Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: Turbines - Oxy-Fuel Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

2

Coal Integrated Gasification Fuel Cell System Study  

DOE Green Energy (OSTI)

The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

2003-08-01T23:59:59.000Z

3

Coal Integrated Gasification Fuel Cell System Study  

DOE Green Energy (OSTI)

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31T23:59:59.000Z

4

Fuel Flexibility in Gasification  

DOE Green Energy (OSTI)

In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, and varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the coal sawdust mixtures. The coal sawdust mixtures segregate quickly when transported. This is visi

McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K. (U.S. DOE National Energy Technology Laboratory); Lui, Alain P.; Batton, William A. (Parsons Infrastructure and Technology Group, Inc.)

2001-11-06T23:59:59.000Z

5

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

6

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

DOE Green Energy (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

7

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

8

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

9

Gasification Evaluation of Gas Turbine Combustion  

DOE Green Energy (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

10

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

11

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

12

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept, ultra...

13

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept,...

14

NETL: News Release - Enabling Turbine Technologies for Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

September 8, 2005 September 8, 2005 Enabling Turbine Technologies for Hydrogen Fuels Turbine Program Advances Ultra-Clean, Coal-Based Systems WASHINGTON, DC - The Department of Energy's Office of Fossil Energy Turbine Technology R&D Program was recently expanded with the selection of 10 new projects valued at $130 million. The new program will advance turbines and turbine subsystems for integrated gasification combined cycle (IGCC) power plants, and address the use of hydrogen in small-scale turbines for industrial applications. Resulting technologies will operate cleanly and efficiently when fueled with coal-derived hydrogen or synthesis gas. Turbines can generate electrical power on a large scale-in central power stations sized 250 megawatts and larger-or on a small scale-in local, industrial power systems sized 1-100 megawatts. Small-scale systems also produce mechanical power for jet engines, compressors, heating systems, and other applications.

15

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

16

Fuel Flexible Turbine System (FFTS) Program  

SciTech Connect

In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

None

2012-12-31T23:59:59.000Z

17

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

18

Prospects for the Gasification of Refuse-Derived Fuel (RDF)  

E-Print Network (OSTI)

Fluidized-bed gasification of wood waste is now a commercially proven technology. An Omnifuel gasifier in Hearst, Ontario, has been in operation since early 1981. It produces a low-BTU gas which is used to displace natural gas in existing boilers, but the gas could equally well be used to drive an engine or gas turbine. The designers are now turning their attention to other fuels, including municipal solid waste (MSW). The technology of producing refuse-derived fuel from MSW has also achieved commercial maturity. Banyan Technology Corporation has been operating for more than a year a resource recovery plant in Dade County, Florida, in which a combination of mechanical sorting and hand picking provides high recovery of metals and glass. The RDF produced is easily handled by the compression-type feeder used in the gasifier. Plans for a commercial installation which combine these technologies are described.

Woodruff, K. L.; Guard, R. F. W.

1983-01-01T23:59:59.000Z

19

SYNGAS FROM BIOMASS GASIFICATION AS FUEL FOR GENERATOR.  

E-Print Network (OSTI)

??The emergence of biomass based energy warrants the evaluation of syngas from biomass gasification as a fuel for personal power systems. The objectives of this… (more)

Shah, Ajay

2009-01-01T23:59:59.000Z

20

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

22

DOE Hydrogen Analysis Repository: Gasification-Based Fuels and Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification-Based Fuels and Electricity Production from Biomass Gasification-Based Fuels and Electricity Production from Biomass Project Summary Full Title: Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage Project ID: 226 Principal Investigator: Eric D. Larson Keywords: Biomass; Fischer Tropsch; hydrogen Purpose Develop and analyze process designs for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch (F-T) fuels, dimethyl ether (DME), and hydrogen. All process designs will have some level of co-production of electricity, and some will include capture of byproduct CO2 for underground storage. Performer Principal Investigator: Eric D. Larson Organization: Princeton University Telephone: 609-258-4966 Email: elarson@princeton.edu

23

Reduced Turbine Emissions Using Hydrogen-Enriched Fuels R.W. Schefer  

E-Print Network (OSTI)

as an effective approach to NOx emissions reduction. In addition to pure hydrogen and air, mixtures of hydrogen-blended capabilities for gaseous hydrogen and hydrogen- blended hydrocarbon fuels in gas turbine applications value fuels containing significant hydrogen are often produced as a by-product in Coal- Gasification

24

Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis  

SciTech Connect

In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

Galvagno, S. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Portici, via Vecchio Macello loc. Granatello, 80055 Portici (Italy)], E-mail: sergio.galvagno@portici.enea.it; Casciaro, G. [Department of Physical Technologies and New Materials, C.R. ENEA Brindisi, SS. 7 Appia-km 706, 72100 Brindisi (Italy); Casu, S. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Bologna, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Martino, M. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Trisaia, SS 106 Jonica km 419-500, 75026 Rotondella (Italy); Mingazzini, C. [Department of Physical Technologies and New Materials, C.R. ENEA Faenza, via Ravegnana 186, 48018 Faenza (Italy); Russo, A. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Trisaia, SS 106 Jonica km 419-500, 75026 Rotondella (Italy); Portofino, S. [Department of Environment, Global Change and Sustainable Development, C.R. ENEA Portici, via Vecchio Macello loc. Granatello, 80055 Portici (Italy)

2009-02-15T23:59:59.000Z

25

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

26

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

1990-12-01T23:59:59.000Z

27

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

Science Conference Proceedings (OSTI)

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

28

Fuel cell and advanced turbine power cycle  

SciTech Connect

Solar has a vested interest in integration of gas turbines and high temperature fuels (particularly solid oxide fuel cells[SOFC]); this would be a backup for achieving efficiencies on the order of 60% with low exhaust emissions. Preferred cycle is with the fuel cell as a topping system to the gas turbine; bottoming arrangements (fuel cells using the gas turbine exhaust as air supply) would likely be both larger and less efficient unless complex steam bottoming systems are added. The combined SOFC and gas turbine will have an advantage because it will have lower NOx emissions than any heat engine system. Market niche for initial product entry will be the dispersed or distributed power market in nonattainment areas. First entry will be of 1-2 MW units between the years 2000 and 2004. Development requirements are outlined for both the fuel cell and the gas turbine.

White, D.J.

1996-12-31T23:59:59.000Z

29

Gasification Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home...

30

Electronic fuel control system for gas turbine  

SciTech Connect

A method is described for monitoring gas turbine operating temperatures and rotational velocity for producing one of a group of fuel control signals for controlling the fuel input rate to the gas turbine. The method consists of: monitoring turbine inlet temperatures through respective sensors for the gas turbine, averaging the turbine inlet temperatures to produce an average turbine inlet temperature signal, monitoring a gas generator inlet temperature sensor of the gas turbine for producing a gas generator inlet temperature signal, generating a speed signal proportional to the rotational velocity of the gas turbine, combining the gas generator inlet temperature signal with the speed signal to produce a first function signal, applying the first function signal to a stored data set to produce a second function signal, the stored data set related to performance characteristics of the gas turbine, and comparing the turbine inlet temperature signal to the second function signal to produce a difference signal therefrom, the difference signal serving as a fuel control signal for the gas turbine.

Nick, C.F.

1986-04-22T23:59:59.000Z

31

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

32

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

33

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

34

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

35

Fuel Interchangeability Considerations for Gas Turbine Combustion  

DOE Green Energy (OSTI)

In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

Ferguson, D.H.

2007-10-01T23:59:59.000Z

36

Integrated Low Emissions Cleanup system for direct coal fueled turbines  

Science Conference Proceedings (OSTI)

The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

1993-07-01T23:59:59.000Z

37

Task 4 -- Conversion to a coal-fueled advanced turbine system (CFATS)  

SciTech Connect

Solar is developing the technologies for a highly efficient, recuperated, Advanced Turbine System (ATS) that is aimed at the dispersed power generation market. With ultra-low-emissions in mind the primary fuel selected for this engine system is natural gas. Although this gas fired ATS (GFATS) will primarily employ natural gas the use of other fuels particular those derived from coal and renewable resources cannot be overlooked. The enabling technologies necessary to direct fire coal in gas turbines were developed during the 1980`s. This Solar development co-sponsored by the US Department of Energy (DOE) resulted in the testing of a full size coal-water-slurry fired combustion system. In parallel with this program the DOE funded the development of integrated gasification combined cycle systems (IGCC). This report describes the limitations of the Solar ATs (recuperated engine) and how these lead to a recommended series of modifications that will allow the use of these alternate fuels. Three approaches have been considered: direct-fired combustion using either a slagging combustor, or a pressurized fluidized bed (PFBC), externally or indirectly fired approaches using pulverized fuel, and external gasification of the fuel with subsequent direct combustion of the secondary fuel. Each of these approaches requires substantial hardware and system modifications for efficient fuel utilization. The integration issues are discussed in the sections below and a recommended approach for gasification is presented.

1996-04-15T23:59:59.000Z

38

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

39

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

40

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

42

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

43

Preliminary Experimental Results of Integrated Gasification Fuel Cell Operation Using Hardware Simulation  

Science Conference Proceedings (OSTI)

A newly developed integrated gasification fuel cell (IGFC) hybrid system concept has been tested using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory. The cathode-loop hardware facility, previously connected to the real-time fuel cell model, was integrated with a real-time model of a gasifier of solid (biomass and fossil) fuel. The fuel cells are operated at the compressor delivery pressure, and they are fueled by an updraft atmospheric gasifier, through the syngas conditioning train for tar removal and syngas compression. The system was brought to steady state; then several perturbations in open loop (variable speed) and closed loop (constant speed) were performed in order to characterize the IGFC behavior. Coupled experiments and computations have shown the feasibility of relatively fast control of the plant as well as a possible mitigation strategy to reduce the thermal stress on the fuel cells as a consequence of load variation and change in gasifier operating conditions. Results also provided an insight into the different features of variable versus constant speed operation of the gas turbine section.

Traverso, Alberto; Tucker, David; Haynes, Comas L.

2012-07-01T23:59:59.000Z

44

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

45

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

46

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Ignition Delay for Gas Turbine Fuel Flexibility 15 m * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including...

47

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

48

Development of the Low Swirl Injector for Fuel-Flexible GasTurbines  

DOE Green Energy (OSTI)

Industrial gas turbines are primarily fueled with natural gas. However, changes in fuel cost and availability, and a desire to control carbon dioxide emissions, are creating pressure to utilize other fuels. There is an increased interest in the use of fuels from coal gasification, such as syngas and hydrogen, and renewable fuels, such as biogas and biodiesel. Current turbine fuel injectors have had years of development to optimize their performance with natural gas. The new fuels appearing on the horizon can have combustion properties that differ substantially from natural gas. Factors such as turbulent flame speed, heat content, autoignition characteristics, and range of flammability must be considered when evaluating injector performance. The low swirl injector utilizes a unique flame stabilization mechanism and is under development for gas turbine applications. Its design and mode of operation allow it to operate effectively over a wide range of conditions. Studies conducted at LBNL indicate that the LSI can operate on fuels with a wide range of flame speeds, including hydrogen. It can also utilize low heat content fuels, such as biogas and syngas. We will discuss the low swirl injector operating parameters, and how the LSC performs with various alternative fuels.

Littlejohn, D.; Cheng, R.K.; Nazeer,W.A.; Smith, K.O

2007-02-14T23:59:59.000Z

49

Fossil fuel gasification technical evaluation services. Topical report 1978-80  

SciTech Connect

The Exxon, Mountain Fuel, Cities Service/Rockwell, Westinghouse, BGC slagging Lurgi and Peatgas processes for fossil fuel gasification were evaluated. The Lurgi and HYGAS processes had been evaluated in earlier studies. For producing SNG from coal, only the Westinghouse conceptual design appeared competitive with HYGAS on eastern coal. All coal gasification processes were competitive with or better than Lurgi on eastern coal. The Mountain Fuel process was more costly than Lurgi or HYGAS on a western coal.

Detman, R.F.

1982-12-30T23:59:59.000Z

50

October 2005 Gasification-Based Fuels and Electricity Production from  

E-Print Network (OSTI)

, the town has estimated it has a potential credit line of approximately $30,000, available, and Biomass Gasification. The community was able to research corporate offers for construction loans% $ Biomass Gasification $ $ 2,000.00 8% 10

51

DIRECT FUEL/CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

52

DIRECT FUEL/CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

53

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

Hossein Ghezel-Ayagh

2003-05-23T23:59:59.000Z

54

Gas turbines fired by solid fuels  

SciTech Connect

Steadily increasing energy requirements have spurred a search for new methods of generating energy from low-cost, abundant fuels. The development of a gas-turbine system equipped for the direct combustion of such fuels is now underway in the U.S. A one-megawatt pilot plant has been operating for over a year, using a fluidized bed to burn coal. The plant has also operated on wood waste and municipal solid waste as fuels. Methods have been developed for the suppression of noxious gases included among the combustion products, but there remain some problems with the removal of particulate matter from the exhaust gas prior to its entry into the turbine. A new high-temperature filter is being installed to alleviate these. A description of the one-megawatt pilot plant is provided, along with a discussion of operational results and mechanical problems and their solutions. A preliminary design for a full-scale plant is included.

Wade, G.L.

1976-01-01T23:59:59.000Z

55

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

56

Higgins coal gasification/repowering study: feasibility study for alternate fuels. [Higgins power plant, Pinellar County, Florida  

Science Conference Proceedings (OSTI)

In 1978, FPC determined that repowering the existing 138 MW Higgins power plant would provide the most economical means for meeting immediate additional power requirements. The use of an integrated coal gasification combined cycle power plant offered the opportunity to revive the Higgins repowering concept without potential Fuel Use Act restrictions. The existing Higgins power plant is located at the north end of Tampa Bay on Booth Point, near the City of Oldsmar in Pinellas County, Florida. The basis for this feasibility study is to prepare a preliminary facility design for repowering the existing Higgins plant steam turbine generators utilizing coal gasification combined cycle (CGCC) technology to produce an additional 300 MW of power. The repowering is to be accomplished by integrating British Gas/Lurgi slagging gasifiers with combined cycle equipment consisting of new combustion turbines and heat recovery steam generators (HRSGs), and the existing steam turbines. The proposed CGCC facility has been designed for daily cyclic duty. However, since it was anticipated that the heat rate would be lower than at other existing FPC units, the CGCC facility has also been designed with base load operation capabilities.

Not Available

1981-12-01T23:59:59.000Z

57

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

58

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

59

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

DOE Green Energy (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-06-01T23:59:59.000Z

60

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

DOE Green Energy (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina

2008-01-31T23:59:59.000Z

62

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

Laster, W. R.; Anoshkina, E.

2008-01-31T23:59:59.000Z

63

2007 gasification technologies conference papers  

Science Conference Proceedings (OSTI)

Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

NONE

2007-07-01T23:59:59.000Z

64

Fluidized bed gasification of waste-derived fuels  

Science Conference Proceedings (OSTI)

Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

Arena, Umberto, E-mail: umberto.arena@unina2.i [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy); Zaccariello, Lucio [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); Mastellone, Maria Laura [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c. a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy)

2010-07-15T23:59:59.000Z

65

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina; P. Szedlacsek

2006-03-31T23:59:59.000Z

66

Development and testing of low-Btu fuel gas turbine combustors  

SciTech Connect

The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates and other contaminants in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, unburned hydrocarbons, trace element, and particulate emissions.

Bevan, S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Samuels, M.S.; Tolpadi, A.K.

1994-10-01T23:59:59.000Z

67

Hardware Simulation of Fuel Cell / Gas Turbine Hybrids .  

E-Print Network (OSTI)

??Hybrid solid oxide fuel cell / gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses… (more)

Smith, Thomas Paul

2007-01-01T23:59:59.000Z

68

Gas turbine engine control using electrically driven fuel metering pumps.  

E-Print Network (OSTI)

??The aim of this thesis, developed in ROLLS ROYCE PLC, has been to investigate the use of an innovative fuel system on aero gas turbine… (more)

BERTOLUCCI, ALESSIO

2008-01-01T23:59:59.000Z

69

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

The objective of this project is the development and commercial demonstration of an advanced biomass gasification-based power generation system at Boise Cascade Corporation's pulp and paper mill in DeRidder, Louisiana. The advanced power generation system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as the primary fuel resource. The novel system is based on three advanced technology components: GTI's RENUGAS{reg_sign} and 3-stage solid fuels combustion technologies coupled with one of the power generation approaches used in DOE's HIPPS program. Phase 1 of the project is a technical and economic evaluation of the system at the DeRidder site. A Continuation Application will be submitted at the conclusion of Phase 1 for authorization to proceed to testing and design in Phase 2. Phase 2 includes pilot-scale verification of selected system components and preparation of a detailed engineering design and cost estimate for retrofit of the advanced power system at the DeRidder mill. Phase 3 will complete procurement and construction of the system at the DeRidder site along with all required permitting activities. Phase 4 of the project will included plant commissioning, startup and demonstration operations. Design information for the Gasification Island was completed during the quarter. Two vendor quotations were received for the bark/hog fuel dryers. A final layout plan for the major equipment was developed and submitted to DeRidder for review and approval. The Institute of Paper Science and Technology (IPST) completed a subcontract for a laboratory study on VOC emissions from wood waste drying using bark from the DeRidder mill. Samples of DeRidder's lime mud and green liquor dregs were collected and analyzed in GTI's laboratory. It was determined that lime mud is far too fine to be utilized as inert bed material in the fluidized bed gasifier. Results for the green liquor dregs are currently being reviewed. Design analysis for the in-furnace HPHT Air Heater was completed and the external Syngas Cooler/Air Heater was begun. Materials were received for the air heater tube testing system to be installed in Boiler No. 2 at DeRidder. A refractory interference problem with the original testing system design was discovered and resolved. Analyses of the externally recuperated gas turbine cycles (air heater and booster combustor in parallel or series) were continued including the effects of steam cooling and inlet air humidification on power output and operating cost. Discussions were continued with turbine manufacturers regarding the technical, time and cost requirements for developing an externally recuperated turbine engine suitable for use in the project. A 5-month no-cost time extension was requested and received for the project to accommodate design and evaluation of externally recuperated gas turbines using HPHT air as the working fluid.

Joseph Rabovitser; Bruce Bryan

2003-04-01T23:59:59.000Z

70

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

Hossein Ghezel-Ayagh

2003-05-27T23:59:59.000Z

71

Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide  

DOE Green Energy (OSTI)

Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21 power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.

Rizeq, George; West, Janice; Frydman, Arnaldo; Subia, Raul; Kumar, Ravi; Zamansky, Vladimir (GE Energy and Environmental Research Corporation); Das, Kamalendu (U.S. DOE National Energy Technology Laboratory)

2001-11-06T23:59:59.000Z

72

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

73

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

74

Advanced coal-fueled gas turbine systems  

DOE Green Energy (OSTI)

Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

75

Single module pressurized fuel cell turbine generator system  

DOE Patents (OSTI)

A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

2001-01-01T23:59:59.000Z

76

Integrated low emissions cleanup system for direct coal fueled turbines. Twenty-eighth quarterly report, July--September 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

77

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

78

Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

Yunhua Zhu; H. Christopher Frey [Pacific Northwest National Laboratory, Richland, WA (United States)

2006-12-15T23:59:59.000Z

79

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

The present invention relates generally to an integrated fuel cell power plant, and more specifically to a combination of cycles wherein a first fuel cell cycle tops an indirect-fired gas turbine cycle and a second fuel cell cycle bottoms the gas turbine cycle so that the cycles are thermally integrated in a tandem operating arrangement. The United States Government has rights in this invention pursuant to the employer-employee relationship between the United States Department of Energy and the inventors.

Micheli, P.L.; Williams, M.C.; Sudhoff, F.A.

1998-04-01T23:59:59.000Z

80

Advanced coal-fueled gas turbine systems  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team's efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

Hossein Ghezel-Ayagh

2003-05-22T23:59:59.000Z

82

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

Hossein Ghezel-Ayagh

2008-09-30T23:59:59.000Z

83

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

84

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

85

Gas Turbine Combustor Performance on Synthetic Fuels, Volume 2  

Science Conference Proceedings (OSTI)

This volume presents a summary of a project to determine the effects of burning currently available coal-derived and shale-derived synthetic liquid fuels in state-of-the-art gas turbine combustors. It describes the fuels tested, the effects of NO emission and of smoke formation and reduction, and a comparison of surrogate and synthetic fuels. The project concluded that a number of selected coal and shale oil fuels can be used in current turbines as soon as these fuels become available.

1981-06-01T23:59:59.000Z

86

Acid Gas Removal by Customized Sorbents for Integrated Gasification Fuel Cell Systems  

DOE Green Energy (OSTI)

In order to reduce exergy losses, gas cleaning at high temperatures is favored in IGFC systems. As shown by thermodynamic data, separation efficiencies of common sorbents decrease with increasing temperature. Therefore, acid gas removal systems have to be developed for IGFC applications considering sorbent capacity, operation temperature, gasification feedstock composition and fuel cell threshold values.

Kapfenberger, J.; Sohnemann, J.; Schleitzer, D.; Loewen, A.

2002-09-20T23:59:59.000Z

87

Improved Gas Turbines for LBTU Syngas Fuel Operation  

Science Conference Proceedings (OSTI)

Gas turbine engines running on syngas can take advantage of that fuel's high mass flow per BTU. Optimizing performance while keeping all operating parameters within acceptable limits was the result of a G.E. project.

1997-01-03T23:59:59.000Z

88

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

Steinfeld, G.; Meyers, S.J.; Lee, A.

1996-09-10T23:59:59.000Z

89

Fuel cell/gas turbine system performance studies  

SciTech Connect

Because of the synergistic effects (higher efficiencies, lower emissions) of combining a fuel cell and a gas turbine into a power generation system, many potential system configurations were studied. This work is focused on novel power plant systems by combining gas turbines, solid oxide fuel cells, and a high-temperature heat exchanger; these systems are ideal for the distributed power and on- site markets in the 1-5 MW size range.

Lee, G.T.; Sudhoff, F.A.

1996-12-31T23:59:59.000Z

90

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents (OSTI)

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

91

Synthetic fuels: Status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01T23:59:59.000Z

92

Modeling of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems.  

E-Print Network (OSTI)

?? There is a growing interest in fuel cells for hybrid system. Fuel cells when combined with conventional turbine power plants offer high fuel efficiencies.… (more)

Srivastava, Nischal

2006-01-01T23:59:59.000Z

93

Development of biomass as an alternative fuel for gas turbines  

DOE Green Energy (OSTI)

A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

1991-04-01T23:59:59.000Z

94

High efficiency carbonate fuel cell/turbine hybrid power cycles  

SciTech Connect

Carbonate fuel cells developed in commercial 2.85 MW size, have an efficiency of 57.9%. Studies of higher efficiency hybrid power cycles were conducted to identify an economically competitive system and an efficiency over 65%. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine, and a steam cycle, which generates power at a LHV efficiency over 70%; it is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95% of the fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming the fuel, and flows to a direct carbonate fuel cell system which generates 72% of the power. The portion of fuel cell anode exhaust not recycled, is burned and heat is transferred to compressed air from a gas turbine, heating it to 1800 F. The stream is then heated to 2000 F in gas turbine burner and expands through the turbine generating 13% of the power. Half the gas turbine exhaust flows to anode exhaust burner and the rest flows to the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Studies of the TTC for 200 and 20 MW size plants quantified performance, emissions and cost-of-electricity, and compared the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6%; estimated cost of electricity is 45.8 mills/kWhr. A 20-MW TTC plant has an efficiency of 65.2% and a cost of electricity of 50 mills/kWhr.

Steinfeld, G.

1996-12-31T23:59:59.000Z

95

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.

George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

2001-07-01T23:59:59.000Z

96

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2002-10-01T23:59:59.000Z

97

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Edwin Hippo; Tomasz Wiltowski

2002-07-01T23:59:59.000Z

98

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

2002-01-01T23:59:59.000Z

99

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2000 and ending December 31, 2000. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of initial program activities covering program management and preliminary progress in first year tasks including lab- and bench-scale design, facilities preparation, and process/kinetic modeling. More over, the report presents and discusses preliminary results particularly form the bench-scale design and process modeling efforts including a process flow diagram that incorporates the AGC module with other vision-21 plant components with the objective of maximizing H{sub 2} production and process efficiency.

George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

2001-01-01T23:59:59.000Z

100

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network (OSTI)

of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

Littlejohn, David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, Paul L. (Morgantown, WV); Williams, Mark C. (Morgantown, WV); Parsons, Edward L. (Morgantown, WV)

1995-01-01T23:59:59.000Z

102

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, P.L.; Williams, M.C.; Parsons, E.L.

1993-12-31T23:59:59.000Z

103

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

Micheli, P.L.; Williams, M.C.; Parsons, E.L.

1995-09-12T23:59:59.000Z

104

Gas Turbine Combustor Performance on Synthetic Fuels, Volume 1  

Science Conference Proceedings (OSTI)

This volume presents complete data from a test program to determine the behavior of several coal-derived and shale-derived liquid fuels when burned in state-of-the-art combustion turbine engines. The methods used in analyzing the test results are described. The heat transfer effects on gas turbine combustors are discussed, as well as NOx and other emissions effects and predictions.

1980-11-01T23:59:59.000Z

105

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

indicative of different IGCC plant designs. Cold Vs hot gas cleaning, degree that the gas turbine is integrated with the IGCC plant and how the plant might be optimized for...

106

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

107

Solar turbines perspective on advanced fuel cell/gas turbine systems  

SciTech Connect

Solar Turbines Inc. has a vested interest in integrating gas turbines and high-temperature fuel cells(eg, solid oxide fuel cells (SOFCs)). Approach is to develop more efficient recuperated engines, which would be followed by more efficient intercooled and recuperated engines and finally by a humid air turbine cycle system. This engine system would be capable of providing efficiencies on the order of 60% with potentially low exhaust emissions. Because of possible fossil fuel shortages and severe CO{sub 2} emissions regulations, Solar adopted an alternative approach in the development of high efficiency machines; it involves combining SOFCs with recuperated gas turbines. Preliminary results show that the performance of TCPS (Tandem Cycle Unified Power System) is much better than expected, especially the efficiency. Costs are acceptable for the introductory models, and with full production, cost reductions will make the system competitive with all future energy conversion systems of the same power output. Despite the problems that must be overcome in creating a viable control system, it is believed that they are solvable. The efficiency of TCPS would be synergetic, ie, higher than either fuel cell or gas turbine alone.

White, D.J.

1996-12-31T23:59:59.000Z

108

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

109

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

110

FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

2005-04-29T23:59:59.000Z

111

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-10-01T23:59:59.000Z

112

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; K. Mondal; L. Stonawski; Krzysztof Piotrowski; T. Szymanski; Tomasz Wiltowski; Edwin Hippo

2004-11-01T23:59:59.000Z

113

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Krzysztof Piotrowski; Tomasz Wiltowski; Edwin Hippo

2004-04-01T23:59:59.000Z

114

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Krzysztof Piotrowski; Tomasz Wiltowski; Edwin Hippo

2004-01-01T23:59:59.000Z

115

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

116

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-12-01T23:59:59.000Z

117

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-01-01T23:59:59.000Z

118

Gasification Technologies_PRINT  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation and production of chemicals and clean liquid fuels. In a time of electricity and fuel-price spikes, flexible gasification systems provide for operation on...

119

Wabash River Coal Gasification Repowering Project  

SciTech Connect

The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec's coal gasification facility. Destec's plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

1992-01-01T23:59:59.000Z

120

Wabash River Coal Gasification Repowering Project  

SciTech Connect

The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec`s coal gasification facility. Destec`s plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling  

E-Print Network (OSTI)

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power, Gas turbine, Hybrid, Solid Oxide Fuel Cell hal-00703135,version1-31May2012 Author manuscript

Paris-Sud XI, Université de

122

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

123

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

DOE Green Energy (OSTI)

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

2003-02-01T23:59:59.000Z

124

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

125

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

DOE Green Energy (OSTI)

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

2001-11-01T23:59:59.000Z

126

Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-ninth quarterly status report, October--December 1994  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1996-02-01T23:59:59.000Z

127

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.

George Rizeq; Parag Kulkarni; Wei Wei; Arnaldo Frydman; Thomas McNulty; Roger Shisler

2005-11-01T23:59:59.000Z

128

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

Science Conference Proceedings (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

129

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

DOE Green Energy (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

130

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass Fuels  

E-Print Network (OSTI)

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass of the decomposition of various biomass feedstocks and their conversion to gaseous fuels such as hydrogen. The steam temperatures: above 500o C for the herbaceous and non-wood samples and above 650o C for the wood biomass fuels

131

Fuel Nozzle Flow Testing Guideline for Gas Turbine Low-NOx Combustion Systems  

Science Conference Proceedings (OSTI)

The evolution of dry low-NOx (DLN) gas turbine combustion systems capable of achieving single-digit emission levels requires precise control of the fuel/air ratio within each combustor. The primary means of maintaining the required fuel/air ratio control is through flow testing designed to ensure even distribution of fuel to both individual fuel nozzles and combustion chambers around the gas turbine. This report provides fuel nozzle flow testing guidelines for advanced gas turbine ...

2012-12-31T23:59:59.000Z

132

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

DOE Green Energy (OSTI)

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

133

Higgins coal gasification/repowering study, feasibility study for alternate fuels. Vol. 1. Executive summary  

SciTech Connect

Florida Power has completed a study to determine the feasibility of repowering 138 MW gross of oil-fired steam-generating capacity at its A.W. Higgins power station (Pinellas Co., Fla.) by utilizing coal-gasification combined-cycle (CGCC) technology. The repowering would add approximately 320 MW of gross electrical generation to the Higgins station through the use of combustion turbines and heat recovery equipment. This study provided Florida Power with the technical, environmental, and economic information necessary to determine the viability of using CGCC at the Higgins station. The plant would use BGC/Lurgi slagging gasifiers and the Selexol acid-gas removal system. Although this new technology represents an acceptable level of risk for the proposed project to be considered technically feasible, the capital-cost estimates were much higher than expected. Florida Power plans to continue further economic evaluations of this CGCC repowering option.

Not Available

1981-12-01T23:59:59.000Z

134

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

135

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-07-01T23:59:59.000Z

136

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

137

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

138

Program on Technology Innovation: Systems Assessment of Direct Carbon Fuel Cells Technology  

Science Conference Proceedings (OSTI)

Efficiently using abundant coal resources in a way that limits CO2 emissions is among the toughest challenges facing the power industry. Coal options available include combustion systems such as pulverized coal (PC) and supercritical systems that use the steam Rankin cycle; integrated-gasification-combined-cycle (IGCC) systems that use a gas turbine/steam turbine combined cycle; and advanced gasification fuel cell cycles, which use a combination of high-temperature fuel cells with gas or steam turbine sy...

2008-04-30T23:59:59.000Z

139

Biomass gasification integration in recuperative gas turbine cycles and recuperative fuel cell integrated gas turbine cycles.  

E-Print Network (OSTI)

?? A multi-reactor, multi-temperature, waste-heat driven biomass thermochemical converter is proposed and simulated in the process simulation tool Aspen Plus?. The thermochemical converter is in… (more)

Løver, Kristian Aase

2007-01-01T23:59:59.000Z

140

Program on Technology Innovation: Feasibility of Laser-Induced Breakdown Spectroscopy for Fuel Analysis in Gasification Applications  

Science Conference Proceedings (OSTI)

Information on the composition of minerals in fuels and the slagging characteristics of the fuels are important for the efficient operation of gasifiers for power generation. Standard fuel fusibility and viscosity analysis have practical limitations that prevent their being used reliably to control real gasification processes. Recent developments in advanced laser-based methods have confirmed some maturity in technologies that could be used to determine coal elemental composition and properties. A study ...

2011-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives  

Science Conference Proceedings (OSTI)

This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

DeCorso, M. [Power Tech Associates, Inc., Paramus, NJ (United States); Newby, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Anson, D. [Battelle, Columbus, OH (United States); Wenglarz, R. [Allison Engine Co., Indianapolis, IN (United States); Wright, I. [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

142

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

143

Fuel Composition Impacts on Combustion Turbine Operability  

Science Conference Proceedings (OSTI)

Most new CT plants today area permitted at low emission limits for NOx and CO, leading to greater use of lean, pre-mix combustion of natural gas in dry, low-NOx (DLN) combustors. These combustors are typically fine-tuned for a narrow range of fuel properties. At the same time, the increasing variability of natural gas supplies, deregulation of the gas industry, and increasing use of liquefied natural gas (LNG) has led to more variability in fuel properties and a need for greater flexibility in firing gas...

2006-03-20T23:59:59.000Z

144

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier: Commercial Gasifiers Gasifier: Commercial Gasifiers Gasifiers and Impact of Coal Rank and Coal Properties The available commercial gasification technologies are often optimized for a particular rank of coal or coal properties, and in some cases, certain ranks of coal might be unsuitable for utilization in a given gasification technology. On the other hand, there is considerable flexibility in most of the common gasifiers; this is highlighted by the following table, which provides an overview of the level of experience for the various commercially available gasifiers by manufacturer for each coal type. This experience will only continue to expand as more gasification facilities come online and more demonstrations are completed. SOLID FUEL GASIFICATION EXPERIENCE1 High Ash Coals

145

Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation  

DOE Green Energy (OSTI)

This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

Sterzinger, G J [Economics, Environment and Regulation, Washington, DC (United States)

1994-05-01T23:59:59.000Z

146

Synthetic fuels. Status of the Great Plains Coal Gasification Project, August 1, 1985  

Science Conference Proceedings (OSTI)

In December 1984, the Great Plains Gasification Associates had essentially finished constructing the nation's first commercial-scale coal gasification plant. As of July 31, 1985, Great Plains had contributed about $537 million in equity to the project and had borrowed $1.54 billion against a federal load guarantee made available by the Department of Energy (DOE). Since 1984 the project has faced deteriorating financial projections in the wake of declining energy prices. This is GAO's eighth semiannual report on Great Plains and covers the project's progress from January through August 1, 1985. GAO's objectives were to report on (1) the status of Great Plains' attempt to obtain additional federal financial assistance and (2) the status of the project's operational startup activities as of August 1, 1985. The Department of Energy Act of 1978 requires GAO to report on the status of the loan guarantee. Even though the Synthetic Fuels Corporation approved price guarantees in principle for Great Plains, DOE announced, on July 30, 1985, that it would not agree to restructuring its guaranteed loan. DOE rejected the proposed agreement, saying that it would not assure long-term plant operation at a reasonable cost to the taxpayers. The Great Plains sponsors then terminated their participation in the project on August 1, 1985, and defaulted on the $1.54 billion DOE-guaranteed loan. DOE directed the project administrator, ANG Coal Gasification Company, to continue plant operations pending a DOE decision about the project's future. DOE is assessing options including operating, leasing, selling, shutting down, mothballing, and scrapping the plant.

Bowsher, C.A.

1985-12-01T23:59:59.000Z

147

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

148

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

149

Fuel Cell/Turbine Ultra High Efficiency Power System  

DOE Green Energy (OSTI)

FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

Hossein, Ghezel-Ayagh

2001-11-06T23:59:59.000Z

150

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

DOE Green Energy (OSTI)

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13T23:59:59.000Z

151

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting period include: (1) finalizing contractual agreements between DOE, Uhde and other technology providers, focusing on intellectual-property-right issues, (2) Uhde's preparation of a LSTK project execution plan and other project engineering procedural documents, and (3) Uhde's preliminary project technical concept assessment and trade-off evaluations.

John W. Rich

2003-12-01T23:59:59.000Z

152

Flameholding Studies for Lean Premixed Fuel Injectors for Application in Gas Turbine Engines.  

E-Print Network (OSTI)

??Due to the ever-increasing demand for energy, it is likely that stationary gas turbine engines will require the use of fuels with a diverse range… (more)

Marzelli, Steven

2010-01-01T23:59:59.000Z

153

Fuel control for gas turbine with continuous pilot flame  

SciTech Connect

An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

Swick, Robert M. (Indianapolis, IN)

1983-01-01T23:59:59.000Z

154

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

155

Combined catalysts for the combustion of fuel in gas turbines  

Science Conference Proceedings (OSTI)

A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

Anoshkina, Elvira V.; Laster, Walter R.

2012-11-13T23:59:59.000Z

156

Deposition of Alternative (Syngas) Fuels on Turbine Blades with Film Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

ACERC ACERC Dr. Jeffrey Bons and Dr. Thomas Fletcher BRIGHAM YOUNG UNIVERSITY SCIES Project 05-01-SR-120 with support from General Electric, Siemens-Westinghouse, Solar Turbines, Praxair UTSR Peer Workshop III, Clemson University, SC Oct. 18-20, 2005 Deposition of Alternative ( Deposition of Alternative ( Syngas Syngas ) Fuels on ) Fuels on Turbine Blades with Film Cooling Turbine Blades with Film Cooling Alternate fuels (e.g. coal, petcoke, and biomass) are being cons Alternate fuels (e.g. coal, petcoke, and biomass) are being cons idered to idered to produce produce syngas syngas fuels to replace natural gas in power turbines fuels to replace natural gas in power turbines Despite gas cleanup, small levels of airborne particulate (e.g. Despite gas cleanup, small levels of airborne particulate (e.g. 0.1 0.1 ppmw

157

NETL: News Release - NETL Opens Fuel Cell/Turbine Hybrid Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2004 May 20, 2004 NETL Opens Fuel Cell/Turbine Hybrid Research Facility MORGANTOWN, WV - The Hybrid Performance Facility - called the Hyper facility - is now fully operational at the Department of Energy's National Energy Technology Laboratory (NETL). This one-of-a-kind facility, developed by NETL's Office of Science and Technology, will be used to develop control strategies for the reliable operation of fuel cell/turbine hybrids. - NETL's Fuel Cell/Turbine Hybrid Facility - The Hyper facility allows assessment of dynamic control and performance issues in fuel cell/turbine hybrid systems. Combined systems of turbines and fuel cells are expected to meet power efficiency targets that will help eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for

158

Advanced coal-fueled gas turbine systems reference system definition update  

Science Conference Proceedings (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

159

NETL: Gasification Systems - Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Opt & Plant Supporting Systems Gasifier Opt & Plant Supporting Systems Gasification Systems Gasifier Optimization and Plant Supporting Systems The gasifier is the core system component in the gasification process. It determines both the primary requirements for raw material inputs and the product gas composition. The gasifier is generally a high temperature/pressure vessel where oxygen (or air) and steam are directly contacted with a fuel, such as coal, causing a series of chemical reactions to occur that result in production of a fuel gas. This fuel gas (also referred to either as synthesis gas or syngas) consists primarily of hydrogen, carbon monoxide, and carbon dioxide. Minor constituents present in the feedstock are converted to such products as hydrogen sulfide, ammonia, and ash/slag (mineral residues from coal). These products can be separated and captured for use or safe disposal. After cleaning to remove contaminants, the syngas consists mainly of carbon monoxide and hydrogen. According to the Department of Energy's vision for coal gasification, at this point steam may be added and the syngas sent through a water-gas shift (WGS) reactor to convert the carbon monoxide to nothing but carbon dioxide and additional hydrogen. After a gas separation process, the carbon dioxide is ready for utilization (such as for Enhanced Oil Recovery) or safe storage, and the hydrogen can be fired in a gas-turbine/steam-turbine generator set to produce electricity with stack emissions containing no greenhouse gases. Alternately, syngas or hydrogen can be used to produce highly-valued fuels and chemicals. Co-production of combinations of these products and electricity is also possible.

160

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: Alternatives/Supplements to Coal - Feedstock Flexibility Coal: Alternatives/Supplements to Coal - Feedstock Flexibility As important as coal is as a primary gasification feedstock, gasification technology offers the important ability to take a wide range of feedstocks and process them into syngas, from which a similarly diverse number of end products are possible. Gasifiers have been developed to suit all different ranks of coal, and other fossil fuels, petcoke and refinery streams, biomass including agricultural waste, and industrial and municipal waste. The flexibility stems from the ability of gasification to take any carbon and hydrogen containing feedstock and then thermochemically break down the feedstock to a gas containing simple compounds which are easy to process into several marketable products.

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia Coal: Feedstock Flexibility Refinery Streams Gasification is a known method for converting petroleum coke (petcoke) and other refinery waste streams and residuals (vacuum residual, visbreaker tar, and deasphalter pitch) into power, steam and hydrogen for use in the production of cleaner transportation fuels. The main requirement for a gasification feedstock is that it contains both hydrogen and carbon. Below is a table that shows the specifications for a typical refinery feedstock. Specifications for a typical refinery feedstock A number of factors have increased the interest in gasification applications in petroleum refinery operations: Coking capacity has increased with the shift to heavier, more sour crude oils being supplied to the refiners.

162

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

METC/C-97/7278 METC/C-97/7278 Title: Fuel Cell/Gas Turbine System Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference Dates: August 20-21, 1996 Conference Sponsor: U.S. DOE, Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

163

Fuel injector for use in a gas turbine engine  

Science Conference Proceedings (OSTI)

A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

Wiebe, David J.

2012-10-09T23:59:59.000Z

164

Cost modeling approach and economic analysis of biomass gasification integrated solid oxide fuel cell systems  

Science Conference Proceedings (OSTI)

This paper presents a cost modeling approach and the economic feasibility for selected plant configurations operating under three modes: air gasification

Rajesh S. Kempegowda; Øyvind Skreiberg; Khanh-Quang Tran

2012-01-01T23:59:59.000Z

165

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Delay for Ignition Delay for Gas Turbine Fuel Flexibility 15 μm * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including H2 containing fuels) may generate auto-ignition damage * Existing theories vary in predicting propensity for auto-ignition damage * Theory A vs Theory B shows factor of 100 difference-which is right? * UC Irvine improved and validated design tools for ignition delay allow designers to evaluate the risk for auto-ignition in advanced combustion systems with future fuels * Models are available to engine OEM's to shorten design cycle time and save $$ UC Irvine Scott Samuelsen / Vince McDonell #112 1000/T (1/K) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 τ [O 2 ] 0.5 [F] 0.25 (sec(mol/cm 3 ) 0.75 ) 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5

166

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

John W. Rich

2001-03-01T23:59:59.000Z

167

Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems  

DOE Patents (OSTI)

A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

1983-08-26T23:59:59.000Z

168

Impact study on the use of biomass-derived fuels in gas turbines for power generation  

DOE Green Energy (OSTI)

This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

Moses, C.A.; Bernstein, H. [Southwest Research Inst., San Antonio, TX (United States)

1994-01-01T23:59:59.000Z

169

GEI 41040G - Specification for Fuel Gases for COmbustion in Heavy-Duty Gas Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Gas Turbine Revised, January 2002 GEI 41040G These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes the matter should be referred to the GE Company. © 1999 GENERAL ELECTRIC COMPANY Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines GEI 41040G Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines 2 TABLE OF CONTENTS I. INTRODUCTION 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

170

Compatibility of alternative fuels with advanced automotive gas-turbine and Stirling engines. A literature survey  

DOE Green Energy (OSTI)

The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain research efforts is discussed. Future research efforts planned at Lewis are described. 52 references.

Cairelli, J.; Horvath, D.

1981-05-01T23:59:59.000Z

171

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

172

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

Science Conference Proceedings (OSTI)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01T23:59:59.000Z

173

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

174

Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39  

Science Conference Proceedings (OSTI)

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.

Anderson, C.M.; Musich, M.A.; Young, B.C. [and others

1996-07-01T23:59:59.000Z

175

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

176

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

177

Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Instability and Blowout Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Characteristics of Fuel Flexible Gas Turbine Combustors Combustors Georgia Institute of Technology Georgia Institute of Technology Tim Lieuwen, Ben Zinn Bobby Noble, Qingguo Zhang DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES SCIES Project 03-01-SR111 Project Awarded (07/01/03, 36 Month Duration) Total Contract Value $376,722 . CLEMSON presentation, T.L., B.Z., B.N., Q.Z. Gas Turbine Need Gas Turbine Need * Need: Gas turbines with sufficient flexibility to cleanly and efficiently combust a wide range of fuels, particularly coal-derived gases - Problem: Inherent variability in composition and heating

178

Gasification Technology Status - December 2011  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal-to-chemicals industry and plans to add major coal-to-substitute natural gas and coal-to-liquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology companies have responded to this market b...

2011-12-30T23:59:59.000Z

179

Gasification Technology Status - December 2012  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal-to-chemicals industry and plans to add major coal–to–substitute natural gas and coal–to–liquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology companies ...

2012-12-31T23:59:59.000Z

180

The closed cycle gas turbine, the most efficient turbine burning any fuel  

Science Conference Proceedings (OSTI)

There are two types of gas turbines. The open cycle is very well known as, for example, the JET. The closed cycle in the U.S.A. is just starting to be well known. In Europe, the closed cycle gas turbine has been used in power plants, especially in Germany, and have been very efficient in burning coal. Concentrated in this paper is the Closed Cycle Gas Turbine (CCGT) as it is the most efficient type of turbine. There are the following sections in this paper: closed cycle gas turbine in more detail; various advantages of the CCGT; Nuclear power; and three comments.

Sawyer, R.T.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

Science Conference Proceedings (OSTI)

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-15T23:59:59.000Z

182

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2: CO2 Capture: Impacts on IGCC Plant Designs CO2: CO2 Capture: Impacts on IGCC Plant Designs Specific Impacts on IGCC Plant Designs from CO2 Capture In foregoing discussion, results of NETL's comprehensive study comparing the performance and cost of various fossil fuel-based power generation technologies with and without CO2 capture were reviewed. Of particular interest in that study was the companion set of integrated gasification combined cycle (IGCC) designs, using GE's gasification technology, which can be used to illustrate the design changes needed for CO2 capture. Current Technology - IGCC Plant Design Figure 1 shows a simplified block flow diagram (BFD) of a market-ready IGCC design without CO2 capture. As shown, the IGCC plant consists of the following processing islands, of which a more detailed description of each can be found in the cited NETL referenced report: 1

183

NETL: Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Brochures Gasification Systems Reference Shelf - Brochures The Gasification Technology brochures are as follows: Gasification Plant Databases (Aug 2013) Gasification Systems...

184

Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project  

DOE Green Energy (OSTI)

The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

1998-09-30T23:59:59.000Z

185

NETL: News Release - Universities Begin Critical Turbine Systems Research  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2008 30, 2008 Universities Begin Critical Turbine Systems Research WASHINGTON, D.C. - The U.S. Department of Energy announced the selection of four projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently when fueled with coal-derived synthesis gas and hydrogen fuels. The overall goal of the Department of Energy's (DOE) Turbine Program is to provide high-efficiency, near-zero emissions and lower-cost turbines for coal-based stationary power systems. Developing turbine technology to operate on high hydrogen content (HHC) fuels derived from coal synthesis gas is critical to the development of advanced, near-zero-emission integrated gasification combined cycle (IGCC) power generation plants that separate and capture carbon dioxide (CO2).

186

Combustion modeling in advanced gas turbine systems  

DOE Green Energy (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

187

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed water, condensate and cooling water facilities. The benefits of the high efficiency of combined cycle gas turbines can only be realized if the energy in the hot exhaust can be utilized. Data for several plants, in various stages of engineering, in which clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial processes, namely in the production of ammonia, LNG, and olefins. These options are briefly discussed.

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

188

Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994  

SciTech Connect

Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

LeCren, R.T.

1994-05-01T23:59:59.000Z

189

Method for Surge Recovery in Fuel Cell Turbine Hybrids Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

of upset sensing and bypass flows. As examples, the auxiliary energy source may be a solar power concentrator or a thermal energy storage device. Power generation gas turbines...

190

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Closely Aligned Programs Gasification Systems Technologies Closely Aligned Programs The Department of Energy's (DOE) Gasification Systems is conducted under the Clean Coal Research...

191

Advanced Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to...

192

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Gasification Current Calendar of Events Below are events that are specifically related to Gasification. Also visit the NETL Events page to learn about other events....

193

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioning Conditioning Sulfur Recovery and Tail Gas Treating Sulfur is a component of coal and other gasification feed stocks. Sulfur compounds need to be removed in most gasification applications due to environmental regulations or to avoid catalyst poisoning. Whether it is electricity, liquid fuels, or some other product being output, sulfur emissions are regulated, and sulfur removal is important for this reason, along with the prevention of downstream component fouling. In addition to these constraints, recovering saleable sulfur is an important economic benefit for a gasification plant. To illustrate the previous point, in 2011 8.1 million tons of elemental sulfur was produced, with the majority of this coming from petroleum refining, natural gas processing and coking plants. Total shipments were valued at $1.6 billion, with the average mine or plant price of $200 per ton, up from $70.48 in 2010. The United States currently imports sulfur (36% of consumption, mostly from Canada), meaning the market can support more domestic sulfur production.

194

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from January 1, 2003 through March 31, 2003. Phase I Task 6 activities of Preliminary Site Analysis were documented and reported as a separate Topical Report on February 2003. Most of the other technical activities were on hold pending on DOE's announcement of the Clean Coal Power Initiative (CCPI) awards. WMPI was awarded one of the CCPI projects in late January 2003 to engineer, construct and operate a first-of-kind gasification/liquefaction facility in the U.S. as a continued effort for the current WMPI EECP engineering feasibility study. Since then, project technical activities were focused on: (1) planning/revising the existing EECP work scope for transition into CCPI, and (2) ''jump starting'' all environmentally related work in pursue of NEPA and PA DEP permitting approval.

John W. Rich

2003-06-01T23:59:59.000Z

195

Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig  

DOE Green Energy (OSTI)

This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

Galica, M.A.

1994-02-01T23:59:59.000Z

196

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network (OSTI)

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims… (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

197

Systems and methods for detecting a flame in a fuel nozzle of a gas turbine  

SciTech Connect

A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

2013-05-07T23:59:59.000Z

198

Configuration and performance of the indirect-fired fuel cell bottomed turbine cycle  

SciTech Connect

The natural gas, indirect-fired fuel cell bottomed turbine cycle (NG-IFFC) is introduced as a novel power plant system for the distributed power and on-site markets in the 20--200 megawatt (MW) size range. The novel indirect-fired carbonate fuel cell bottomed turbine cycle (NG-IFCFC) power plant system configures the ambient pressure carbonate fuel cell with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations from ASPEN simulations present material and energy balances with expected power output. The results indicate efficiencies and heat rates for the NG-IFCFC are comparable to conventionally bottomed carbonate fuel cell steam bottomed cycles, but with smaller and less expensive components.

Micheli, P.L.; Williams, M.C.; Parsons, E.L. Jr.

1993-12-31T23:59:59.000Z

199

Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-biomass Catalytic Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics Background The U.S. Department of Energy (DOE) supports research and development efforts targeted to improve efficiency and reduce the negative environmental effects of the use of fossil fuels. One way to achieve these goals is to combine coal with biomass to create synthesis gas (syngas) for use in turbines and refineries to produce energy, fuels,

200

Generation Maintenance Application Center: Fuel Gas System for Combustion Turbine Combined Cycle Plant Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the fuel gas system at a gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and operators of CTCC facilities may find ...

2013-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture R&D Capture R&D DOE/NETL's pre-combustion CO2 control technology portfolio of R&D projects is examining various CO2 capture technologies, and supports identification of developmental pathways linking advanced fossil fuel conversion and CO2 capture. The Program's CO2 capture activity is being conducted in close coordination with that of advanced, higher-efficiency power generation and fossil fuel conversion technologies such as gasification. Links to the projects can be found here. Finally, an exhaustive and periodically updated report on CO2 capture R&D sponsored by NETL is available: DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (also referred to as the CO2 Handbook). Carbon Dioxide CO2 Capture Commercial CO2 Uses & Carbon Dioxide Enhanced Oil Recovery

202

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2002 time period.

Archie Robertson

2002-07-10T23:59:59.000Z

203

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

Unknown

2003-01-30T23:59:59.000Z

204

Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

A. Robertson

2003-12-31T23:59:59.000Z

205

Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1-September 30, 2002 time period.

A. Robertson

2002-09-30T23:59:59.000Z

206

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

Archie Robertson

2003-07-23T23:59:59.000Z

207

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

Archie Robertson

2003-10-29T23:59:59.000Z

208

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

209

Gasification Technologie: Opportunities & Challenges  

SciTech Connect

This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

Breault, R.

2012-01-01T23:59:59.000Z

210

SUPPORTING INFORMATION to Large-Scale Gasification-Based Co-Production of Fuels and  

E-Print Network (OSTI)

started production from coal syngas as vehicle fuel (Dry, 2002). Subsequently a coal-to-fuels program (derived by natural gas F-T conversion) are now beginning to be blended with conventional diesel fuels resurgence of interest in F-T fuels from gasified coal. Coal-based FT fuel production was commercialized

211

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2011-01-18T23:59:59.000Z

212

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D.; Dumesic, James A.

2013-04-02T23:59:59.000Z

213

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2012-04-10T23:59:59.000Z

214

NETL: Gasification - Mitigation of Syngas Cooler Plugging and...  

NLE Websites -- All DOE Office Websites (Extended Search)

the coal gasifier and the combustion turbine. Syngas coolers used in Integrated Gasification Combined Cycle (IGCC) plants offer high efficiency, but their reliability is...

215

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Background Gasification Background Challenges for Gasification The widespread market penetration of gasification continues to face some challenges. Over the years, gasification challenges related to gasifier and supporting unit availability, operability, and maintainability have been addressed with substantial success, and new implementations of gasification will continue to improve in this area. At present, perhaps the most significant remaining challenge is the relatively high capital costs of gasification plants, particularly given the low capital investment required for NGCC-based power production combined with low natural gas prices currently being experienced in the domestic market. Accordingly, technology that can decrease capital costs of gasification systems and plant supporting systems will be most important towards further deployment of gasification.

216

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

217

NETL: Gasifipedia - Gasification in Detail  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamentals Fundamentals Gasification is a partial oxidation process. The term partial oxidation is a relative term which simply means that less oxygen is used in gasification than would be required for combustion (i.e., burning or complete oxidation) of the same amount of fuel. Gasification typically uses only 25 to 40 percent of the theoretical oxidant (either pure oxygen or air) to generate enough heat to gasify the remaining unoxidized fuel, producing syngas. The major combustible products of gasification are carbon monoxide (CO) and hydrogen (H2), with only a minor amount of the carbon completely oxidized to carbon dioxide (CO2) and water. The heat released by partial oxidation provides most of the energy needed to break up the chemical bonds in the feedstock, to drive the other endothermic gasification reactions, and to increase the temperature of the final gasification products.

218

High efficiency fuel cell/advanced turbine power cycles  

Science Conference Proceedings (OSTI)

The following figures are included: Westinghouse (W.) SOFC pilot manufacturing facility; cell scale-up plan; W. 25 kW SOFC unit at the utility`s facility on Rokko Island; pressure effect on SOFC power and efficiency; SureCELL{trademark} vs conventional gas turbine plants; SureCELL{trademark} product line for distributed power applications; 20 MW pressurized SOFC/gas turbine power plant; 10 MW SOFT/CT power plant; SureCELL{trademark} plant concept design requirements; and W. SOFC market entry.

Morehead, H.

1996-12-31T23:59:59.000Z

219

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

DOE Green Energy (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

220

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Cleanup: Syngas Contaminant Removal and Conditioning Syngas Cleanup: Syngas Contaminant Removal and Conditioning Acid Gas Removal (AGR) Acid gases produced in gasification processes mainly consist of hydrogen sulfide (H2S), carbonyl sulfide (COS), and carbon dioxide (CO2). Syngas exiting the particulate removal and gas conditioning systems, typically near ambient temperature at 100°F, needs to be cleaned of the sulfur-bearing acid gases to meet either environmental emissions regulations, or to protect downstream catalysts for chemical processing applications. For integrated gasification combined cycle (IGCC) applications, environmental regulations require that the sulfur content of the product syngas be reduced to less than 30 parts per million by volume (ppmv) in order to meet the stack gas emission target of less than 4 ppmv sulfur dioxide (SO2)1. In IGCC applications, where selective catalytic reduction (SCR) is required to lower NOx emissions to less than 10 ppmv, syngas sulfur content may have to be lowered to 10 to 20 ppmv in order to prevent ammonium bisulfate fouling of the heat recovery steam generator's (HRSG) cold end tubes. For fuels production or chemical production, the downstream synthesis catalyst sulfur tolerance dictates the sulfur removal level, which can be less than 0.1 ppmv.

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

(kWh) to 8.25 centskWh. Chemical Solvents Diagram Pre-Combustion CO2 Capture for Gasification Application Pre-combustion CO2 capture related to a gasification plant is...

222

Coaxial fuel and air premixer for a gas turbine combustor  

SciTech Connect

An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

York, William D; Ziminsky, Willy S; Lacy, Benjamin P

2013-05-21T23:59:59.000Z

223

Gasification Systems Projects & Performers  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Systems Projects & Performers Gasification Systems - Key Technologies Feed Systems Gasifier Optimization and Plant Supporting Systems Syngas...

224

The Effect of Higher Hydrocarbons on the Ignition Delay of Natural Gas Fuels at Gas Turbine Conditions  

Science Conference Proceedings (OSTI)

This investigation focuses on studying autoignition of fuels primarily used for stationary gas turbine operation today and others that are garnering interest for future use. Most stationary gas turbine engines operate today on natural gas. Natural gas can either come from domestic or foreign sources. Natural gas from foreign sources is typically imported as a chilled liquid, so it is commonly referred to as liquefied natural gas (LNG). Variations in fuel characteristics at the source, coupled with fuel q...

2009-12-11T23:59:59.000Z

225

Gary J. stiegel Gasification Technology Manager  

E-Print Network (OSTI)

ContaCts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626. Box 880 Morgantown, MV 26507 304-285-4685 madhava.syamlal@netl.doe.gov 8/2006 Gasification to address. Development of a chemical-looping fuels-reactor model was started. · Transport Gasifer: MFIX

226

Development and demonstration of a solid fuel-fired gas turbine system  

SciTech Connect

Western Research Institute (WRI) and Power Generating Incorporated (PGI) are developing a solid fuel-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are (a) fuel receiving, preparation, storage and feeding system, (b) gas clean-up equipment, and (c) a gas turbine generator. An approximately 400 kW prototype system is under construction at the WRI facilities in Laramie, Wyoming. As a part of this demonstration the integrated system, following a short shakedown period, will be operated on white wood. White wood was selected as the fuel for early tests because of its low ash (0.5 - 1.0 %), silica, and sulfur contents. The system will then be operated on coal. It is expected that the design of the coal-based system will evolve as the wood testing proceeds. In previous similar wood-fired system development attempts, albeit at lower turbine inlet temperatures, a major technical hindrance to long-term operation of a gas turbine power system has been the degradation of the hot section of the gas turbine. Deposition, erosion, and corrosion are main issues that need to be addressed. In the wood-fired PGI system, erosion is not likely to be of concern because of the low silica and low overall ash content of the fuel and the fact that the wood ash particle size is expected to be in the range where little or no erosion would be expected. However, because of the high alkali content of the fuel, deposition and corrosion can become major issues. This paper will deal with the issues pertaining to the design of the prototype being constructed at the WRI premises. Preliminary thoughts on the design aspects of the plant modifications required for coal testing will also be presented.

Speight, J.G.; Sethi, V.K.

1995-11-01T23:59:59.000Z

227

Gasification Plant Cost and Performance Optimization  

DOE Green Energy (OSTI)

As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

2005-05-01T23:59:59.000Z

228

Gasification Users Association: Technology Status - December 2012  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal–to–chemicals industry and plans to add major coal–to–substitute natural gas and coal–to–liquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology ...

2012-12-31T23:59:59.000Z

229

Gasification Users Association - Technology Status - December 2011  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China where national policy has established a major coal-to-chemicals industry and plans to add major plants for coal-to-substitute natural gas (SNG) and coal-to-liquid transportation fuels in the next five-year plan. Gasification is also being deployed to some extent in other Asian countries (for example, Korea and India) and elsewhere. Gasification tech...

2011-12-30T23:59:59.000Z

230

NETL: Gasification - Systems and Industry Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

E&P Technologies Gas Hydrates T&D and Refining Contacts E&P Technologies Gas Hydrates T&D and Refining Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification Turbines Fuel Cells FutureGen Advanced Research Contacts Industrial Capture & Storage Carbon Sequestration Program Overview Core R&D Infrastructure Global Collaborations FAQs Reference Shelf Contacts Hydrogen & Clean Fuels Hydrogen-from-Coal RD&D Contacts ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES NETL-RUA About NETL-RUA Research Technology Transfer Business Development Education News & Events Contacts Members Only Access TECHNOLOGY TRANSFER Available Technologies How to Partner Outreach Contacts SOLICITATIONS & BUSINESS Solicitations & Funding Opps. Related Links & Forms CDP/Financial Asst. Resources Unsolicited Proposals Available NETL Property Business Alert Notification IRS Tax Credit Program NETL Business Contacts

231

Combustion, pyrolysis, gasification, and liquefaction of biomass  

DOE Green Energy (OSTI)

All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T.B.

1980-09-01T23:59:59.000Z

232

Catalytic Steam Gasification of Biomass Surrogates: A Thermodynamic and Kinetic Approach.  

E-Print Network (OSTI)

??Gasification of biomass is an environmentally important technology that offers an alternative to the direct use of fossil fuel energy. Steam gasification is getting increased… (more)

Salaices, Enrique

2010-01-01T23:59:59.000Z

233

Proceedings: Conference on Coal Gasification Systems and Synthetic Fuels for Power Generation, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

The international effort to develop synthetic fuels and advanced power systems for the commercial generation of electric power from coal, oil shale, and tar sands has been an outstanding technical success. This conference highlighted the work that brought new fuels and power generation systems to reality.

1986-01-01T23:59:59.000Z

234

NETL: Gasification Systems - Feed Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Gasification Systems Feed Systems Research on commercial gasifier feed systems is occurring in two primary areas of fuel (i.e. coal, biomass, etc.) feed and advanced...

235

Analysis of Two Biomass Gasification/Fuel Cell Scenarios for Small-Scale Power Generation  

DOE Green Energy (OSTI)

Two scenarios were examined for small-scale electricity production from biomass using a gasifier/fuel cell system. In one case, a stand-alone BCL/FERC gasifier is used to produce synthesis gas that is reformed and distributed through a pipeline network to individual phosphoric acid fuel cells. In the second design, the gasifier is integrated with a molten carbonate fuel cell stack and a steam bottoming cycle. In both cases, the gasifiers are fed the same amount of material, with the integrated system producing 4 MW of electricity, and the stand-alone design generating 2 MW of electricity.

Amos, W. A.

1999-01-12T23:59:59.000Z

236

Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel - Georgia Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Prediction of Combustion Stability Prediction of Combustion Stability and Flashback in Turbines with High- Hydrogen Fuel-Georgia Institute of Technology Background Georgia Institute of Technology (Georgia Tech), in collaboration with Pennsylvania State University and gas turbine manufacturers, is conducting research to improve the state-of-the-art in understanding and modeling combustion instabilities, one of the most critical problems associated with burning high-hydrogen content (HHC) fuels in

237

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

the following discussion considers a comparison of coal-fired Integrated Gasification Combined Cycle (IGCC) and pulverized coal (PC) power plants, representing a balanced...

238

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW)...

239

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

runs a very active Carbon Storage Program as a companion strategic activity to gasification, under the Coal and Power Systems Program. Also, see the Carbon Sequestration...

240

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling  

E-Print Network (OSTI)

Solid Oxide Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid systems because they work high operating temperature and when combined with conventional turbine power plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power system model is developed. Two models have been developed based on simple thermodynamic expressions. The simple models are used in the preliminary part of the study and a more realistic based on the performance maps. A comparative study of the simulated configurations, based on an energy analysis is used to perform a parametric study of the overall hybrid system efficiency. Some important observations are made by means of a sensitivity study of the whole cycle for the selected configuration. The results of the selected model were compared to an earlier model from an available literature.

Penyarat Chinda; Pascal Brault

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

242

Development of high energy density fuels from mild gasification of coal  

SciTech Connect

The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

Not Available

1990-10-01T23:59:59.000Z

243

Current Gasification Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification » Current Gasification » Current Gasification Research Current Gasification Research Sponsored by the U.S. Department of Energy, the National Carbon Capture Center provides first-class facilities to test carbon capture technologies. Sponsored by the U.S. Department of Energy, the National Carbon Capture Center provides first-class facilities to test carbon capture technologies. With coal gasification now in modern commercial-scale applications, the U.S. Department of Energy's (DOE) Office of Fossil Energy has turned its attention to future gasification concepts that offer significant improvements in efficiency, fuel flexibility, economics and environmental sustainability. Fuel flexibility is especially important. Tomorrow's gasification plants conceivably could process a wide variety of low-cost feedstocks, handling

244

Technical and economic assessment of particle control technology for direct coal fueled turbines: Final report  

SciTech Connect

Gilbert/Commomwealth (1984) analyzed ten different concepts for high-temperature, high-pressure control of gas stream particulate matter in coal-fueled pressurized fluidized-bed combustion (PFBC) systems. This paper analyzes the five higher ranking concepts of the Gilbert study at direct coal fueled turbine conditions which are even more severe than PFBC conditions. The five concepts are ceramic crossflow filter, ceramic bag filter, granular bed filter, and advanced cyclones. Five ranking factors were used: economic, design, operations complexity, materials/mechanical, and development status. (DLC)

DiBella, C.A.W.; Thomas, R.L.; Rubow, L.N.; Zaharchuk, R.

1987-02-01T23:59:59.000Z

245

Impact of Advanced Turbine Systems on coal-based power plants  

DOE Green Energy (OSTI)

The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

Bechtel, T.F.

1993-12-31T23:59:59.000Z

246

DOE`s Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC`s vision for future IGCC systems. This major new program is a cooperative effort in which DOE`s Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-03-01T23:59:59.000Z

247

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

248

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy Contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. Under this contract a series of pilot plant tests are being conducted to ascertain PGM performance with a variety of fuels. The performance and economics of a PGM based plant designed for the co-production of hydrogen and electricity will also be determined. This report describes the work performed during the April-June 30, 2004 time period.

Archie Robertson

2004-07-01T23:59:59.000Z

249

Pioneering Gasification Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification » Pioneering Gasification » Pioneering Gasification Plants Pioneering Gasification Plants In the 1800s, lamplighters made their rounds in the streets of many of America's largest cities lighting street lights fueled by "town gas," frequently the product of early forms of coal gasification. Gasification of fuel also provided fuel for steel mills, and toward the end of the 19th Century, electric power. These early gasifiers were called "gas producers," and the gas that they generated was called "producer gas." During the early 20th Century, improvements in the availability of petroleum and natural gas products, along with the extension of the infrastructure associated with these products, led to their widespread use, which replaced coal-based producer gas in the energy market.

250

Advanced turbine design for coal-fueled engines. Quarterly technical report, [July 1, 1989--September 30, 1989  

SciTech Connect

Coal-fueled gas turbines require the development of a number of new technologies which are being identified by METC and its Heat Engines Contractors. Three significant problems, that were Identified early in the development of coal-fueled engines, are the rapid wear of the turbine airfoils due to particulate erosion, the accumulation of deposits on portions of the airfoil surfaces due to slag deposition and the rapid corrosion of airfoils after the breakdown of surface coatings. The technology development study contained in this program is focused on improving the durability of the turbine through the development of erosion and deposition resistant airfoils and turbine operating conditions. The baseline turbine meanline design vas modified to prevent a local shock on the suction side of the rotor airfoil. New particle dimensionless parameters to be varied were determined. Three first-stage turbine meanline designs have been completed. The design of nev turbine airfoil shapes has been initiated. The calculation of particle trajectories has been completed for the baseline turbine vane and blade airfoils. The erosion model described in the previous technical report vas incorporated in the Post Processing Trajectory Analysis Code.

1989-12-31T23:59:59.000Z

251

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

252

Engineering a 70-percent efficient, indirect-fired fuel-cell bottomed turbine cycle  

SciTech Connect

The authors introduce the natural gas, indirect-fired fuel-cell bottomed turbine cycle (NG-IFFC) as a novel power plant system for the distributed power and on-site markets in the 20 to 200 megawatt (MW) size range. The NG-IFFC system is a new METC-patented system. This power-plant system links the ambient pressure, carbonate fuel cell in tandem with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations based on Advanced System for Process Engineering (ASPEN) simulations show material and energy balances with expected power output. Early results indicated efficiencies and heat rates for the NG-IFFC are comparable to conventionally bottomed, carbonate fuel-cell steam-bottomed cycles. More recent calculations extended the in-tandem concept to produce near-stoichiometric usage of the oxygen. This is made possible by reforming the anode stream to completion and using all hydrogen fuel in what will need to be a special combustor. The performance increases dramatically to 70%.

Williams, M.C.; Micheli, P.L.; Parsons, E.L. Jr.

1996-08-01T23:59:59.000Z

253

GASIFICATION FOR DISTRIBUTED GENERATION  

DOE Green Energy (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

254

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Plant Databases Welcome to the U. S. Department of Energy, National Energy Technology Laboratory's Gasification Plant Databases Within these...

255

Integrated Field Testing of Fuel Cells and Micro-Turbines  

DOE Green Energy (OSTI)

A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This report contains installation and operation issues as well as the utility perspective on DG deployment.

Jerome R. Temchin; Stephen J. Steffel

2005-11-01T23:59:59.000Z

256

Development of high energy density fuels from mild gasification of coal. Final report  

SciTech Connect

METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

Not Available

1991-12-01T23:59:59.000Z

257

NETL: Gasification Systems - Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Program Gasification Systems Program Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. Pollutants can be captured and disposed of or converted to useful products more easily with gasification-based technologies compared to conventional combustion of solid feedstocks. Gasification can generate clean power, and by adding steam to the syngas and performing water-gas-shift to convert the carbon monoxide to carbon dioxide (CO2), additional hydrogen can be produced. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for enhanced oil recovery (see Gasification Systems Program Research and Development Areas figure). In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Furthermore, polygeneration plants that produce multiple products are uniquely possible with gasification technologies.

258

Development of Foster Wheeler's Vision 21 Partial Gasification Module  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) has awarded Foster Wheeler Development Corporation a contract to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx} 2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This paper describes the test program and pilot plant that will be used to develop the PGM.

Robertson, A.

2001-11-06T23:59:59.000Z

259

Hybrid Combustion-Gasification Chemical Looping  

DOE Green Energy (OSTI)

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07T23:59:59.000Z

260

Combustion research related to utilization of coal as a gas turbine fuel  

SciTech Connect

A nominal 293 kw (1 MBtu/hr) atmospheric pressure, refractory-lined combustor has been used to investigate the effects of a number of combustor and fuel dependent variables on combustion efficiency and flue gas characteristics for minimally cleaned, coal-derived gas (MCG) and coal water mixtures. The variables which have been evaluated include: percent excess air, air distribution, combustion air preheat temperature, swirl number, fuel feedrate, coal particle size, coal loading in slurry, and slurry viscosity. Characterization of the flue gas included major/minor gas species, alkali levels, and particulate loading, size, and composition. These atmospheric pressure combustion studies accompanied by data from planned pressurized studies on coal-water slurries and hot, minimally cleaned, coal-derived gas will aid in the determination of the potential of these fuels for use in gas turbines.

Davis-Waltermine, D.M.; Anderson, R.J.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DEVELOPMENT OF PRESSURIZED CIRCULATIONG FLUIDIZED BED PARTIAL GASIFICATION MODULE(PGM)  

DOE Green Energy (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the January 1--March 31, 2003 time period.

Archie Robertson

2003-04-17T23:59:59.000Z

262

Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

GASIFICATION SYSTEMS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United...

263

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Options CO2 Capture Technology Options All gasification-based conversion processes require removal of hydrogen sulfide (H2S; an acid gas) from the synthesis gas (syngas)...

264

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Gas Shift & Hydrogen Production Slag High-temperatureWarm Sygas Cleanup & DOE R&D Other DOE R&D Supporting Syngas Cleanup Technology Emissions Advantages of Gasification...

265

Investigation of gasification chemical looping combustion combined cycle performance  

SciTech Connect

A novel combined cycle based on coal gasification and chemical looping combustion (CLC) offers a possibility of both high net power efficiency and separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from the combustion air to the fuel, and the avoidance of direct contact between fuel and combustion air. The fuel gas is oxidized by an oxygen carrier, an oxygen-containing compound, in the fuel reactor. The oxygen carrier in this study is NiO. The reduced oxygen carrier, Ni, in the fuel reactor is regenerated by the air in the air reactor. In this way, fuel and air are never mixed, and the fuel oxidation products CO{sub 2} and water vapor leave the system undiluted by air. All that is needed to get an almost pure CO{sub 2} product is to condense the water vapor and to remove the liquid water. When the technique is combined with gas turbine and heat recovery steam generation technology, a new type of combined cycle is formed which gives a possibility of obtaining high net power efficiency and CO{sub 2} separation. The performance of the combined cycle is simulated using the ASPEN software tool in this paper. The influence of the water/coal ratio on the gasification and the influence of the CLC process parameters such as the air reactor temperature, the turbine inlet supplementary firing, and the pressure ratio of the compressor on the system performance are discussed. Results show that, assuming an air reactor temperature of 1200{sup o}C, a gasification temperature of 1100 {sup o}C, and a turbine inlet temperature after supplementary firing of 1350{sup o}C, the system has the potential to achieve a thermal efficiency of 44.4% (low heating value), and the CO{sub 2} emission is 70.1 g/(kW h), 90.1% of the CO{sub 2} captured. 22 refs., 7 figs., 6 tabs.

Wenguo Xiang; Sha Wang; Tengteng Di [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of the Ministry of Education

2008-03-15T23:59:59.000Z

266

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

267

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Science Conference Proceedings (OSTI)

Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock.

Unknown

2001-07-01T23:59:59.000Z

268

Full-scale and bench-scale testing of a coal-fueled gas turbine system  

SciTech Connect

Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1992-01-01T23:59:59.000Z

269

Full-scale and bench-scale testing of a coal-fueled gas turbine system  

SciTech Connect

Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1992-12-31T23:59:59.000Z

270

Parallel Operation of Wind Turbine, Fuel Cell, and Diesel Generation Sources: Preprint  

DOE Green Energy (OSTI)

We investigated a small isolated hybrid power system that used a parallel combination of dispatchable and non-dispatchable power generation sources. The non-dispatchable generation came from a nature-dependent wind turbine, and the dispatchable generations were a fuel cell and a diesel generator. On the load side, the non-dispatchable portion was the village load, and the dispatchable portion was the energy storage, which could be in many different forms (e.g., space/water heater, electrolysis, battery charger, etc.) The interaction among different generation sources and the loads was investigated. Simulation results showed the effect of the proposed system on voltage and frequency fluctuations.

Muljadi, E.; Wang, C.; Nehrir, M. H.

2004-06-01T23:59:59.000Z

271

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

272

NETL: Gasification Systems Video, Images & Photos  

NLE Websites -- All DOE Office Websites (Extended Search)

Video, Images, Photos Video, Images, Photos Gasification Systems Reference Shelf - Video, Images & Photos The following was established to show a variety of Gasification Technologies: Gasfication powerplant photo Gasification: A Cornerstone Technology (Mar 2008) Movie Icon Windows Media Video (WMV-26MB) [ view | download ] NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants. Proposed APS Advanced Hydrogasification Process Proposed APS Advanced Hydrogasification Process* TRDU and Hot-Gas Vessel in the EERC Gasification Tower Transport reactor development unit

273

Non-pollutant fuel generator and fuel burner with a non-pollutant exhaust and supplementary dc generator. [for use in MHD generator, steam turbine, gas turbine, or fuel cell  

SciTech Connect

A system for generating non-polluting fuel and a burner for using such fuel to produce energy in the form of heat with a non-polluting exhaust, together with means for utilizing such exhaust to produce supplementary direct current power is disclosed. An electrolyzer is operated to produce hydrogen and oxygen in gaseous form which is then stored in suitable fuel tanks. As needed, the fuel is combined with air and supplied under pressure to a combustion chamber where the mixture is burned, producing heat and a pollution free exhaust. The heat so produced may be used as a conventional heat source to generate steam, drive a turbine, or the like, while the combustion gases are directed to a magnetohydrodynamic generator to produce an electrical current which is usable in any desired manner.

Barros, M.J.

1976-12-21T23:59:59.000Z

274

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

275

Analysis of energy recovery potential using innovative technologies of waste gasification  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

Lombardi, Lidia, E-mail: lidia.lombardi@unifit.it [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Carnevale, Ennio [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell'Informazione, University of Siena, via Roma 56, 56100 Siena (Italy)

2012-04-15T23:59:59.000Z

276

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993  

SciTech Connect

This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1993-06-01T23:59:59.000Z

277

Great Plains gasification project  

SciTech Connect

This paper describes organizational and research work on a coal gasification project which is based on North Dakota lignite. Many design changes have been incorporated into this plant, which is now being built after years of delay due to environmental, financial, and regulatory problems. Engineering and operational details are given for a project designed for conversion of 22,000 tons/day of liquid into fuel gas and several by products. Economic considerations are included.

Kuhn, A.K.

1982-04-01T23:59:59.000Z

278

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

Science Conference Proceedings (OSTI)

Laboratory experiments have been conducted to investigate the fuel effects on the turbulent premixed flames produced by a gas turbine low-swirl injector (LSI). The lean-blow off limits and flame emissions for seven diluted and undiluted hydrocarbon and hydrogen fuels show that the LSI is capable of supporting stable flames that emit < 5 ppm NO{sub x} ({at} 15% O{sub 2}). Analysis of the velocity statistics shows that the non-reacting and reacting flowfields of the LSI exhibit similarity features. The turbulent flame speeds, S{sub T}, for the hydrocarbon fuels are consistent with those of methane/air flames and correlate linearly with turbulence intensity. The similarity feature and linear S{sub T} correlation provide further support of an analytical model that explains why the LSI flame position does not change with flow velocity. The results also show that the LSI does not need to undergo significant alteration to operate with the hydrocarbon fuels but needs further studies for adaptation to burn diluted H{sub 2} fuels.

Littlejohn, David; Littlejohn, David; Cheng, R.K.

2007-12-03T23:59:59.000Z

279

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines - University of California, Irvine  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanisms Underpinning Degradation Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines-University of California, Irvine Background Thermal barrier coatings (TBCs) and components in the hot section of gas turbines are degraded by coal-derived high hydrogen content (HHC) synthesis gas (syngas). In this project the University of California, Irvine (UCI) will provide an improved mechanistic understanding of the degradation of critical turbine system materials in HHC-fueled

280

Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992  

DOE Green Energy (OSTI)

Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass  

Science Conference Proceedings (OSTI)

The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

2012-03-11T23:59:59.000Z

282

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

283

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Oxygen Commercial Technologies for Oxygen Production Gasification processes require an oxidant, most commonly oxygen; less frequently air or just steam may suffice as the gasification agent depending on the process. Oxygen-blown systems have the advantage of minimizing the size of the gasification reactor and its auxiliary process systems. However, the oxygen for the process must be separated from the atmosphere. Commercial large-scale air separation plants are based on cryogenic distillation technology, capable of supplying oxygen at high purity1 and pressure. This technology is well understood, having been in practice for over 75 years. Cryogenic air separation is recognized for its reliability, and it can be designed for high capacity (up to 5,000 tons per day).

284

Investigation of plasma-aided bituminous coal gasification  

Science Conference Proceedings (OSTI)

This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

2009-04-15T23:59:59.000Z

285

An Environment Friendly Energy Recovery Technology: Municipal Solid Waste Gasification  

Science Conference Proceedings (OSTI)

Energy from waste, is a perspective source to replace fossil fuels in the future, municipal solid waste (MSW) gasification is a new technique for waste treatment. MSW can be combusted directly to generate heat and electricity, and by means of gasification ... Keywords: municipal solid waste, gasification, incineration

Lei Ma; Chuanhua Liao; Yuezhao Zhu; Haijun Chen; Yanghuiqin Ding

2011-01-01T23:59:59.000Z

286

Gas turbine demonstration of pyrolysis: derived fuels. Third technical progress report, July 1, 1979-December 31, 1981  

DOE Green Energy (OSTI)

The objective of this program is to demonstrate the feasibility of utilizing pyrolytic oil and char as a fuel for a combustion turbine engine. This is the first phase of an extended program with the ultimate goal of commercializing a gas turbine engine and electrical generating system which is independent of petroleum-based fuels. Maximum use of existing technology and current production engine hardware (Teledyne CAE Model J69-T-29 Turbojet Engine) is being incorporated for a sequence of test evaluations rating from isolated combustor component tests to full scale engine demonstration tests. The technical goals to be achieved during the course of this project are: pyrolytic fuel characterization in terms of its properties and constituents; pyrolytic fuel combustion technology in gas turbine application in terms of pyrolytic oil atomization, quantity of char burned, emissions, performance and associated combustion system aerothermodynamics; pyrolytic fuel (oil and char slurry) handling, mixing, and storage technology; and engine materials compatibility with the the pyrolytic fuel and its combustion products. Progress achieved during the period from July 1979 through Deember 1981 in design, analysis, an project management hardware fabrication and procurement, fuel chemistry and properties, and combustor rig tests are summarized.

Jasas, G.; Kasper, J.

1982-01-01T23:59:59.000Z

287

Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass  

DOE Green Energy (OSTI)

All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

2012-03-11T23:59:59.000Z

288

Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine  

DOE Patents (OSTI)

A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

1994-01-01T23:59:59.000Z

289

Evaluation of 450-MWe BGL GCC Power Plants Fueled With Pittsburgh No. 8 Coal  

Science Conference Proceedings (OSTI)

Detailed design and cost estimates have been developed for conventionally and highly integrated 450-MWe, British Gas/Lurgi (BGL) gasification-combined-cycle (GCC) power plants employing two General Electric (GE) MS-7001F gas turbines and fueled with Pittsburgh No. 8 coal. The plants have attractive heat rates and capital costs that are competitive with conventional coal-based power technology.

1992-12-01T23:59:59.000Z

290

Evaluation of a 510-MWe Destec GCC Power Plant Fueled with Illinois No. 6 Coal  

Science Conference Proceedings (OSTI)

A detailed design and cost estimate has been developed for a 510-MWe, conventionally integrated, Destec gasification-combined-cycle (GCC) power plant employing two General Electric (GE) MS-7001F gas turbines and fueled with Illinois no. 6 coal. The plant has an attractive heat rate and a capital cost that is competitive with conventional coal-based power technology.

1992-07-14T23:59:59.000Z

291

Methanol production from eucalyptus wood chips. Attachment VIII. The wood-fueled gasification system, Evergreen Energy Corporation's final engineering report  

DOE Green Energy (OSTI)

Evergreen Energy Corporation provided projected cost and operating data on the Evergreen/Texaco entrained-bed wood gasification system currently under development as an alternative to the state-of-the-art fixed-bed wood gasification system proposed by Davy McKee. Overall capital costs for the total plant remain about the same at approx. $250 million. The Evergreen/Texaco system will provide significant capital cost savings in the gasifiers, gas cleanup, and waste water treatment sections, and eliminate the need for a large off-site wood-fired power boiler. These reductions are offset by higher investments in the feedstock preparation, drying, and feeding section plus the need for a larger air separation plant and compressor to supply oxygen at high pressure to the gasifier.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

292

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

Science Conference Proceedings (OSTI)

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

293

Survey of biomass gasification. Volume II. Principles of gasification  

DOE Green Energy (OSTI)

Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

Reed, T.B. (comp.)

1979-07-01T23:59:59.000Z

294

Assessment of Technical Innovations for Co-Production of Transportation Fuels and Electricity  

Science Conference Proceedings (OSTI)

As environmental pressures against sulfur emissions increase, residues from crude oil refining have correspondingly lower values for use in blended fuel oil. This situation has intensified interest in residue gasification to produce low-sulfur synthesis gas (CO + H2) for fuel use in combustion turbine power generation or for conversion to liquid transportation fuels, chemicals such as methanol and ammonia, and hydrogen. This report reviews the driving market forces as well as technologies used in the coa...

2001-08-28T23:59:59.000Z

295

REMOVAL AND RECOVERY OF DEPOSITS FROM COAL GASIFICATION ...  

A method is provided for on-line removal and recovery of deposits from fossil fuel gasification systems to improve plant performance and recover a valuable metalloid.

296

Advanced coal-fueled gas turbine systems. Technical progress report, October--December 1992  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team`s efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

297

Combustion of EDS mid-distillate and refined shale-oil residual fuel in a gas turbine with large single-combustion chamber  

DOE Green Energy (OSTI)

The test fuels included a coal derived mid distillate recycle liquid from the EDS coal liquefaction process, produced by Exxon, and a hydroprocessed residual Paraho shale oil fraction originating from a US Government sponsored program. A BBC (Brown Boveri Co.) type 9 fully equipped 35 MW capacity gas turbine, located at BBC's test facilities near Basel, Switzerland, was utilized. The objective of the combustion test was to establish whether these alternate fuels can be fired in large single combustor turbines without deleterious effects to the turbine or environment. Nitrogen in the shale oil was on the order of 0.4 wt% while the EDS distillate contained slightly less than 10 wt% hydrogen. The test program entailed the firing of 600 barrels of each test fuel at varying turbine loads and a comparison of the results with those from a base case petroleum diesel fuel. Fuel bound nitrogen was not found to contribute significantly to NO/sub x/ emissions in contrast to other work reported earlier in subscale gas turbine tests. Water injection at 0.6 to 0.7 water-fo-fuel mass ratios was effective in meeting EPA requirements for NO/sub x/ emissions from the diesel, shale and coal derived fuels at full turbine load. Low fuel hydrogen content did not cause any operational or emission problems. Combustor wall temperature, the major problem with low hydrogen fuels, rose only slightly within acceptable limits.

Not Available

1983-01-01T23:59:59.000Z

298

MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT Lars Andersen, Brian Elmegaard, Bjrn Qvale, Ulrik Henriksen  

E-Print Network (OSTI)

plant systems: Gas engine, Simple cycle gas turbine, Recuperated gas turbine and Integrated Gasification in the following systems are pre- sented in this paper: · Gas engine · Gas turbine (Simple Cycle) · Gas turbine, and running cost of a gas cleaning system can be reduced, and the reliability can be increased. Both pyrolysis

299

Solid oxide fuel cell/gas turbine power plant cycles and performance estimates  

DOE Green Energy (OSTI)

SOFC pressurization enhances SOFC efficiency and power performance. It enables the direct integration of the SOFC and gas turbine technologies which can form the basis for very efficient combined- cycle power plants. PSOFC/GT cogeneration systems, producing steam and/or hot water in addition to electric power, can be designed to achieve high fuel effectiveness values. A wide range of steam pressures and temperatures are possible owing to system component arrangement flexibility. It is anticipated that Westinghouse will offer small PSOFC/GT power plants for sale early in the next decade. These plants will have capacities less than 10 MW net ac, and they will operate with efficiencies in the 60-65% (net ac/LHV) range.

Lundberg, W.L.

1996-12-31T23:59:59.000Z

300

Low temperature steam-coal gasification catalysts  

SciTech Connect

Shrinking domestic supplies and larger dependence on foreign sources have made an assortment of fossil fuels attractive as possible energy sources. The high sulfur and mineral coals of Illinois would be an ideal candidate as possible gasification feedstock. Large reserves of coal as fossil fuel source and a projected shortage of natural gas (methane) in the US, have made development of technology for commercial production of high Btu pipeline gases from coal of interest. Several coal gasification processes exist, but incentives remain for the development of processes that would significantly increase efficiency and lower cost. A major problem in coal/char gasification is the heat required which make the process energy intensive. Hence, there is a need for an efficient and thermally neutral gasification process. Results are described for the gasification of an Illinois No. 6 coal with transition metal catalysts and added potassium hydroxide.

Hippo, E.J.; Tandon, D. [Southern Illinois Univ., Carbondale, IL (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Gasifipedia - What is Gasification?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Background Gasification Background Drivers for Gasification Technology The need for low-cost power produced in an environmentally sound way is certain, even if the future of regulations limiting the emission and/or encouraging the capture of CO2, and the price and availability of natural gas and oil are not. Gasification is not only capable of efficiently producing electric power, but a wide range of liquids and/or high-value chemicals (including diesel and gasoline for transportation) can be produced from cleaned syngas, providing the flexibility to capitalize on a range of dynamic changes to either domestic energy markets or global economic conditions. Polygeneration-plants that produce multiple products-is uniquely possible with gasification technologies. Continued advances in gasification-based technology will enable the conversion of our nation's abundant coal reserves into energy resources (power and liquid fuels), chemicals, and fertilizers needed to displace the use of imported oil and, thereby, help mitigate its high price and security supply concerns and to support U.S. economic competitiveness with unprecedented environmental performance.

302

Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development  

SciTech Connect

Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

Stephenson, M.

1994-03-01T23:59:59.000Z

303

Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

304

System study on partial gasification combined cycle with CO{sub 2} recovery - article no. 051801  

Science Conference Proceedings (OSTI)

S partial gasification combined cycle with CO{sub 2} recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO{sub 2} and H{sub 2}O, so the CO{sub 2} can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO{sub 2} compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO{sub 2} recovery of 41.2%, which is 1.5-3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system.

Xu, Y.J.; Jin, H.G.; Lin, R.M.; Han, W. [Chinese Academy of Science, Beijing (China)

2008-09-15T23:59:59.000Z

305

Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

GASIFICATION SYSTEMS GASIFICATION SYSTEMS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

306

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage in Coal to Electrical Applications Usage in Coal to Electrical Applications The Integrated Gasification Combined Cycle (IGCC) application of gasification offers some water-saving advantages over other technologies for producing electricity from coal. Regions with limited water resources, typical of many parts of the western United States, could conserve resources by meeting increasing electricity demand with IGCC generation. Many of these areas have good coal resources and a need for new generating capacity. Water use in a thermoelectric power plant is described by two separate terms: water withdrawal and water consumption. Water withdrawal is the amount of water taken into the plant from an outside source. Water consumption refers to the portion of the withdrawn water that is not returned directly to the outside source - for example, water lost to evaporative cooling.

307

Gasification system  

DOE Patents (OSTI)

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1983-01-01T23:59:59.000Z

308

Gasification system  

DOE Patents (OSTI)

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1985-01-01T23:59:59.000Z

309

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents (OSTI)

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

310

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

DOE Green Energy (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

NONE

1996-11-01T23:59:59.000Z

311

NETL: Gasification - Systems Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

System Analyses Gasification Systems Systems Analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & CostPerformance Studies NETL...

312

NETL: Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Coal and Power Systems Gasification Systems Gasifier Optimization & Plant Supporting Systems Feed Systems Feed Systems Gasifier Optimization & Plant Supporting...

313

AVESTAR® - Gasification Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Meet Our Partners Simulators IGCC Gasification Combined Cycle NGCC SCOT Oxy-coal Shale Gas 3D Virtual IGCC Training How to Register for Training IGCC Gasification Combined...

314

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling system with half of the turbine exhaust steam condensed in an air-cooled condenser and half in a water-cooled condenser. The SNG and ammonia co-production cases (third...

315

World Gasification Database Now Available from DOE | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Gasification Database Now Available from DOE World Gasification Database Now Available from DOE World Gasification Database Now Available from DOE November 9, 2010 - 12:00pm Addthis Washington, DC - A database just released by the U.S. Department of Energy (DOE) documents the worldwide growth of gasification, the expected technology of choice for future coal-based plants that produce power, fuels, and/or chemicals with near-zero emissions. The 2010 Worldwide Gasification Database, a comprehensive collection of gasification plant data, describes the current world gasification industry and identifies near-term planned capacity additions. The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas

316

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28T23:59:59.000Z

317

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

318

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

319

Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation  

Science Conference Proceedings (OSTI)

The operating range of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid with bypass control of cathode airflow was determined using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). Three methods of cathode airflow management using bypass valves in a hybrid power system were evaluated over the maximum range of operation. The cathode air flow was varied independently over the full range of operation of each bypass valve. Each operating point was taken at a steady state condition and was matched to the thermal, pressure and flow output of a corresponding fuel cell operation condition. Turbine electric load was also varied so that the maximum range of fuel cell operation could be studied, and a preliminary operating map could be made. Results are presented to show operating envelopes in terms of cathode air flow, fuel cell and turbine load, and compressor surge margin to be substantial.

David Tucker; Eric Liese; Randall Gemmen

2009-02-10T23:59:59.000Z

320

PNNL Coal Gasification Research  

Science Conference Proceedings (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Gasification Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Archive KEY: News News & Features Events Events Publications Publications 2013 2012 2011 2010...

322

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

323

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800 F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions.

Unknown

2002-03-29T23:59:59.000Z

324

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Power: Typical IGCC Configuration Power: Typical IGCC Configuration Major Commercial Examples of IGCC Plants While there are many coal gasification plants in the world co-producing electricity, chemicals and/or steam, the following are four notable, commercial-size IGCC plants currently in operation solely for producing electricity from coal and/or coke. Tampa Electric, Polk County 250 MW GE Gasifier Wabash, West Terre Haute 265 MW CoP E-Gas(tm) Gasifier Nuon, Buggenum 250 MW Shell Gasifier Elcogas, Puertollano 300 MW Prenflo Gasifier All of the plants began operation prior to 2000 and employ high temperature entrained-flow gasification technology. GE (formerly Texaco-Chevron) and ConocoPhillips (CoP) are slurry feed gasifiers, while Shell and Prenflo are dry feed gasifiers. None of these plants currently capture carbon dioxide (CO2). A simplified process flow diagram of the 250-MW Tampa Electric IGCC plant is shown in Figure 1 to illustrate the overall arrangement of an operating commercial scale IGCC plant. The Tampa Electric plant is equipped with both radiant and convective coolers for heat recovery, generating high pressure (HP) steam.

325

Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors  

DOE Green Energy (OSTI)

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Ahsan Choudhuri

2011-03-31T23:59:59.000Z

326

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

327

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

328

Integrated low emissions cleanup system for direct coal-fueled turbines  

SciTech Connect

The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

1992-01-01T23:59:59.000Z

329

Integrated low emissions cleanup system for direct coal-fueled turbines  

SciTech Connect

The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

1992-12-31T23:59:59.000Z

330

An artificial neural network system for diagnosing gas turbine engine fuel faults  

DOE Green Energy (OSTI)

The US Army Ordnance Center & School and Pacific Northwest Laboratories are developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system employs Artificial Neural Network (AN) technology to perform diagnosis and prognosis of the tank`s AGT-1500 gas turbine engine. This paper describes the design and prototype development of the ANN component of the diagnostic system, which we refer to as ``TEDANN`` for Turbine Engine Diagnostic Artificial Neural Networks.

Illi, O.J. Jr. [Army Ordnance Center and School, Aberdeen Proving Ground, MD (United States). Knowledge Engineering Group (KEG); Greitzer, F.L.; Kangas, L.J. [Pacific Northwest Lab., Richland, WA (United States); Reeve, T. [Expert Solutions, Stratford, CT (United States)

1994-04-01T23:59:59.000Z

331

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

332

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

Science Conference Proceedings (OSTI)

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01T23:59:59.000Z

333

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Partner Test Sites Major Partner Test Sites Gasification Systems Technologies - Major Partner Test Sites Major Partner Test Sites Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding provided for any one project. It then becomes critical to test the technology at a pre-existing facility willing to test experimental technologies. Not surprisingly, most commercial facilities are hesitant to interfere with their operations to experiment, but others, with a view towards the future, welcome promising technologies. Below is a list of major partner test sites that actively host DOE supported research activities. Many of the test sites were built with DOE support, but many were not. Some are commercial, and were designed to perform experimental work. All play an important role in developing technologies with minimal expense to the project, and to the U.S. taxpayer.

334

A big leap forward for biomass gasification  

Science Conference Proceedings (OSTI)

This article describes the McNeil Generating Station in Vermont, the first industrial scale-up of Battelle Columbus Laboratory`s biomass gasification process. The plant is part of a major US DOE initiative to demonstrate gasification of renewable biomass for electricity production. The project will integrate the Battelle high-through-put gasifier with a high-effiency gas turbine. The history of the project is described, along with an overview of the technology and the interest and resources available in Vermont that will help insure a successful project.

Moon, S.

1995-12-31T23:59:59.000Z

335

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

336

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

337

ENCOAL Mild Coal Gasification Project  

DOE Green Energy (OSTI)

ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

Not Available

1992-02-01T23:59:59.000Z

338

Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)  

SciTech Connect

Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2006-10-15T23:59:59.000Z

339

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

Unknown

2001-07-10T23:59:59.000Z

340

Avestar® - Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator The AVESTAR® center offers courses using the Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator. The IGCC simulator builds on and reaches beyond existing combined-cycle and conventional-coal power plant simulators to combine--for the first time--a Gasification with CO2 Capture process simulator with a Combined-Cycle power simulator together in a single dynamic simulation framework. The AVESTAR® center IGCC courses provide unique, comprehensive training on all aspects of an IGCC plant, illustrating the high-efficiency aspects of the gasifier, gas turbine, and steam turbine integration. IGCC Operator training station HMI display for overview of IGCC Plant - Train A Reference:

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gasification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification Gasification Gasification The Wabash River Clean Coal Power Plant The Wabash River Clean Coal Power Plant Gasification Technology R&D Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products. Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean coal technology plants. Rather than burning coal directly, gasification (a thermo-chemical process) breaks down coal - or virtually any carbon-based feedstock - into its basic chemical constituents. In a modern gasifier, coal is typically exposed to steam and carefully controlled amounts of air or oxygen under high

342

Gasification: redefining clean energy  

Science Conference Proceedings (OSTI)

This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

NONE

2008-05-15T23:59:59.000Z

343

Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils  

Science Conference Proceedings (OSTI)

With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

Holowczak, J.

2002-03-01T23:59:59.000Z

344

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

345

Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress  

DOE Green Energy (OSTI)

As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

Stevens, D. J.

2001-09-01T23:59:59.000Z

346

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

347

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

348

Wabash River coal gasification repowering project: Public design report  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

1995-07-01T23:59:59.000Z

349

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen: SNG from Coal: Process & Commercialization Hydrogen: SNG from Coal: Process & Commercialization Weyburn Project The Great Plains Synfuels Plant (GPSP) has had the ability to capture CO2 through the Rectisol process for sequestration or sale as a byproduct. However, no viable market was found for the CO2 in the early years of operation, and the captured CO2 was simply discharged to the atmosphere. This changed in 2000, when the GPSP began selling CO2 emissions, becoming one of the first commercial coal facilities to have its CO2 sequestered. The program had begun in 1997, when EnCana (formerly PanCanadian Resources) sought a solution to declining production in their Weyburn Oil Fields. Dakota Gasification Company, owners of the GPSP, and EnCana made an agreement to sell CO2 for use in Enhanced Oil Recovery (EOR). DGC installed two large CO2 compressors and began shipping 105 million standard cubic feet per day of compressed CO2 (60% of the total CO2 produced at the plant) through a 205 mile pipeline from Beulah, North Dakota, to the Weyburn Oil Fields, located in Saskatchewan, Canada, for EOR. The pipeline was constructed and operated by a BEPC subsidiary. The CO2, about 95.5% pure and very dry, is injected into the mature fields where it has doubled the oil recovery rate of the field. In 2006, a third compressor was installed and an additional agreement was reached with Apache Canada Ltd. to supply CO2 for EOR to their nearby oilfields. The three compressors increased CO2 delivery to 160 million standard cubic feet (MMSCF; or 8,000 tonnes) per day. Through 2007, over 12 million tons of CO2 had been sold, and over the current expected lifetime of the program, an anticipated 20 million tons of CO2 will be stored.

350

2010 Worldwide Gasification Database  

DOE Data Explorer (OSTI)

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers. [Copied from http://www.netl.doe.gov/technologies/coalpower/gasification/worlddatabase/index.html

351

NETL Publications: Generation, Fuels and Environment Membership Advisory  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation, Fuels and Environment Membership Advisory Group Generation, Fuels and Environment Membership Advisory Group June 15-16, 2010 Table of Contents Disclaimer Presentations PRESENTATIONS Welcome [PDF-1.1MB] Dan Cicero, Senior Management & Technical Advisor, Strategic Center for Coal, NETL Dale Bradshaw, Senior Program Manager, National Rural Electric Cooperative Association IGCC [PDF-3.1MB] Timeline [PDF-511KB] Jenny Tennant, Technology Manager, Gasification Status of Area 1 - ICCS [PDF-763KB] Nelson Rekos, Project Financing & Technology Deployment Division Status of Area 2 - ICCS [PDF-235KB] Elaine Everitt, Fuels Division Turbines [PDF-971KB] Robin Ames, Project Manager, Power Systems Division, Turbines Fuel Cells [PDF-2.4MB] Travis Shultz, Acting Technology Manager, Fuel Cells Coal to Synfuels Projects/Polygeneration Projects

352

How Coal Gasification Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

353

Development of mild gasification process  

Science Conference Proceedings (OSTI)

Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

Chu, C.I.C.; Derting, T.M.

1988-07-01T23:59:59.000Z

354

Development of mild gasification process  

Science Conference Proceedings (OSTI)

Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

Chu, C.I.C.; Gillespie, B.L.

1987-11-01T23:59:59.000Z

355

Syngas, mixed alcohol and diesel synthesis from forest residues via gasification - an economic analysis.  

E-Print Network (OSTI)

??Liquid transportation fuels can be produced by gasification of carbon containing biomass to syngas( a gaseous mixture of CO and H2) with subsequent conversion of… (more)

Koch, David

2008-01-01T23:59:59.000Z

356

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

357

EMERY BIOMASS GASIFICATION POWER SYSTEM  

DOE Green Energy (OSTI)

Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

Benjamin Phillips; Scott Hassett; Harry Gatley

2002-11-27T23:59:59.000Z

358

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

359

Materials of Gasification  

DOE Green Energy (OSTI)

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

360

Advanced coal-fueled gas turbine systems. Quarterly report, January--March 1993  

SciTech Connect

All scheduled tests for the slagging combustor program were completed prior to this reporting period. The draft topical report for the slagging combustor testing was begun in January and the draft submitted to DOE/METC for review in March. Work was completed on the (Advanced Turbine Systems) Phase 1 program and the draft topical begun in January. The ATS Phase 1 draft topical report was submitted to DOE/METC in March. Comments to the report were received back from METC prior to the end of March allowing for the preparation of the final version of the report to begin. Conceptual design of a combustion turbine system that can be integrated in a pressurized fluidized bed combustor (PFBC) application was completed at the end of March. An intermediate design review was held in February with METC and a draft of the topical report was begun during the reporting period. Details of the individual subtask work for the first generation PFBC combustion turbine system conceptual design are discussed in the ``Generic Turbine Design Study Final Report`` which was issued June 1993 to DOE/METC.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network (OSTI)

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper examines the status, economic outlook, and future directions of combustion turbine technology for industrial and utility power generation. The discussion takes into account the ongoing deregulation and increasing competition that are shaping the electric power generation business. Included is a comparison between heavy-duty industrial combustion turbines and their rapidly evolving competition, aeroderivative machines, with emphasis on the appropriate application of each. The prospects for future improvements in the cost and performance of combustion turbines are reviewed, and the likely impact of advanced combustion turbine power generation concepts is considered. Also summarized is the outlook for power generation fuels, including the longer term reemergence of coal and the potential for widespread use of coal gasification-based combustion turbine systems. The paper draws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy companies that includes utilities, independent power producers (IPPs), and power industry equipment vendors.

Karp, A. D.; Simbeck, D. R.

1994-04-01T23:59:59.000Z

362

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

in IGCC Projects in IGCC Projects The Great Plains Synfuels Plant has long been gasifying coal to produce synthetic natural gas and ammonia, and capturing CO2 which is pipelined to Canada for EOR in the Weyburn oil field. Several new IGCC-based projects in the United States will be greatly expanding the scope of CO2 capture and use/storage. Kemper County Energy Facility Mississippi Power's Kemper County facility is in late stages of construction. It will be a lignite-fuel IGCC plant, generating a net 524 MW of power from syngas, while capturing over 65% of CO2 generated. The CO2 will be sent by pipeline to depleted oil fields in Mississippi for enhanced oil recovery operations. Hydrogen Energy California (HECA) Project HECA will be a 300MW net, coal and petroleum coke-fueled IGCC polygeneration plant (producing hydrogen for both power generation and fertilizer manufacture). Ninety percent of the CO2 produced will be captured and transported to Elk Hills Oil Field for EOR, enabling recovery of 5 million additional barrels of domestic oil per year.

363

NETL: Gasification Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Gasification Systems Reference Shelf - Archived Projects Archived Projects | Active Projects | All NETL Fact Sheets Feed Systems Reaction-Driven Ion Transport Membranes Gasifier Optimization and Plant Supporting Systems Coal/Biomass Gasification at Colorado School of Mines Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst Co-Production of Substitute Natural Gas/Electricity via Catalytic Coal Gasification Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development

364

High-Temperature-Turbine Technology Program: Phase II. Technology test and support studies. Design and development of the liquid-fueled high-temperature combustor for the Turbine Spool Technology Rig  

SciTech Connect

The concept selected by Curtiss-Wright for this DOE sponsored High Temperature Turbine Technology (HTTT) Program utilizes transpiration air-cooling of the turbine subsystem airfoils. With moderate quantities of cooling air, this method of cooling has been demonstrated to be effective in a 2600 to 3000/sup 0/F gas stream. Test results show that transpiration air-cooling also protects turbine components from the aggressive environment produced by the combustion of coal-derived fuels. A new single-stage, high work transpiration air-cooled turbine has been designed and fabricated for evaluation in a rotating test vehicle designated the Turbine Spool Technology Rig (TSTR). The design and development of the annular combustor for the TSTR are described. Some pertinent design characteristics of the combustor are: fuel, Jet A; inlet temperature, 525/sup 0/F; inlet pressure, 7.5 Atm; temperature rise, 2475/sup 0/F; efficiency, 98.5%; exit temperature pattern, 0.25; and exit mass flow, 92.7 pps. The development program was conducted on a 60/sup 0/ sector of the full-round annular combustor. Most design goals were achieved, with the exception of the peak gas exit temperature and local metal temperatures at the rear of the inner liner, both of which were higher than the design values. Subsequent turbine vane cascade testing established the need to reduce both the peak gas temperature (for optimum vane cooling) and the inner liner metal temperature (for combustor durability). Further development of the 60/sup 0/ combustor sector achieved the required temperature reductions and the final configuration was incorporated in the TSTR full-annular burner.

1981-06-01T23:59:59.000Z

365

Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference  

SciTech Connect

The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

Geiling, D.W. [ed.

1993-08-01T23:59:59.000Z

366

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

367

Technical Assessment: Advanced Solid Oxide Fuel Cell Hybrids for Distributed Power Market Applications  

Science Conference Proceedings (OSTI)

High temperature solid oxide fuel cell (SOFCs) are under intense development in the U.S., Japan, and Europe. The U.S. DOE solid energy convergence alliance (SECA) has invested in SOFC technology for distributed power markets and for future applications involving integrated coal gasification. SOFC hybrid systems which incorporate the use of small turbines or turbo-charging have potentially high efficiencies near 60% LHV. Rolls Royce, GE Power Systems, Siemens, and Mitsubishi Heavy Industries are developin...

2007-03-22T23:59:59.000Z

368

Flame holding tolerant fuel and air premixer for a gas turbine combustor  

Science Conference Proceedings (OSTI)

A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

2012-11-20T23:59:59.000Z

369

Houston Lighting and Power Company's evaluation of coal gasification coproduction energy facilities  

SciTech Connect

In an effort to reduce the cost of electricity from Integral ed Gasification Combined Cycle (IGCC) Power Plants, the Electric Power Research Institute has embarked on a program to evaluate and potentially demonstrate a coal gasification-based coproduction energy facility. Houston Lighting Power Company (HL P) responded with a proposal in its ongoing effort to study emerging technologies for electricity production. HL P recognized the opportunities available to them in coproduction because of their close proximity to the world's largest petrochemical complex located on the Houston Ship Channel. Coparticipant utilities with HL P were Central and South West Services and TU Electric. Two sites were selected for study, a Houston Ship Channel site, utilizing barge-delivered Illinois No. 6 coal blended with petroleum coke, and to satisfy C SWS and TU needs, a central Texas site utilizing Texas lignite. Stone Webster Engineering and InterFact, Inc. were engineers and consulting partners in the study.Eight cases were developed to cover the various possibilities for coproduction. Four cases involved utilizing Texas lignite and four cases involved utilizing Illinois No. 6 as fuel blended with petroleum coke. The eight cases are described. Each of the cases utilized the Shell coal gasification process and were evaluated for either base load operation using two G.E. 7F gas turbines and a spare gasifier for chemicals production or for cyclic operationusing four G.E. 7EA gas turbines and no spare gasifier. The sum of the coproducts produced over all eight cases were electricity, methanol, ammonia, and urea, depending on location and economics.

Kern, E.E.; Havemann, S.D.; Chmielewski, R.G. (Houston Lighting and Power Co., TX (United States)); Baumann, P. (InterFact, Inc., Dallas, TX (United States)); Goelzer, A.R.; Karayel, R.; Keady, G.S.; Chernoff, B. (Stone and Webster Engineering Corp., Houston, TX (United States))

1992-12-01T23:59:59.000Z

370

NETL: Gasification Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Archive KEY: News News & Features Events Events Publications Publications Archive 02.20.2013 News Funding Opportunity Announcement DE-FOA-0000784 entitled "Advanced...

371

Heavy metals behaviour in a gasification reactor  

Science Conference Proceedings (OSTI)

Sludge coming from cleaning processes of wastewater, Municipal Solid Waste (MSW), and Refuse Derived Fuel (RDF) can be exploited for producing energy because of their heating value. Cleaning the produced syngas is important because of environmental troubles, ... Keywords: heavy metals, syngas, thermodynamic, waste gasification

Martino Paolucci; Carlo Borgianni; Paolo De Filippis

2011-07-01T23:59:59.000Z

372

World Gasification Database Now Available from DOE  

Energy.gov (U.S. Department of Energy (DOE))

A database just released by the U.S. Department of Energy documents the worldwide growth of gasification, the expected technology of choice for future coal-based plants that produce power, fuels, and/or chemicals with near-zero emissions.

373

2007 gasification technologies workshop papers  

Science Conference Proceedings (OSTI)

Topics covered in this workshop are fundamentals of gasification, carbon capture, reviews of financial and regulatory incentives, coal to liquids, and focus on gasification in the Western US.

NONE

2007-03-15T23:59:59.000Z

374

NETL: Gasifipedia - Introduction to Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Introduction Gasification is a technological process that uses heat, pressure, steam, and often oxygen to convert any carbonaceous (carbon-based) raw material into...

375

Gasification Systems Projects National Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Systems Projects National Map Click on a number to go to the project page. Hybrid Solar Coal Gasifier ITM Oxygen Technology for Integration in...

376

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

377

Trace metal transformation in gasification  

SciTech Connect

The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to 1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, 2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and 3) identify methods to control trace element emissions.

Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.; Katrinak, K.A.; Allen, S.E.; Hassett, D.J.; Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center; Holcombe, N.T. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-12-31T23:59:59.000Z

378

Trace metal transformations in gasification  

SciTech Connect

The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

Benson, S.; Erickson, T.A.; Zygarlicke, C.J. [and others

1995-12-01T23:59:59.000Z

379

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

380

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

Science Conference Proceedings (OSTI)

This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

Sheldon Kramer

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines gasification fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

DOE Green Energy (OSTI)

This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

Sheldon Kramer

2003-09-01T23:59:59.000Z

382

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network (OSTI)

equivalent to those from landfill gas to liquified petroleumlandfill and biomass fuels, H 2 -enriched CH 4 to simulate refinery gas

Littlejohn, David

2008-01-01T23:59:59.000Z

383

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather than air) is used for gasification, the resulting medium Btu gas could be economically transported by pipeline from the gasification sites to the Gulf coast. Technical, environmental, and economic aspects of implementing this technology are discussed.

Edgar, T. F.

1979-01-01T23:59:59.000Z

384

Gasification Technology Status - December 2006  

Science Conference Proceedings (OSTI)

During 2004-6, important changes have taken place that should lead to a more rapid deployment of gasification technologies world wide. With crude oil at 50-75 $/bbl and natural gas in the range of 8-10$/MBtu, power companies, petroleum refiners and chemical producers are increasingly looking at other sources such as coal, petroleum residuals and tar sands to meet their fuel and feedstock needs. Concern over the continued availability of natural gas at competitive prices has led many power companies to in...

2006-12-19T23:59:59.000Z

385

Gasification Technology Status - December 2005  

Science Conference Proceedings (OSTI)

During 2004-5 important changes have taken place that should lead to a more rapid deployment of gasification technologies world wide. With crude oil at 50-60 /bbl and natural gas in the range of 8-10 /MBtu Power companies, Petroleum Refiners and Chemical producers are increasingly looking at other sources such as coal and tar sands to meet their fuel and feedstock needs. Concern over the continued availability of natural gas at competitive prices has led many power companies to initiate studies and proje...

2005-12-12T23:59:59.000Z

386

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

387

Biomass Gasification Technology Assessment: Consolidated Report  

SciTech Connect

Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

Worley, M.; Yale, J.

2012-11-01T23:59:59.000Z

388

Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry  

E-Print Network (OSTI)

. The conceptual design of the reactor was made to obtain a cost estimation. The principal caracteristics or the hydrothermal gasification of the unconverted residues from the ethanol production process. A steam turbine.4% The highest energy efficiency of 67.5% is obtained in the case of hydrothermal gasification. For combustion

Qiao, Li

389

Pressure coal gasification experience in Czechoslovakia  

SciTech Connect

Czechoslovakia's large deposits of brown coal supply the country's three operating pressure gasification plants. The gas produced is suitable for further treatment to provide fuel for household and industrial consumers. Coal gasification is not new to the energy planners in Czechoslovakia. Since 1948, 56 gasifiers have been installed in the three pressure gasification plants currently in operation. The newest and biggest of these plants is at Vresova. The plant processes 5,000 tons of brown coal per day. The locally mined coal used for feed at the Vresova plant has a calorific value of 12 to 14 megajoules per kilogram (52 to 60 Btu's per pound). The gasifiers produce up to 13,000 cubic meters (459,000 cubic feet) per hour of crude gas per gasifier. Gasification technology has been under development in Czechoslovakia since 1945. The country has virtually no oil or natural gas reserves