newark, New Jersey Zip NY 14513 Product New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References Ultralife Corporation (formerly Ultralife Batteries Inc.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ultralife Corporation (formerly Ultralife Batteries Inc.) is a company located in Newark, New Jersey . References ↑ "Ultralife Corporation (formerly Ultralife Batteries Inc.)" Retrieved from "http://en.openei.org/w/index.php?title=Ultralife_Corporation_formerly_Ultralife_Batteries_Inc&oldid=352474"

316

Marine Projects International Ltd MPI formerly Mayflower Energy Ltd | Open  

Open Energy Info (EERE)

MPI formerly Mayflower Energy Ltd MPI formerly Mayflower Energy Ltd Jump to: navigation, search Name Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd) Place United Kingdom Zip TS3 8BS Sector Wind energy Product Specialist offshore wind installation equipment supplier. References Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd) is a company located in United Kingdom . References ↑ "Marine Projects International Ltd (MPI) (formerly Mayflower Energy Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Marine_Projects_International_Ltd_MPI_formerly_Mayflower_Energy_Ltd&oldid=348642

317

Vista International Technologies Inc formerly Nathaniel Energy Corp | Open  

Open Energy Info (EERE)

Inc formerly Nathaniel Energy Corp Inc formerly Nathaniel Energy Corp Jump to: navigation, search Name Vista International Technologies Inc (formerly Nathaniel Energy Corp) Place Englewood, Colorado Zip 80112 Product Using its proprietary patented technology, the Thermal Gasifier, Nathaniel produces electricity, heat and liquid fuels. References Vista International Technologies Inc (formerly Nathaniel Energy Corp)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Vista International Technologies Inc (formerly Nathaniel Energy Corp) is a company located in Englewood, Colorado . References ↑ "Vista International Technologies Inc (formerly Nathaniel Energy Corp)" Retrieved from "http://en.openei.org/w/index.php?title=Vista_International_Technologies_Inc_formerly_Nathaniel_Energy_Corp&oldid=352865

318

Antec Solar Energy AG formerly Oekologik Ecovest AG | Open Energy  

Open Energy Info (EERE)

Antec Solar Energy AG formerly Oekologik Ecovest AG Antec Solar Energy AG formerly Oekologik Ecovest AG Jump to: navigation, search Name Antec Solar Energy AG (formerly Oekologik Ecovest AG) Place Arnstadt, Germany Zip 99310 Sector Solar Product German manufacturer of CdTe PV cells and modules; also manages funds for the development of solar parks. References Antec Solar Energy AG (formerly Oekologik Ecovest AG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antec Solar Energy AG (formerly Oekologik Ecovest AG) is a company located in Arnstadt, Germany . References ↑ "Antec Solar Energy AG (formerly Oekologik Ecovest AG)" Retrieved from "http://en.openei.org/w/index.php?title=Antec_Solar_Energy_AG_formerly_Oekologik_Ecovest_AG&oldid=342206

319

Lime Energy formerly Electric City Corporation | Open Energy Information  

Open Energy Info (EERE)

Energy formerly Electric City Corporation Energy formerly Electric City Corporation Jump to: navigation, search Name Lime Energy (formerly Electric City Corporation) Place Elk Grove Village, Illinois Zip 60007 Product Developer, manufacturer and integrator of energy savings technologies and building automation systems. Specialist in demand response systems. References Lime Energy (formerly Electric City Corporation)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Lime Energy (formerly Electric City Corporation) is a company located in Elk Grove Village, Illinois . References ↑ "Lime Energy (formerly Electric City Corporation)" Retrieved from "http://en.openei.org/w/index.php?title=Lime_Energy_formerly_Electric_City_Corporation&oldid=348375"

320

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COOPERATIVE COOPERATIVE AGREEMENT NO. DE-FC21-95MC32267; DOE WAIVER DOCKET W(A)-96-002 [ORO-620] Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Participant"), has made a timely request for an advance waiver of worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Cooperative Agreement No. DE-FC21-95MC32267. The goal of this project is to continue development of the advance turbine system (ATS) technology and address the key barrier issues to its commercialization. In particular, the Participant will demonstrate (at an appropriate scale) the technology readiness of parts and subsystems critical to its gas-fired ATS. The work is sponsored by the Office of Fossil Energy. This cooperative agreement is Phase 3 of DOE's ATS

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TRAN-STAR EXECUTIVE LIMOUSINE COMPANY  

NLE Websites -- All DOE Office Websites (Extended Search)

TRAN-STAR EXECUTIVE LIMOUSINE COMPANY TRAN-STAR EXECUTIVE LIMOUSINE COMPANY http://www.tranexec.com 20% off published rates for BNL Our reservation center is open 24 hours a day, 365 days a year, so you will always talk to a live agent who has direct contact with our chauffeurs. You can make reservations via phone, website or a simple e-mail to customerservice@tranexec.com once a profile has been established. Our advanced reservation system will track any flight and you can rest assured someone will always be there to meet the arriving passenger, no matter what time the flight arrives. http://www.tranexec.com/TranStarSalesBrochure.pdf These rates are inclusive rates, meaning they include gratuity, taxes....everything. They do not include parking or tolls

322

SensorTran | Open Energy Information  

Open Energy Info (EERE)

SensorTran SensorTran Jump to: navigation, search Name SensorTran Place Austin, Texas Zip 78701 Product Austin, Texas-based designer of fibre optic-based Distributed Temperature Sensing (DTS) systems and solutions for the energy industry, with applications in asset and environmental monitoring. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Yale ME Turbine Test cell instructions Background  

E-Print Network (OSTI)

Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

Haller, Gary L.

324

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network (OSTI)

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

325

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

326

Advanced Coating Development for Gas Turbine Components  

Science Conference Proceedings (OSTI)

Sacrificial, oxidation-resistant coatings on turbine blades in high-firing temperature gas turbines are wearing out at an unacceptably rapid rate, resulting in excessive downtime and repair costs for turbine operators. This report summarizes the results of an exploratory development project that assessed the feasibility of decelerating the degradation rate of an MCrAlY coating on several turbine blade alloys.

2000-08-01T23:59:59.000Z

327

Coatings for gas turbines; Specialized coatings boost, maintain turbine efficiency  

SciTech Connect

Airlines have been coating their jet engines for the past 30 years, thereby avoiding corrosion, erosion and wear. More recently, operators of mechanical-drive gas turbines have come to realize the value of coatings as a way to keep down costs. This paper describes specialized coatings technology which has evolved for gas turbines. Coatings have been designed for specific areas and even specific components within the turbine. Because operators must often request these coatings when buying new equipment or at overhaul, a basic understanding of the technology is presented.

1988-10-01T23:59:59.000Z

328

Record of Decision for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project (DOE/EIS-0183)(10/19/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for integrating power from the TransAlta Centralia Generation LLC Big Hanaford Project, a 248-megawatt (MW) gas-fired, combined-cycle combustion turbine (CCCT) power generation project (Project), into the Federal Columbia River Transmission System (FCRTS). The Project is located within an industrial area adjacent to TransAlta's existing Centralia Steam Plant in Lewis County, Washington. The West Coast is experiencing a shortfall in electric energy supply, as well as a volatile wholesale power market in which prices have reached record highs. The Project is one of

329

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

330

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

331

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

332

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

333

Turbine Blade Shape Favorable for Fish Survival  

Science Conference Proceedings (OSTI)

Various mechanisms associated with turbine design and operation injure fish passing through hydro turbines. Pilot-scale tests with various fish species and sizes showed that most turbine passage injury and mortality are caused by blade strike. Leading edge blade strike is particularly important for turbines with numerous blades. Very little information and data are available on the mechanics of fish struck by turbine blades and the resulting injury and mortality rates. Determining what leading edge blade...

2008-05-29T23:59:59.000Z

334

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

335

Development of a low swirl injector concept for gas turbines  

E-Print Network (OSTI)

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

336

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .Wind Turbine . . . . . . . . . . . . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

337

Gamesa Wind Turbines Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Pvt Ltd Jump to: navigation, search Name Gamesa Wind Turbines Pvt. Ltd. Place Chennai, Tamil Nadu, India Sector Wind energy Product Chennai-based wind turbine...

338

Experimental Study of Stability Limits for Slender Wind Turbine Blades.  

E-Print Network (OSTI)

??There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine (more)

Ladge, Shruti

2012-01-01T23:59:59.000Z

339

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

340

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

2.2.1 Turbine Description . . . . . . . . . . . . . . . . .112 4.2 Description of Turbine . . . . . . . . . . . . . . .3.2.1 Description of Test Wind Turbine . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

342

Associated Media Holdings Inc formerly EL Tigre Development Corp | Open  

Open Energy Info (EERE)

Media Holdings Inc formerly EL Tigre Development Corp Media Holdings Inc formerly EL Tigre Development Corp Jump to: navigation, search Name Associated Media Holdings Inc (formerly EL Tigre Development Corp) Place San Diego, California Zip 92150-2548 Product Engaged in research, development and commercialization of technologies for the production of alternative sources of fuel and the destruction and/or remediation of liquid and solid waste. References Associated Media Holdings Inc (formerly EL Tigre Development Corp)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Associated Media Holdings Inc (formerly EL Tigre Development Corp) is a company located in San Diego, California . References ↑ "Associated Media Holdings Inc (formerly EL Tigre Development

343

Former Assistant Secretary Looks Back on Legacy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Looks Back on Legacy Looks Back on Legacy Former Assistant Secretary Looks Back on Legacy March 28, 2013 - 12:00pm Addthis Former EM Assistant Secretary Jessie Roberson now serves on the Defense Nuclear Facilities Safety Board. Former EM Assistant Secretary Jessie Roberson now serves on the Defense Nuclear Facilities Safety Board. Editor's note: In an occasional EM Update series, we feature interviews with former EM Assistant Secretaries to reflect on their achievements and challenges in the world's largest nuclear cleanup and to discuss endeavors in life after EM. "It's one of those jobs where you're running at 100 miles per hour," said Jessie Roberson, a former EM Assistant Secretary. The current Defense Nuclear Facilities Safety Board (DNFSB) vice chairwoman was nominated by former President George W. Bush to lead EM in 2001 and

344

Bush Administration to Expand Department of Energy Former Worker Medical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Expand Department of Energy Former Worker to Expand Department of Energy Former Worker Medical Screening Program Bush Administration to Expand Department of Energy Former Worker Medical Screening Program February 9, 2005 - 10:05am Addthis Estimates project that over 25,000 additional workers will receive screening Program Fact Sheet [PDF] U.S. Map of Medical Screening Sites [GIF] WASHINGTON, D.C. - U.S. Secretary of Energy Samuel W. Bodman today announced that the Bush administration will add nine additional medical screening centers as part of the department's Former Worker Medical Screening Program at no additional cost to the taxpayer. Under this expansion, the Former Worker Medical Screening Program will offer all former Energy Department employees, contractors and subcontractors free medical examinations to determine if possible exposure to harmful

345

Pure Biofuels Corporation formerly Metasun Enterprises Inc | Open Energy  

Open Energy Info (EERE)

Biofuels Corporation formerly Metasun Enterprises Inc Biofuels Corporation formerly Metasun Enterprises Inc Jump to: navigation, search Name Pure Biofuels Corporation (formerly Metasun Enterprises Inc) Place Beverly Hills, California Zip 90210 Sector Biofuels Product Biodiesel producer headquartered in the US with operations conducted in Peru through subsidiary Pure Biofuels del Peru SAC. References Pure Biofuels Corporation (formerly Metasun Enterprises Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pure Biofuels Corporation (formerly Metasun Enterprises Inc) is a company located in Beverly Hills, California . References ↑ "Pure Biofuels Corporation (formerly Metasun Enterprises Inc)" Retrieved from

346

Conergy Inc formerly Dankoff Solar Products Inc | Open Energy Information  

Open Energy Info (EERE)

Inc formerly Dankoff Solar Products Inc Inc formerly Dankoff Solar Products Inc Jump to: navigation, search Name Conergy Inc (formerly Dankoff Solar Products Inc) Place Santa Fe, New Mexico Zip NM 87507 Sector Solar Product Dankoff Solar Products is a wholesale-only distributor of photovoltaic system components, a manufacturer and importer of solar water pumps, and a supplier of solar heating components. References Conergy Inc (formerly Dankoff Solar Products Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Conergy Inc (formerly Dankoff Solar Products Inc) is a company located in Santa Fe, New Mexico . References ↑ "[ Conergy Inc (formerly Dankoff Solar Products Inc)]" Retrieved from

347

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

348

Solco International Ltd formerly Solar Energy Systems | Open Energy  

Open Energy Info (EERE)

International Ltd formerly Solar Energy Systems International Ltd formerly Solar Energy Systems Jump to: navigation, search Name Solco International Ltd (formerly Solar Energy Systems) Place Welshpool, Western Australia, Australia Zip 6016 Sector Solar Product Solar techology company specialising in solar powered energy systems, pumps and reverse osmosis water purification systems. References Solco International Ltd (formerly Solar Energy Systems)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solco International Ltd (formerly Solar Energy Systems) is a company located in Welshpool, Western Australia, Australia . References ↑ "Solco International Ltd (formerly Solar Energy Systems)" Retrieved from

349

Small Wind Turbines Taking Off: Q&A with Andy Kruse | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Turbines Taking Off: Q&A with Andy Kruse Small Wind Turbines Taking Off: Q&A with Andy Kruse Small Wind Turbines Taking Off: Q&A with Andy Kruse June 9, 2010 - 10:36am Addthis Andy Kruse, senior vice president of Southwest Windpower. Andy Kruse, senior vice president of Southwest Windpower. Stephen Graff Former Writer & editor for Energy Empowers, EERE "That whole movement is growing like I have never seen it before. And, at the same time, we are seeing a lot of more demand for large scale utility systems.... There is significant opportunity there." Andy Kruse Q&A with Andy Kruse of Southwest Windpower In the 1980s, Andy Kruse was living off the grid, generating electricity from a small solar energy system, on a cattle ranch outside Flagstaff, Ariz. In a quest for more energy, he found a business partner, who was

350

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

351

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

352

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

353

Multiple piece turbine blade  

Science Conference Proceedings (OSTI)

A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

Kimmel, Keith D (Jupiter, FL)

2012-05-29T23:59:59.000Z

354

Wind turbine rotor aileron  

DOE Patents (OSTI)

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

355

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

356

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

357

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

358

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FOk FOk FORMER QUALITY HARDWARE AND MACHINE COMPANY; 5823/5849 NORTH RAVENSWOOD AVENUE; CHICAGO, ILLINOIS JULY 1990 U.S. Department of Energy Office of Environmental Restoration -_-~---- _ .l~- "_^-- __._.---. .^- Elimination Report Former >lfality Hardware and Machine Company CONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 BACKGROUND............................ 1 Site Function ......................... 1 Site Description. ....................... Radiological History and Status ................ : ELIMINATION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . 3 REFERENCES....................... . . . . . 4 Elimination Report Former 'uality Hardware and Machine Company INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has

359

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT FOR FORMER CARPENTER STEEL COMPANY; 101 WEST BERN STREET; READING, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration Elimination Report Former Carpenter Steel Company CONTENTS INTRODUCTION ........................... 1 BACKGROUND ............................ 1 Site Function ......................... Site Description. ....................... : Radiological History and Status ................ 2 ELIMINATION ANALYSIS ....................... 3 REFERENCES ............................ 4 Elimination Report Former Carpenter Steel Company INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Manhattan Engineer District (MEO) and

360

TransCom3 Data Set Released, October 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

TransCom3 Data Set Released, October 2008 The ORNL DAAC announces the release of "TransCom3: Annual Mean CO2 Flux Estimates from Atmospheric Inversion (Level 1)", prepared by K.R....

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Official Methods for Determination of trans Fat, 2nd Edition  

Science Conference Proceedings (OSTI)

This monograph describes the most common gas chromatographic and infrared spectroscopic official methods required for the determination of trans fatty acids for food labeling purposes. Official Methods for Determination of trans Fat, 2nd

362

trans Fatty acid content of foods in China  

Science Conference Proceedings (OSTI)

Growing evidence that dietary consumption of trans fatty acid (TFA) increases the risk of cardiovascular disease has made TFA a hot topic among people, food industries, and government officials in China. trans Fatty acid content of foods in China

363

trans Fatty Acid Sample Analysis Discussion: A Tutorial Webinar  

Science Conference Proceedings (OSTI)

To ensure laboratories are properly implementing AOCS Official Method Ce 1h-05 when testing for trans fatty acids, AOCS is offering a testing sample kit that includes a webinar tutorial that thoroughly examines this method. trans Fa

364

Vermont Electric Trans Co Inc | Open Energy Information  

Open Energy Info (EERE)

Trans Co Inc Jump to: navigation, search Name Vermont Electric Trans Co Inc Place Vermont Utility Id 19950 Utility Location Yes Ownership T NERC Location NPCC NERC NPCC Yes ISO NE...

365

New England Hydro-Trans Corp | Open Energy Information  

Open Energy Info (EERE)

Trans Corp Jump to: navigation, search Name New England Hydro-Trans Corp Place New Hampshire Utility Id 13356 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes...

366

TransAtlantic Petroleum | Open Energy Information  

Open Energy Info (EERE)

TransAtlantic Petroleum TransAtlantic Petroleum Jump to: navigation, search Logo: TransAtlantic Petroleum Name TransAtlantic Petroleum Address 5910 N. Central Expressway Place Dallas, Texas Zip 75206 Product acquisition, development, exploration, and production of crude oil and natural gas. Stock Symbol TAT Year founded 1985 Phone number 214-220-4323 Website http://www.transatlanticpetrol Coordinates 32.837335°, -96.777462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.837335,"lon":-96.777462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Former Worker Medical Screening Program Related Documents & Links |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Former Worker Medical Screening Program Related Documents & Links Former Worker Medical Screening Program Related Documents & Links Related Documents & Links Beryllium Information-ORISE Chronic Beryllium Disease Information-National Jewish Health Department of Energy Human Subjects Protection Program DOE Covered Facilities Database Department of Labor Energy Employees Occupational Illness Compensation Program (EEOICP) Department of Labor EEOICP - Upcoming Events Department of Labor Office of the Ombudsman for EEOICPA NIOSH Advisory Board and Public Meetings NIOSH Division of Compensation Analysis and Support Project Websites Building Trades National Medical Screening Program Medical Exam Program for Former Workers at Los Alamos National Laboratory

368

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT  

Office of Legacy Management (LM)

(' (' . . FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT FORMER VITRO LABORATORIES FORMER VITRO LABORATORIES VITRO CORPORATION VITRO CORPORATION WEST ORANGE, NEW JERSEY WEST ORANGE, NEW JERSEY SEP 30 1985 SEP 30 1985 Department of Energy Office of Nuclear Waste Office of Remedial Action and Waste Technology Division of Facility and Site Deconxnissioning Projects . CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii Page 7 3 4 - _- mI _---. ELSMINATION REPORT FORMER VITRO LABORATORIES, VITRO CORPORATION, WEST ORAN6E, NEW JERSEY INTRODUCTION . The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site

369

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) _ WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK SEP 301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ----- ----_l_.._- .._. _- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii .- --- .- Page . 1 4 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK 1 INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

370

Bloo Solar formerly Q1 Nanosystems | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Bloo Solar (formerly Q1 Nanosystems) Place West Sacramento, California Zip 95691 Sector Solar Product String representation "Bloo Solar is b ... aic...

371

Suntech Energy Solutions Formerly EI Solutions | Open Energy...  

Open Energy Info (EERE)

(Formerly EI Solutions) Place Pasadena, California Zip 91103 Sector Solar Product A California-based solar power systems integrator and installer. References Suntech Energy...

372

The creation of identities in Former Yugoslavia and Bosnia Herzegovina.  

E-Print Network (OSTI)

?? This thesis is about the identity and the state, more specifically the identity in former Yugoslavia and the identity in Bosnia Herzegovina today. How (more)

Ladan, Nikolina

2013-01-01T23:59:59.000Z

373

Microsoft PowerPoint - former_Wadsworth.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Fish sampling ORNL staff members, including former Lab director Jeff Wadsworth (center), sample fish in a local stream ... Photos by Harry Quarles and examine what they collected....

374

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT...

375

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation,...

376

Bloom Energy formerly Ion America | Open Energy Information  

Open Energy Info (EERE)

Ion America) Place Sunnyvale, California Zip 94089 Product California-based fuel cell start-up. References Bloom Energy (formerly Ion America)1 LinkedIn Connections...

377

National Day of Remembrance HSS Honors Former Nuclear Weapons...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers Third Radiation Effects Research Foundation Board of Councilors Meeting Held in Hiroshima...

378

Waste Isolation Pilot Plant, Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Workers Screening Projects Waste Isolation Pilot Plant, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site:...

379

Battelle Laboratories-King Avenue, Former Construction Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Construction Workers Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle Laboratories-King Avenue Worker...

380

Former Worker Medical Screening Program - Savannah River Site...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Workers Former Worker Medical Screening Program (FWP) Project Name: National Supplemental Screening Program Covered DOE Site: SRS Worker Population Served: Production...

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Former Worker Medical Screening Program - Paducah Gaseous Diffusion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah Gaseous Diffusion Plant Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE...

382

Former Worker Medical Screening Program - Savannah River Site...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: SRS Worker Population Served:...

383

Former Worker Medical Screening Program - Oak Ridge Reservation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservation Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Oak Ridge K-25...

384

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

or the general public under current conditions of site usage. . 1 U.S. Department of Energy Guidelines for Residual Radioactivity at Formerly Utilized Sites Remedial Action...

385

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

for Residual Radioactivity at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Rev. 1, July 1985). .. . -.-----...

386

Iowa Army Ammunition Plant Former Workers, Construction Worker...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Worker Screening Projects Project Name: Medical Monitoring of Former Atomic Weapons Workers at the Iowa Army Ammunition Plant (IAAP) in Burlington, Iowa...

387

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

no remedial action is necessary at this site and has eliminated the Westinghouse Atomic Power Development Plant from further consideration under the Formerly Utilized Sites...

388

Former Worker Medical Screening Program 2012 Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

bureaus. Lou Doll, BTMed local outreach coordinator, participating at the Cincinnati AFL-CIO Labor Day Picnic. 6 * 2012 Former Worker Medical Screening Program However, from the...

389

Table A22. Total First Use (formerly Primary Consumption)...  

U.S. Energy Information Administration (EIA) Indexed Site

First Use (formerly Primary Consumption) of Combustible Energy for Nonfuel" " Purposes by Census Region, Census Division, and Economic Characteristics of the Establishment," 1994 "...

390

Former Worker Medical Screening Program - Production Worker Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Iowa Army Ammunition Plant Kentucky: Paducah Gaseous Diffusion Plant Missouri: Kansas City Plant Nevada: Nevada National Security Site (formerly Nevada Test Site) New Jersey:...

391

TrendSetter Solar Products Inc aka Trendsetter Industries formerly...  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries,...

392

Alternative Energy Technology Inc formerly The Alternative Energy...  

Open Energy Info (EERE)

(formerly The Alternative Energy Technology Center Inc) Place Woodlands, Texas Sector Biofuels Product The Alternative Energy Technology Center is focused on biofuels and...

393

Leidos Accredited Testing & Evaluation (AT&E) Labs(formerly ...  

Science Conference Proceedings (OSTI)

Leidos Accredited Testing & Evaluation (AT&E) Labs(formerly SAIC). NVLAP Lab Code: 200427-0. Address and Contact Information: ...

2013-11-08T23:59:59.000Z

394

Kreido Biofuels formerly Gemwood Productions | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Kreido Biofuels formerly Gemwood Productions Jump to: navigation, search Name Kreido Biofuels...

395

Vega Biofuels Inc formerly Vega Promotional Systems | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Vega Biofuels Inc formerly Vega Promotional Systems Jump to: navigation, search Name Vega Biofuels...

396

Changes related to "Battery Park Industries Inc formerly Moltech...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Battery Park Industries Inc formerly Moltech Power Systems Inc" Battery Park Industries...

397

Pages that link to "Battery Park Industries Inc formerly Moltech...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Battery Park Industries Inc formerly Moltech Power Systems Inc" Battery Park Industries...

398

Former Worker Program Medical Protocol | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medical Protocol Former Worker Program Medical Protocol April 2013 The medical protocol is intended to identify work-related health outcomes of relevance to DOE workers for which...

399

Changes related to "ET Solar Group Formerly CNS Solar Industry...  

Open Energy Info (EERE)

"http:en.openei.orgwikiSpecial:RecentChangesLinkedETSolarGroupFormerlyCNSSolarIndustry" Atom Special pages About us Disclaimers Energy blogs Developer services OpenEI...

400

Argonne National Laboratory-West, Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Workers Screening Projects (now known as the Idaho National Laboratory) Argonne National Laboratory-West, Former Production Workers Screening Projects (now known as...

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Basic Overview of the Former Worker Medical Screening Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the privacy rights, the rights and welfare of any participant in former worker medical screening or research performed under DOE authorities is of prime importance to...

402

EIG Ltd formerly VK EIG | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name EIG Ltd (formerly VK EIG) Place Cheonan, South Chungcheong, Korea (Republic) Sector Vehicles Product Korea-based manufacturer of medium and large format...

403

Former Lawrence Fellow David Lobell receives MacArthur fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

and connects informative sources of data to investigate the impact of climate change on crop production and food security around the globe. Former Lawrence Fellow David Lobell, who...

404

Alpha Energy formerly Altair Energy | Open Energy Information  

Open Energy Info (EERE)

Washington State . References "Alpha Energy (formerly Altair Energy)" Retrieved from "http:en.openei.orgwindex.php?titleAlphaEnergyformerlyAltairEnergy&oldid342032...

405

2012 Former Worker Medical Screening Program Annual Report  

Energy.gov (U.S. Department of Energy (DOE))

The 2012 Annual Report presents a detailed overview of the accomplishments, progress, and future endeavors of the U.S. Department of Energy Former Worker Medical Screening Program.

406

Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Natural Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name...

407

Wind Energy America Inc Formerly Dotronix Inc | Open Energy Informatio...  

Open Energy Info (EERE)

Dotronix Inc Jump to: navigation, search Name Wind Energy America Inc (Formerly Dotronix Inc.) Place Eden Prairie, Minnesota Zip 55344 Sector Wind energy Product Minnesota-based...

408

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Turbine Oil Lube Notes Compilation  

Science Conference Proceedings (OSTI)

This report is a special compilation of the EPRI Nuclear Maintenance Applications Center's (NMAC's) "Lube Notes" articles (extracted from "Lube Notes Compilation, 1989-2001 (Report Number 1006848)) that relate specifically to the topic of turbine oils.

2002-11-25T23:59:59.000Z

410

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

411

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

412

User's Manual for Transit ITS Simulator (TRAN-ITS)  

E-Print Network (OSTI)

AND HIGHWAYS USERS MANUAL FOR TRANSIT ITS SIMULATOR (TRAN-OF CALIFORNIA, BERKELEY Users Manual for Transit ITS

Dessouky, Maged; Zhang, Lei; Singh, Ajay; Hall, Randolph

1999-01-01T23:59:59.000Z

413

Rim seal for turbine wheel  

SciTech Connect

A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

414

Onshore Wind Turbines Life Extension  

Science Conference Proceedings (OSTI)

Wind turbines are currently type-certified for nominal 20-year design lives, but many wind industry stakeholders are considering the possibility of extending the operating lives of their projects by 5, 10, or 15 years. Life extensionthe operation of an asset beyond the nominal design lifeis just one option to maximize the financial return of these expensive assets. Other options include repowering, upgrading, or uprating a turbine.In order to make informed decisions ...

2012-10-01T23:59:59.000Z

415

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

416

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

417

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

418

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

419

Trans Fats in FoodChapter 9 Analysis and Characterization of trans Isomers by Silver-Ion HPLC  

Science Conference Proceedings (OSTI)

Trans Fats in Food Chapter 9 Analysis and Characterization of trans Isomers by Silver-Ion HPLC Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

420

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

422

Former Worker Medical Screening Program 2012 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Published February 2013 Published February 2013 Pu Pu Publ b blis s ishe he hed d d Fe Fe Febr br brua ua u ry ry 2 201 013 3 FORMER WORKER MEDICAL SCREENING PROGRAM ANNUAL REPORT ANNUAL REPORT 2 0 1 2 STC STONETURN CONSULTANTS 2012 Former Worker Medical Screening Program * i Table of Contents Abbreviations ............................................................................................................................................iii Foreword .................................................................................................................................................... v Executive Summary .................................................................................................................................

423

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

424

Gas turbine engine braking and method  

SciTech Connect

A method is described of decelerating a ground vehicle driven by a gas turbine engine having a gas generator section and a free turbine output power section driven by a gas flow from the gas generator section, comprising the steps of: altering the incidence of gas flow from the gas generator section onto the free turbine section whereby said gas flow opposes rotation of the free turbine section; increasing gas generator section speed; and subsequent to said altering and increasing steps, selectively mechanically interconnecting said gas generator and free turbine sections whereby the rotational inertia of the gas generator section tends to decelerate the free turbine section.

Mattson, G.; Woodhouse, G.

1980-07-01T23:59:59.000Z

425

SeaVolt Technologies formerly Sea Power Associates | Open Energy  

Open Energy Info (EERE)

SeaVolt Technologies formerly Sea Power Associates SeaVolt Technologies formerly Sea Power Associates Jump to: navigation, search Name SeaVolt Technologies (formerly Sea Power & Associates) Place San Francisco, California Zip CA 94111 Sector Ocean Product The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References SeaVolt Technologies (formerly Sea Power & Associates)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeaVolt Technologies (formerly Sea Power & Associates) is a company located in San Francisco, California .

426

Outreach (Former Worker Medical Screening Program (FWP) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outreach (Former Worker Medical Screening Program (FWP) Outreach (Former Worker Medical Screening Program (FWP) Outreach (Former Worker Medical Screening Program (FWP) Outreach: Identify and Notify Eligible DOE Workers About FWP Medical Screening Services All former DOE Federal, contractor, and subcontractor employees from all facilities are eligible to participate in the program. Although the historical best estimate for the population of former workers who are entitled to receive medical evaluations under the FWP is upwards of 600,000 individuals, the precise number of workers remains unknown. Most of the FWP projects use multiple outreach methods to increase the visibility of the program in communities surrounding DOE sites and to notify potentially eligible DOE workers about the availability of FWP services. These methods are three-fold: 1) roster-based, 2)

427

Pantex, Former Production Workers Screening Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex, Former Production Workers Screening Projects Pantex, Former Production Workers Screening Projects Pantex, Former Production Workers Screening Projects Project Name: Former Pantex Worker Medical Surveillance Program Covered DOE Site: Pantex Worker Population Served: All Workers Principal Investigator: Arthur Frank, MD, MPH Toll-free Telephone: (888) 378-8939 Local Medical Clinics: WTAMU Health Partners Clinic 4400 S. Washington Street Amarillo, TX 79110 Texas Diagnostic Imaging Center (X-rays only) 1000 Coulter Drive Amarillo, TX 79106 Former workers at risk from exposures while working at Pantex are offered a free medical screening. This project is carried out by Drexel University School of Public Health in conjunction with the University of Texas Health Science Center at Tyler. Workers from this site who do not live in close proximity to the above

428

AEE Solar Inc formerly Alternative Energy Engineering | Open Energy  

Open Energy Info (EERE)

Alternative Energy Engineering Alternative Energy Engineering Jump to: navigation, search Name AEE Solar Inc (formerly Alternative Energy Engineering) Place Redway, California Zip 95560 Sector Hydro, Solar, Wind energy Product US-based wholesale distributor of solar, wind and hydroelectric systems, parts and components. References AEE Solar Inc (formerly Alternative Energy Engineering)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEE Solar Inc (formerly Alternative Energy Engineering) is a company located in Redway, California . References ↑ "AEE Solar Inc (formerly Alternative Energy Engineering)" Retrieved from "http://en.openei.org/w/index.php?title=AEE_Solar_Inc_formerly_Alternative_Energy_Engineering&oldid=341819"

429

Mesa Energy formerly called Mesa Environmental Sciences | Open Energy  

Open Energy Info (EERE)

called Mesa Environmental Sciences called Mesa Environmental Sciences Jump to: navigation, search Name Mesa Energy (formerly called Mesa Environmental Sciences) Place Pennsylvania Zip 19355 Sector Services, Solar Product Environmental and energy services company focused on solar PV design and installation. References Mesa Energy (formerly called Mesa Environmental Sciences)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mesa Energy (formerly called Mesa Environmental Sciences) is a company located in Pennsylvania . References ↑ "Mesa Energy (formerly called Mesa Environmental Sciences)" Retrieved from "http://en.openei.org/w/index.php?title=Mesa_Energy_formerly_called_Mesa_Environmental_Sciences&oldid=34874

430

Bloomberg New Energy Finance Carbon Markets formerly New Energy Finance  

Open Energy Info (EERE)

formerly New Energy Finance formerly New Energy Finance Carbon Markets Group Jump to: navigation, search Name Bloomberg New Energy Finance Carbon Markets (formerly New Energy Finance Carbon Markets Group) Place London, United Kingdom Zip EC2A 1PQ Sector Carbon, Services Product London-based carbon markets division of New Energy Finance which provides analysis, price forecasting, consultancy and risk management services relating to carbon. References Bloomberg New Energy Finance Carbon Markets (formerly New Energy Finance Carbon Markets Group)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bloomberg New Energy Finance Carbon Markets (formerly New Energy Finance Carbon Markets Group) is a company located in London, United Kingdom .

431

Alteris Renewables Inc formerly Solar Works Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Works Inc Solar Works Inc Jump to: navigation, search Name Alteris Renewables, Inc. (formerly Solar Works Inc) Place Wilton, Connecticut Sector Renewable Energy, Solar Product Connecticut-based renewable energy systems integrator and project developer formed through the merger between Solar Works and SolarWrights. References Alteris Renewables, Inc. (formerly Solar Works Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alteris Renewables, Inc. (formerly Solar Works Inc) is a company located in Wilton, Connecticut . References ↑ "Alteris Renewables, Inc. (formerly Solar Works Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Alteris_Renewables_Inc_formerly_Solar_Works_Inc&oldid=342052

432

Axion Power International Inc formerly Tamboril | Open Energy Information  

Open Energy Info (EERE)

Tamboril Tamboril Jump to: navigation, search Name Axion Power International Inc (formerly Tamboril) Place New Castle, Pennsylvania Zip 16105 Product Focused on the research and development of a new technology for supercapacitive hybrid electrical energy storage devices. References Axion Power International Inc (formerly Tamboril)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Axion Power International Inc (formerly Tamboril) is a company located in New Castle, Pennsylvania . References ↑ "Axion Power International Inc (formerly Tamboril)" Retrieved from "http://en.openei.org/w/index.php?title=Axion_Power_International_Inc_formerly_Tamboril&oldid=342468

433

Former Worker Medical Screening Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Worker Medical Screening Former Worker Medical Screening Program Former Worker Medical Screening Program The Former Worker Medical Screening Program (FWP) provides ongoing medical screening examinations, at no cost, to all former DOE Federal, contractor, and subcontractor workers who may be at risk for occupational diseases. The FWP is supported by the U.S. Department of Energy's (DOE) Office of Health, Safety and Security (HSS) and reflects our commitment to the health and safety of all DOE workers - past and present - who have served the Nation in its National security and other missions. The FWP was established following the issuance of the National Defense Authorization Act for Fiscal Year 1993 (PL 102-484), which called for DOE to assist workers with determining whether they had health issues related

434

DOE's Former Rocky Flats Weapons Production Site to Become National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Rocky Flats Weapons Production Site to Become National Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge July 12, 2007 - 2:54pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a decade of environmental cleanup work, the transfer creates the Rocky Flats National Wildlife Refuge, 16 miles northwest of Denver, Colorado, and marks completion of the regulatory milestones to transform a formerly contaminated site into an environmental asset. "The Department of Energy's environmental cleanup of the Rocky Flats

435

Renegy Holdings Inc Formerly Catalytica Energy Systems Inc | Open Energy  

Open Energy Info (EERE)

Catalytica Energy Systems Inc Catalytica Energy Systems Inc Jump to: navigation, search Name Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc) Place Tempe, Arizona Zip 85281 Sector Biomass Product Their primary focus has become to be a top North American producer of biomass-derived electricity using wood waste. References Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc) is a company located in Tempe, Arizona . References ↑ "Renegy Holdings Inc (Formerly Catalytica Energy Systems Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Renegy_Holdings_Inc_Formerly_Catalytica_Energy_Systems_Inc&oldid=350290"

436

Implementation of the Formerly Utilized Sites Remedial Action Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation of the Formerly Utilized Sites Remedial Action Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) More Documents & Publications Recent Developments in DOE FUSRAP

437

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

438

Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Department of Justice press release announcing that a federal grand jury in the Eastern District of Tennessee has charged a former contract worker, Roy Lynn Oakley, at East Tennessee Technology Park with converting to his own use restricted government materials utilized for uranium enrichment and illegally transferring these restricted materials to another person, with reason to believe the materials would be used to injure the United States and secure an advantage to a foreign country. Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act More Documents & Publications

439

China Wind Systems formerly Green Power Malex | Open Energy Information  

Open Energy Info (EERE)

Green Power Malex Green Power Malex Jump to: navigation, search Name China Wind Systems (formerly Green Power/Malex) Place Wuxi, Jiangsu Province, China Sector Wind energy Product Manufacturer of precision-forged rolled rings and machinery with applications for the wind power industry. References China Wind Systems (formerly Green Power/Malex)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Wind Systems (formerly Green Power/Malex) is a company located in Wuxi, Jiangsu Province, China . References ↑ "China Wind Systems (formerly Green Power/Malex)" Retrieved from "http://en.openei.org/w/index.php?title=China_Wind_Systems_formerly_Green_Power_Malex&oldid=343554

440

Advanced Turbine Systems program  

SciTech Connect

Allison draws the following preliminary conclusions from this preliminary design effort: (1) All cycles investigated require a high temperature turbine capability to be developed under ATS. (2) The HAT and intercooled chemical recuperation cycles compete in only a narrow sector of the industrial engine market. This is the result of the complexity and water usage of the HAT cycle and the limitation of the chemical recuperation cycle to applications where natural gas is readily available. (3) From a cycle point of view, the ICR and chemical recuperation cycles are similar. Both optimize at fairly low compressor pressure ratios ({approximately}15) because both want high temperature in the exhaust to optimize the recuperation process. Excess steam production with the chemical recuperation process makes it somewhat doubtful that the two recuperation processes are interchangeable from a hardware point of view. Allison intends to perform a global optimization on this cycle during Phase 2 of ATS. (4). There appears to be no substitute for the simple cycle with steam generation in the cogen-steam market since steam is, by definition, a valuable product of the cycle.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01T23:59:59.000Z

442

Aerothermodynamics of low pressure steam turbines and condensers  

SciTech Connect

This book presents papers on steam turbines and steam condensers. Topics considered include the design of modern low pressure steam turbines, throughflow design methods, three-dimensional flow calculations, the calculation of wet steam stages, aerodynamic development of turbine blades, turbine performance measurement, turbine exhaust system design, and condensers for large turbines.

Moore, M.J.; Sieverding, C.H.

1987-01-01T23:59:59.000Z

443

Argonne Transportation - TransForum Volume 1  

NLE Websites -- All DOE Office Websites (Extended Search)

TransForum: Volume 1 TransForum: Volume 1 ISSN 2156-3594 (Print) ISSN 2156-373X (Online) Vol. 1, No. 4, Winter 1998-99 (966k pdf ) Energy Secretary Dedicates Argonne's Transportation Center: New Technology Promises Cleaner Diesels Measuring How Fuel Cell Stack Up Vol. 1, No. 3, Summer 1998 (684k pdf ) Using Corn to Fuel Your Car: A Good Environmental Choice? If You Can't Stand the Heat ... Call Argonne Modeling Cars Isn't Just Child's Play Lilliputian Sensors Could Help Solve a Gigantic Pollution Problem Making a Material Difference in Advanced Batteries Vol. 1, No. 2, Spring 1998 (577k pdf ) Gearing Up for HEV Powertrain Design Taking a Closer Look into How Batteries and Fuel Cells Work ITS Makes Life in the Fast Lane Easier "Wrapping It Up to Go": Transporting Hazardous and Radioactive Materials Safely

444

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network (OSTI)

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

445

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

446

A Dynamic Wind Turbine Simulator of the Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

To study dynamic performances of wind turbine generator system (WTGS), and to determine the control structures in laboratory. The dynamic torque generated by wind turbine (WT) must be simulated. In there paper, a dynamic wind turbine emulator (WTE) is ... Keywords: dynamic wind turbine emulation, wind shear, tower shadow, torque compensation

Lei Lu; Zhen Xie; Xing Zhang; Shuying Yang; Renxian Cao

2012-01-01T23:59:59.000Z

447

Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

Not Available

2011-05-01T23:59:59.000Z

448

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

449

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

450

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

451

Reliability Assessment of North American Steam Turbines  

Science Conference Proceedings (OSTI)

This survey provides statistics related to the reliability and maintenance of fossil-fueled steam turbines in the continental United States. The analysis focuses primarily on active turbines larger than 200 MW.

2002-04-24T23:59:59.000Z

452

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

453

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. Available for thumbnail of Feynman Center (505) 665-9090 Email Radial-Radial Single Rotor Turbine A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power. U.S. Patent No.: 7,044,718 (DOE S-100,626) Patent Application Filing Date: July 8, 2003 Patent Issue Date: May 16, 2006 Licensing Status: Available for Express Licensing (?). View terms and a sample license agreement.

454

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

455

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

456

Investigation of flow characteristics of gas turbines  

SciTech Connect

Measurements carried out in the process of assimilation of gas turbine (GT) plants of 16 different types in starting and working conditions to estimate the operational conditions and characteristics of the main elements (in particular of the turbines) have created a basis for generaliztion of flow characteristics of different turbines and for extending them to a wider range of operational conditions. The studies showed that: flow characteristics of the investigated turbines, independently of the number of stages and the degree of reaction, are described by the elliptic flowrate equation; throughput of similar turbines, i.e., of turbines formed of stages with high reaction, which have low design degrees of expansion, can be determined with satisfactory accuracy by the unique function of the degree of expansion; and in operating the gas turbine plants considerable changes in throughput of the turbines are possible.

Ol' khovskii, G.G.; Ol' khovskaya, N.I.

1978-01-01T23:59:59.000Z

457

Gas Turbine World performance specs 1984  

SciTech Connect

The following topics are discussed: working insights into the performance specifications; performance and design characteristics of electric power plants, mechanical drive gas turbines, and marine propulsion gas turbines; and performance calculations.

1984-03-01T23:59:59.000Z

458

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

459

Environmental Coatings For Gas Turbine Engine Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Environmental Coatings For Gas Turbine Engine Applications. Author(s), Ming Fu, Roger Wustman, Jeffrey Williams, Douglas Konitzer.

460

Aircraft Gas Turbine Blade and Vane Repair  

Science Conference Proceedings (OSTI)

Gas turbine blades experience dimensional .... platinum applied in separate gas phase or electroplating ..... surfaces are natural consequences of fluoride.

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Charts estimate gas-turbine site performance  

SciTech Connect

Nomographs have been developed to simplify site performance estimates for various types of gas turbine engines used for industrial applications. The nomographs can provide valuable data for engineers to use for an initial appraisal of projects where gas turbines are to be considered. General guidelines for the selection of gas turbines are also discussed. In particular, site conditions that influence the performance of gas turbines are described.

Dharmadhikari, S.

1988-05-09T23:59:59.000Z

462

Industrial gas turbines with subatmospheric expansion  

SciTech Connect

A modification is proposed to the basic Brayton cycle, by coupling the gas turbine with a jet pump. This allows subatmospheric pressure to exist at the exit of the turbine, a bigger turbine ratio and, hence, a higher efficiency. The jet pump operates with steam, produced from pressurized water heated by the exhaust gasses of the gas turbine. A simple configuration of the coupling is studied in detail.

Georgiou, D.P. (Patras Univ. (Greece))

1988-01-01T23:59:59.000Z

463

Advances in Hydroelectric Turbine Manufacturing and Repair  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Sponsorship...

464

ADVANCED TURBINE SYSTEMS PROGRAM  

Science Conference Proceedings (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

465

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

\ \ ,.-c , 2 2 a. . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS SEP301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __--... -_ -._.-_- _"_-. .___.. -... .._ ..-. .-. ..--- . , ' , CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii 4 __-.I ._-----.- --- ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

466

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM L ELIMINATION REPORT  

Office of Legacy Management (LM)

L L ELIMINATION REPORT 2 FOR FORMER R. KRASBERG AND SONS MANUFACTURING COMPANY; 2501 WEST HOMER STREET; CHICAGO, ILLINOIS JULY 1990 U.S. Department of Energy Office of Environmental Restoration i c Elimination ReDort Former R. Krasberg and Sons Manufacturing Company '1 CONTENTS c INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . BACKGROUND............................ Site Function ......................... Site Description. ....................... Radiological History and Status ................ ELIMINATION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . 3 REFERENCES............................ 4 1 1 : 2 ----.- --". Elimination Report Former R. Krasberg and Sons Manufacturing Company INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has

467

TGM Turbines | Open Energy Information  

Open Energy Info (EERE)

TGM Turbines TGM Turbines Jump to: navigation, search Name TGM Turbines Place Sertaozinho, Sao Paulo, Brazil Zip 14175-000 Sector Biomass Product Brazil based company who constructs and sells boilers for biomass plants. Coordinates -21.14043°, -48.005154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-21.14043,"lon":-48.005154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Vertical axis wind turbine airfoil  

DOE Patents (OSTI)

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18T23:59:59.000Z

469

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network (OSTI)

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

470

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

471

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network (OSTI)

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil solved, a DTI and EPSRC-sponsored research programme on foundations for wind turbines will be briefly

Houlsby, Guy T.

472

Satoshi Hada Department of Gas Turbine Engineering,  

E-Print Network (OSTI)

Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago must be prevented by developing envi- ronmentally friendly power plants. Industrial gas turbines play a major role in power generation with modern high temperature gas turbines being applied in the gas

Thole, Karen A.

473

AWEA Small Wind Turbine Global Market Study  

E-Print Network (OSTI)

wind turbines ­ those with rated capacities of 100 kilowatts (kW)1 and less ­ grew 15% in 2009 with 20 small wind turbines, 95 of which-- more than one-third--are based in the u.S. An estimated 100,000 unitsAWEA Small Wind Turbine Global Market Study YEAR ENDING 2009 #12;Summary 3 Survey Findings

Leu, Tzong-Shyng "Jeremy"

474

Chapter 14: Wind Turbine Control Systems  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by gravity, stochastic wind disturbances, and gravitational, centrifugal, and gyroscopic loads. The aerodynamic behavior of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional turbulent wind inflow field that drives fatigue loading. Wind turbine modeling is also complex and challenging. Accurate models must contain many degrees of freedom (DOF) to capture the most important dynamic effects. The rotation of the rotor adds complexity to the dynamics modeling. Designs of control algorithms for wind turbines must account for these complexities. Algorithms must capture the most important turbine dynamics without being too complex and unwieldy. Off-the-shelf commercial soft ware is seldom adequate for wind turbine dynamics modeling. Instead, specialized dynamic simulation codes are usually required to model all the important nonlinear effects. As illustrated in Figure 14-1, a wind turbine control system consists of sensors, actuators and a system that ties these elements together. A hardware or software system processes input signals from the sensors and generates output signals for actuators. The main goal of the controller is to modify the operating states of the turbine to maintain safe turbine operation, maximize power, mitigate damaging fatigue loads, and detect fault conditions. A supervisory control system starts and stops the machine, yaws the turbine when there is a significant yaw misalignment, detects fault conditions, and performs emergency shut-downs. Other parts of the controller are intended to maximize power and reduce loads during normal turbine operation.

Wright, A. D.

2009-01-01T23:59:59.000Z

475

Performance optimization of gas turbine engine  

Science Conference Proceedings (OSTI)

Performance optimization of a gas turbine engine can be expressed in terms of minimizing fuel consumption while maintaining nominal thrust output, maximizing thrust for the same fuel consumption and minimizing turbine blade temperature. Additional control ... Keywords: Fuel control, Gas turbines, Genetic algorithms, Optimization, Temperature control

Valceres V. R. Silva; Wael Khatib; Peter J. Fleming

2005-08-01T23:59:59.000Z

476

Radial-radial single rotor turbine  

SciTech Connect

A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

Platts, David A. (Los Alamos, NM)

2006-05-16T23:59:59.000Z

477

Scale Model Turbine Missile Casing Impact Tests  

Science Conference Proceedings (OSTI)

This report describes three 1/5-scale-model turbine missile impact experiments performed to provide benchmark data for assessing turbine missiles effects in nuclear plant design. The development of an explosive launcher to accelerate the turbine missile models to the desired impact velocities is described. A comparison of the test results with those from full-scale experiments demonstrates scalability.

1982-12-01T23:59:59.000Z

478

Steam turbine materials and corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

2007-12-01T23:59:59.000Z

479

Former Student Turns Thesis Into Energy Savings for Taylor University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Student Turns Thesis Into Energy Savings for Taylor Former Student Turns Thesis Into Energy Savings for Taylor University Former Student Turns Thesis Into Energy Savings for Taylor University October 18, 2010 - 10:00am Addthis Kevin Crosby, Taylor University’s first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Kevin Crosby, Taylor University's first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Maya Payne Smart Former Writer for Energy Empowers, EERE Not long ago Kevin Crosby was an engineering major and the president of Taylor University's student environmental club, Stewards of Creation.

480

Vice President Biden Announces Reopening of Former GM Boxwood Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reopening of Former GM Boxwood Plant Reopening of Former GM Boxwood Plant Vice President Biden Announces Reopening of Former GM Boxwood Plant October 27, 2009 - 12:00am Addthis Wilmington, DE - As part of the of the Administration's commitment to jumpstarting the production of fuel efficient vehicles in America, Vice President Joe Biden today announced Fisker Automotive is re-opening a shuttered former GM factory in Wilmington, Delaware, to produce long-range, plug-in, electric hybrid vehicles. The Wilmington assembly plant was selected by Fisker Automotive for its primary global production facility based on its size, production capacity; and access to shipping ports, rail lines and skilled workforce. "While some wanted to write off America's auto industry, we said no. We knew that we needed to do something different - in Delaware and all across

Note: This page contains sample records for the topic "turbines trans formers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FRIDAY: Energy Secretary Steven Chu and Former Governor Arnold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Steven Chu and Former Governor Arnold Energy Secretary Steven Chu and Former Governor Arnold Schwarzenegger to Hold Conference Call with Students from College and University Energy Clubs Across the Country FRIDAY: Energy Secretary Steven Chu and Former Governor Arnold Schwarzenegger to Hold Conference Call with Students from College and University Energy Clubs Across the Country April 21, 2011 - 12:00am Addthis WASHINGTON, DC - On Earth Day, April 22, U.S. Department of Energy Secretary Steven Chu and former California Governor Arnold Schwarzenegger will participate in a conference call hosted by the White House Office of Public Engagement with students from college and university energy clubs across the country. The Secretary and Governor will ask these youth leaders to continue their hard work raising awareness among other students on energy issues and

482

Idaho National Laboratory Former Construction Workers, Construction Worker  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Former Construction Workers, Construction Idaho National Laboratory Former Construction Workers, Construction Worker Screening Projects Idaho National Laboratory Former Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Idaho National Laboratory (INL) Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-800-866-9663 Local Outreach Office: Dan Obray 456 N. Arthur Avenue Pocatello, ID 83204 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica

483

Former Assistant Secretary Shares Experiences Leading EM: 'Best Job I  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Assistant Secretary Shares Experiences Leading EM: 'Best Former Assistant Secretary Shares Experiences Leading EM: 'Best Job I Ever Had' Former Assistant Secretary Shares Experiences Leading EM: 'Best Job I Ever Had' July 30, 2013 - 12:00pm Addthis Thomas P. Grumbly considers his role as EM Assistant Secretary the best job he ever had. He served in the position from 1993 to 1996. Thomas P. Grumbly considers his role as EM Assistant Secretary the best job he ever had. He served in the position from 1993 to 1996. WASHINGTON, D.C. - In an occasional EM Update series, we feature interviews with former EM Assistant Secretaries to reflect on their achievements and challenges in the world's largest nuclear cleanup and to discuss endeavors in life after EM. Thomas P. Grumbly has more than 30 years of experience serving as a federal

484

Oak Ridge Reservation Former Workers, Construction Worker Screening  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Reservation Former Workers, Construction Worker Screening Oak Ridge Reservation Former Workers, Construction Worker Screening Projects Oak Ridge Reservation Former Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Oak Ridge K-25 Gaseous Diffusion Plant, Y-12, Oak Ridge National Laboratory (ORNL or X-10) Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPh, MHA, MPH Toll-free Telephone: (888) 464-0009 Local Outreach Office: Kim Cranford, RN 708 South Illinois Avenue, Suite E103 Oak Ridge, TN 37830 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos,

485

Fernald, Former Construction Worker Screening Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald, Former Construction Worker Screening Projects Fernald, Former Construction Worker Screening Projects Fernald, Former Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Fernald Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-888-464-0009 Local Outreach Office: Lou Doll 1550 Chase Avenue Cincinnati, OH 45223 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

486

Brush Luckey Plant, Former Construction Worker Screening Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brush Luckey Plant, Former Construction Worker Screening Projects Brush Luckey Plant, Former Construction Worker Screening Projects Brush Luckey Plant, Former Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Brush Luckey Plant Worker Population Served: Construction workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-888-464-0009 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by CPWR - The Center for Construction Research and Training, an applied

487

Iowa Army Ammunition Plant, Former Production Workers Screening Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant, Former Production Workers Screening Plant, Former Production Workers Screening Projects Iowa Army Ammunition Plant, Former Production Workers Screening Projects Project Name: Medical Monitoring of Former Atomic Weapons Workers at the Iowa Army Ammunition Plant (IAAP) in Burlington, Iowa Covered DOE Site: IAAP Worker Population Served: All Line 1/Division B Workers Principal Investigator: Laurence Fuortes, MD Toll-free Telephone: (866) 282-5818 Local Medical Clinics: University of Iowa Hospitals and Clinics 200 Hawkins Drive Iowa City, IA 52242 Henry County Health Center 407 South White Street Mt. Pleasant, IA 62641 Great River Medical Center 1221 S. Gear Avenue West Burlington, IA 52655 Website: http://cph.uiowa.edu/iowafwp/ This project is intended to screen for occupational health conditions among

488

Ethics - Restrictions on Former Employees | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restrictions on Restrictions on Former Employees Ethics - Restrictions on Former Employees What rules am I subject to after leaving the Government to take a job in the private sector? There is a Federal statute (18 USC 207) known as the "post-employment law" that applies to all former employees after they leave the Government. In general, this law does not prohibit you from working for any particular employer. It may, however, restrict the kinds of things that you do for that employer, depending on what you worked on or were responsible for when you were with the Government. Some additional rules apply to high-level officials and employees who were involved in procurement. After you leave Government service, you may seek specific guidance on these restrictions from your former agency. Do not hesitate to contact your

489

AWS Ocean Energy formerly Oceanergia | Open Energy Information  

Open Energy Info (EERE)

formerly Oceanergia formerly Oceanergia Jump to: navigation, search Name AWS Ocean Energy formerly Oceanergia Address Redshank House Alness Point Business Park Place Alness Ross shire Zip IV17 0UP Sector Marine and Hydrokinetic Phone number 44 (0) 1349 88 44 22 Website http://www.awsocean.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: AWS II Portugal Pre Commercial Pilot Project This company is involved in the following MHK Technologies: Archimedes Wave Swing This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=AWS_Ocean_Energy_formerly_Oceanergia&oldid=678253

490

Pinellas Former Construction Worker, Construction Worker Screening Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinellas Former Construction Worker, Construction Worker Screening Pinellas Former Construction Worker, Construction Worker Screening Projects Pinellas Former Construction Worker, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Pinellas Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-800-866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

491

Iowa Army Ammunition Plant Former Workers, Construction Worker Screening  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Army Ammunition Plant Former Workers, Construction Worker Iowa Army Ammunition Plant Former Workers, Construction Worker Screening Projects Iowa Army Ammunition Plant Former Workers, Construction Worker Screening Projects Project Name: Medical Monitoring of Former Atomic Weapons Workers at the Iowa Army Ammunition Plant (IAAP) in Burlington, Iowa Covered DOE Site: IAAP Worker Population Served: All Line 1/Division B Workers Principal Investigator: Laurence Fuortes, MD Toll-free Telephone: (866) 282-5818 Local Medical Clinics: University of Iowa Hospitals and Clinics 200 Hawkins Drive Iowa City, IA 52242 Henry County Health Center 407 South White Street Mt. Pleasant, IA 62641 Great River Medical Center 1221 S. Gear Avenue West Burlington, IA 52655 Website: http://cph.uiowa.edu/iowafwp/ This project is intended to screen for occupational health conditions among

492

Former Student Turns Thesis Into Energy Savings for Taylor University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Student Turns Thesis Into Energy Savings for Taylor Former Student Turns Thesis Into Energy Savings for Taylor University Former Student Turns Thesis Into Energy Savings for Taylor University October 18, 2010 - 10:00am Addthis Kevin Crosby, Taylor University’s first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Kevin Crosby, Taylor University's first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Maya Payne Smart Former Writer for Energy Empowers, EERE Not long ago Kevin Crosby was an engineering major and the president of Taylor University's student environmental club, Stewards of Creation.

493

Hanford Former Workers, Construction Worker Screening Projects | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Former Workers, Construction Worker Screening Projects Hanford Former Workers, Construction Worker Screening Projects Hanford Former Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Hanford Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Local Outreach Office: Sherry Gosseen 3021 W. Clearwater Ave., Ste. 204 Kennewick, WA 99336 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

494

Pacific Ethanol Inc the former | Open Energy Information  

Open Energy Info (EERE)

former former Jump to: navigation, search Name Pacific Ethanol Inc (the former) Place Fresno, California Zip 93711 Product California-based developer of bioethanol plants. Subsidiary of the former Accessity Corporation to which it relinquished its name. Coordinates 29.53815°, -95.448909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.53815,"lon":-95.448909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Weldon Spring Plant, Former Construction Worker Screening Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weldon Spring Plant, Former Construction Worker Screening Projects Weldon Spring Plant, Former Construction Worker Screening Projects Weldon Spring Plant, Former Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Weldon Spring Plant Worker Population Served: Construction workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by CPWR - The Center for Construction Research and Training, an applied

496

Former Directors | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About » History » Former Directors About » History » Former Directors About Organization Budget Field Offices Federal Advisory Committees History Former Directors Scientific and Technical Information Honors & Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 History Former Directors Print Text Size: A A A RSS Feeds FeedbackShare Page Atomic Energy Commission Division of Research James B. Fisk 1947 - 1948 Kenneth S. Pitzer 1948 - 1951 Thomas H. Johnson 1951 - 1957 John H. Williams 1958 - 1959 Paul W. McDaniel 1959 - 1972 John M. Team * 1973 - 1974 Energy Research and Development Administration John M. Team * 1975 - 1976 Robert L. Hirsch ** 1976 - 1977

497

Alternative Energy Technology Inc formerly The Alternative Energy  

Open Energy Info (EERE)

The Alternative Energy The Alternative Energy Technology Center Inc Jump to: navigation, search Name Alternative Energy Technology Inc (formerly The Alternative Energy Technology Center Inc) Place Woodlands, Texas Sector Biofuels Product The Alternative Energy Technology Center is focused on biofuels and alternative energy technologies. References Alternative Energy Technology Inc (formerly The Alternative Energy Technology Center Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alternative Energy Technology Inc (formerly The Alternative Energy Technology Center Inc) is a company located in Woodlands, Texas . References ↑ "Alternative Energy Technology Inc (formerly The Alternative

498

Green Energy Resources Inc formerly New York International Log Lumber  

Open Energy Info (EERE)

New York International Log Lumber New York International Log Lumber Company Jump to: navigation, search Name Green Energy Resources Inc (formerly New York International Log & Lumber Company) Place San Antonio, Texas Product GRGR aims to export wood fiber fuel, that is environmentally certified, to overseas power generation utilities. References Green Energy Resources Inc (formerly New York International Log & Lumber Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Energy Resources Inc (formerly New York International Log & Lumber Company) is a company located in San Antonio, Texas . References ↑ "Green Energy Resources Inc (formerly New York International Log & Lumber Company)"

499

Savannah River Site, Former Construction Worker Screening Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site, Former Construction Worker Screening Projects Savannah River Site, Former Construction Worker Screening Projects Savannah River Site, Former Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: SRS Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Local Outreach Office: Charles Jernigan 1250 A Reynolds Street Augusta, GA 30901 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

500

Portsmouth Gaseous Diffusion Plant Former Workers, Construction Worker  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant Former Workers, Construction Plant Former Workers, Construction Worker Screening Projects Portsmouth Gaseous Diffusion Plant Former Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Portsmouth Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPh, MHA, MPH Toll-free Telephone: (888) 464-0009 Local Outreach Office: Ron Bush 1236 Gallia Street Portsmouth, OH 45662 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by