Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

DOE Green Energy (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

2

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

3

Hermetic turbine generator  

DOE Patents (OSTI)

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

4

Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines  

SciTech Connect

In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

2004-11-16T23:59:59.000Z

5

Micro Turbine Generator Program  

Science Conference Proceedings (OSTI)

A number of micro turbines generators have recently been announced as currently commercially available for sale to customers, such as end users, utilities, and energy service providers. Manufacturers and others are reporting certain performance capabilities ...

Stephanie L. Hamilton

2000-01-01T23:59:59.000Z

6

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

7

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

8

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

9

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

10

Wind turbine having a direct-drive drivetrain - Energy Innovation ...  

A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor ...

11

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

12

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

DOE Green Energy (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

13

Wind Turbine Generator Condition Monitoring via the Generator Control Loop.  

E-Print Network (OSTI)

??This thesis focuses on the development of condition monitoring techniques for application in wind turbines, particularly for offshore wind turbine driven doubly fed induction generators.… (more)

ZAGGOUT, MAHMOUD,NOUH

2013-01-01T23:59:59.000Z

14

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

15

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

16

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

17

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

18

DIRECT FUELCELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

19

DIRECT FUELCELL/TURBINE POWER PLANT  

SciTech Connect

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

20

DIRECT FUEL/CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DIRECT FUEL/CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

22

NEXT GENERATION TURBINE SYSTEM STUDY  

DOE Green Energy (OSTI)

Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

Frank Macri

2002-02-28T23:59:59.000Z

23

Passively cooled direct drive wind turbine  

SciTech Connect

A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

Costin, Daniel P. (Chelsea, VT)

2008-03-18T23:59:59.000Z

24

Turbine-Generator Auxilary Systems, Volume 3  

Science Conference Proceedings (OSTI)

The updated Turbine-Generator Auxiliary Systems, Volume 3: Generator Hydrogen System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the generator hydrogen system.BackgroundInput from member utilities of EPRI Program 65 as well as the Institute of Nuclear Power Operations (INPO) have indicated that maintenance guides are needed for turbine-generator auxiliary systems. The first auxiliary system ...

2012-12-03T23:59:59.000Z

25

Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators  

E-Print Network (OSTI)

Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

2012-01-01T23:59:59.000Z

26

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

27

Wind Turbine/Generator Set and Method of Making Same - Energy ...  

A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor ...

28

Documentation of Steam Turbine-Generator Failures—2010  

Science Conference Proceedings (OSTI)

This technical update report presents a review of turbine-generator failures that occurred during 2010.

2011-02-28T23:59:59.000Z

29

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

30

Turbine Generator Auxiliary Systems Volume 1: Turbine Generator Lubrication System Maintenance Guide -- 2012 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current maintenance information on lubrication system components and specifications, treatment, and analysis of the lubricating oil.BackgroundInput from member utilities indicated that maintenance guides were needed for the turbine-generator auxiliary systems. The first auxiliary system selected was the turbine-generator lubrication system used in nuclear and ...

2012-12-12T23:59:59.000Z

31

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

32

Dual-speed wind turbine generation  

SciTech Connect

Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)

1996-10-01T23:59:59.000Z

33

Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives  

Science Conference Proceedings (OSTI)

Aero-engine technology has played a major part in the development of both the industrial gas turbine and, more recently, the combined cycle gas turbine (CCGT) plant. A distinction may be drawn between the direct use of developed aero-engine hardware in power generation (and in marine applications), and the more indirect influence of aero-engine technology, particularly in design of heavy-duty gas turbines. Both the direct use of aero-engine hardware, in gas turbines for power generation, and the indirect influence of aero-engine technology, in the design of more conventional heavy-duty plants (including combined cycle gas turbines, CCGTs), are reviewed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1997-01-01T23:59:59.000Z

34

Steam turbine for geothermal power generation  

SciTech Connect

A steam turbine comprises a casing; turbine vanes rotatably set in the casing; a plurality of partition walls which extend along radial directions from the rotation center of the turbine vanes to define a plurality of steam valve chambers in the casing; steam supply pipes respectively connected to the corresponding steam valve chambers; and regulating valves which are fitted to the respective steam supply pipes to regulate respectively the flow rate of steam streams supplied to the respective steam valve chambers. At least one partition wall for dividing the interior space of the steam turbine into adjacent steam valve chambers is provided with at least one penetrating hole for causing the steam valve chambers to communicate with each other.

Tsujimura, K.; Hadano, Y.

1984-04-10T23:59:59.000Z

35

A Dynamic Wind Turbine Simulator of the Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

To study dynamic performances of wind turbine generator system (WTGS), and to determine the control structures in laboratory. The dynamic torque generated by wind turbine (WT) must be simulated. In there paper, a dynamic wind turbine emulator (WTE) is ... Keywords: dynamic wind turbine emulation, wind shear, tower shadow, torque compensation

Lei Lu; Zhen Xie; Xing Zhang; Shuying Yang; Renxian Cao

2012-01-01T23:59:59.000Z

36

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

Hossein Ghezel-Ayagh

2008-09-30T23:59:59.000Z

37

Managing turbine-generator outages by computer  

SciTech Connect

This article describes software being developed to address the need for computerized planning and documentation programs that can help manage outages. Downsized power-utility companies and the growing demand for independent, competitive engineering and maintenance services have created a need for a computer-assisted planning and technical-direction program for turbine-generator outages. To meet this need, a software tool is now under development that can run on a desktop or laptop personal computer to assist utility personnel and technical directors in outage planning. Total Outage Planning Software (TOPS), which runs on Windows, takes advantage of the mass data storage available with compact-disc technology by archiving the complete outage documentation on CD. Previous outage records can then be indexed, searched, and viewed on a computer with the click of a mouse. Critical-path schedules, parts lists, parts order tracking, work instructions and procedures, custom data sheets, and progress reports can be generated by computer on-site during an outage.

Reinhart, E.R. [Reinhart and Associates, Inc., Austin, TX (United States)

1997-09-01T23:59:59.000Z

38

Turbine-generator set development for power generation  

DOE Green Energy (OSTI)

The goal of this effort was to design, develop, and demonstrate an integrated turbine genset suitable for the power generation requirements of a hybrid automotive propulsion system. The result of this effort would have been prototype generator hardware including controllers for testing and evaluation by Allison Engine Company. The generator would have been coupled to a suitably sized and configured gas turbine engine, which would operate on a laboratory load bank. This effort could lead to extensive knowledge and design capability in the most efficient generator design for hybrid electric vehicle power generation and potentially to commercialization of these advanced technologies. Through the use of the high-speed turbines as a power source for the hybrid-electric vehicles, a significant reduction in nitrous oxides emissions would be achieved when compared to those of conventional gas powered vehicles.

Adams, D.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Berenyi, S.G. [Allison Engine Co., Indianapolis, IN (United States)

1997-04-15T23:59:59.000Z

39

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

Hossein Ghezel-Ayagh

2003-05-23T23:59:59.000Z

40

Main features of direct cycle helium gas turbines integrated with a high temperature reactor  

SciTech Connect

From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). The main features and advantages of direct cycle helium gas turbines integrated with a high temperature reactor are presented. The proposed design concept is based on a logical extension of existirg knowledge and experience on currently built gas cooled reactors and industrial gas turbines. The direct cycle gas turbine offers many advantages in the form of high reliability, safety and simplicity; it emerges as a potential competitor to the main power generation prime mover, the steam turbine. (auth)

Burylo, P.

1972-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Operation of a third generation wind turbine  

SciTech Connect

A modern wind turbine was installed on May 26, 1982, at the USDA Conservation and Production Research Laboratory, Bushland, Texas. This wind machine was used to provide electrical energy for irrigation pumping and other agricultural loads. The wind turbine purchased for this research is an Enertech Model 44, manufactured by Enertech Corporation, Norwich, Vermont. The horizontal-axis wind turbine has a 13.4 m diameter, three-bladed, fixed-pitch rotor on a 24.4-m tower. The blades are laminated epoxy-wood, and are attached to a steel hub. A 25-kW induction generator provides 240 V, 60 Hz, single-phase electrical power. The wind turbine operated 64 percent of the time, while being available to operate over 94 percent of the time. The unit had a net energy production of over 80,000 kWh in an average windspeed of 5.9 m/s at a height of 10 m in a 16-month period. The blade pitch was originally offset two degrees from design to maintain power production within the limitations of the gearbox, generator, and brakes. A maximum output of 23.2 kW averaged over a 15-second period indicated that with a new brake, the system was capable of handling more power. After a new brake was installed, the blade pitch was changed to one degree from design. The maximum power output measured after the pitch change was 29.3 kW. Modified blade tip brakes were installed on the wind turbine on July 7, 1983. These tip brakes increased power production at lower windspeeds while reducing power at higher windspeeds.

Vosper, F.C.; Clark, R.N.

1983-12-01T23:59:59.000Z

42

Steam as turbine blade coolant: Experimental data generation  

DOE Green Energy (OSTI)

Steam as a coolant is a possible option to cool blades in high temperature gas turbines; however there is practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

43

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

Hossein Ghezel-Ayagh

2003-05-22T23:59:59.000Z

44

Design and Test of a Variable Speed Wind Turbine System Employing a Direct Drive Axial Flux Synchronization Generator: 29 October 2002 - 31 December 2005  

SciTech Connect

The goal of this funded research project is the definition, analytical investigation, modeling, and prototype realization of a current-source conversion topology tailored to high-power wind turbines.

Lipo, T. A.; Tenca, P.

2006-07-01T23:59:59.000Z

45

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

46

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

47

NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY  

SciTech Connect

Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications, both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

Unknown

2001-12-05T23:59:59.000Z

48

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers.  

E-Print Network (OSTI)

?? This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of… (more)

Kim, Yong Sung

2010-01-01T23:59:59.000Z

49

Numerical performance prediction for FAU's first generation ocean current turbine.  

E-Print Network (OSTI)

??This thesis presents the analytically predicted position, motion, attitude, power output and forces on Florida Atlantic University's (FAU) first generation ocean current turbine for a… (more)

Vanrietvelde, Nicolas.

2009-01-01T23:59:59.000Z

50

Numerical performance prediction for FAU's first generation ocean current turbine.  

E-Print Network (OSTI)

?? This thesis presents the analytically predicted position, motion, attitude, power output and forces on Florida Atlantic University's (FAU) first generation ocean current turbine for… (more)

Vanrietvelde, Nicolas

2010-01-01T23:59:59.000Z

51

Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

van Dam, J.; Jager, D.

2010-02-01T23:59:59.000Z

52

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01T23:59:59.000Z

53

Direct drive wind turbine - Energy Innovation Portal  

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The ...

54

HTGR power plant turbine-generator load control system  

SciTech Connect

A control system is disclosed for a high temperature gas cooled reactor power plant, wherein a steam source derives heat from the reactor coolant gas to generate superheated and reheated steam in respective superheater and reheater sections that are included in the steam source. Each of dual turbine-generators includes a high pressure turbine to pass superheated steam and an associated intermediate low pressure turbine to pass reheated steam. A first admission valve means is connected to govern a flow of superheated steam through a high pressure turbine, and a second admission valve means is connected to govern a flow of reheated steam through an intermediate-low pressure turbine. A bypass line and bypass valve means connected therein are connected across a second admission valve means and its intermediate-low pressure turbine. The second admission valve means is positioned to govern the steam flow through the intermediate-low pressure turbine in accordance with the desired power output of the turbine-generator. In response to the steam flow through the intermediate-low pressure turbine, the bypass valve means is positioned to govern the steam flow through the bypass line to maintain a desired minimum flow through the reheater section at times when the steam flow through the intermediate-low pressure turbine is less than such minimum. The power output of the high pressure turbine is controlled by positioning the first admission valve means in predetermined proportionality with the desired power output of the turbine-generator, thereby improving the accuracy of control of the power output of the high pressure turbine at low load levels.

Braytenbah, A.S.; Jaegtnes, K.O.

1976-12-28T23:59:59.000Z

55

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations  

E-Print Network (OSTI)

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic of multi-megawatt turbines requires a new generation of modeling capability to assess individual turbine performance as well as detailed turbine- turbine and turbine-atmosphere interactions. Scientists

56

Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units.  

E-Print Network (OSTI)

??The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical… (more)

Tsai, Chia-Chun

2012-01-01T23:59:59.000Z

57

Wind turbine power generation emulation via doubly fed induction generator control .  

E-Print Network (OSTI)

??In this thesis, we emulate a Wind Turbine Generator by driving a Doubly Fed Induction Generator (DFIG) via a DC motor with variable input torque… (more)

Edwards, Gregory W.

2009-01-01T23:59:59.000Z

58

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

59

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

60

Gas Turbine and Generator Procurement Guidelines: Best Practices and Specification  

Science Conference Proceedings (OSTI)

This report provides a specification in the style used by engineering, procurement, and construction (EPC) firms for procuring gas turbines and associated generators and accessories, as well as guidelines that describe best practices for defining the functional design requirements for such equipment. BackgroundGas turbines, fired by readily available natural gas, provide the majority of new power generation worldwide. Changes in the mix of generation ...

2012-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network (OSTI)

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper examines the status, economic outlook, and future directions of combustion turbine technology for industrial and utility power generation. The discussion takes into account the ongoing deregulation and increasing competition that are shaping the electric power generation business. Included is a comparison between heavy-duty industrial combustion turbines and their rapidly evolving competition, aeroderivative machines, with emphasis on the appropriate application of each. The prospects for future improvements in the cost and performance of combustion turbines are reviewed, and the likely impact of advanced combustion turbine power generation concepts is considered. Also summarized is the outlook for power generation fuels, including the longer term reemergence of coal and the potential for widespread use of coal gasification-based combustion turbine systems. The paper draws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy companies that includes utilities, independent power producers (IPPs), and power industry equipment vendors.

Karp, A. D.; Simbeck, D. R.

1994-04-01T23:59:59.000Z

62

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

Hossein Ghezel-Ayagh

2003-05-27T23:59:59.000Z

63

Dynamic simulation of dual-speed wind turbine generation  

SciTech Connect

Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

64

Assessment of turbine generator technology for district heating applications  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of large cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. The performance of the 250 MW district heating turbine as applied to meet the heat load duration curve for Minneapolis--St. Paul area is analyzed, and associated fuel savings are estimated.

Oliker, I.

1978-09-01T23:59:59.000Z

65

ORC Scroll Turbine and its Applications for Micro Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts ORC Scroll Turbine and its Applications for Micro Power Generation Speaker(s): Malick Kane Date: October 17, 2002 - 12:00pm Location: Bldg....

66

GE power generation technology challenges for advanced gas turbines  

SciTech Connect

The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

Cook, C.S.; Nourse, J.G.

1993-11-01T23:59:59.000Z

67

Candidate wind turbine generator site: annual data summary, January 1981-December 1981  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

1982-07-01T23:59:59.000Z

68

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

DOE Green Energy (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

69

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

70

Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

Huskey, A.

2011-11-01T23:59:59.000Z

71

MHK Technologies/OCGen turbine generator unit TGU | Open Energy Information  

Open Energy Info (EERE)

OCGen turbine generator unit TGU OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile Primary Organization Ocean Renewable Power Company Project(s) where this technology is utilized *MHK Projects/Cook Inlet Tidal Energy *MHK Projects/East Foreland Tidal Energy *MHK Projects/Lubec Narrows Tidal *MHK Projects/Nenana Rivgen *MHK Projects/Treat Island Tidal *MHK Projects/Western Passage OCGen Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description he OCGen turbine-generator unit (TGU) is unidirectional regardless of current flow direction. Two cross flow turbines drive a permanent magnet generator on a single shaft. OCGen modules contain the ballast/buoyancy tanks and power electronics/control system allowing for easier installation. The OCGen TGU can be stacked either horizontally or vertically to form arrays.

72

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

73

ERCOT's Dynamic Model of Wind Turbine Generators: Preprint  

DOE Green Energy (OSTI)

By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

2005-08-01T23:59:59.000Z

74

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

75

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

76

Doubly-fed induction generator torque in wind turbines  

Science Conference Proceedings (OSTI)

The field oriented doubly-fed induction generator (DFIG) is being increasingly used in variable speed wind turbines. It is therefore indispensable to become better acquainted with electrical and mechanical DFIG features in both stationary and dynamic ... Keywords: doubly-fed induction generator (DFIG), torque characteristic of DFIG

Jurica Smajo; Dinko Vukadinovic

2008-02-01T23:59:59.000Z

77

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

78

Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005  

Science Conference Proceedings (OSTI)

This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

GE Wind Energy, LLC

2006-05-01T23:59:59.000Z

79

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network (OSTI)

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

80

Methods and apparatus for cooling wind turbine generators  

DOE Patents (OSTI)

A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

2008-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Heat Recovery Steam Generator Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the heat recovery steam generator at a combustion gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and ...

2013-05-15T23:59:59.000Z

82

Wind turbine generator with improved operating subassemblies  

DOE Patents (OSTI)

A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

1985-01-01T23:59:59.000Z

83

Integrated Low Emissions Cleanup system for direct coal fueled turbines  

Science Conference Proceedings (OSTI)

The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

1993-07-01T23:59:59.000Z

84

Automatic Identification of Shaft Orbits for Steam Turbine Generator Sets  

Science Conference Proceedings (OSTI)

The shaft orbits and dynamic characteristics of the shaft centre orbit contain abundant information for the fault diagnosis of rotating machinery and reflect different faults of rotating machine. Therefore the shaft orbits recognition plays an important ... Keywords: shaft orbit, steam turbine generator sets, morphological filter, invariant moment, BP neural network

Changfeng Yan; Hao Zhang; Hui Li; Li Yang; Wen Huang

2009-05-01T23:59:59.000Z

85

Single module pressurized fuel cell turbine generator system  

DOE Patents (OSTI)

A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

2001-01-01T23:59:59.000Z

86

Distributed Generation Market Study: Advanced Turbine System Program  

Science Conference Proceedings (OSTI)

The ultra high efficiency, environmental superiority, and cost competitiveness of advanced turbine systems (ATSs) makes them attractive candidates for use in the near future in distributed generation applications. This study found that ATS engines with the cost and performance characteristics provided by Allison Engine Company (Allison) could have a significant regional market in the 2000-2005 time period.

1999-03-10T23:59:59.000Z

87

Axial flux, modular, permanent-magnet generator with a toroidal winding for wind turbine applications  

SciTech Connect

Permanent-magnet generators have been used for wind turbines for many years. Many small wind turbine manufacturers use direct-drive permanent-magnet generators. For wind turbine generators, the design philosophy must cover the following characteristics: low cost, light weight, low speed, high torque, and variable speed generation. The generator is easy to manufacture and the design can be scaled up for a larger size without major retooling. A modular permanent-magnet generator with axial flux direction was chosen. The permanent magnet used is NdFeB or ferrite magnet with flux guide to focus flux density in the air gap. Each unit module of the generator may consist of one, two, or more phases. Each generator can be expanded to two or more unit modules. Each unit module is built from simple modular poles. The stator winding is formed like a torus. Thus, the assembly process is simplified and the winding insertion in the slot is less tedious. The authors built a prototype of one unit module and performed preliminary tests in the laboratory. Follow up tests will be conducted in the lab to improve the design.

Muljadi, E.; Butterfield, C.P.; Wan, Y.H.

1998-07-01T23:59:59.000Z

88

Turbine-Generator Topics for Plant Engineers: Residual Magnetism  

Science Conference Proceedings (OSTI)

The undesirable magnetization of components of rotating equipment used in the generation of electric power is a problem that has been recognized for many years; but wide understanding of the origins, detection techniques, remediation, and avoidance principles of residual magnetization has been lacking. As part of the series Turbine-Generator Topics for Plant Engineers, EPRI commissioned this report with the purpose of providing engineers active in the operation and maintenance of power ...

2013-08-23T23:59:59.000Z

89

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

90

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations  

E-Print Network (OSTI)

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic conditions with turbine models covering the range of scales important for wind plant dynamics to help address the impacts that upwind turbines have on turbines in their wake and give greater insight into overall wind

91

Generation Maintenance Applications Center: Combined Cycle Combustion Turbine Maintenance Guide for the Turbine Section of the Combu stion Turbine  

Science Conference Proceedings (OSTI)

Combustion turbine combined cycle (CTCC) facilities utilize various components that are unique to these types of power-generation plants and that are not typically found in a nuclear or fossil-power plant.  As such, use of the EPRI PM Basis Database (PMDB) by current owners of CTCC facilities is limited to only those components that are common to both types of power plants.  With the projected growth in the number of CTCC facilities, EPRI General Maintenance Applications Center (GenMAC) ...

2012-12-31T23:59:59.000Z

92

Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator...  

NLE Websites -- All DOE Office Websites (Extended Search)

The generators are usually direct-drive (i.e., no gearbox is required). Direct-drive PM generators are characterized by low maintenance and high efficiency. Small wind...

93

Understanding the unbalanced-voltage problem in wind turbine generation  

DOE Green Energy (OSTI)

Most wind turbines are equipped with line-connected induction generators. Induction generators are very attractive as wind turbine generators due to their low cost, ruggedness and the need for little or no maintenance. At constant frequency, the induction generator operates in a small range of speeds and, therefore, it operated with a small range of slips with respect to synchronous speed. Compared to a synchronous generator, an induction generator provides lower stiffness, thus alleviating the mechanical stress. In a weak power system network, an unbalanced load at the distribution lines can cause unbalanced voltage conditions. If an induction generator is connected to an unbalanced voltage, the resulting stator current will be unbalanced. The unbalanced current creates unequal heating (hot spots) on the stator winding. The heat may increase the winding temperature, which degrades the insulation of the winding, i.e., the life expectancy of the winding. Unbalanced currents also create torque pulsation on the shaft resulting in audible noise and extra mechanical stress. This paper explores the unbalanced voltage problem in induction generators. The levels of unbalance and the loads are varied. Experimental and predicted results are presented in this paper.

Muljadi, E.; Butterfield, C.P.; Batan, T.; Yildirim, D.

2000-02-28T23:59:59.000Z

94

Generators in Combustion Turbine (CT) Applications: Failure Mechanisms  

Science Conference Proceedings (OSTI)

As combustion turbines (CTs) come into wider and wider use to provide peaking power and supplement intermittent renewable resources, operating experience indicates that competitive pressures and reduced design margins have resulted in some generic problems that affect the reliability of generators and limit their life expectancy. While some users have entered in long-term service agreements with original equipment manufacturers (OEMs) to look after the predictive and corrective maintenance of their ...

2013-11-15T23:59:59.000Z

95

Millville Wind Turbine Generator: failure analysis and corrective design modification  

DOE Green Energy (OSTI)

Fatigue cracks in the blade skins of the Millville Wind Turbine Generator were fractographically analyzed. It is believed they were caused by large flapwise deflections during a wind storm on December 4, 1978. The deflections caused the skin to buckle, which initiated rapidly growing fatigue cracks. Propagation continued to the leading edge, moving radially inward and outward along the leading edge radius. Communication between Rockwell and Millville resulted in a modified blade design which incorporates several corrective techniques.

Waldon, C.A.; Carr, M.J.; Grotzky, V.K.

1979-07-01T23:59:59.000Z

96

Rene' N4: A First Generation Single Crystal Turbine Airfoil Alloy with ...  

Science Conference Proceedings (OSTI)

GE Aircraft Engine's first generation single crystal (SX) turbine airfoil alloy, Rene N ..... Aircraft Engines, and Warren King who is now with GE Power. Generation ...

97

Design and construction of a thermophotovoltaic generator using turbine combustion gas  

SciTech Connect

This US Naval Academy project involves the development of a prototype thermophotovoltaic (TPV) generator that uses a General Electric T-58 helicopter gas turbine as the heat source. The goals of this project were to demonstrate the viability of using TPV and external combustion gases to generate electricity, and develop a system which could also be used for materials testing. The generator was modularly designed so that different materials could be tested at a later date. The combustion gas was tapped from the T-58`s combustor through one of the two igniter ports and extracted through a silicon carbide matrix ceramic composite tube into a similarly constructed ceramic composite radiant emitter. The ceramic radiant emitters is heated by the combustion gas via convection, and then serves the TPV generator by radiating the heat outwards where it can be absorbed by thermophotovoltaic cells and converted directly into electricity. The gas turbine and generator module are monitored by a data acquisition system that performs both data collection and control functions. This paper details the design of the TPV generator. It also gives results of initial tests with the gas turbine.

Erickson, T.A.; Lindler, K.W.; Harper, M.J. [Naval Academy, Annapolis, MD (United States). Dept. of Naval Architecture, Ocean, and Marine Engineering

1997-07-01T23:59:59.000Z

98

Life extension of gas turbines used for power generation  

SciTech Connect

Gas turbines have traditionally been used by electric utilities to supplement generating capacity during peak demand periods. As they age, the utility is faced with the decision of either replacing the units to maintain a reliable source of generating capacity, or extending the life of the units through the use of improved maintenance and monitoring techniques. This paper discusses some of the considerations for extended life operation of gas turbines. To perform this study, actual operating and failure data for 50 Pratt Whitney FT-4 gas turbines were collected from a cooperating utility and analyzed to identify predominant failure causes and components most frequently failed. Failure rates for individual engine modules were calculated as a function of engine age to identify time-dependent trends and their effect on engine reliability. Mean time between failures and engine availability were also determined and are presented. Based on the results of the analysis, potential improvements to operation and maintenance methods were identified and are discussed. 5 refs., 7 figs.

Lofaro, R.; Villaran, M.

1990-01-01T23:59:59.000Z

99

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

100

Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications  

SciTech Connect

Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.

Herrera, J.I.; Reddoch, T.W.

1988-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

Muljadi, E.

1998-08-25T23:59:59.000Z

102

Variable Speed Wind Turbine Generator with Zero-sequence Filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-08-25T23:59:59.000Z

103

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-01-01T23:59:59.000Z

104

Study on Aerodynamic Design of Horizontal Axis Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

In this paper the choosing principles of design parameters and multi-airfoils in horizontal axis wind turbine (HAWT) generator system aerodynamic design are introduced. On the basis of the comparison analysis of wind turbine aerodynamic design method ... Keywords: Schmitz, airfoil, partial load, horizontal axis wind turbine (HAWT), blade tip speed ratio (BTSR)

Li Dong; Mingfu Liao; Yingfeng Li; Xiaoping Song; Ke Xu

2009-10-01T23:59:59.000Z

105

Reference value choice of the wind turbine active power with doubly-fed induction generator  

Science Conference Proceedings (OSTI)

The variable speed wind turbine with doubly-fed induction generator (DFIG) is today widely used concept. This paper presents a control system of the DFIG wind turbine with focus on the control strategies and on active power reference value choice. The ... Keywords: DFIG, dynamic simulation, reference value of active power, wind turbine

J. Smajo; M. Smajo; D. Vukadinovic

2005-11-01T23:59:59.000Z

106

Short Circuit Current Contribution for Different Wind Turbine Generator Types  

DOE Green Energy (OSTI)

An important aspect of wind power plant (WPP) impact studies is to evaluate the short circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper represents simulation results for short circuit current contribution for different types of WTGs obtained through transient analysis using generic WTG models. The obtained waveforms are analyzed to explain the behavior, such as peak values and rate of decay, of the WTG. The effect of fault types and location, and the effect of the control algorithms of power converters on SC current contribution are investigated. It is shown that the response of the WPP to faults will vary based on the type of the installed WTGs. While in Type 1 and Type 2 WTGs, short circuit current will be determined by the physical characteristics of the induction generator, the contribu-tion of Type 3 and Type 4 WTG will be mostly characterized by the power converters control algorithms which are usually considered proprietary information by the wind turbine manufacturers.

Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

2010-09-28T23:59:59.000Z

107

A new opportunity for hydro: Using air turbines for generating electricity  

SciTech Connect

A concept that uses hydropower to compress air could increase the number of locations where hydro is economically and environmentally feasible. The idea is being tested in a demonstration project in the northeastern U.S. The hydroelectric industry could experience substantial growth in low-head hydro facilities if a concept now being developed proves successful. This concept aims to enable power developers to generate electricity economically at sites currently not feasible for hydropower because water heads are too low. Many areas of North America are studded with low-head dams that could provide considerable hydro capacity if low-head generation were economically feasible. The six New England states in the US, for example, contain approximately 15,000 dams that have never been used to generate electric power because they impound water with heads ranging from 3 to 13 feet. Conventional facilities are not economically practical for generating electricity at these low heads. However, a promising alternative approach is to use water at these low-head dams to compress air, and then to use the air to power an air turbine-generator that produces electricity. The concept, called hydropneumatic generation, can be visualized by imagining a container, such as a large teacup, inverted and submerged in tidal waters. As the tide rises, the water compresses the air trapped inside the container. When the tide ebbs, the pressure decreases, putting the air into a partial vacuum. If a vent pipe were installed from the container to the atmosphere, air would flow out of the container as the water depth increased, and flow back in as the water depth decreased. Hydropneumatic energy is generated by installing an air-powered turbine to harness the energy of this airflow through the vent pipe. The turbine can be installed to rotate in the same direction at all times, even though the airflow reverses direction.

Gorlov, A.M. (Northeastern Univ., Boston, MA (United States))

1992-09-01T23:59:59.000Z

108

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

109

Large heavy-duty gas turbines for base-load power generation and heat cogeneration  

SciTech Connect

The predominant role of large gas turbines has shifted from peaking-load duty to midrange and base-load electric power generation, especially within combined-cycle plants. Such applications require heavy-duty industrial gas turbines to ensure the same high reliability and availability for continuous service as the associated steam turbines. It is also important that the gas turbines be designed for low maintenance to minimize the necessary outage times and costs for component repair and replacement. The basic design principles and applications of Model V94 gas turbines are discussed with special reference to highly reliable and economic bulk power generation.

Joyce, J.S.

1985-01-01T23:59:59.000Z

110

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

111

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

112

EVALUATION OF SINGLE AND DUAL TURBINE-GENERATOR UNITS FOR PL-3  

SciTech Connect

The investigation performed relative to the selection of a turbine- generator unit for the PL-3 portable nuclear power plant, Byrd Station, Antarctica, is described. Available conventional equipment was surveyed to minimize air shipment, installation, and cost requirements. Pertinent details of functional performance were considered. A comparison was drawn between the alternatives of utilizing either a single turbine generator unit shipped partially disassembled or twin, half-capacity units shipped assembled. The conclusion reached was that a single turbine-generator unit should be used with the turbine and generator shipped separately. (auth)

Prall, T.F.

1962-03-01T23:59:59.000Z

113

Turbine-Generator Auxiliary Systems, Volume 5: Main and Feedpump Turbine Trip Systems  

Science Conference Proceedings (OSTI)

This report describes the trip systems for the mechanical hydraulic control (MHC) and electrohydraulic control (EHC) main turbine and feedpump turbines for the General Electric (GE) and Siemens Westinghouse (SW) units in the United States.

2009-12-23T23:59:59.000Z

114

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION  

E-Print Network (OSTI)

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor

Paris-Sud XI, Université de

115

A doubly-fed permanent magnet generator for wind turbines  

E-Print Network (OSTI)

Optimum extraction of energy from a wind turbine requires that turbine speed vary with wind speed. Existing solutions to produce constant-frequency electrical output under windspeed variations are undesirable due to ...

Thomas, Andrew J. (Andrew Joseph), 1981-

2004-01-01T23:59:59.000Z

116

Generation Maintenance Applications Center: Combined-Cycle Combustion Turbine Lube Oil System Maintenance Guide  

Science Conference Proceedings (OSTI)

The combustion turbine lubrication system provides clean oil to the turbine-generator bearings, the generator seal oil system, the trip oil system, and the hydraulic system at the required pressures and temperatures. It is an essential system that reduces friction between rubbing surfaces such as bearings, ...

2012-10-31T23:59:59.000Z

117

Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system  

Science Conference Proceedings (OSTI)

This paper proposes a precise real-time wind speed estimation method and sensorless control for variable-speed variable-pitch wind turbine power generation system (WTPGS). The wind speed estimation is realized by a nonlinear input-output mapping extreme ... Keywords: Extreme learning machine, Sensorless control, Wind speed estimation, Wind turbine power generation system

Si Wu; Youyi Wang; Shijie Cheng

2013-02-01T23:59:59.000Z

118

Rise in gas-fired power generation tracks gains in turbine efficiency  

SciTech Connect

Natural gas-fueled gas turbines--in both simple and combined-cycle configurations--will account for most power generation capacity additions through 2000. It is widely agreed that gas turbines will remain the dominant form of technology for power generation for the next decade or two, making them the power generation technology of choice for today and the future. The pre-eminent stature of gas turbines can be attributed to their low capital costs, high efficiency, low emissions, short permitting and construction lead times, and proven reliability. The versatility of gas turbines also makes them unique among power generation technologies, as they can economically serve a wide spectrum of applications and sizes--from distributed generation to industrial cogeneration and central station generation. Three primary factors contribute to the growing interest in gas turbine-based power generation and the role gas turbines will play in the future power generation market: An optimistic outlook for the supply and price of natural gas; technology advances that have produced substantial improvements in efficiency and emissions; and emissions regulations that may favor the use of gas turbines over traditional fossil-fueled steam turbines. These three factors are discussed.

Bautista, P. [Gas Research Inst., Chicago, IL (United States)

1996-08-12T23:59:59.000Z

119

Pitch-Controlled Variable-Speed Wind Turbine Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Pitch-Controlled Variable-Speed Pitch-Controlled Variable-Speed Wind Turbine Generation February 2000 * NREL/CP-500-27143 E. Muljadi and C.P. Butterfield Presented at the 1999 IEEE Industry Applications Society Annual Meeting Phoenix, Arizona October 3-7, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

120

Removal of Dioxin Contamination for Gas Turbine Generator Set Repair  

SciTech Connect

Decontamination projects are typically undertaken in the interest of reducing disposal costs. This goal can be achieved because decontamination concentrates the contaminant into a smaller volume or changes its form so that a lower cost disposal technology becomes available. Less frequently, decontamination adds value back to the fouled structure or contaminated piece of equipment. This removal of dioxins from a gas turbine generator set is one of the latter cases. A multi-million dollar piece of equipment could have been destined for the scrap pile. Instead, an innovative, non-destructive decontamination technology, developed under EPA and DOE demonstration programs has was employed so that the set could repaired and put back into service. The TechXtractchemical decontamination technology reduced surface dioxin / furan concentrations from as high as 24,000 ng / m2 to less than 25 ng / m2 and below detection limits.

Fay, W. S.; Borah, R.E.

2003-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Candidate wind turbine generator site, Culebra, Puerto Rico. Annual data summary, October 1978-September 1979  

DOE Green Energy (OSTI)

This report summarizes wind speed and direction data collected on meteorological towers at 14 candidate and wind turbine generator installation sites from October 1978 through September 1979. The basic method of data collection is by digital data cassette recording systems. For the digital data reported, an instantaneous sample is recorded every 2 minutes. An explanation is provided for each data summary table as well as information on how specific values were computed. The rest of the report presents the annual summarized data for each site.

Not Available

1980-07-01T23:59:59.000Z

122

Candidate wind turbine generator site, Culebra, Puerto Rico. Annual data summary, January-December 1979  

DOE Green Energy (OSTI)

This report summarizes wind speed and direction data collected on meteorological towers at 14 candidate and wind turbine generator installation sites from January 1979 through December 1979. The basic method of data collection is by digital data cassette recording systems. For the digital data reported, an instantaneous sample is recorded every 2 minutes. An explanation is included for each data summary table as well as information on how specific values were computed. The rest of the report presents the annual summarized data for each site.

None

1980-06-01T23:59:59.000Z

123

Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications  

SciTech Connect

Permanent-magnet (PM) generators have been used for wind turbines for many years. Many small wind-turbine manufacturers use direct-drive PM generators. For wind-turbine generators, the design philosophy must cover the following characteristics: low cost, light weight, low speed, high torque, and variable-speed generation. The generator is easy to manufacture and the design can be scaled up for a larger size without major retooling. A modular PM generator with axial flux direction was chosen. The permanent magnet used is NdFeB or ferrite magnet with flux guide to focus flux density in the air gap. Each unit module of the generator may consist of one, two, or more phases. Each generator can be expanded to two or more unit modules. Each unit module is built from simple modular poles. The stator winding is formed like a torus. Thus, the assembly process is simplified and the winding insertion in the slot is less tedious. The authors built a prototype of one unit module and performed preliminary tests in the laboratory. Follow-up tests will be conducted in the laboratory to improve the design.

Muljadi, E.; Butterfield, C.P.; Wan, Y.H.

1999-08-01T23:59:59.000Z

124

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On-Line Disturbance Data  

E-Print Network (OSTI)

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On technique to estimate and model rotor- body parameters of a large steam turbine-generator from real time

125

Small Gas Turbines for Distributed Generation Markets: Technology, Products, and Business Issues  

Science Conference Proceedings (OSTI)

Small gas turbines (300 kW to 5 MW) offer an attractive way for utilities and energy service companies to generate electric power within distribution grids and for consumers to generate their own power. Distributed generation also benefits utilities by deferring or avoiding costly expansion of the power transmission and distribution system, which could allow them to offer customers lower cost power. Gas turbines process more power-generation cycle air per unit size and weight of machine than do reciproca...

2000-12-06T23:59:59.000Z

126

Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint  

DOE Green Energy (OSTI)

To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

Yang, W.; Sheng, S.; Court, R.

2012-08-01T23:59:59.000Z

127

Generation Maintenance Applications Center: Combined-Cycle Combustion-Turbine Static Starting System Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of combustion-turbine static start systems, planning, predictive, and preventive maintenance techniques; failure mode information; and troubleshooting guidance.BackgroundAs the fleet of combustion turbines grows, it is critical for the starting systems to be understood and properly maintained in order to ensure the reliability of combustion-turbine generating units and the ...

2013-03-28T23:59:59.000Z

128

Wind turbine generators having wind assisted cooling systems and cooling methods  

DOE Patents (OSTI)

A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

2008-09-23T23:59:59.000Z

129

An Investigation of the Application of the Gas Generator-Free Turbine Cycle to a Nuclear Powered Aircraft  

SciTech Connect

This study has investigated the feasibility of installing a gas generator-free turbine type power plant in the R3Y aircraft, using a circulating fuel reactor as a power source. Two variations of the cycle were considered. The split flow cycle bleeds high temperature, high pressure air from the gas generator directly to the free turbine in the wing. The through flow cycle partially expands the high temperature, high pressure air through the compressor turbine of the gas generator then directs the compressor-turbine exhaust air to the free turbine in the wing. Design parameters of pressure ratio, radiator depth, radiation flow density, and hot gas duct size were optimized to give minimum weight per shaft horsepower of the complete power plant. The weight of a split flow power plant capable of supplying 22,000 shaft horsepower was found to be 116,600 pounds. The weight of a similar through flow power plant was found to be 119,900 pounds. The reactor power required in both cases was 70 megawatts. The nominal gross weight of the R3Y airplane is 175,000 pounds. With pay loads of approximately 20,000 pounds, either nuclear conversion will have a gross weight of 200,000 pounds. It was found that either cycle could be installed in the R3Y aircraft; however, the installation of either would require major structural redesign. The split flow cycle with its smaller hot air ducts required the least amount of redesign. A comparison of existing aircraft engines with a preliminary design of the split flow turbo-components indicated that the compressor and possibly the free turbine could be adapted from current engine components.

Alvis, J. H.; Chessman, S. R.

1957-08-01T23:59:59.000Z

130

Non-pollutant fuel generator and fuel burner with a non-pollutant exhaust and supplementary dc generator. [for use in MHD generator, steam turbine, gas turbine, or fuel cell  

SciTech Connect

A system for generating non-polluting fuel and a burner for using such fuel to produce energy in the form of heat with a non-polluting exhaust, together with means for utilizing such exhaust to produce supplementary direct current power is disclosed. An electrolyzer is operated to produce hydrogen and oxygen in gaseous form which is then stored in suitable fuel tanks. As needed, the fuel is combined with air and supplied under pressure to a combustion chamber where the mixture is burned, producing heat and a pollution free exhaust. The heat so produced may be used as a conventional heat source to generate steam, drive a turbine, or the like, while the combustion gases are directed to a magnetohydrodynamic generator to produce an electrical current which is usable in any desired manner.

Barros, M.J.

1976-12-21T23:59:59.000Z

131

Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine  

DOE Green Energy (OSTI)

This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-05-01T23:59:59.000Z

132

Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine  

Science Conference Proceedings (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2010-05-01T23:59:59.000Z

133

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

DOE Green Energy (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

134

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

135

Rotor power feedback control of wind turbine system doubly-fed induction generator  

Science Conference Proceedings (OSTI)

The paper deals with a new system of wind turbine active power vector control. The already familiar cascade regulation with internal vector component feedback of rotor current and external active and reactive power feedbacks control of wind turbine has ... Keywords: DFIG rotor power regulator, doubly-fed induction generator, simulation, vector control

J. Smajo

2006-09-01T23:59:59.000Z

136

Wind Turbines Condition Monitoring and Fault Diagnosis Using Generator Current Amplitude  

E-Print Network (OSTI)

detection in a Doubly-Fed Induction Generator (DFIG) based wind turbine for stationary and nonstationary cases. Index Terms--Wind turbine, DFIG, fault detection, diagnosis, amplitude modulation, Hilbert and maintaining older system, becomes more costly and challenging with obsolescence of key components. DFIG

Paris-Sud XI, Université de

137

Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine  

Science Conference Proceedings (OSTI)

This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

Huskey, A.; van Dam, J.

2010-11-01T23:59:59.000Z

138

Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine  

DOE Green Energy (OSTI)

Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2011-05-01T23:59:59.000Z

139

Preliminary design of axial flow hydrocarbon turbine/generator set for geothermal applications  

DOE Green Energy (OSTI)

This report outlines the design of a 65 MW (e) gross turbine generator set in which a hydrocarbon gas mixture is used as the motive fluid. The turbine generator set is part of a geothermal binary cycle electric power plant proposed for the Heber site in the Imperial Valley, California. Aerodynamic design considerations and estimated unit performance for three hydrocarbon gas mixtures are presented. Real gas properties and equations of state are reviewed as they affect the turbine design and the thermodynamic cycle. The mechanical designs for the casing, rotor dynamics, shaft sealing and unit construction are detailed. Support systems such as the lube and seal supply system, turbine controls, etc., are reviewed. An extensive hydrocarbon turbine general specification is also included.

Barnes, B.; Samurin, N.A.; Shields, J.R.

1979-05-01T23:59:59.000Z

140

A market and engineering study of a 3-kilowatt class gas turbine generator  

E-Print Network (OSTI)

Market and engineering studies were performed for the world's only commercially available 3 kW class gas turbine generator, the IHI Aerospace Dynajet. The objectives of the market study were to determine the competitive ...

Monroe, Mark A. (Mark Alan)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Steam Turbine and Generator Designs for Combined-Cycle Applications: Durability, Reliability, and Procurement Considerations  

Science Conference Proceedings (OSTI)

Combined-cycle power plants are currently preferred for new power generation capacity in much of the world, particularly in the United States. Steam turbines and electrical generators are vital components affecting plant performance and reliability. Over 90 percent of the world's combined-cycle steam turbines are provided by six major manufacturers: Alstom, General Electric, Siemens-Westinghouse, Mitsubishi, Toshiba, and Hitachi. This report provides information on their model offerings and consideration...

2003-03-18T23:59:59.000Z

142

Torsional Interaction Between Electrical Network Phenomena and Turbine-Generator Shafts  

Science Conference Proceedings (OSTI)

The report documents the results of a literature review, surveys, and detailed sensitivity analysis (using a generic system model with real turbine-generator shaft models) to document the interaction between electrical network disturbances and torsional modes of turbine-generators. The key challenge is that much of this interaction depends on the actual torsional modal response of the unit and the endurance limit of the shaft material.

2006-12-04T23:59:59.000Z

143

Preliminary Evaluation of a Multiple-Generator Drive-Train Configuration for Wind Turbines: Preprint  

DOE Green Energy (OSTI)

The recent trend toward large wind turbines has led to very expensive gearboxes that hinder their feasibility. The gearboxes for these wind turbines are more expensive per kilowatt (kW) of rated power than for smaller turbines because the torque increases more quickly than the power when increasing the rotor diameter. Multiple-generator drivetrain configurations can reduce the drivetrain cost for large wind turbines while increasing the energy capture and reliability. The National Renewable Energy Laboratory (NREL) is reexamining the benefits of multiple-generator configurations through the Wind Partnership for Advanced Component Technology (WindPACT) program. This paper qualitatively compares a multiple-generator drivetrain configuration to a conventional drivetrain.

Cotrell, J.

2002-01-01T23:59:59.000Z

144

A Methodology for Assessment of Wind Turbine Noise Generation  

E-Print Network (OSTI)

The detailed analysis of a series of acoustic measurements taken near several large wind turbines (100 kWand above) has identified the maximum acoustic energy as being concentrated in the low-frequency audible and subaudible ranges, usually less than 100 Hz. These measurements have also shown any reported community annoyance associated with turbine operations has often been related to the degree of coherent impulsiveness present and the subsequent harmonic coupling of acoustic energy to residential structures. Thus, one technique to assess the annoyance potential of a given wind turbine design is to develop a method which quantifies this degree of impulsiveness or coherency in the radiated acoustic energy spectrum under a wide range of operating conditions. Experience has also shown the presence of annoying conditions is highly time dependent and nonstationary, and, therefore, any attempts to quantify or at least classify wind turbine designs in terms of their noise annoyance potential must be handled within the proper probabilistic framework. A technique is described which employs multidimensional, joint probability analysis to establish the expected coincidence of acoustic energy levels in a contiguous sequence of octave frequency bands which have been chosen because of their relationship to common structural resonant frequencies in residential buildings. Evidence is presented to justify the choice of these particular bands. Comparisons of the acoustic performance and an estimate of the annoyance potential of several large wind turbine designs using this technique is also discussed.

N. D. Kelley; R. R. Hemphill; M. E. Mckenna

1981-01-01T23:59:59.000Z

145

An Advanced Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic and Prognostic System for Gas Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation Clemson University John R. Wagner, Ph.D., P.E. SCIES Project 03-01-SR108 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (07/01/2003, 36 Month Duration) $319,479 Total Contract Value ($319,479 DOE) Clemson Presentation 10-19-2005 J.W. Gas Turbine Need * The Reliability, Availability, and Maintainability (RAM) technical area within High Efficiency Engines and Turbines (HEET) Program encompasses the design of gas turbine health management systems * The introduction of real-time diagnostic and prognostic capabilities on gas turbines can provide increased reliability, safety, and efficiency

146

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network (OSTI)

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

147

Generation Maintenance Application Center: Combined-Cycle Combustion Turbine Steam Turbine Stop and Control Valve Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, ...

2013-03-27T23:59:59.000Z

148

Generation Maintenance Applications Center: Combined Cycle Combustion Turbine Maintenance Guide for the Compressor Section of the C ombustion Turbine  

Science Conference Proceedings (OSTI)

Combustion turbine combined cycle (CTCC) facilities utilize various components that are unique to these types of power-generation plants and that are not typically found in a nuclear or fossil-power plant.  As such, use of the EPRI PM Basis Database (PMDB) by current owners of CTCC facilities is limited to only those components that are common to both types of power plants.  With the projected growth in the number of CTCC facilities, EPRI General Maintenance Applications Center (GenMAC) ...

2012-12-31T23:59:59.000Z

149

Development of a High-Pressure/High-Temperature Downhole Turbine Generator  

Science Conference Proceedings (OSTI)

The objective of this project as originally outlined has been to achieve a viable downhole direct current (DC) power source for extreme high pressure, high temperature (HPHT) environments of >25,000 psi and >250 C. The Phase I investigation posed and answered specific questions about the power requirements, mode of delivery and form factor the industry would like to see for downhole turbine generator tool for the HPHT environment, and noted specific components, materials and design features of that commercial system that will require upgrading to meet the HPHT project goals. During the course of Phase I investigation the scope of the project was HPHT downhole DC power. Phase I also investigated the viability of modifying a commercial expanded, without additional cost expected to the project, to include the addition of HT batteries to the power supply platform.

Timothy F. Price

2007-02-01T23:59:59.000Z

150

Risø-R-1205(EN) Conceptual survey of Generators and Power Electronics for Wind Turbines  

E-Print Network (OSTI)

This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: • State of the art on generators and power electronics. • Future concepts and technologies within generators and power electronics. • Market needs in the shape of requirements to the grid connection. This survey on generator and power electronic concepts was carried out in cooperation between Aalborg University and Risø National Laboratory, in the scope of the joint research programme Electric Design and Control. The report has been reviewed by:

L. H. Hansen; L. Helle; F. Blaabjerg; E. Ritchie; S. Munk; H. Bindner; P. Sørensen; B. Bak-jensen; Anca Daniela; Hansen Peter; Hauge Madsen

2001-01-01T23:59:59.000Z

151

Wind Turbine Generator Model Validation Software Tool (WTGMV) Version 1.0  

Science Conference Proceedings (OSTI)

This software tool allows the user to validate the model for a wind turbine generator (WTG) using measured disturbance data from either a digital fault recorder (DFR) or a phaor measurement unit (PMU) located at the turbine - factor measured data from type testing of the turbine may also be used. The tool also performs parameter optimization on a some of the model parameters such as a few of the controller gains. The tool is a first step in the ultimate plan to enhance the tool to allow for ...

2012-08-30T23:59:59.000Z

152

Candidate wind turbine generator site annual data summary for January 1980 through December 1980  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for fourteen candidate and wind turbine generator sites are presented in this report. These data are collected for the Department of Energy for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, data are given in eight tables and one figure. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Renne, D.S.

1981-04-01T23:59:59.000Z

153

Candidate wind turbine generator site annual data summary for January 1979 through December 1979  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for fifteen candidate and wind turbine generator sites are presented in this report. These data are collected for the Department of Energy for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, data are given in eight tables and one figure. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Renne, D.S.

1981-03-01T23:59:59.000Z

154

ERCOT's Dynamic Model of Wind Turbine Generators: Preprint  

SciTech Connect

By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

2005-08-01T23:59:59.000Z

155

An approach to generating summaries of time series data in the gas turbine domain  

E-Print Network (OSTI)

In this paper, we propose an approach to generating summaries of time series data in the gas turbine domain using AI techniques. Through the think-aloud method with the aid of visualization of temporal data using time series workbench (TSW), both domain knowledge from experts about how to solve problems in the gas turbine and information about how domain experts analyze the archived temporal data are gotten. An algorithm to select interesting events is proposed and a prototype knowledge-based system is designed to generate summary of temporal data for interesting events in the gas turbine domain. Some further research works also are pointed. Key words: knowledge acquisition, knowledge-based system, gas turbine. 1

Jin Yu; Jim Hunter; Ehud Reiter; Somayajulu Sripada

2001-01-01T23:59:59.000Z

156

Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation  

SciTech Connect

In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

Zeh, C.M.

1996-08-01T23:59:59.000Z

157

Assessment of Low Pressure Turbine Exhaust System Improvements at Mayo Generating Station  

Science Conference Proceedings (OSTI)

This report describes extensive analyses and tests conducted on Carolina Power and Light's (CP&L's) Mayo Generating Station low pressure turbines to investigate the possibility of achieving heat rate reductions through modification to the turbine exhaust hood. Field results showed slightly less exhaust loss than anticipated from the manufacturer's thermal kit data, suggesting less potential for gains derived from hood improvements. Analytical work with computational fluid dynamic (CFD) models supported t...

1998-01-13T23:59:59.000Z

158

Strain-Based Turbine Generator Torsional Vibration Monitoring System - Phase 1: Concept Development  

Science Conference Proceedings (OSTI)

Shaft torsional vibration in large steam turbine-generator units is induced by transient grid disturbances and negative sequence currents. If undetected, these vibrations can accumulate fatigue damage in rotor elements such as turbine blades, couplings, and retaining rings. Shaft natural frequencies can be closely aligned with the predominant torsional excitation that occurs at twice the grid frequency, amplifying the resulting vibratory response. Calculation methods have evolved that predict shaft ...

2013-12-20T23:59:59.000Z

159

Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report  

SciTech Connect

The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

Johnson, David K; Lewis, Matthew J; ,; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

2013-02-01T23:59:59.000Z

160

Corrosion and degradation of ceramic particulate filters in direct coal-fired turbine applications  

SciTech Connect

High-temperature ceramic filters show considerable promise for efficient particulate removal from coal combustion systems. Advanced coal utilization processes such as direct coal-fired turbines require particulate-free gas for successful operation. This paper describes the various ceramic particulate filters under development and reviews the degradation mechanisms expected when operated in coal combustion systems.

Sawyer, J. (Acurex Corp., Mountain View, CA (US)); Vass, R.J.; Brown, N.R.; Brown, J.J. (Center for Advanced Ceramic Materials, CIT TDC, Virginai Polytechnic Inst. and State Univ., Blacksburg, VA (US))

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11  

SciTech Connect

This report presents the results of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD`s study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD`s study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC`s General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency.

Ornstein, H.L.

1995-04-01T23:59:59.000Z

162

Effects of turbulence on power generation for variable-speed wind turbines  

DOE Green Energy (OSTI)

One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

1996-11-01T23:59:59.000Z

163

Steam Turbine-Generator Torsional Vibration Interaction With the Electrical Network  

Science Conference Proceedings (OSTI)

This Tutorial Report deals with steam turbine-generator torsional vibration arising from interaction with the electrical systems that connect to the generator. Besides providing background material on torsional vibration and fatigue, it reviews operating experience and machine torsional duty mitigation strategies and provides information on torsional vibration measurement, monitoring, diagnostic procedures, and non-destructive evaluation (NDE).

2005-11-14T23:59:59.000Z

164

Control strategies of doubly fed induction generator-based wind turbine system with new rotor current protection topology  

Science Conference Proceedings (OSTI)

A protection scheme of a doubly fed induction generator (DFIG) based wind turbine system during faults is crowbar activation. With this protection

Jackson John Justo; Kyoung-Soo Ro

2012-01-01T23:59:59.000Z

165

Wind shear climatology for large wind turbine generators  

DOE Green Energy (OSTI)

Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

1982-10-01T23:59:59.000Z

166

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

167

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

168

DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES  

SciTech Connect

The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

2012-01-01T23:59:59.000Z

169

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

170

Literature Review of the Impact of Wind Turbine Generator Induced Sound on Wildlife  

Science Conference Proceedings (OSTI)

This review describes findings of a scientific literat ure search evaluating effects of exposure to wind turbine-generated sound on wildlife. It also provides a searchable digital database of over 350 literature sources related to this topic.BackgroundThe proliferation of wind energy generation facilities has created immense pressure to understand the impact on the local ecosystem of all aspects of these new systems, including sound generated by wind ...

2012-12-20T23:59:59.000Z

171

A new emergency lubricating-oil system for steam turbine generators: Final report  

Science Conference Proceedings (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

172

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degree]F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

173

Fault diagnosis of steam turbine-generator sets using CMAC neural network approach and portable diagnosis apparatus implementation  

Science Conference Proceedings (OSTI)

Based on the vibration spectrum analysis, this paper proposed a CMAC (Cerebellar Model Articulation Controller) neural network diagnosis technique to diagnose the fault type of turbine-generator sets. This novel fault diagnosis methodology contains an ... Keywords: CMAC, PIC, fault diagnosis, microcontroller, neural network, turbine-generator sets

Chin-Pao Hung; Wei-Ging Liu; Hong-Zhe Su

2009-09-01T23:59:59.000Z

174

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

175

Molldeing and Simulation of a Small-Scale Wind Turbine Generator in Isolated Distribution Network  

Science Conference Proceedings (OSTI)

In recent years, the wind energy capacity is rapidly increasing in importance as a share of electricity supply on worldwide basis. A small-scale wind turbine generator is usually installed in an isolated distribution network. This paper aims to justzjj ...

2007-09-01T23:59:59.000Z

176

A Review of Research Status on LVRT Technology in Doubly-fed Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

This paper gave a detailed introduction and analysis on the research status and industrialization situation of current LVRT Technology in doubly-fed wind turbine generator (WTG) system. Starting with the urgency of LVRT research in China, the paper introduced ... Keywords: LVRT, doubly-fed, research status, review

Yun Wang; Dong-li Zhao; Bin Zhao; Hong-hua Xu

2010-06-01T23:59:59.000Z

177

Generation Maintenance Applications Center: Combined-Cycle Combustion Turbine Steam Bypass Model Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various systems and components that are unique to this type of power generation plants and are not typically found in a nuclear or fossil power plant. As such, current CTCC facility owners’ use of the Electric Power ...

2013-12-14T23:59:59.000Z

178

Parallel Operation of Wind Turbine, Fuel Cell, and Diesel Generation Sources: Preprint  

DOE Green Energy (OSTI)

We investigated a small isolated hybrid power system that used a parallel combination of dispatchable and non-dispatchable power generation sources. The non-dispatchable generation came from a nature-dependent wind turbine, and the dispatchable generations were a fuel cell and a diesel generator. On the load side, the non-dispatchable portion was the village load, and the dispatchable portion was the energy storage, which could be in many different forms (e.g., space/water heater, electrolysis, battery charger, etc.) The interaction among different generation sources and the loads was investigated. Simulation results showed the effect of the proposed system on voltage and frequency fluctuations.

Muljadi, E.; Wang, C.; Nehrir, M. H.

2004-06-01T23:59:59.000Z

179

554 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 37, NO. 3, JULY 2012 Generator Systems for Marine Current Turbine  

E-Print Network (OSTI)

turbine. DFIG Doubly-fed induction generator. PMSG Permanent magnet synchronous generator. MPPT Maximum from a DFIG- and PMSG-based MCT. To high- light differences between the considered technologies, a vari

Paris-Sud XI, Université de

180

Ultrasupercritical Steam Turbines: Design and Materials Issues for the Next Generation  

Science Conference Proceedings (OSTI)

The ultrasupercritical fossil power plant is one option for high-efficiency and low-emissions electricity generation. It is based on significant increases in steam temperature and pressure, beyond those traditionally employed for supercritical plants. Such steam conditions put new demands on the steam turbine design, particularly where the new unit has to operate in a business climate that demands flexible, reliable operation of generating plants. This report reviews demands on the ultrasupercritical ste...

2002-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Generation Maintenance Application Center: Combined Cycle Combustion Turbine Attemperator Maintenance Guide  

Science Conference Proceedings (OSTI)

Combustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power-generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is limited to only those components that are common to both types of power plants and that have been previously added to the database. Because of the projected growth in the number of CTCC facilities, the EPRI Generation ...

2012-12-31T23:59:59.000Z

182

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available onlineNext Evolution of the F Gas Turbine,” April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

183

A microfabricated ElectroQuasiStatic induction turbine-generator  

E-Print Network (OSTI)

An ElectroQuasiStatic (EQS) induction machine has been fabricated and has generated net electric power. A maximum power output of 192 [mu]W at 235 krpm has been measured under driven excitation of the six phases. Self ...

Steyn, J. Lodewyk (Jasper Lodewyk), 1976-

2005-01-01T23:59:59.000Z

184

Field Guide: Visual Inspection of Steam Turbine Generators  

Science Conference Proceedings (OSTI)

Mechanical failures of generator rotors and stators in fossil and nuclear power plants represent a loss of availability for power generation suppliers worldwide. Underlying condition issues and related problems can result in efficiency losses that restrict operation, cause reduction of maximum capacity, and create significant economic disadvantage. This field guide, part of a series of EPRI guides intended for practical use at power plants and in transmission ...

2012-12-14T23:59:59.000Z

185

A study of a turbine-generator system for low-head hydropower  

Science Conference Proceedings (OSTI)

A method is outlined for determining the optimum operating conditions of a turbine-generator unit installed across a low-head irrigation structure for electrical power generation. For a given regulator's characteristic, the unit's rated power and design parameters are determined such that its cost-benefit ratio is minimum. The economical feasibility of the microhydro plant is studied by comparing its life-time cost to its lifetime benefit. The benefit is determined by the cost of the corresponding energy generated through a dieseldriven generator set. The microhydro plant was found to be economically feasible over a wide range of inflation and interest rates.

Mankbadi, R.R.; Mikhail, S.

1985-03-01T23:59:59.000Z

186

Analysis of Temporal and Spatial Characteristics on Output of Wind Farms with Doubly Fed Induction Generator Wind Turbines  

Science Conference Proceedings (OSTI)

Due to the large number of wind turbines and covering too large area in a large wind farm, wake effects among wind turbines and wind speed time delays will have a greater impact of wind farms models. Taking wind farms with doubly fed induction generator(DFIG) ... Keywords: wind farm, modeling, temporal and spatial characteristics, DFIG, output characteristics

Shupo Bu, Xunwen Su

2012-12-01T23:59:59.000Z

187

The Development of Direct Age 718 for Gas Turbine Engine Disk ...  

Science Conference Proceedings (OSTI)

as a commercial gas turbine aircraft engine disk material are described. Initial ... Engines (GEAE) in the production of gas turbine engine components (1).

188

Investigation of vortex generators for augmentation of wind turbine power performance  

SciTech Connect

This study focuses on the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. The goal was to design a VG array which would increase annual energy production (AEP) by increasing power output at moderate wind speeds, without adversely affecting the loads or stall-regulation performance of the turbine. Wind tunnel experiments were conducted at the University of Washington to evaluate the effect of VGs on the AWT-26 blade, which is lofted from National Renewable Energy Laboratory (NREL) S-series airfoils. Based on wind-tunnel results and analysis, a VG array was designed and then tested on the AWT-26 prototype, designated P1. Performance and loads data were measured for P1, both with and without VGs installed. the turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a negligible effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for sites having annual average wind speeds up to 8.5 m/s. While the present work did not lead to improved AEP for the AWT-2 turbine, it does provide insight into performance augmentation of wind turbines with VGs. The safe design of a VG array for a stall-regulated turbine has been demonstrated, and several issues involving optimal performance with VGs have been identified and addressed. 15 refs., 34 figs., 10 tabs.

Griffin, D.A. [Lynette (R.) and Associates, Seattle, WA (United States)

1996-12-01T23:59:59.000Z

189

Method for changing removable bearing for a wind turbine generator  

DOE Patents (OSTI)

A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Scotia, NY), Gadre; Aniruddha Dattatraya (Rexford, NY)

2008-04-22T23:59:59.000Z

190

Design of a 3 kW wind turbine generator with thin airfoil blades  

SciTech Connect

Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

2008-09-15T23:59:59.000Z

191

Modular simulation of a hybrid power system with diesel and wind turbine generation  

Science Conference Proceedings (OSTI)

In this paper, the authors present the modular simulation tool they developed to help study the system dynamics for wind-diesel power systems. The principal modules of the simulator, which include a diesel generator, a wind turbine generator, a rotary converter with a battery, a village load and a dump load, are described. With a case study, the authors demonstrate how the designer benefits from easily understanding the effects of system modifications. Using this tool, a designer can easily develop control strategies to balance the system power flows under different generation/load conditions.

Bialasiewicz, J.T.; Mulijadi, E.; Drouilhet, S.; Nix, G.

1998-06-01T23:59:59.000Z

192

Axial Flux, Modular, Permanent-Magnet Generator with a Toroidal Winding for Wind Turbine Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-500-24996 Ÿ UC Category: 1213 CP-500-24996 Ÿ UC Category: 1213 Axial Flux, Modular, Permanent- Magnet Generator with a Toroidal Winding for Wind Turbine Applications E. Muljadi C.P. Butterfield Yih-Huei Wan National Wind Technology Center National Renewable Energy Laboratory Presented at IEEE Industry Applications Conference St. Louis, MO November 5-8, 1998 National Renewable Energy Laboratory 1617 Cole Boulevard

193

Turbine-Generator Maintenance Interval Optimization Using a Financial Risk Assessment Technique  

Science Conference Proceedings (OSTI)

Turbine-generator (T-G) maintenance interval selection is evolving from a time-based and reliability-centered approach to an approach based on financial risk. The new financial-based decision methods seek to reduce each unit's maintenance costs to the lowest level consistent with safe operation, while balancing operations and maintenance (O&M) expenditures optimally over the entire plant or system. EPRI's Turbo-X software provides a powerful planning tool for engineers to evaluate specific proposals for ...

2000-11-21T23:59:59.000Z

194

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Steam Valves Maintenance Guide  

Science Conference Proceedings (OSTI)

 BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, the ...

2013-05-14T23:59:59.000Z

195

Generation Maintenance Application Center: Combined Cycle Combustion Turbine Continuous Emissions Monitoring Maintenance Guide  

Science Conference Proceedings (OSTI)

Combustion turbine combined cycle (CTCC) facilities utilize various components that are unique to these types of power-generation plants and that are not typically found in a nuclear or fossil-power plant.  As such, use of the EPRI PM Basis Database (PMDB) by current owners of CTCC facilities is limited to only those components that are common to both types of power plants and already in the database.  With the projected growth in the number of CTCC facilities, EPRI General Maintenance ...

2012-12-31T23:59:59.000Z

196

Short-Term Shutdown Guidance for Steam Turbine-Generators and Auxiliary Systems  

Science Conference Proceedings (OSTI)

This report provides guidelines on the methods that utilities should consider to protect operating equipment when it is removed from service for short periods of time. The equipment and systems considered in this report include the steam turbine, generator, exciter, feedwater heaters, and related auxiliaries. The timeframe for this report includes outage periods from a weekend to six months. Improper layup can cause long-term equipment damage and premature failure. Increased shutdown frequency and durati...

2010-11-12T23:59:59.000Z

197

Technical and economic assessment of particle control technology for direct coal fueled turbines: Final report  

SciTech Connect

Gilbert/Commomwealth (1984) analyzed ten different concepts for high-temperature, high-pressure control of gas stream particulate matter in coal-fueled pressurized fluidized-bed combustion (PFBC) systems. This paper analyzes the five higher ranking concepts of the Gilbert study at direct coal fueled turbine conditions which are even more severe than PFBC conditions. The five concepts are ceramic crossflow filter, ceramic bag filter, granular bed filter, and advanced cyclones. Five ranking factors were used: economic, design, operations complexity, materials/mechanical, and development status. (DLC)

DiBella, C.A.W.; Thomas, R.L.; Rubow, L.N.; Zaharchuk, R.

1987-02-01T23:59:59.000Z

198

Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

Curtis, A.; Gevorgian, V.

2011-07-01T23:59:59.000Z

199

An Approach to Generating Summaries of Time Series Data in the Gas Turbine Domain Jin Yu and Jim Hunter and Ehud Reiter and Somayajulu Sripada  

E-Print Network (OSTI)

An Approach to Generating Summaries of Time Series Data in the Gas Turbine Domain Jin Yu and Jim an approach to generating summaries of time series data in the gas turbine domain using AI techniques. Through), both domain knowledge from experts about how to solve problems in the gas turbine and information about

Sripada, Yaji

200

A Real-Time Simulator for Doubly Fed Induction Generator based Wind Turbine Applications  

E-Print Network (OSTI)

Abstract- This paper describes a real-time simulator of wind turbine generator system suitable for controller design and tests. The simulated generator is a grid-connected doubly fed induction machine with back-to-back PWM voltage source vector control of the rotor. The simulator is based on RT-LAB real-time simulation platform that allows for easy model-to-real-time-target design from Simulink models. The paper puts special emphasis on the fixed-step simulation problematic of kHz-range PWM inverter drives and the techniques used in the real-time simulator to accurately simulate those drives.

Christian Dufour; Jean Bélanger

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

Unknown

2002-03-31T23:59:59.000Z

202

Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators  

E-Print Network (OSTI)

This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for mini...

Tang, Choon Yik; Jiang, John N

2010-01-01T23:59:59.000Z

203

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

204

Low temperature Direct Use Geothermal Facilities Contains generating  

Open Energy Info (EERE)

Low temperature Direct Use Geothermal Facilities Contains generating capacity information for low temperature direct use geothermal facilities by state.
2010-08-10T17:02:22Z...

205

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

to drive a secondary steam turbine – thus increasing theW501G turbines – incorporating closed-loop steam cooling –turbine cost for the MS7001FA stems from the additional cost of heat recovery steam

Ishii, Jun

2004-01-01T23:59:59.000Z

206

Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine  

E-Print Network (OSTI)

An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

Gruber, Timothy J. (Timothy James)

2012-01-01T23:59:59.000Z

207

Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint  

SciTech Connect

This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken on a Whisper H40 turbine and an AOC 15/50. Results from this study were used to verify the simple design equations. This verification will be used to evaluate how changes made in the design load estimation section of the standard work out for a broad range of turbine configurations. The work presented here builds on work performed by Van Hulle (1996).

van Dam, J. J. D. (Energy Research Centre of the Netherlands); Forsyth, T. L. (National Renewable Energy Laboratory); Hansen, A. C. (Windward Engineering LLC)

2001-10-19T23:59:59.000Z

208

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

209

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degrees]F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-04-20T23:59:59.000Z

210

FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology developed in this program.

Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

2003-06-01T23:59:59.000Z

211

Direct charge radioisotope activation and power generation  

DOE Patents (OSTI)

An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

2002-01-01T23:59:59.000Z

212

Guidelines for the Uprate Design of Turbine-Generator Rotor Support Systems  

Science Conference Proceedings (OSTI)

The focus of this guidelines document is the rotor support structure for uprated turbine-generator (T/G) systems. The overall objective of the guidelines is to provide utility personnel with the guidance needed to validate the design of the components prior to a plant uprate/upgrade to ensure that the unit will operate without unplanned and unanticipated issues related to the rotor bearings, bearing support structures, and pedestals. The guidelines are applicable to both nuclear and fossil T/G rotor supp...

2011-12-23T23:59:59.000Z

213

Testing requirements for variable-speed generating technology for wind turbine applications. Final report  

Science Conference Proceedings (OSTI)

Guidelines for evaluating the impacts of integrating variable-speed, constant-frequency (VSCF) wind turbines into electric utility systems have been proposed based upon prior test experiences with the NASA VSCF system and the expected performance of the Westinghouse and OMNION VSCF systems. The NASA and Westinghouse VSCF generating systems use a wound rotor induction generator and a cycloconverter, while the OMNION system uses a wound rotor induction generator and a dc-current link converter. The design of VSCF/utility system interface requirements and test plans is based on utility system electrical issues such as utility system control and operation, protection, voltage/reactive power management, power quality, and reliability. A framework for testing VSCF concepts is proposed which includes a three stage process: modeling of the system to analyze design alternatives and simulate disturbances that could be harmful to the actual system; laboratory testing which involves the use of the system under controlled conditions; and field testing to collect data under actual conditions to validate models and analyze the wind turbine behavior.

Herrera, J.I.

1986-05-01T23:59:59.000Z

214

Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators  

SciTech Connect

REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

2012-01-01T23:59:59.000Z

215

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

Unknown

2002-01-31T23:59:59.000Z

216

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections 2010--Volume 4: Turbine Generat or Component Procurement Specifications  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2010-12-23T23:59:59.000Z

217

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2006; Volume 4: Turbine-Generat or Component Procurement Specifications  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2007-03-30T23:59:59.000Z

218

SVM-Based Multiclass Cost-sensitive Classification with Reject Option for Fault Diagnosis of Steam Turbine Generator  

Science Conference Proceedings (OSTI)

The steam turbine generator faults not only damage the generator itself, but also cause outages and loss of profits, for this reason, many researchers work on the fault diagnosis. But misdiagnosing may also lead to serious losses. In order to improve ... Keywords: SVM, multiclass, cost-sensitive, fault diagnosis, reject option

Chao Zou; En-hui Zheng; Hong-wei Xu; Le Chen

2010-02-01T23:59:59.000Z

219

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

DOE Green Energy (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

220

Torsional Torques and Fatigue Life Expenditure for Large-Scale Steam Turbine-Generator Shafts and Blades Due to Power System Harmonics.  

E-Print Network (OSTI)

??During the three decades, the torsional impact on turbine-generator sets due to power system disturbances has been extensively discussed in many research works. However, most… (more)

Tsai, Jong-ian

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Case History of Reapplication of a 2500 KW Steam Turbine/Gear Drive Generator  

E-Print Network (OSTI)

In today' s equipment market more and more projects are turning toward existing equipment to justify a project. New equipment's delivery time and/or capital cost can keep a good project "grounded". In the turbomachinery industry, a few companies have developed the expertise to identify candidates of existing machines that can be adopted for many new applications. These companies can inspect, modify, recondition and rerate the equipment as needed, which helps bring in a project within budget and on time. This paper is the history of such an application. The delivery schedule requirements and limited capital made the project feasible only through the technology of reapplying existing machines to a new service. The project involves a plant that extracts landfill gas and converts it to diesel fuel, naphtha and a high grade of wax. The plant requires a steam turbine generator set to produce electrical power for its base load operation. This paper covers the history of how the turbine, gear and generator were selected, along with the highlights of the engineering work required to insure the mechanical operation of the string of equipment.

Smith, S.

1991-06-01T23:59:59.000Z

222

Direct Nyquist array design of PID controllers for boiler-turbine units based on gain and phase margins  

Science Conference Proceedings (OSTI)

In this paper, a direct Nyquist array (DNA) method for the design of PID controllers for multivariable boiler-turbine units with specifications of gain and phase margins is proposed. The essential objective is to propose a method for the design and auto-tuning ...

Hui Pan; Minrui Fei; Ling Wang; Kang Li; Lin Qian

2012-03-01T23:59:59.000Z

223

Turbine-Generator Auxiliary Systems, Volume 4: Generator Stator Cooling System  

Science Conference Proceedings (OSTI)

While there is a wealth of specific instructions, guidelines, experiences, and publications associated with water-cooled generators, the industry needs a comprehensive document that provides an unbiased overview of all technologies and related issues. This report deals with the specific features of water-cooled generators and the attached generator cooling water system. Though the primary focus is water-cooled stators, other possible components associated with rotor water cooling or attached systems, suc...

2008-12-22T23:59:59.000Z

224

Steam Turbine Generator Auxiliary System Maintenance Guide--Volume 7 (Generator Excitation System)  

Science Conference Proceedings (OSTI)

Excitation systems are a critical part of the power generation system. They must be capable of providing a reliable excitation current to the generator and respond to system fluctuations while maintaining consistent generator voltage and power factor. Most modern excitation systems use a static or rotating solid-state exciter and include the associated components required to provide regulation and control over voltage and reactive power flow and to enhance power system stability. The proper operation of ...

2011-12-23T23:59:59.000Z

225

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

226

Development of a High Pressure/High Temperature Down-hole Turbine Generator  

SciTech Connect

As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

Ben Plamp

2008-06-30T23:59:59.000Z

227

Wind Turbine Generator System Power Performance Test Report for the Gaia-Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. It is a power performance test that the National Renewable Energy Laboratory (NREL) conducted on the Gaia-Wind 11-kW small wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2009-12-01T23:59:59.000Z

228

Wind Turbine Generator System Power Performance Test Report for the Gaia-Wind 11-kW Wind Turbine  

SciTech Connect

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. It is a power performance test that the National Renewable Energy Laboratory (NREL) conducted on the Gaia-Wind 11-kW small wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2009-12-01T23:59:59.000Z

229

Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOElEA- 430 DOElEA- 430 LA-UR-02-6482 Nationat Nudea- Security Administration Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico December II,2002 Department of Energy National Nuclear Security Administration Los Alamos Site Office Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at LANL DOE LASO December 11, 2002 iii Contents ACRONYMS AND TERMS.......................................................................................................V EXECUTIVE SUMMARY ....................................................................................................... IX 1.0 PURPOSE AND NEED ........................................................................................................1

230

Operational behavior of a double-fed permanent magnet generator for wind turbines  

E-Print Network (OSTI)

Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

Reddy, Sivananda Kumjula

2005-01-01T23:59:59.000Z

231

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

232

Effect of HVDC line faults on transient torsional torques of turbine-generator shafts  

SciTech Connect

This paper investigates the effects of HVdc line faults, line de-energization, and line re-energization on the transient torsional stresses of steam turbine-generator (T-G) units. The studies are conducted on a bipole HVdc system which connects a T-G set to a large ac system. The shaft transient stresses of the T-G set as a result of HVac line fault, fault clearing, and automatic reclosure are also determined when the HVdc transmission system is replaced by an equivalent double-line HVac system. The EMTDC program is used for the simulation studies. The studies conclude that transient shaft stresses as a result of HVdc line fault and its subsequent switching events are (1) significantly less severe than those of HVac faults and subsequent switchings, and (2) not sensitive to the fault location and disturbance duration.

Shi, W. (Xi'an Jiaotong Univ. (China). Dept. of Electrical Engineering); Iravani, M.R. (Univ. of Toronto, Ontario (Canada). Dept. of Electrical Engineering)

1994-08-01T23:59:59.000Z

233

Feasibility determination for hydroelectric development at Thermalito Afterbay with STRAFLO turbine-generators. Final report  

DOE Green Energy (OSTI)

This study addresses the development of the Thermalito Afterbay, in California. Presently, the outlet of the afterbay dissipates the afterbay's useful energy through five radial gates into the Feather River complex. The feasibility of constructing a hydroelectric facility to recover this wasted energy through the use of STRAFLO hydro turbines is appraised, and data relevant to the future economic benefits of such a facility as compared to alternate energy alternatives are presented. In addition, the regulatory, ecological, and socio-institutional impacts which form additional considerations to a future thermalito afterbay site development are summarized. The study shows an annual generation potential of 48.82 GWh. The cost of developing the site is estimated to be $23.5 million. Social and environmental effects would be minimal. The final feasibility of development is contingent on power contracts which the state of California will be negotiating in 1983. (LCL)

Mueller, B.L.

1979-06-01T23:59:59.000Z

234

Integrated low emissions cleanup system for direct coal-fueled turbines  

SciTech Connect

The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

1992-01-01T23:59:59.000Z

235

Integrated low emissions cleanup system for direct coal-fueled turbines  

SciTech Connect

The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

1992-12-31T23:59:59.000Z

236

Turbine-Generator Topics for Power Plant Engineers: Synchronous Generator Voltage Regulator Basics  

Science Conference Proceedings (OSTI)

This material is intended for the new engineer, the control room operator, management, or the non-engineer. The basics of a synchronous generator excitation system; the fundamentals of the voltage regulator; and its controls and functions are discussed. The typical exciter types are covered, but not in detail. There is also basic information on voltage regulator maintenance issues. Put simply, the excitation system is made up of three basic component systems. The voltage regulator monitors the synchronou...

2012-02-16T23:59:59.000Z

237

Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.  

Science Conference Proceedings (OSTI)

The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

NONE

2005-07-01T23:59:59.000Z

238

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-third quarterly status report, April--June 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-07-19T23:59:59.000Z

239

Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid contactor/ceramic filter). Twenty-second quarterly status report, January--March 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: A baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-10-01T23:59:59.000Z

240

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twentieth quarterly status report, July--September 1992  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Integrated Low Emissions Cleanup system for direct coal fueled turbines, (moving bed, fluid bed contactor/ceramic filter). Twenty-fourth quarterly status report, July--September 1993  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1993-12-31T23:59:59.000Z

242

Experience and assessment of the DOE-NASA Mod-1 2000-kilowatt wind turbine generator at Boone, North Carolina  

SciTech Connect

The broad objectives of the Mod-1 program are defined, including the background information leading to the inception of the program. Activities on the Mod-1 program began in 1974, and the turbine was dedicated in July 1979. Rated power generation was accomplished in February 1980. The Mod-1 wind turbine is described in this report. In addition to the steel blade operated on the wind turbine, a composite blade was designed and manufactured. During the early phase of the manufacturing cycle a Mod-1A configuration was designed that identified concepts such as partial span control, a soft tower, and upwind teetered rotors that have been incorporated in second- and third-generation industry designs. The Mod-1 electrical system performed as designed, with voltage flicker characteristics within acceptable utility limits. Power output versus wind speed has equaled or exceeded design predictions. The wind turbine control system was operated successfully at the site and remotely from the utility dispatcher's office in Lenior, NC. During wind turbine operations, television interference was experienced by the local residents. As a consequence, operations were restricted. Although not implemented, two potential solutions were identified. In addition to television interference, a few local residents complained about objectionable sound, particularly the thump as the blade passed behind the tower. To eliminate the residents' objections, the sound generation level was reduced by 10 dB by reducing the rotor speed from 35 rpm to 23 rpm. During January 1981, bolts in the drive train fractured. A solution has been identified but not implemented as yet. During the past 2 years the public reaction toward the Mod-1 Turbine program has been overwhelmingly favorable. This includes the vast majority of Boone residents.

Collins, J.L.; Shaltens, R.K.; Poor, R.H.; Barton, R.S.

1982-04-01T23:59:59.000Z

243

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

244

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

245

Candidate wind-turbine-generator site summarized meteorological data for December 1976-December 1981. [Program WIND listed  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for 16 of the original 17 candidate and wind turbine generator sites collected during the period from December 1976 through December 1981 are presented. The data collection program at some individual sites may not span this entire period, but will be contained within the reporting period. The purpose of providing the summarized data is to document the data collection program and provide data that could be considered representative of long-term meteorological conditions at each site. For each site, data are given in eight tables and a topographic map showing the location of the meteorological tower and turbine, if applicable. Use of information from these tables, along with information about specific wind turbines, should allow the user to estimate the potential for long-term average wind energy production at each site.

Sandusky, W.F.; Renne, D.S.; Hadley, D.L.

1982-09-01T23:59:59.000Z

246

Wind shear for large wind turbine generators at selected tall tower sites  

DOE Green Energy (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

247

ENDWALL SHAPE MODIFICATION USING VORTEX GENERATORS AND FENCES TO IMPROVE GAS TURBINE COOLING AND EFFECTIVENESS.  

E-Print Network (OSTI)

??The gas turbine is one of the most important parts of the air-breathing jet engine. Hence, improving its efficiency and rendering it operable under high… (more)

Gokce, Zeki

2012-01-01T23:59:59.000Z

248

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

249

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

GER) Document 4206, “Combined Cycle Development: EvolutionCombustion Turbines / Combined Cycles,” Presentation for thewell suited for combined cycle, baseload applications. This

Ishii, Jun

2004-01-01T23:59:59.000Z

250

Modeling and Control of a Marine Current Turbine Driven Doubly-Fed Induction Generator  

E-Print Network (OSTI)

with the modeling and the control of a variable speed DFIG-based marine current turbine with and without tidal synchronous speed); r = Rotor current frequency (r = s ­ ); = DFIG speed ( = /p); f = Viscosity coefficient; J = Rotor Inertia; p = Pole pair number. GLOSSARY MCT = Marine Current Turbine; DFIG = Doubly

Brest, Université de

251

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS  

E-Print Network (OSTI)

Wind energy is considered as the most viable renewable energy options. In a renewable energy system more energy from the wind. One of the options is to use the variable speed wind turbine-speed wind turbine system for transient studies are discussed in this paper. The performance of wind energy

252

Unbalanced-grid-fault ride-through control for a doubly fed induction generator wind turbine with series grid-side converter  

Science Conference Proceedings (OSTI)

The grid codes now require doubly fed induction generator (DFIG) wind turbines having the "low voltage ride-through (LVRT)" capability. However, a traditional DFIG with a partially rated back-to-back converter has inherent difficulties to ride through ... Keywords: doubly fed induction generator (DFIG), low voltage ride-through (LVRT), series grid-side converter (SGSC), unbalanced grid fault, voltage dips, voltage sags, wind power generation, wind turbine

Yong Liao; Hui Li; Jun Yao

2011-02-01T23:59:59.000Z

253

Method and apparatus for set point control for steam temperatures for start-up of the turbine and steam generator in unit power plants  

SciTech Connect

A method and apparatus are described for controlling the set point for steam temperatures for cold start-up of a steam generator-turbine unit wherein inlet steam temperature and turbine load absorption are steadily and substantially simultaneously increased in accordance with a predetermined relationship so as to reach their final values substantially synchronously.

Bloch, H.; Salm, M.

1978-05-23T23:59:59.000Z

254

Apparatus and method for controlling steam turbine operating conditions during starting and loading  

SciTech Connect

A steam turbine-generator system is described which consists of: a high-pressure steam turbine; a reheat turbine; a boiler including means for heating stem for delivery to the high-pressure steam turbine and a boiler reheat portion for reheating an exhaust steam from the high-pressure steam turbine for delivery to the reheat turbine; main valve means for admitting steam from the boiler to the high-pressure steam turbine; an intercept control valve for admitting steam from the boiler reheat portion to the reheat turbine; means for maintaining at least a selectable predetermined pressure in the boiler reheat portion; a reheater bypass assembly connected between a high-pressure turbine exhaust line of the high-pressure steam turbine and a reheat turbine inlet line of the reheat turbine, the reheater bypass assembly bypassing the reheat portion and the intercept control valve; a check valve in the high-pressure turbine exhaust line downstream of the reheater bypass assembly; and the check valve including means for preventing a flow of steam from the high-pressure turbine exhaust line to the reheat portion while an exhaust pressure of steam from the high-pressure steam turbine is less than the selectable predetermined pressure, whereby exhaust steam from the high pressure steam turbine passes through the reheater bypass assembly directly to the reheat turbine without passing through and reheat portion during at least a portion of a startup cycle.

Dimitroff, V.T. Jr.; Wagner, J.B.

1986-07-08T23:59:59.000Z

255

National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection  

DOE Green Energy (OSTI)

This paper will describe the NREL program for addressing lightning protection for wind turbines. A test program will begin this summer at the Central and South West Services Inc. (CSW) wind farm near Fort Davis, Texas, to assess lightning risk, the frequency of lightning strikes on wind turbines compared to risk assessment predictions, and the effectiveness of some protection techniques. A Web page will be assembled to provide resources for designers and operators and feedback for issues as they arise. Also, a database of lightning events (and corresponding damage) will be collected to assist in maturing the understanding of wind turbine lightning protection.

Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

1997-09-01T23:59:59.000Z

256

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

257

Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation  

Science Conference Proceedings (OSTI)

The operating range of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid with bypass control of cathode airflow was determined using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). Three methods of cathode airflow management using bypass valves in a hybrid power system were evaluated over the maximum range of operation. The cathode air flow was varied independently over the full range of operation of each bypass valve. Each operating point was taken at a steady state condition and was matched to the thermal, pressure and flow output of a corresponding fuel cell operation condition. Turbine electric load was also varied so that the maximum range of fuel cell operation could be studied, and a preliminary operating map could be made. Results are presented to show operating envelopes in terms of cathode air flow, fuel cell and turbine load, and compressor surge margin to be substantial.

David Tucker; Eric Liese; Randall Gemmen

2009-02-10T23:59:59.000Z

258

MHK Technologies/Open Centre Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group Limited Project(s) where this technology is utilized *MHK Projects/OpenHydro Alderney Channel Islands UK *MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Open-Centre Turbine is designed to be deployed directly on the seabed. The Open-Centre Turbine is a horizontal axis turbine with a direct-drive, permanent magnetic generator that has a slow-moving rotor and lubricant-free operation, which decreases maintenance and minimizes risk to marine life.

259

The Probability Distribution of Wind Power From a Dispersed Array of Wind Turbine Generators  

Science Conference Proceedings (OSTI)

A method is presented for estimating the probability distribution of wind power from a dispersed array of wind turbine sites where the correlation between wind speeds at distinct sites is less than unity. The distribution is obtained from a model ...

John Carlin; John Haslett

1982-03-01T23:59:59.000Z

260

Effect of generalized wind characteristics on annual power estimates from wind turbine generators  

SciTech Connect

A technique is presented for estimating the average power output of a wind turbine using, as the wind characteristic input, only the mean annual wind magnitude. Hourly wind speeds are assumed to have a Rayleigh frequency distribution which requires a single parameter input (e.g., the mean value, variance or higher moment values). Based upon a general shape, for the wind speed versus machine output, a generic set of curves is developed to estimate the average power output of wind turbines. Also, estimates of the percent of time the wind turbine would not produce power (percent down time) and the percent of time the wind turbine would be operating at its rated power are presented.

Cliff, W.C.

1977-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2012  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.BackgroundAs a focus of innovative approaches and techniques, maintenance of aging steam ...

2012-12-12T23:59:59.000Z

262

Generation Maintenance Application Center: Fuel Gas System for Combustion Turbine Combined Cycle Plant Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the fuel gas system at a gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and operators of CTCC facilities may find ...

2013-05-15T23:59:59.000Z

263

Generation Maintenance Applications Center: Combustion Turbine Combined-Cycle Duct Burner Maintenance Guide  

Science Conference Proceedings (OSTI)

This report provides component-level information regarding the maintenance of major components associated with the compressor section of a combustion turbine typically installed at a combined-cycle facility. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of combined-cycle facilities.  BackgroundCombustion turbine combined-cycle (CTCC) facilities utilize various components that are unique to ...

2013-11-15T23:59:59.000Z

264

The Inside of a Wind Turbine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Inside of a Wind Turbine The Inside of a Wind Turbine The Inside of a Wind Turbine 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator. Nacelle: 5 of 17 Nacelle: Sits atop the tower and contains the gear box, low- and high-speed shafts, generator, controller, and brake. Some nacelles are large enough for a helicopter to land on. Wind vane: 6 of 17 Wind vane: Measures wind direction and communicates with the yaw drive to orient the

265

NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)  

DOE Green Energy (OSTI)

In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

2013-04-01T23:59:59.000Z

266

Feasibility Study of Economics and Performance of Wind Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Generators at the Newport Indiana Chemical Depot Site Joseph Owen Roberts and Gail Mosey Produced under direction of U.S. Environmental Protection Agency (EPA) by the...

267

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

268

Wind and solar powered turbine  

SciTech Connect

A power generating station having a generator driven by solar heat assisted ambient wind is disclosed. A first plurality of radially extending air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the first plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine which also derives additional motive power from the air mass exhausted by the radial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind driven power generating system operates in electrical cogeneration mode with a fuel powered prime mover. The system is particularly adapted to satisfy the power requirements of a relatively small community located in a geographic area having favorable climatic conditions for wind and solar powered power generation.

Wells, I.D.; Holmes, M.; Kohn, J.L.

1984-02-28T23:59:59.000Z

269

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

supercritical coal-?red steam generators. Additionally, thecost of heat recovery steam generator(s) (HSRG) necessarythe primary generator is used to drive a secondary steam

Ishii, Jun

2004-01-01T23:59:59.000Z

270

Small-hydroelectric-turbine generating system. Final report, June 30, 1981-December 31, 1982  

DOE Green Energy (OSTI)

The historical development of the Pelton waterwheel and the basics of impulse turbines are reviewed. A guide is given for do-it-yourself construction of small hydroelectric plants. Steps to follow in determining the requirements for a do-it-yourself plant are outlined. Final considerations are also given. (DLC)

Kennedy, B.W.

1983-03-15T23:59:59.000Z

271

Wind Energy: From Coast to Coast, Wind Turbines are Generating Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes wind energy costs that have declined dramatically during the past decade. Both stand-alone and grid-connected applications (groups of wind turbines that feed into a central power-distribution grid) are covered in this fact sheet.

272

Hybrid Electro-Mechanical Simulation Tool for Wind Turbine Generators: Preprint  

DOE Green Energy (OSTI)

This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG and the FAST aero-elastic wind turbine code to simulate the aerodynamic and mechanical aspects of the WTG. The combination of the two enables studies involving both electrical and mechanical aspects of the WTG.

Singh, M.; Muljadi, E.; Jonkman, J.

2013-05-01T23:59:59.000Z

273

Impact study on the use of biomass-derived fuels in gas turbines for power generation  

DOE Green Energy (OSTI)

This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

Moses, C.A.; Bernstein, H. [Southwest Research Inst., San Antonio, TX (United States)

1994-01-01T23:59:59.000Z

274

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

275

Steam Generating Units (duct burners) 40 CFR Part 60 Subpart GG- Standards of Performance for Stationary Gas Turbines  

E-Print Network (OSTI)

For nitrogen oxides has been determined to be selective catalytic reduction. l As authorized by the Northwest Clean Air Agency Regulation Section 300, this order is issued subject to the following restrictions and conditions: 1) The gas turbines shall burn either pipeline natural gas, or number 2 distillate oil with a sulfur content not to exceed 0.05 weight percent. The HRSG duct burners shall burn only pipeline natural gas. 2) Pollutant concentrations for each gas turbinelheat recovery steam generator stack shall not exceed the following:

unknown authors

2007-01-01T23:59:59.000Z

276

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Eighteenth quarterly status report, January--March 1992  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge: a baseline ceramic barrier filter nEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degrees}F. This document reports the status of a program in the eighteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1992-04-20T23:59:59.000Z

277

Revised?Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, California  

Science Conference Proceedings (OSTI)

During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

W. C. Adams

2007-12-07T23:59:59.000Z

278

Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, CA  

Science Conference Proceedings (OSTI)

During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

W. C. Adams

2007-12-07T23:59:59.000Z

279

Introduction to Nuclear Plant Steam Turbine Control Systems  

Science Conference Proceedings (OSTI)

Since Nuclear Power Plants produce their power through the use of Steam Turbine Generators, any problems associated with the Turbine Control System has a direct effect on power generation. Although considerable effort has been expended in improving control system reliability, failures resulting in lost generation and high maintenance cost still plague the industry. On an individual basis, improvements have been made through maintenance techniques, modifications and upgrades. Unfortunately, this informati...

1995-03-02T23:59:59.000Z

280

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

282

Using the Biphase Turbine to Generate Useful Energy from Process Streams  

E-Print Network (OSTI)

The Biphase turbine is a device for effectively converting enthalpy changes in a two-phase (liquid and gas) working fluid into mechanical energy. No other device is currently available for performing this task. The working fluid may be a single component, two-phase stream, as in a water-steam combination; or it may be a multi-component, two phase stream such as is often present in industrial processes. The performance of the Biphase turbine and its advantages over single-phase energy conversion devices' (steam or hydraulic turbines for example) have been demonstrated in its application to geothermal energy conversion. Its development and application to other areas such as waste-heat recovery, desalination, solar cooling, and now, two phase industrial process streams is being pursued by Biphase Energy Systems. This paper identifies specific industrial process streams from which power recoveries of up to two MW can be obtained. In current practice, this power is dissipated across two phase flash valves. A total potential national energy savings equivalent to 58 million barrels of oil per year is identified for processes examined in the five most energy-intensive industries.

Helgeson, N. L.; Studhalter, W. R.

1981-01-01T23:59:59.000Z

283

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

284

Turbine Overspeed Trip Modernization  

Science Conference Proceedings (OSTI)

This report provides guidance for power plant engineers contemplating modernization of their main turbine overspeed trip systems. When a large power plant turbine suddenly loses its output shaft loading due to a generator or power grid problem, the steam flow driving the turbine must be cut off very quickly to prevent an overspeed event. The overspeed trip system protects personnel and plant systems by preventing missiles that can result when turbines disintegrate at higher than normal rotational speeds....

2006-12-04T23:59:59.000Z

285

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

286

Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators  

DOE Green Energy (OSTI)

The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

Hibbs, R.; Acharya, S.; Chen, Y. [Louisiana State Univ., Baton Rouge, LA (United States)] [and others

1995-12-31T23:59:59.000Z

287

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration… (more)

Flesland, Synnøve Mangerud

2010-01-01T23:59:59.000Z

288

MHK Technologies/The Davis Hydro Turbine | Open Energy Information  

Open Energy Info (EERE)

Hydro Turbine Hydro Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Davis Hydro Turbine.jpg Technology Profile Primary Organization Blue Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Blue Energy Ocean Turbine acts as a highly efficient underwater vertical axis windmill Four fixed hydrofoil blades of the turbine are connected to a rotor that drives an integrated gearbox and electrical generator assembly The turbine is mounted in a durable concrete marine caisson that anchors the unit to the ocean floor and the structure directs flow through the turbine further concentrating the resource supporting the coupler gearbox and generator above the rotor These sit above the surface of the water and are readily accessible for maintenance and repair The hydrofoil blades employ a hydrodynamic lift principal that causes the turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is unidirectional on both the ebb and flow of the tide

289

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

290

Original articles: Flicker mitigation in a doubly fed induction generator wind turbine system  

Science Conference Proceedings (OSTI)

This paper describes a doubly fed induction generator (DFIG) control for wind energy generation. The DFIG model is established and the adopted control strategies for machine side and grid side converters are described. Flicker phenomenon is defined and ... Keywords: Doubly fed induction generator, Flicker, Machine side converter, Power quality, Wind power generation

Mohamed Machmoum; Ahmad Hatoum; Toufik Bouaouiche

2010-10-01T23:59:59.000Z

291

Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

Huskey, A.; Bowen, A.; Jager, D.

2009-12-01T23:59:59.000Z

292

The analysis and specification of large high-pressure, high-temperature valves for combustion turbine protection in second-generation PFB power plants: Topical report  

SciTech Connect

The purpose of this study was to provide a specification for the high-pressure/high-temperature valves for turbine overspeed protection in a commercial-scale second-generation pressurized fluidized bed combustion (PFBC) power plant. In the event of a loss of external (generator) load, the gas turbine rapidly accelerates from its normal operating speed. Protection from excessive overspeed can be maintained by actuation of fuel isolation and air bypass valves. A design specification for these valves was developed by analyses of the turbine/compressor interaction during a loss of load and analyses of pressure and flow transients during operation of the overspeed protection valves. The basis for these analyses was the Phase 1 plant conceptual design prepared in 1987.

1994-08-01T23:59:59.000Z

293

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

294

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

295

Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications  

SciTech Connect

The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

1997-03-01T23:59:59.000Z

296

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

297

Indirect vector control of a squirrel cage induction generator wind turbine  

Science Conference Proceedings (OSTI)

The paper deals with a squirrel cage induction generator connected to the grid through a back-to-back converter driven by vector control. The stator-side converter controls the generator torque by means of an indirect vector control scheme. In order ... Keywords: Back-to-back converter, Low voltage ride through, Squirrel cage induction generator (SCIG), Torque regulation, Vector control, Wind power generation

José Luis DomíNguez-GarcíA; Oriol Gomis-Bellmunt; LluíS Trilla-Romero; Adrií Junyent-Ferré

2012-07-01T23:59:59.000Z

298

Wind Turbine Bearing Failure Detection Using Generator Stator Current Homopolar Component  

E-Print Network (OSTI)

systems (WECS) are the fastest growing sources of new electric generation in the world and it is expected generation systems, which are facing to constantly changing operating parameters, such as fuel cost, multiple, leading to a best electricity generating opportunities. However, the offshore or onshore environments

Paris-Sud XI, Université de

299

Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

Not Available

2011-05-01T23:59:59.000Z

300

Performance calculations and research direction for a water enhanced regenerative gas turbine cycle  

DOE Green Energy (OSTI)

A cycle has been conceived that combines compressor cooling, humidification, and regenerative air heating with the added enhancement of direct injection of water into the air flow. In this cycle it is proposed that a fine mist of water be injected into the compressor air stream and a spray or film of water into the regenerator air stream. Water injection into the compressor air flow realizes several benefits: it cools the air flow, reducing the power required for compression and increasing the potential for exhaust heat recovery; it adds mass to the air stream, increasing the power produced by expansion; and it reduces the amount of cooling bleed air required by increasing the specific heat and decreasing the temperature of the cooling air stream. The greatest benefit would be derived from spraying a fine mist of water directly into the existing air flow into or before the compressor so that cooling and compression would occur simultaneously. This may be accomplished by entraining the water droplets in the inlet air flow or by introducing the water in stages during compression. An alternative and less technically challenging approach is to extract the air stream to a saturation chamber and then reintroduce the air stream into the compressor. This approach is not as desirable because it would increase the equipment cost and add a significant pressure drop penalty. The second use of water in this cycle is in water-assisted regeneration.

Rogers, L.H. [USDOE Morgantown Energy Technology Center, WV (United States); Archer, D.H. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SMART POWER TURBINE  

SciTech Connect

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

302

EPRI Guide to On-line Testing and Monitoring of Turbine Generators  

Science Conference Proceedings (OSTI)

Guide to on-and off-line testing and monitoring procedures for assessment of the condition of the generator insulation in stator windings, stator core, exciter and rotor windings. The Guideline provides a list of failure mechanisms for specific generator classes and components, linked to the off-line tests and monitors available for implementation on existing generators for detection of these problems Platform Requirements Windows2000/XP/Vista

2009-11-03T23:59:59.000Z

303

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

304

Apparatus and method for partial-load operation of a combined gas and steam turbine plant  

SciTech Connect

Apparatus and method are disclosed for the partial load operation of a combined gas turbine and steam turbine plant, including a shaft being connected to the gas turbine and drivable at a given nominal speed of rotation, a first generator being connected to the shaft and electrically connectible to an electric network, a compressor being connected to the shaft and connected upstream of the gas turbine in gas flow direction, a heat exchanger having an output and a variable heat supply and being connected upstream of the gas turbine in gas flow direction, a steam generator for the steam turbine being connected downstream of the gas turbine in gas flow direction for receiving exhaust gases therefrom, a second generator being connected to the steam turbine and electrically connectible to the electric network for supplying given nominal power thereto along with the first generator, means for giving to the electric network and taking away from the network at least part of the nominal power if the shaft rotates at less than the nominal speed of rotation, and means for reducing the speed of rotation of the gas turbine for preventing a substantial drop in temperature at the output of the heat exchanger if the heat supply of the heat exchanger is reduced.

Becker, B.; Finckh, H.; Meyer-pittroff, R.

1982-07-20T23:59:59.000Z

305

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

306

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

307

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect

The objective of this contract is to investigate the removal of SO[sub x] and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for SO[sub x] removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% SO[sub x] removal efficiency. This research project is now in the second of a 3 phase (phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: design, procurement, and installation, shakedown and startup, and reporting.

Quimby, J.M.

1992-05-01T23:59:59.000Z

308

22 2 19 Generation 7  

E-Print Network (OSTI)

) He Gas Turbine Cycle (Direct) CO2 Gas Turbine Cycle (Direct)CO2 Gas Turbine Cycle He Gas Turbine-Cooling Cycle (800, 51.4%) Water/Steam Cycle (Indirect) He Gas Turbine Cycle (Direct) CO2 Gas Turbine Cycle (Direct)CO2 Gas Turbine Cycle He Gas Turbine Cycle LMFR S-CO2 FR 5% / CO2 #12; 3 CO2 4 CO2 10

309

Assessment of Partial Discharge and Electromagnetic Interference On-Line Testing of Turbine-Driven Generator Stator Winding Insulati on Systems  

Science Conference Proceedings (OSTI)

Partial discharge (PD) and electromagnetic interference (EMI) on-line testing have been promoted as means to assess the condition of turbine-driven generator stator winding insulation systems. Such test approaches offer clear advantages in avoiding prolonged generator shutdown for off-line tests and inspections. Although PD is a time-domain measurement and EMI measures activity with a frequency scan, both techniques still evaluate the same phenomenon -- high-frequency currents that flow as a result of el...

2003-03-03T23:59:59.000Z

310

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

311

Method and apparatus for wind turbine air gap control - Energy ...  

Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings ...

312

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

313

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

314

Advanced coal-fueled gas turbine systems reference system definition update  

Science Conference Proceedings (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

315

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

Science Conference Proceedings (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

316

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

suited for combined cycle, baseload applications. This sug-for the provision of baseload power in a combined cycle set-generators: provision of baseload power using a combined

Ishii, Jun

2004-01-01T23:59:59.000Z

317

Turbine-Generator Topics for Power Plant Engineers: Fundamentals of Electromagnetic Signature Analysis  

Science Conference Proceedings (OSTI)

Electromagnetic signature analysis (EMSA) is the process used to evaluate the electromagnetic interference (EMI) generated by abnormalities in almost any energized power plant equipment—from cable connections to broken rotor bars in a motor to the isolated phase bus and generator step-up transformer. EMSA will detect any defect that involves EMI, noise, arcing, corona, partial discharge, gap discharge, sparking or microsparking, or any combination of these.With EMSA, every signal ...

2013-02-15T23:59:59.000Z

318

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

319

Economical Condensing Turbines?  

E-Print Network (OSTI)

Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: Letdown turbines produce power based upon steam requirements and not based upon power requirements, and if all the steam letdown does not have a use, letdown turbines can become a very expensive way of producing electric power. • Condensing turbines have the ability to handle rapid swings in electrical load. Unfortunately, they can only condense a small percentage of the steam, usually less than 14%. Therefore only a small percent of the heat of condensation is available for their use. Also equipment must be used to condense the remaining steam below atmospheric pressure. • Extraction/condensing turbines both extract steam at a useful temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from drawing electrical power from the grid. The method for analyzing the cost of the condensing steam produced power is exactly the same in all cases. This paper will attempt to provide a frame work for preliminary economic analysis on electric power generation for condensing steam turbines.

Dean, J. E.

1997-04-01T23:59:59.000Z

320

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Stressing of turbine-generator-exciter shafts by variable-frequency currents superimposed on DC currents in asynchronous HVDC links and following disturbances at converter stations  

SciTech Connect

Ripple currents on the DC side of both HVDC synchronous and asynchronous. Links together with cleared HVDC and AC system disturbances can excite in some circumstances onerous torsional vibrations in large steam generator shafts. The problem has assumed importance in recent months on account of the HVDC Link between Scotland and Northern Ireland going ahead, on account of the proposed Eire/Wales Link, and because AC/DC/AC couplers are to be installed extensively to interconnect the East and West European Grid Systems. This paper discusses and analyses excitation of shaft torsional vibrations in steam turbine-generator-exciter shafts in close proximity to HVDC converter stations by (1) variable-frequency ripple currents superimposed on the DC currents in asynchronous Links, and (2) disturbances at bi-polar converter stations. The time response and tables show that for the systems studied variable-frequency ripple currents superimposed on the DC current in asynchronous Links can excite shaft torsional vibrations, the very small noncharacteristic currents could result in onerous shaft torques which might damage the machine, and that DC line faults at converter stations in close proximity of steam turbine-generator units can excite onerous turbine-generator shaft torsional response. Detailed simulation of the HVDC converter and generator is necessary for precise assessments of shaft torsional response following HVDC converter station faults. 500MW, 660MW, 1000MW and 1300MW machines are considered in the analyses that are made.

Hammons, T.J.; Bremner, J.J. (Univ. of Glasgow (United Kingdom))

1994-09-01T23:59:59.000Z

322

Gas turbine engine braking and method  

SciTech Connect

A method is described of decelerating a ground vehicle driven by a gas turbine engine having a gas generator section and a free turbine output power section driven by a gas flow from the gas generator section, comprising the steps of: altering the incidence of gas flow from the gas generator section onto the free turbine section whereby said gas flow opposes rotation of the free turbine section; increasing gas generator section speed; and subsequent to said altering and increasing steps, selectively mechanically interconnecting said gas generator and free turbine sections whereby the rotational inertia of the gas generator section tends to decelerate the free turbine section.

Mattson, G.; Woodhouse, G.

1980-07-01T23:59:59.000Z

323

DOE`s Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC`s vision for future IGCC systems. This major new program is a cooperative effort in which DOE`s Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-03-01T23:59:59.000Z

324

A comparison of spanwise aerodynamic loads estimated from measured bending moments versus direct pressure measurements on horizontal axis wind turbine blades  

DOE Green Energy (OSTI)

Two methods can be used to determine aerodynamic loads on a rotating wind turbine blade. The first is to make direct pressure measurements on the blade surface. This is a difficult process requiring costly pressure instrumentation. The second method uses measured flap bending moments in conjunction with analytical techniques to estimate airloads. This method, called ALEST, was originally developed for use on helicopter rotors and was modified for use on horizontal axis wind turbine blades. Estimating airloads using flap bending moments in much simpler and less costly because measurements can be made with conventional strain gages and equipment. This paper presents results of airload estimates obtained using both methods under a variety of operating conditions. Insights on the limitations and usefulness of the ALEST bending moment technique are also included. 10 refs., 6 figs.

Simms, D A; Butterfield, C P

1991-10-01T23:59:59.000Z

325

Integrated low emissions cleanup system for direct coal fueled turbines. Twenty-eighth quarterly report, July--September 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

326

Gas Turbine Condition Monitoring and Predictive Maintenance Capability Analysis Between Aviation and Power Generation Industries  

Science Conference Proceedings (OSTI)

This study compares and contrasts aviation and power generation condition monitoring and fault diagnosis. The report provides an overview of the technology, process, sensor suite and decision-making processes for both industries. The study highlights the level of decision automation and the structure to automatically initiate a maintenance process in aviation as one of the key differences between the two industries. This automation has important potential cost and operational benefits for the power gener...

2007-12-21T23:59:59.000Z

327

Modeling and Control of the PMSG Wind Generation System with a Novel Controller  

Science Conference Proceedings (OSTI)

This paper is based on the maximum power point tracking (MPPT) strategy for Direct Drive Permanent Magnet Synchronous Generator Wind turbine. The parts of generator is setted in d-p synchronous rotating reference frame. And the voltage space vector PWM(SVPWM) ... Keywords: wind power system, PMSG, SVPWM, direct driven wind turbine, variable speed

Shun Yang, Lida Zhang

2013-01-01T23:59:59.000Z

328

Advanced techniques for safety analysis applied to the gas turbine control system of ICARO co-generative plant  

E-Print Network (OSTI)

The paper describes two complementary and integrable approaches, a probabilistic one and a deterministic one, based on classic and advanced modelling techniques for safety analysis of complex computer based systems. The probabilistic approach is based on classical and innovative probabilistic analysis methods. The deterministic approach is based on formal verification methods. Such approaches are applied to the gas turbine control system of ICARO co generative plant, in operation at ENEA CR Casaccia. The main difference between the two approaches, behind the underlining different theories, is that the probabilistic one addresses the control system by itself, as the set of sensors, processing units and actuators, while the deterministic one also includes the behaviour of the equipment under control which interacts with the control system. The final aim of the research, documented in this paper, is to explore an innovative method which put the probabilistic and deterministic approaches in a strong relation to overcome the drawbacks of their isolated, selective and fragmented use which can lead to inconsistencies in the evaluation results. 1.

Ro Bologna; Ester Ciancamerla; Piero Incalcaterra; Michele Minichino; Andrea Bobbio; Università Del Piemonte Orientale; Enrico Tronci

2001-01-01T23:59:59.000Z

329

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

330

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

331

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

332

Control of a dynamic brake to reduce turbine-generator shaft transient torques  

SciTech Connect

A resistive, thyristor-controlled brake is used to damp transient torques in large thermo-electric generators supplying series-compensated transmission lines. Emphasis is placed on developing a suitable control algorithm and testing the algorithm through a wide variety of different operating configurations. Discrete-level Generalized Predictive Control is examined as one possible approach to optimal control of the brake. Some problems with implementation of GPC on the system are discussed. Prony analysis is used to identify system transfer functions which are then related to control design considerations and robustness properties.

Donnelly, M.K.; Smith, J.R.; Johnson, R.M. (Montana State Univ., Bozeman, MT (United States)); Hauer, J.F. (Bonneville Power Administration, Kalispell, MT (United States)); Brush, R.W. (Montana Power Co., Butte, MT (United States)); Adapa, R. (Electric Power Research Inst., Palo Alto, CA (United States))

1993-02-01T23:59:59.000Z

333

Analysis of direct contact binary cycles for geothermal power generation (program DIRGEO)  

DOE Green Energy (OSTI)

A computer program was produced which would analyze a direct-contact binary fluid power plant as conceived for geothermal applications. The current cycle consists of a direct-contact boiler, binary vapor mixture turbine, parallel flow liquid-liquid preheaters, pumps, flash expander and a condenser. The program computes important design parameters which allow the user to select the optimum operating condition for a particular well. The program allows for the evaluation of cycles utilizing liquid hydrocarbons and fluorocarbons as secondary fluids. A complete description of the executive program including flow charts, program listings and variable symbol tables is contained. A sample run of the main program completes the description of its use.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1976-09-01T23:59:59.000Z

334

Rampressor Turbine Design  

DOE Green Energy (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

335

Nine Universities Begin Critical Turbine Systems Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research July 20, 2011 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently using fuels derived from coal and containing high amounts of hydrogen. The selected universities - located in California, Connecticut, Indiana, Michigan, North Dakota, Ohio, Pennsylvania, Tennessee, and Texas - will direct their efforts toward enabling technologies for high-hydrogen-fueled

336

Nine Universities Begin Critical Turbine Systems Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research July 20, 2011 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently using fuels derived from coal and containing high amounts of hydrogen. The selected universities - located in California, Connecticut, Indiana, Michigan, North Dakota, Ohio, Pennsylvania, Tennessee, and Texas - will direct their efforts toward enabling technologies for high-hydrogen-fueled

337

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

338

New PGT 25 gas turbine for mechanical drive applications  

SciTech Connect

Italy's Nuovo Pignone developed a heavy-duty power turbine designed primarily to match General Electric's LM 2500 gas generator in its various configurations such as the -20, -30, and -33 models. A two-stage unit running at 6500 rpm, the PGT-25 gas turbine matches the speed of Nuovo Pignone's 20 MW-class pipeline compressors that can operate at their highest efficiency through a direct coupling to the turbine. The PGT-25's structural simplicity offers durability, advanced fluid dynamic design for maximum efficiency at partial loads, and modularity for easy transport and assembly.

Chellini, R.

1984-06-01T23:59:59.000Z

339

Analysis of variable-frequency currents superimposed on DC currents in asynchronous HVDC Links in stressing turbine-generator-exciter shafts  

Science Conference Proceedings (OSTI)

Ripple currents on the DC side of both HVDC asynchronous and synchronous Links can excite in some circumstances onerous torsional vibrations in large steam generator shafts. The problem has assumed importance in recent months on account of the HVDC Link between Scotland and Northern Ireland going ahead, on account of the proposed Eire/Wales Link, because AC/DC/AC couplers are to be installed to interconnect the East and West European Grid Systems, and because resonances have been observed on machines in close proximity to AC/DCIAC couplers and HVDC Links. This paper discusses and analyses excitation of shaft torsional vibrations in steam turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on DC currents in asynchronous Links. It presents technical knowledge not arranged for convenient reference heretofore in studying possible excitation of turbine-generator-v/ exciter shaft torsional vibrations by non-characteristic HVDC converter harmonic currents if a machine should be considered to be at risk. Shaft torques in multi-machine networks are evaluated by proportioning HVDC Link disturbance currents to each machine at risk using system network data, generator data and fault analysis data considering frequency dependence of the system parameters. This scaling factor is calculated for different scenarios of system operation and load. Equivalent circuits for the synchronous generator are employed appropriately to correlate HVDC Link disturbance current impressed on the generator stator with s state torque excitation from which magnitude of turbine-generator-exciter shaft torque is deduced.

Hammons, T.J.; Bremner, J.J. [Univ. of Glasgow (United Kingdom)

1995-03-01T23:59:59.000Z

340

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network (OSTI)

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Three-dimensional hybrid grid generator and unstructured flow solver for compressors and turbines  

E-Print Network (OSTI)

A numerical method for the simulation of compressible turbulent ?ows is presented. This method includes a novel hybrid grid generation for airfoil cascades and an unstructured mesh ?ow solver. The mesh tool incorporates a mapping technique and a grid smoothing method. The mapping technique is used to build an initial volume mesh and the grid smoothing method is used to improve the quality of the initial mesh. The grid smoothing is based on the optimization of mesh-quality parameters. The further improvement of the smoothed mesh is achieved by an edge-swapping and node-insertion technique. The unstructured ?ow solver is developed for a hybrid grid. This ?ow solver uses a rotational frame of reference. The convective and viscous ?uxes are numerically solved by an upwind scheme and an averaged nodal gradient. A higher-order spatial accuracy is achieved by a piece-wise linear reconstruction. An explicit multi-stage method is employed for integration in time. The Menter?s k ?? model is implemented to simulate the turbulence e?ects. The ?ow solver is validated against the analytical and experimental results. A parametric study is performed for a high speed centrifugal compressor.

Kim, Kyusup

2003-12-01T23:59:59.000Z

342

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections–2013: Supplemental Addition  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.BackgroundAs a focus of innovative approaches and techniques, maintenance of aging steam ...

2013-12-17T23:59:59.000Z

343

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections, Volume 1: General Practices  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.BackgroundAs a focus of innovative approaches and techniques, maintenance of aging steam ...

2013-12-23T23:59:59.000Z

344

Combination, a model vehicle engine and a direct-current generator  

SciTech Connect

This patent describes an engine for a model vehicle and a direct-current generator, comprising: an internal-combustion engine; and a direct-current generator operatively coupled to the engine; wherein the generator comprises an armature, and a drive coupling member drivingly engaged with the armature; the armature has three poles; each of the poles has not less than six hundred turns of magnetic wire; the engine having first means comprising a crankshaft, and second means comprising a connecting rod; and one of the first a second means has means for drivingly engaging the drive coupling for imparting rotation to the generator from the engine.

Williams, G.A.

1987-01-20T23:59:59.000Z

345

System for minimizing valve throttling losses in a steam turbine power plant  

SciTech Connect

A system which integrates the controls of a steam turbine power plant for minimizing power plant energy losses substantially caused by steam flow valve throttling is disclosed. The steam turbine power plant includes boiler pressure controls for controlling the boiler throttle pressure of a steam producing boiler and turbine-generator controls for positioning a plurality of turbine steam admission values to regulate the steam flow conducted through a steam turbine which governs the electrical energy generated by an electrical generator at a desired power generation level. The turbine-generator controls predetermine a plurality of valve position states to establish a predetermined valve grouping sequential positioning pattern for the steam admission valves to regulate steam flow through the steam turbine across the range of power generation, each predetermined state substantially corresponding to a minimum of valve throttling losses. The steam admission valves may be positioned at a present valve position state, which is other than one of the predetermined states, as a result of a change in desired power generation level. The disclosed system responds to this condition by governing the boiler pressure controls to adjust the boiler throttle pressure at a desired rate and in a direction to cause steam admission valves to be repositioned according to the sequential positioning pattern to a selected one of the predetermined efficient valve position states. The repositioning of the steam admission valves is performed by maintaining the generated energy substantially at the new desired power generation level.

Stern, L.P.; Johnson, S.J.

1979-12-18T23:59:59.000Z

346

Single rotor turbine engine  

SciTech Connect

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

347

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

Electricity from Steam Turbine-Generators: A System-level2. Backpressure Steam Turbine Generator Characteristics3. Backpressure Steam Turbine Generator Characteristics

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

348

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

349

Solid particle magnetic deflection system for protection of steam turbine plants  

SciTech Connect

A method for removing metallic particles from a flow of steam supplied by a steam generator through a supply path to a steam turbine, the metallic particles being entrained in the flow of steam and, at least in part, having defoliated from boiler pipes of the steam generator is described comprising: defining an axial section of a predetermined axial direction, circumferential configuration and length, in the steam flow path from the steam generator to the steam turbine; producing a magnetic field in the defined section of the steam flow path; and trapping and collecting the deflected metallic particles, thereby to remove same from the flow of steam supplied to the turbine.

Viscovich, P.W.

1988-02-23T23:59:59.000Z

350

Model Study of Waves Generated by Convection with Direct Validation via Satellite  

Science Conference Proceedings (OSTI)

Atmospheric gravity waves have a major effect on atmospheric circulation, structure, and stability on a global scale. Gravity waves can be generated by convection, but in many cases it is difficult to link convection directly to a specific wave ...

Alison W. Grimsdell; M. Joan Alexander; Peter T. May; Lars Hoffmann

2010-05-01T23:59:59.000Z

351

A validation of a ray-tracing tool used to generate bi-directional...  

NLE Websites -- All DOE Office Websites (Extended Search)

A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems Title A validation of a ray-tracing tool used...

352

Iowa / Nebraska Distributed Wind Generation Projects First and Second-Year Operating Experience: 1999-2001: U.S. Department of Energ y - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The Wind Turbine Verification Program (TVP) is a collaborative effort of the U.S. Department of Energy (DOE), EPRI, and host utilities to develop, construct, and operate wind power plants. This report describes the first- and second-year operating experience at the 2.25-MW Iowa Distributed Wind Generation Project (IDWGP) in Algona, Iowa, and the 1.5-MW Nebraska Distributed Wind Generation Project (NDWGP) in Springview, Nebraska. The lessons learned in both projects will be valuable to other utilities pla...

2001-12-03T23:59:59.000Z

353

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

354

Direct connection of series self-excited generators and HVDC converters  

Science Conference Proceedings (OSTI)

An alternative and simpler solution is proposed for the direct connection of generators to HVdc converters. The generator exciter windings are connected in series with the output of the HVdc converter and take the place of the conventional smoothing reactor. Existing steady state and time domain simulation programs are modified to represent the behavior of the series direct connection scheme. It is shown that series excitation extends naturally the power transmission capability and permits fast fault clearances.

Arrillaga, J.; Macdonald, S.J.; Watson, N.R.; Watson, S. (Univ. Canterbury, Christchurch (New Zealand))

1993-10-01T23:59:59.000Z

355

Gas turbine noise control  

Science Conference Proceedings (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

356

Comparative Assessment of Direct Drive High Temperature Superconductin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, LLC. Contract No. DE-AC36-08GO28308 Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines B....

357

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

DOE Green Energy (OSTI)

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

358

Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation  

E-Print Network (OSTI)

factor. Type 2 Wind Turbine Generator (Wound Rotor InductionTurbine Generator (Doubly-fed Induction (Asynchronous) Generator: The rotor

Mackin, Peter

2011-01-01T23:59:59.000Z

359

Power links with Ireland -- Excitation of turbine-generator shaft torsional vibrations by variable frequency currents superimposed on DC currents in asynchronous HVDC links  

Science Conference Proceedings (OSTI)

The paper describes an in-depth analysis of excitation of shaft torsional vibrations in steam-turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on the DC currents in asynchronous Links. It extends earlier work to include an in depth analysis of system scaling factors for harmonic currents impressed on generators in Northern Ireland by an inverter and to investigate the phenomena for possible torsional vibrations in the generators by the Link. Frequencies at which shaft torsional vibrations would be excited by modulation product harmonics in 50Hz/50Hz asynchronous Links as a function of deviation in system frequency is reviewed. Relative noncharacteristic current levels for 50Hz/50Hz connectors are illustrated assuming ripple currents at the inverter which gives realistic harmonic voltages in a twelve-pulse bridge. The paper then shows that torques in machines in multi-machine networks may be estimated by proportioning HVDC link harmonic disturbance current appropriately to each machine at risk. It is concluded that variable-frequency ripple currents superimposed on the DC current in asynchronous links can excite sympathetic torsional vibrations in turbine-generator-exciter shafts.

Hammons, T.J.; Tay, B.W.; Kok, K.L. [Glasgow Univ. (United Kingdom)

1995-08-01T23:59:59.000Z

360

UNSTEADY SIMULATION OF FLOW IN MICRO VERTICAL AXIS WIND TURBINE  

E-Print Network (OSTI)

Though wind turbines and windmills have been used for centuries, the application of aerodynamics technology to improve reliability and reduce costs of wind-generated energy has only been pursued in earnest for the past 40 years. Today, wind energy is mainly used to generate electricity. Wind is a renewable energy source. Power production from wind turbines is affected by certain conditions: wind speed, turbine speed, turbulence and the changes of wind direction. These conditions are not always optimal and have negative effects on most turbines. The present turbine is supposed to be less affected by these conditions because the blades combine a rotating movement around each own axis and around the nacelle’s one. Due to this combination of movements, flow around this turbine can be more highly unsteady, because of great blade stagger angles. The turbine has a rotor with three straight blades of symmetrical airfoil. Paper presents unsteady simulations that have been performed for one wind velocity, and different initial blades stagger angles. The influence of interaction of blades is studied for one specific constant rotational speed among the four rotational speeds that have been studied.

A. C. Bayeul-lainé; G. Bois

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

362

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

363

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

364

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

Free Electricity from Steam Turbine-Generators: A System-scale back-pressure steam turbine. Several manufactures2. Backpressure Steam Turbine Generator Characteristics

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

365

MHK Technologies/Anaconda bulge tube drives turbine | Open Energy  

Open Energy Info (EERE)

Anaconda bulge tube drives turbine Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile Primary Organization Checkmate SeaEnergy Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anaconda uses a large water filled distensible rubber tube floating just beneath the ocean surface and oriented parallel to wave direction As a wave passes the bulge tube is lifted with the surrounding water and this causes a bulge wave to be excited which then passes down the tubes walls gathering energy from the ocean wave as it passes By matching the speed of the bulge wave to that of the sea wave resonance is achieved and high power capture becomes possible The bulge waves are then used to drive a turbine generator located at the stern of the device

366

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

367

DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION  

E-Print Network (OSTI)

-tracing study of the heat flux distribution inside the steam receiver is used to spatially refine the modelDYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION José Zapata 1 , John dish has been in operation since 2010 with a mono-tube steam cavity receiver, the SG4 system

368

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

369

Gas turbines for the future  

SciTech Connect

Utility gas turbine technology has been advancing fairly rapidly, one reason being that it shares in the benefits of the research and development for aviation gas turbines. In general, turbine progress is characterized by large, incremental advances in performance. At intervals of approx. 15 yr, new-generation turbines are introduced, refined, and eventually installed in relatively large numbers. A new generation of turbines is being readied for the market that will have power ratings into the 130- to 150-MW range (simple cycle), significantly higher than the 70 to 100 MW now in service. When the new turbines are installed in combined-cycle plants, the efficiency levels are expected to rise from the present value of approx. 42% higher heating value to approx. 46%.

Cohn, A.

1987-01-01T23:59:59.000Z

370

Northern Power NW 1500 Direct-Drive Generator: April 12, 2001 - September 30, 2006  

SciTech Connect

This report describes work conducted under a subcontract between NREL and Northern Power Systems to identify, design, and test a megawatt-scale wind turbine drivetrain with the lowest overall life-cycle cost.

Bywaters, G.; Mattila, P.; Costin, D.; Stowell, J.; John, V.; Hoskins, S.; Lynch, J.; Cole, T.; Cate, A.; Badger, C.; Freeman, B.

2007-10-01T23:59:59.000Z

371

Candidate wind-turbine generator site cumulative meteorological data summary and data for January 1982 through September 1982  

DOE Green Energy (OSTI)

Summarized cumulative hourly meteorological data for 20 new sites selected in early 1980 as part of the expanded candidate site program are presented. The reporting period is July 1980 through September 1982. The data collection program at some individual sites may not span this entire period, but will be contained within the reporting period. The purpose of providing the summarized data is to document the data collection program and to provide data that could be considered representative of longer-term meteorological conditions at each site. For each site, data are given in eight tables and in a topographic map showing the approximated location of the meteorological tower and turbine, if applicable. Use of the information from these tables, along with information about specific wind turbines, should allow the user to estimate the potential for longer-term average wind energy production at each site. Two appendices of other data are provided. Appendix A contains summarized data collected at new and original sites during the period January 1982 through September 1982. Appendix B contains cumulative summarized data for those original sites selected in 1976 with data collection programs continuing into 1982.

Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.; Bradymire, S.L.; Gregory, J.L.

1983-08-01T23:59:59.000Z

372

Novel sensorless generator control and grid fault ride-through strategies for variable-speed wind turbines and implementation on a new real-time simulation platform.  

E-Print Network (OSTI)

??The usage of MW-size variable-speed wind turbines as sources of energy has increased significantly during the last decade. Advantages over fixed-speed wind turbines include more… (more)

Yang, Sheng

2010-01-01T23:59:59.000Z

373

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 1, FEBRUARY 2012 465 Dynamics of Type-3 Wind Turbine Generator Models  

E-Print Network (OSTI)

wind farm developments. Such WTGs are also known as doubly fed induction generators (DFIGs) or doubly

Hiskens, Ian A.

374

Using Neural Networks to Estimate Wind Turbine  

E-Print Network (OSTI)

This paper uses data collected at Central and South West Services Fort Davis wind farm to develop a neural network based prediction of power produced by each turbine. The power generated by electric wind turbines changes rapidly because of the continuous fluctuation of wind speed and direction. It is important for the power industry to have the capability to perform this prediction for diagnostic purposes---lower-than-expected wind power may be an early indicator of a need for maintenance. In this paper, characteristics of wind power generation are first evaluated in order to establish the relative importance for the neural network. A four input neural network is developed and its performance is shown to be superior to the single parameter traditional model approach.

Power Generation Shuhui; Shuhui Li; Donald C. Wunsch; Edgar A. O’hair; Michael G. Giesselmann; Senior Member; Senior Member

2001-01-01T23:59:59.000Z

375

Conceptual Design of a Lead-Bismuth Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation  

E-Print Network (OSTI)

The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

Buongiorno, J.

376

Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation  

E-Print Network (OSTI)

The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

Buongiorno, Jacopo, 1971-

2001-01-01T23:59:59.000Z

377

MHK Projects/OSU Direct Drive Power Generation Buoys | Open Energy  

Open Energy Info (EERE)

OSU Direct Drive Power Generation Buoys OSU Direct Drive Power Generation Buoys < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6472,"lon":-124.127,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

378

Single condenser arrangement for side exhaust turbine  

SciTech Connect

This patent describes a large-scale power generating apparatus for converting steam energy into electrical energy. It comprises: a large turbine capable of converting steam energy into mechanical energy; a large generator for converting mechanical energy into electrical energy; a shaft disposed in and axially connecting the turbine and the generator, the shaft capable of being turned by steam energy in the turbine; a single condenser connected to the turbine and capable of drawing steam out of the turbine and condensing steam to water, the single condenser disposed alongside the turbine; and a low foundation which supports the turbine and the generator and a slab which supports the low foundation and the single condenser.

Stock, A.L.

1989-09-19T23:59:59.000Z

379

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

380

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

382

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

383

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

384

Closed-cycle gas turbine chemical processor  

SciTech Connect

A closed-cycle gas turbine chemical processor separates the functions of combustion air and dilution fluid in a gas turbine combustor. The output of the turbine stage of the gas turbine is cooled and recirculated to its compressor from where a proportion is fed to a dilution portion of its combustor and the remainder is fed to a chemical recovery system wherein at least carbon dioxide is recovered therefrom. Fuel and combustion air are fed to a combustion portion of the gas turbine combustor. In a preferred embodiment of the invention, the gas turbine is employed to drive an electric generator. A heat recovery steam generator and a steam turbine may be provided to recover additional energy from the gas turbine exhaust. The steam turbine may be employed to also drive the electric generator. additional heat may be added to the heat recovery steam generator for enhancing the electricity generated using heat recovery combustors in which the functions of combustion and dilution are separated. The chemical recovery system may employ process steam tapped from an intermediate stage of the steam turbine for stripping carbon dioxide from an absorbent liquid medium which is used to separate it from the gas stream fed to it. As the amount of carbon dioxide in the fuel fed to the chemical processor increases, the amount of process steam required to separate it from the absorbent fluid medium increases and the contribution to generated electricity by the steam turbine correspondingly decreases.

Stahl, C. R.

1985-07-16T23:59:59.000Z

385

Satoshi Hada Department of Gas Turbine Engineering,  

E-Print Network (OSTI)

Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago must be prevented by developing envi- ronmentally friendly power plants. Industrial gas turbines play a major role in power generation with modern high temperature gas turbines being applied in the gas

Thole, Karen A.

386

Development of an 8 kW wind turbine generator for residential type applications. Phase I: design and analysis. Volume II. Technical report  

SciTech Connect

This Phase I summary report contains a description of the 8 kW wind energy conversion system developed by the United Technologies Research Center (UTRC) for the Department of Energy. The wind turbine employs the UTRC Bearingless Rotor Concept in conjunction with a passive pendulum control system which controls blade pitch for start-up, efficient power generation, and high-speed survivability. The report contains a summary of the experimental and analytical programs in support of design efforts. These supporting programs include materials tests, a wind tunnel program, and aeroelastic analyses to evaluate system stability. An estimate is also made of the projected manufacturing cost of the system if produced in quantity.

Cheney, M.C.

1979-06-25T23:59:59.000Z

387

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

388

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

389

High-Order Sliding Mode Control of a Marine Current Turbine  

E-Print Network (OSTI)

for Doubly-Fed Induction Generator- (DFIG) based marine current turbines have been tested to evaluate

Paris-Sud XI, Université de

390

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

391

Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines  

E-Print Network (OSTI)

-mm-coaxial transmission lines Tae-In Jeona) and D. Grischkowskyb) School of Electrical and Computer Engineering, OklahomaDirect optoelectronic generation and detection of sub-ps-electrical pulses on sub efficient direct optoelectronic generation of sub-ps-THz pulses on 50 coaxial transmission lines with a 330

Oklahoma State University

392

Gas turbines face new challenges  

SciTech Connect

Gas turbines continue to increase the electric power generation market in both the peaking and the intermediate load categories. With the increase in unit size and operating efficiencies. capital costs per kilowatt are reduced. Clean fuels---gas, light oil, or alcohol-type fuel--are needed for the gas turbines. The most efficient method of power generation is now attained from gas turbines, but the shortage of clean fuels looms. Manufacturers are anticipating the availability of clean fuels and continue working on the development of high- pressure, high-temperature turbines. In the near-term, increased efficiency is sought by making use of the turbine exhaust heat. involving combined or regenerative cycles. (MCW)

Papamarcos, J.

1973-12-01T23:59:59.000Z

393

Wind Turbine Productivity Improvement and Procurement Guidelines  

Science Conference Proceedings (OSTI)

Proper selection of equipment specifications during wind turbine procurement and careful operation and maintenance procedures are keys to maximizing wind project availability and annual energy generation and revenues.

2002-03-28T23:59:59.000Z

394

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY  

E-Print Network (OSTI)

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

395

Electronic fuel control system for gas turbine  

SciTech Connect

A method is described for monitoring gas turbine operating temperatures and rotational velocity for producing one of a group of fuel control signals for controlling the fuel input rate to the gas turbine. The method consists of: monitoring turbine inlet temperatures through respective sensors for the gas turbine, averaging the turbine inlet temperatures to produce an average turbine inlet temperature signal, monitoring a gas generator inlet temperature sensor of the gas turbine for producing a gas generator inlet temperature signal, generating a speed signal proportional to the rotational velocity of the gas turbine, combining the gas generator inlet temperature signal with the speed signal to produce a first function signal, applying the first function signal to a stored data set to produce a second function signal, the stored data set related to performance characteristics of the gas turbine, and comparing the turbine inlet temperature signal to the second function signal to produce a difference signal therefrom, the difference signal serving as a fuel control signal for the gas turbine.

Nick, C.F.

1986-04-22T23:59:59.000Z

396

Experimental study of rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine.  

E-Print Network (OSTI)

??The rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine were investigated experimentally. Rotordynamic model(XLROTOR) for Gas Generator and Power Turbine were… (more)

Na, Uhn Joo

2012-01-01T23:59:59.000Z

397

High efficiency carbonate fuel cell/turbine hybrid power cycles  

SciTech Connect

Carbonate fuel cells developed in commercial 2.85 MW size, have an efficiency of 57.9%. Studies of higher efficiency hybrid power cycles were conducted to identify an economically competitive system and an efficiency over 65%. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine, and a steam cycle, which generates power at a LHV efficiency over 70%; it is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95% of the fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming the fuel, and flows to a direct carbonate fuel cell system which generates 72% of the power. The portion of fuel cell anode exhaust not recycled, is burned and heat is transferred to compressed air from a gas turbine, heating it to 1800 F. The stream is then heated to 2000 F in gas turbine burner and expands through the turbine generating 13% of the power. Half the gas turbine exhaust flows to anode exhaust burner and the rest flows to the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Studies of the TTC for 200 and 20 MW size plants quantified performance, emissions and cost-of-electricity, and compared the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6%; estimated cost of electricity is 45.8 mills/kWhr. A 20-MW TTC plant has an efficiency of 65.2% and a cost of electricity of 50 mills/kWhr.

Steinfeld, G.

1996-12-31T23:59:59.000Z

398

Low Wind Speed Technology Phase II: Development of a 2-MW Direct-Drive Wind Turbine for Low Wind Speed Sites; Northern Power Systems  

SciTech Connect

This fact sheet describes a subcontract with Northern Power Systems (NPS) to develop and evaluate a 2-MW wind turbine that could offer significant opportunities for reducing the cost of energy (COE).

2006-03-01T23:59:59.000Z

399

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

400

A Study on Vibration Isolation in a Wind Turbine Subjected to Wind and Seismic Loading.  

E-Print Network (OSTI)

??The primary loading on wind turbines is in the lateral direction and is of a stochastic nature, due to wind and seismic forces. As turbines… (more)

Van der Woude, Chad

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

402

An examination of wake effects and power production for a group of large wind turbines  

DOE Green Energy (OSTI)

Data from a group of three MOD-2 wind turbines and two meteorological towers at Goodnoe Hills were analyzed to evaluate turbine power output and wake effects (losses in power production due to operation of upwind turbines), and atmospheric factors influencing them. The influences of variations in the ambient wind speed, wind direction, and turbulence intensity were the primary factors evaluated. Meteorological and turbine data collected at the Goodnoe Hills site from April 1 to October 17, 1985, were examined to select the data sets for these analyses. Wind data from the two meteorological towers were evaluated to estimate the effect of a wake from an upwind turbine on the wind flow measured at the downwind tower. Maximum velocity deficits were about 25% and 12% at downwind distances of 5.8 and 8.3 rotor diameters (D), respectively. However, the maximum deficits at 5.8 D were about 14/degree/ off the centerline orientation between the turbine and the tower, indicating significant wake curvature. Velocity deficits were found to depend on the ambient wind speed, ranging from 27% at lower speeds (15 to 25 mph) to 20% at higher speeds (30 to 35 mph). Turbulence intensity increases dramatically in the wake by factors of about 2.3 and 1.5 over ambient conditions at 5.8 D and 8.3 D, respectively. An analysis of the ambient (non-wake) power production for all three turbines showed that the MOD-2 power output depends, not only on wind speed, but also on the turbulence intensity. At wind speeds below rated, there was a dramatic difference in turbine power output between low and high turbulence intensities for the same wind speed. One of the turbines had vortex generators on the blades. This turbine produced from 10% to 13% more power than the other two turbines when speeds were from 24 to 31 mph. 11 refs., 21 figs., 2 tabs.

Elliott, D.L.; Buck, J.W.; Barnard, J.C.

1988-04-01T23:59:59.000Z

403

Gas turbines fired by solid fuels  

SciTech Connect

Steadily increasing energy requirements have spurred a search for new methods of generating energy from low-cost, abundant fuels. The development of a gas-turbine system equipped for the direct combustion of such fuels is now underway in the U.S. A one-megawatt pilot plant has been operating for over a year, using a fluidized bed to burn coal. The plant has also operated on wood waste and municipal solid waste as fuels. Methods have been developed for the suppression of noxious gases included among the combustion products, but there remain some problems with the removal of particulate matter from the exhaust gas prior to its entry into the turbine. A new high-temperature filter is being installed to alleviate these. A description of the one-megawatt pilot plant is provided, along with a discussion of operational results and mechanical problems and their solutions. A preliminary design for a full-scale plant is included.

Wade, G.L.

1976-01-01T23:59:59.000Z

404

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

405

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

406

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

407

Aerodynamic interference between two Darrieus wind turbines  

DOE Green Energy (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

408

Investigation of Small Wind-Turbine Induction Generators : Final Technical Report, September 16, 1980-December 31, 1982.  

SciTech Connect

A new and accurate experimental set-up was developed to test induction machines in the 1-5 kW range. Two single-phase induction generators were tested - the Enertech 1500 and Enertech 1800. A detailed mathematical model to evaluate the performance of single-phase induction generators was developed and documented in the form of a FORTRAN computer simulation program. Then the program was used to analyze the Enertech 1800 and the results were compared with the test results. (LEW)

Venkata, Subrahmanyam S.; Boardman, Ethan C.

1982-01-01T23:59:59.000Z

409

Gas Turbine Repair Guidelines: Alstom GT26  

Science Conference Proceedings (OSTI)

For more than a decade, the Electric Power Research Institute (EPRI) has been developing gas turbine hot section component repair and coating guidelines to assist utilities and power generators in the refurbishment of these critical and expensive parts. Utilities, generators, and repair vendors have used these guidelines to perform repairs on turbine blades, vanes, and combustion hardware. The guidelines in this volume address the specific features of the Alstom GT26 gas turbine.

2011-11-03T23:59:59.000Z

410

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

411

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections 2010--Volume 3: Balancing and A lignment  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2010-12-23T23:59:59.000Z

412

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections -- 2011: Volume 2, Repair Proce dures  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2012-07-31T23:59:59.000Z

413

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections—2007: Volumes 2 and 4 Sup plemental Additions  

Science Conference Proceedings (OSTI)

Up to 70 of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2008-03-27T23:59:59.000Z

414

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2006; Volume 1: General Practic es  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2007-03-30T23:59:59.000Z

415

Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real  

E-Print Network (OSTI)

induction generator (DFIG). However, no attention has been given to the impact of internal faults) that interface the DFIG with the grid. This paper investigates the impact of the rotor side converter (RSC) IGBT flashover fault on the common coupling (PCC) reactive power and the FRT capability of the DFIG. A proper

Pota, Himanshu Roy

416

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

417

The value of steam turbine upgrades  

Science Conference Proceedings (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

418

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

419

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

420

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY  

E-Print Network (OSTI)

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

Kusiak, Andrew

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, March 1, 1994--May 31, 1994  

DOE Green Energy (OSTI)

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus their close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NO{sub x} and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives requires the development of Advanced Gas Turbine Systems which encompasses two potential products: a new aeroderivative combined cycle system for the industrial market and a combined cycle system for the utility sector that is based on an advanced frame machine.

NONE

1998-12-31T23:59:59.000Z

422

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, September, 1--November 30, 1995  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA-based in engineering and manufacturing and are marketed through GE Power Systems. Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both the efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emissions. Improved coatings and other materials technologies along with creative combustor design can result in solutions which will achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine.

1997-06-01T23:59:59.000Z

423

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

424

Direct contact low emission steam generating system and method utilizing a compact, multi-fuel burner  

SciTech Connect

A high output, high pressure direct contact steam generator for producing high quality steam particularly suited for use with low grade, low cost fuel. When used in a system incorporating heat recovery and conversion of carryover water enthalpy into shaft horsepower, the unit disclosed provides high quality, high pressure steam for ''steam drive'' or thermal stimulation of petroleum wells through injection of high pressure steam and combustion gas mixtures. A particular feature of the burner/system disclosed provides compression of a burner oxidant such as atmospheric air, and shaft horesepower for pumping high pressure feedwater, from a lowest cost energy source such as leased crude, or other locally available fuel.

Eisenhawer, S.; Donaldson, A. B.; Fox, R. L.; Mulac, A. J.

1985-02-12T23:59:59.000Z

425

Method and apparatus for preventing overspeed in a gas turbine  

DOE Patents (OSTI)

A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

Walker, William E. (San Diego, CA)

1976-01-01T23:59:59.000Z

426

Gas Turbine Recuperators: Benefits and Status  

Science Conference Proceedings (OSTI)

Distributed resources (DR) are projected to be an expanding part of the power generation mix in the future -- with conventional industrial and aeroderivative gas turbines as well as emerging microturbine products playing an important role. This report assesses the role of recuperators in improving the power generation efficiency of simple-cycle gas turbines and microturbines.

2000-01-19T23:59:59.000Z

427

Chapter 14: Wind Turbine Control Systems  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by gravity, stochastic wind disturbances, and gravitational, centrifugal, and gyroscopic loads. The aerodynamic behavior of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional turbulent wind inflow field that drives fatigue loading. Wind turbine modeling is also complex and challenging. Accurate models must contain many degrees of freedom (DOF) to capture the most important dynamic effects. The rotation of the rotor adds complexity to the dynamics modeling. Designs of control algorithms for wind turbines must account for these complexities. Algorithms must capture the most important turbine dynamics without being too complex and unwieldy. Off-the-shelf commercial soft ware is seldom adequate for wind turbine dynamics modeling. Instead, specialized dynamic simulation codes are usually required to model all the important nonlinear effects. As illustrated in Figure 14-1, a wind turbine control system consists of sensors, actuators and a system that ties these elements together. A hardware or software system processes input signals from the sensors and generates output signals for actuators. The main goal of the controller is to modify the operating states of the turbine to maintain safe turbine operation, maximize power, mitigate damaging fatigue loads, and detect fault conditions. A supervisory control system starts and stops the machine, yaws the turbine when there is a significant yaw misalignment, detects fault conditions, and performs emergency shut-downs. Other parts of the controller are intended to maximize power and reduce loads during normal turbine operation.

Wright, A. D.

2009-01-01T23:59:59.000Z

428

Sliding mode control law for a variable speed wind turbine  

Science Conference Proceedings (OSTI)

Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed ... Keywords: modeling and simulation, variable structure control, wind turbine control

Oscar Barambones; Jose Maria Gonzalez De Durana; Patxi Alkorta; Jose Antonio Ramos; Manuel De La Sen

2011-02-01T23:59:59.000Z

429

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

430

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-ninth quarterly status report, October--December 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

431

Short-Term PV Generation System Direct Power Prediction Model on Wavelet Neural Network and Weather Type Clustering  

Science Conference Proceedings (OSTI)

With the increase of the capacity of PV generated systems, how to eliminate the problem caused by the randomness of power output for photovoltaic system becomes more significant. Most of the existing photovoltaic prediction is Based on the solar radiation. ... Keywords: PV generation system, Wavelet neural network, Weather type clustering, Direct prediction

Ying Yang, Lei Dong

2013-08-01T23:59:59.000Z

432

MHK Technologies/Denniss Auld Turbine | Open Energy Information  

Open Energy Info (EERE)

Denniss Auld Turbine Denniss Auld Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Denniss Auld Turbine.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The turbine used in an Oscillating Water Column (OWC) is a key element in the devices economic performance. The Oceanlinx turbine uses variable pitch blades, which, with the slower rotational speed and higher torque of the turbine, improves efficiency and reliability and reduces the need for maintenance. The turbine uses a sensor system with a pressure transducer that measures the pressure exerted on the ocean floor by each wave as it approaches or enters the capture chamber. The transducer sends a voltage signal proportional to the pressure that identifies the height, duration and shape of each wave. The signal from the transducer is sent to a Programmable Logic Controller (PLC) that adjusts various parameters, such as the blade angle and turbine speed, in real time. The generator, which is coupled to the Oceanlinx turbine, is designed so that the electrical control will vary the speed and torque characteristic of the generator load in real time to maximize the power transfer. An induction machine will be used for the generator, with coupling to the electricity grid provided by a fully regenerative electronic control system. The grid interconnection point and the control system are located in a weatherproof building external to the air duct. The voltage of the three phase connection at this point is 415 V L-L at 50 Hz. With the appropriate phase and pulse width modulation, power is transferred in either direction with harmonies and power factor variation contained within the electricity authoritys requirements. The system is normally configured to operate at a power factor of 0.95 or better.

433

Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems  

SciTech Connect

Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power generation in the range of 0.5 to 50 MW is small engines fueled with natural gas or liquid fuels or in the bulk power markets supplied usually by remote central station power plants with capacities of 250-1250 MW that deliver electricity to customers via the transmission and distribution grid. New power generation technology must be able to offer a significant cost advantage over existing technologies serving the same market to attract the interest of investors that are needed to provide funding for the development, demonstration, and commercialization of the technology. That path is both lengthy and expensive. One of the key drivers for any new power generation technology is the relative amount of pollutant emissions of all types, particularly those that are currently regulated or may soon be regulated. The new focus on greenhouse gas emissions offers a window of opportunity to DCFC technology because of its much higher conversion efficiency and the production of a very concentrated stream of CO{sub 2} in the product gas. This should offer a major competitive advantage if CO{sub 2} emissions are constrained by regulation in the future. The cost of CO{sub 2} capture, liquefaction, and pressurization has the potential to be much less costly with DCFC technology compared to other currently available forms of fossil fuel power generation.

Wolk, R

2004-04-23T23:59:59.000Z

434

Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems  

DOE Green Energy (OSTI)

Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power generation in the range of 0.5 to 50 MW is small engines fueled with natural gas or liquid fuels or in the bulk power markets supplied usually by remote central station power plants with capacities of 250-1250 MW that deliver electricity to customers via the transmission and distribution grid. New power generation technology must be able to offer a significant cost advantage over existing technologies serving the same market to attract the interest of investors that are needed to provide funding for the development, demonstration, and commercialization of the technology. That path is both lengthy and expensive. One of the key drivers for any new power generation technology is the relative amount of pollutant emissions of all types, particularly those that are currently regulated or may soon be regulated. The new focus on greenhouse gas emissions offers a window of opportunity to DCFC technology because of its much higher conversion efficiency and the production of a very concentrated stream of CO{sub 2} in the product gas. This should offer a major competitive advantage if CO{sub 2} emissions are constrained by regulation in the future. The cost of CO{sub 2} capture, liquefaction, and pressurization has the potential to be much less costly with DCFC technology compared to other currently available forms of fossil fuel power generation.

Wolk, R

2004-04-23T23:59:59.000Z

435

Turbine protection system for bypass operation  

SciTech Connect

In a steam turbine installation having a high pressure turbine, a steam generator is described for providing steam to the turbine, at least a lower pressure turbine, a reheater in the steam path between the high and lower pressure turbines, and a steam bypass path for bypassing the turbines, the high pressure turbine having a one-way check valve in its output steam line to prevent bypass steam from entering its output. The improvement described here consists of: (A) a second bypass path for passing steam around the high pressure turbine; (B) the second bypass path including, (i) steam jet compressor means including two input sections and an output section, with one input section being connected to the high pressure turbine output, the other input section being connected to receive steam from the steam generator and the output section being connected to the input of the reheater, (ii) valving means for controlling the steam supply from the steam generator to the steam jet compressor means; and (C) control means responsive to an output condition at the high pressure turbine output for controlling the valving means.

Silvestri, G.J. Jr.

1986-03-18T23:59:59.000Z

436

Combined Power Generation and Carbon Sequestration Using Direct FuelCell  

DOE Green Energy (OSTI)

The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.

Hossein Ghezel-Ayagh

2006-03-01T23:59:59.000Z

437

Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

DOE Green Energy (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

438

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

439

Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation  

Science Conference Proceedings (OSTI)

The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

2011-09-15T23:59:59.000Z

440

TurbSim: Reliability-based wind turbine simulator  

Science Conference Proceedings (OSTI)

Wind turbine farms are an effective generator of electricity in windy parts of the world, with prices progressing to levels competitive with other sources. Choosing the correct turbine for a given installation requires significant engineering and the ...

Joseph T. Foley; Timothy G. Gutowski

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines generate direct" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.