Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE/RL-2010-35  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agreement Ecology et al., 1989, Hanford Federal Facility Agreement and Consent Order USFWS U.S. Fish and Wildlife Service DOERL-2010-35, REV. 1 v This page is...

2

Final Turbine and Test Facility Design Report Alden/NREC Fish...  

Broader source: Energy.gov (indexed) [DOE]

Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine The final report...

3

Final Turbine and Test Facility Design Report Alden/NREC Fish Friendly Turbine  

Broader source: Energy.gov [DOE]

The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

4

Microsoft Word - Turbine Manufactures MOU FINAL_5-31-08_.doc...  

Broader source: Energy.gov (indexed) [DOE]

Turbine Manufactures MOU FINAL5-31-08.doc Microsoft Word - Turbine Manufactures MOU FINAL5-31-08.doc Microsoft Word - Turbine Manufactures MOU FINAL5-31-08.doc More Documents...

5

Generic turbine design study. Final report  

SciTech Connect (OSTI)

The purpose of Task 12, Generic Turbine Design Study was to develop a conceptual design of a combustion turbine system that would perform in a pressurized fluidized bed combustor (PFBC) application. A single inlet/outlet casing design that modifies the W251B12 combustion turbine to provide compressed air to the PFBC and accept clean hot air from the PFBC was developed. Performance calculations show that the net power output expected, at an inlet temperature of 59{degrees}F, is 20,250 kW.

Not Available

1993-06-01T23:59:59.000Z

6

Nome, Alaska, Wind Turbine Demonstration Project Final Environmental Assessment and  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment and Final Environmental Assessment and Finding of No Significant Impact November 2000 Prepared for: U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 Prepared by: Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i

7

(Construction of a wind turbine). Final report  

SciTech Connect (OSTI)

A wind powered electrical generator was built by industrial arts students working in electricity, woodworking, and metal technology facilities. The blades were originally aluminum frames covered with sailcloth. These were replaced with hand-carved laminated basswood blades. Original plans called for a bullet and downwind propeller, but this was replaced with an upwind propeller and an aft-mounted tailfin. A V-belt and pulley drive transmits power from the turbine and a motorcycle brake stops the machine during high winds and/or for safe servicing. The original 13 volt, 105 amp alternator was replaced by a 12 volt, 100 amp dc generator. Publicity and dissemination events are listed as well as expenditures. (LEW)

Devine, L.E.

1982-03-22T23:59:59.000Z

8

Turbine test report. Addendum to final report  

SciTech Connect (OSTI)

The radial inflow turbine developed for the NASA 404 program 25-ton solar air conditioner (RCWS-2-2753-GO) was tested for performance. Using the converging-only nozzles designed for this system, a peak efficiency of 86% was measured at a pressure ratio of 2.7 and a velocity ratio of 0.66. Near the design pressure ratio of 3.5 and velocity ratio of 0.645, the measured pressure ratio of 3.5 and velocity of 0.645, the measured efficiency was 84% instead of the predicted 82%. Data are presented for pressure ratios of 2.7, 3.6, and velocity ratio ranges of 0.20 to 0.85. This covers the normal operating range of interest in this machine. The performance is better than predicted. This indicates that some of the loss coefficient values assumed during the original analysis were conservative.

Elliott, T.J.; Batton, W.D.

1984-07-01T23:59:59.000Z

9

Siemens Westinghouse Advanced Turbine Systems Program Final Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SIEMENS WESTINGHOUSE ADVANCED TURBINE SIEMENS WESTINGHOUSE ADVANCED TURBINE SYSTEMS PROGRAM FINAL SUMMARY Ihor S. Diakunchak Greg R. Gaul Gerry McQuiggan Leslie R. Southall Siemens Westinghouse Power Corporation 4400 Alafaya Trail Orlando, Florida 32826-2399 ABSTRACT This paper summarises achievements in the Siemens Westinghouse Advanced Turbine Systems (ATS) Program. The ATS Program, co-funded by the U.S. Department of Energy, Office of Fossil Energy, was a very successful multi-year (from 1992 to 2001) collaborative effort between government, industry and participating universities. The program goals were to develop technologies necessary for achieving significant gains in natural gas-fired power generation plant efficiency, a reduction in emissions, and a decrease in cost of electricity, while maintaining current

10

DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE Final Technical Report  

Office of Scientific and Technical Information (OSTI)

DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE Final Technical Report (DE-FGO1-96EE 15669) Project Period: 7/1/96 - 6/30/98 For submission to: The US Department of Energy, EE-20 1000 Independence Avenue, SW Washington, DC 20585 Attn: Mr. David Crouch Prepared by: Dr. Alexander Gorlov, PI MIME Department Northeastern University Boston, MA 02115 August, 1998 DISCLAIMER T h i s nport,was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or

11

Biphase turbine for reverse osmosis desalination. Final report  

SciTech Connect (OSTI)

A new hydraulic reaction turbine was designed to recover the power available in the high-pressure waste-brine stream of reverse osmosis desalination systems. A reaction turbine sized for reverse-osmosis systems producing 600 gph was built and tested. The turbine performed well driving either a variable-speed pump or an electrical generator. Measured turbine efficiency (shaft power divided by available power) was 63%, compared with a prediction of 67%. The turbine can be built with larger capacity to reduce the size, weight and power consumption of reverse osmosis desalination systems. Efficiency of larger units is predicted to lie in the range of 65 to 70%.

Limburg, P.L.

1982-12-01T23:59:59.000Z

12

Guidelines for maintaining steam turbine lubrication systems. Final report  

SciTech Connect (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

Lamping, G.A.; Cuellar, J.P. Jr.; Silvus, H.S.; Barsun, H.F.

1986-07-01T23:59:59.000Z

13

Ceramic stationary gas turbine development. Final report, Phase 1  

SciTech Connect (OSTI)

This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

NONE

1994-09-01T23:59:59.000Z

14

Siting guidelines for utility application of wind turbines. Final report  

SciTech Connect (OSTI)

Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

Pennell, W.T.

1983-01-01T23:59:59.000Z

15

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

16

Advanced wind turbine design studies: Advanced conceptual study. Final report  

SciTech Connect (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

17

Acoustic emission monitoring of steam turbines. Final report  

SciTech Connect (OSTI)

Experience over several years with on-line monitoring of steam turbines, supported by relevant laboratory studies, has led to a clearer understanding of the conditions under which acoustic emission (AE) due to turbine shaft cracking can be detected. To overcome problems associated with the noisy environment, efforts have been directed at improving the AE signal discrimination capabilities of the monitoring electronics. These efforts have been guided by extensive measurements of the amplitude, frequency and time dependence of normal turbine noises in a variety of operating conditions. Similar measurements have been made in the laboratory to determine the characteristics of AE due to crack growth in rotor steels with several loading conditions and temperatures. Along with determinations of the attenuation and wave propagation characteristics of simulated AE in the rotor shafts, these measurements have permitted estimates of the detectability of AE due to crack growth under various conditions, should it occur. An essential part of the proposed monitoring will be determining the source locations and characteristics of ''normal'' operating noise and developing time histories of these sources so that when ''abnormal'' crack growth AE occurs, it will be recognized. The time histories of the ''normal'' operating noises may also reveal other potentially damaging conditions such as lubricating oil contamination, bearing wear, out-of-balance condition, loose turbine disks, blade cracking or rubbing and impingement of exfoliation particles or water droplets, each of which is known or expected to have a characteristic acoustic signature. 17 refs., 23 figs., 8 tabs.

Randall, R.L.; Hong, C.; Graham, L.J.

1986-02-01T23:59:59.000Z

18

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect (OSTI)

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

19

Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998  

SciTech Connect (OSTI)

The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

Gorlov, A.

1998-08-01T23:59:59.000Z

20

Collaborative Advanced Gas Turbine Program: Phase 1. Final report  

SciTech Connect (OSTI)

The Collaborative Advanced Gas Turbine (CAGT) Program is an advanced gas turbine research and development program whose goal is to accelerate the commercial availability, to within the turn of the century, of high efficiency aeroderivative gas turbines for electric power generating applications. In the first project phase, research was conducted to prove or disprove the research hypothesis that advanced aeroderivative gas turbine systems can provide a promising technology alternative, offering high efficiency and good environmental performance characteristics in modular sizes, for utility applications. This $5 million, Phase 1 research effort reflects the collaborative efforts of a broad and international coalition of industries and organizations, both public and private, that have pooled their resources to assist in this research. Included in this coalition are: electric and gas utilities, the Electric Power Research Institute, the Gas Research Institute and the principal aircraft engine manufacturers. Additionally, the US Department of Energy (DOE) and the California Energy Commission have interacted with the CAGT on both technical and executive levels as observers and sources of funding. The three aircraft engine manufacturer-led research teams participating in this research include: Rolls-Royce, Inc., and Bechtel; the Turbo Power and Marine Division of United Technologies and Fluor Daniel; and General Electric Power Generation, Stewart and Stevenson, and Bechtel. Each team has investigated advanced electric power generating systems based on their high-thrust (60,000 to 100,000 pounds) aircraft engines. The ultimate goal of the CAGT program is that the community of stakeholders in the growing market for natural-gas-fueled, electric power generation can collectively provide the right combination of market-pull and technology-push to substantially accelerate the commercialization of advanced, high efficiency aeroderivative technologies.

Hollenbacher, R.; Kesser, K.; Beishon, D.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microsoft Word - Wind Report Final June 15 2010.doc  

Gasoline and Diesel Fuel Update (EIA)

B B EIA Task Order No. DE-DT0000804, Subtask 3 The Cost and Performance of Distributed Wind Turbines, 2010-35 Final Report June 2010 Prepared for: Office of Integrated Analysis & Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: RKwartin@icfi.com ii Table of Contents Executive Summary ..................................................................................................................... iv Introduction ................................................................................................................................... v 1. Technology Overview............................................................................................................1

22

Demonstration of wind turbine. Final technical report at grant program  

SciTech Connect (OSTI)

Proposal F-602 is a demonstration of a commercially available wind-electric device - an Enertech Corp. Series 1800 model wind turbine. The demonstration site selected was the New Directions school campus, a public school facility, in Sarasota, Florida. During testing, an investigation of the wind power potential for the area was undertaken. In addition, negotiations with the Florida Power and Light Company for parallel operation of the wind system (utility interface), were initiated. An Operating Agreement contract is now pending approval by the Sarasota County School Board. The results to date, of this site's wind power potential, have been well below computational expectancies based upon wind speed data for the area. Analysis will continue, to determine the cause of the windplant's low net output.

Pendola, W. Jr.

1982-06-01T23:59:59.000Z

23

Advanced turbine systems sensors and controls needs assessment study. Final report  

SciTech Connect (OSTI)

The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

Anderson, R.L.; Fry, D.N.; McEvers, J.A.

1997-02-01T23:59:59.000Z

24

Turbines  

Science Journals Connector (OSTI)

... with his torical notes and some explanations of the principles involved in the working of turbines. This is fol lowed by three chapters on water-wheels, ... . This is fol lowed by three chapters on water-wheels, turbine pumps, and water ...

1922-02-09T23:59:59.000Z

25

Advanced turbine systems program -- Conceptual design and product development. Final report  

SciTech Connect (OSTI)

This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

NONE

1996-07-26T23:59:59.000Z

26

Concrete international /january 2010 35 Portland limestone cement (PLC) is produced by  

E-Print Network [OSTI]

Concrete international /january 2010 35 Portland limestone cement (PLC) is produced by blending demonstration of PLC concrete in the late-fall construction of a parking lot at a ready mixed concrete plant near Gatineau, QC, Canada. The performance of the plastic and hardened concretes produced with PLC

27

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect (OSTI)

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

28

R and D for improved efficiency, small steam turbines: Phase I. Final technical report  

SciTech Connect (OSTI)

Results of an investigation of the development of a class of highly efficient steam turbines in the 500 to 5000 horsepower range are presented; these new machines are expected to have efficiences between 70 and 85%. The turbines are based on the concept of one or more high-speed radial inflow turbine modules driving a low-speed bull gear. Each module operates then at optimal specific speed, which yields high efficiency compared to the partial admission Curtiss stages currently used. The project has two phases. Phase 1 includes investigation and interpretation of the market for small steam turbines and definition of the radial inflow turbine (RIT) configurations best suited to penetrate a significant portion of this market. Phase 1 concludes with a recommended configuration. (MCW)

None

1980-02-01T23:59:59.000Z

29

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

30

Microsoft Word - Turbine Manufactures MOU FINAL_5-31-08_.doc  

Broader source: Energy.gov (indexed) [DOE]

this Memorandum of Understanding this Memorandum of Understanding (MOU), the U.S. Department of Energy (DOE) and the signing members of the wind turbine industry (the Parties) agree to work cooperatively to define and develop the framework for appropriate technology R&D and siting strategies for realizing 20% Wind Energy by 2030. The Parties intend to address several specific needs in the following areas: * Turbine Reliability and Operability R&D to create more reliable components, improve turbine capacity factors, and reduce installed and O&M costs. * Siting Strategies to address environmental and technical issues like radar interference in a standardized framework based on industry best practices. * Standards development for turbine certification and universal

31

Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report  

SciTech Connect (OSTI)

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

32

A new emergency lubricating-oil system for steam turbine generators: Final report  

SciTech Connect (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

33

Final report of the decontamination and decommissioning of the BORAX-V facility turbine building  

SciTech Connect (OSTI)

The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

Arave, A.E.; Rodman, G.R.

1992-12-01T23:59:59.000Z

34

Final report of the decontamination and decommissioning of the BORAX-V facility turbine building  

SciTech Connect (OSTI)

The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

Arave, A.E.; Rodman, G.R.

1992-12-01T23:59:59.000Z

35

Advanced turbine systems program. Final report, August 3, 1993--August 31, 1996  

SciTech Connect (OSTI)

Six tasks were approved under the Advanced Turbine Systems (ATS) extension program. The six tasks include the following: Task 5.0 -- Market Study. The objective of the market study task is to focus on distributed generation prospects for an industrial ATS, using the Allison ATS family as the primary gas turbine systems. Task 6.0 -- Gas Fired Advanced Turbine System (GFATS) Definition and Analysis. Task 8.01 -- Castcool{reg_sign} Blades Fabrication Process Development. Task 8.04 -- ATS Low Emission Combustion System. Task 8.07 -- Ceramic Vane Design and Evaluation. Task 9.0 -- Program Management. Each of these tasks is described, progress is discussed, and results are given.

NONE

1996-12-31T23:59:59.000Z

36

Evaluation of a moisture removal device for turbine steam piping. Final report  

SciTech Connect (OSTI)

Moisture-induced erosion and corrosion of nuclear power plant steam pipes is a significant and costly maintenance problem. By removing moisture from steam leaving the high-pressure turbines, high-velocity moisture separators can minimize this damage in a vulnerable system and improve plant thermal performance.

Anderson, R.E.; Draper, K.L.; Kadlec, R.A.; Stoudt, R.A.

1985-04-01T23:59:59.000Z

37

Advanced turbine systems study system scoping and feasibility study. Final report  

SciTech Connect (OSTI)

United Technologies Research Center, Pratt & Whitney Commercial Engine Business, And Pratt & Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R&D programs is adapted to aero-derivative industrial engines.

Not Available

1993-04-01T23:59:59.000Z

38

Advanced Turbine System (ATS): Task 1, System scoping and feasibility study. Final report  

SciTech Connect (OSTI)

Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO{sub x} < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB`s experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

van der Linden, S.

1993-02-01T23:59:59.000Z

39

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1982-08-01T23:59:59.000Z

40

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996  

SciTech Connect (OSTI)

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

NONE

1996-10-01T23:59:59.000Z

42

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

estimate of future floating turbine depths. [ 32 ] Theenvisioned floating offshore wind turbines. Finally, global

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

43

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

44

An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report  

SciTech Connect (OSTI)

To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

2011-11-01T23:59:59.000Z

45

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

46

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

envisioned floating offshore wind turbines. Finally, global35 ] For the three turbines considered, offshore wind farmsusable wind power is evaluated for modern offshore turbine

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

47

Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352  

SciTech Connect (OSTI)

Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

Wright, A.

2014-01-01T23:59:59.000Z

48

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

49

MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner. Final report  

SciTech Connect (OSTI)

The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

Bose, S.; Sheffler, K.D.

1988-02-01T23:59:59.000Z

50

FINAL  

Broader source: Energy.gov (indexed) [DOE]

2 2 FINAL ENVIRONMENTAL ASSESSMENT FOR EXIDE TECHNOLOGIES ELECTRIC DRIVE VEHICLE BATTERY AND COMPONENT MANUFACTURING INITIATIVE APPLICATION, BRISTOL, TN, AND COLUMBUS, GA U.S. Department of Energy National Energy Technology Laboratory March 2010 DOE/EA-1712 FINAL ENVIRONMENTAL ASSESSMENT FOR EXIDE TECHNOLOGIES ELECTRIC DRIVE VEHICLE BATTERY AND COMPONENT MANUFACTURING INITIATIVE APPLICATION, BRISTOL, TN, AND COLUMBUS, GA U.S. Department of Energy National Energy Technology Laboratory March 2010 DOE/EA-1712 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Environmental Assessment for Exide Technologies Electric Drive Vehicle Battery and Component Manufacturing Initiative Application, Bristol, TN, and Columbus, GA

51

Reliability of steam-turbine rotors. Task 1. Lifetime prediction analysis system. Final report. [Using STRAP and SAFER computer codes and boresonic data  

SciTech Connect (OSTI)

Task 1 of RP 502, Reliability of Steam Turbine Rotors, resulted in the development of a computerized lifetime prediction analysis system (STRAP) for the automatic evaluation of rotor integrity based upon the results of a boresonic examination of near-bore defects. Concurrently an advanced boresonic examination system (TREES), designed to acquire data automatically for lifetime analysis, was developed and delivered to the maintenance shop of a major utility. This system and a semi-automated, state-of-the-art system (BUCS) were evaluated on two retired rotors as part of the Task 2 effort. A modified nonproprietary version of STRAP, called SAFER, is now available for rotor lifetime prediction analysis. STRAP and SAFER share a common fracture analysis postprocessor for rapid evaluation of either conventional boresonic amplitude data or TREES cell data. The final version of this postprocessor contains general stress intensity correlations for elliptical cracks in a radial stress gradient and provision for elastic-plastic instability of the ligament between an imbedded crack and the bore surface. Both linear elastic and ligament rupture models were developed for rapid analysis of linkup within three-dimensional clusters of defects. Bore stress-rupture criteria are included, but a creep-fatigue crack growth data base is not available. Physical and mechanical properties of air-melt 1CrMoV forgings are built into the program; however, only bounding values of fracture toughness versus temperature are available. Owing to the lack of data regarding the probability of flaw detection for the boresonic systems and of quantitative verification of the flaw linkup analysis, automatic evlauation of boresonic results is not recommended, and the lifetime prediction system is currently restricted to conservative, deterministic analysis of specified flaw geometries.

Nair, P.K.; Pennick, H.G.; Peters, J.E.; Wells, C.H.

1982-12-01T23:59:59.000Z

52

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

SciTech Connect (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

53

Steam Turbines  

Science Journals Connector (OSTI)

... chapters take up the design of nozzles and blades, and descriptions of commercial types of turbines. The treatment of low-pressure, mixed pressure, bleeder, and marine ... . The treatment of low-pressure, mixed pressure, bleeder, and marine turbines occupies separate chapters. Of these, the section dealing with the marine ...

1917-09-20T23:59:59.000Z

54

Final  

Broader source: Energy.gov (indexed) [DOE]

, , Final for Vegetation Control at VHF Stations, Microwave Stations, Electrical Substations, and Pole Yards . Environmental Assessment Prepared for Southwestern Power Administration U.S. Department of Energy - _ . . . " Prepared by Black & Veatch October 13,1995 ' Table of Contents 1 . 0 Purpose and Need for Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 Description of the Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Alternative 1 . No Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Alternative 2 . Mechanical and Manual Control . . . . . . . . . . . . . . . . . . . 2.3 Alternative 3 . Proposed Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Foliar Spray Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Soil-Spot Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210  

SciTech Connect (OSTI)

Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

Hughes, S.

2012-05-01T23:59:59.000Z

56

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

SciTech Connect (OSTI)

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

57

Small gas turbine technology  

Science Journals Connector (OSTI)

Small Gas Turbine Technology: Small gas turbine, in the power range up to 500 kW, requires a recuperated thermodynamic cycle to achieve an electrical efficiency of about 30%. This efficiency is the optimum, which is possible for a cycle pressure ratio of about 4–1. The cycle airflow is function of the power requirement. To increase the efficiency, in view to reduce the CO2 emission, it is mandatory to develop a more efficient thermodynamic cycle. Different thermodynamic cycles were examined and the final choice was made for an Intercooled, Recuperated cycle. The advantage of this cycle, for the same final electrical efficiency of about 35%, is the smaller cycle airflow, which is the most dimensional parameter for the important components as the heat exchanger recuperator and the combustion chamber. In parallel with the thermodynamic cycle it is necessary to develop the High Speed Alternator technology, integrated on the same shaft that the gas turbine rotating components, to achieve the constant efficiency at part loads, from 50% up to 100%, by the capacity to adjust the engine speed at the required load. To satisfy the stringent requirement in pollutant emissions of \\{NOx\\} and CO, the catalytic combustion system is the most efficient and this advance technology has to be proven. The major constraints for the small gas turbine technology development are the production cost and the maintenance cost of the unit. In the power range of 0–500 kW the gas turbine technology is in competition with small reciprocating engines, which are produced in large quantity for automotive industry, at a very low production cost.

Andre Romier

2004-01-01T23:59:59.000Z

58

Chapter 9 - Hydraulic Turbines  

Science Journals Connector (OSTI)

This chapter covers the following topics: Features of hydraulic turbines; Early history and development; Efficiency of various types of turbine; Size of the various turbine types; The Pelton wheel turbine and controlling its speed; Energy losses; Reaction turbines; The Francis and the Kaplan turbines; Calculation of performance; Effect of size on the performance of hydraulic turbines; Cavitation and its avoidance; Calculation of the various specific speeds of turbines; The Wells turbine- Design and performance variables; Tidal power turbines- The SeaGen tidal turbine and its operational principles.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

59

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

SciTech Connect (OSTI)

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

60

8 - Turbogenerators in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The functioning of turbogenerators is explained as the final link between the turbine and the grid. Basic physical laws are given, and principles to calculate the performance and application of generators to gas turbines are derived. It is shown how generators developed with the progress of gas turbines. Modern designs are described and latest test results of generators are reported. Finally, an outlook is given about the future trends in technology and products. The chapter utilizes the author’s in-house experience, and describes also achievements of other manufacturers.

B. Gellert

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

62

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

63

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

64

Life cycle assessment: A case study of two wind turbines used in Mexico  

Science Journals Connector (OSTI)

Abstract This paper presents the case study of two wind turbines installed in Mexico which are analyzed using the life cycle assessment (LCA) methodology. Environmental impacts of different fabrication materials and electricity consumption were studied for the main turbine components. The designs of both turbines were examined through the phases of manufacture, construction, and final disposal. Both turbines (turbine A and turbine B) were of 2.0 megawatts (MW). Results ascertain that the most intensive environmental impacts come from the nacelle and tower components of both turbines; and that within life cycle phases, turbine A influences the environment less than turbine B, specifically during manufacture and final disposal. This study is valuable for decision makers in the domain of technological product design and marketing; in order to determine which features of the wind turbines can be modified to mitigate environmental impacts, contributing to technological innovation in the domains of sustainability and renewable energies in Mexico.

A.V. Vargas; E. Zenón; U. Oswald; J.M. Islas; L.P. Güereca; F.L. Manzini

2015-01-01T23:59:59.000Z

65

Ris-R-Report Grid fault and design-basis for wind turbines -  

E-Print Network [OSTI]

Risø-R-Report Grid fault and design-basis for wind turbines - Final report Anca D. Hansen, Nicolaos and design-basis for wind turbines - Final report Division: Wind Energy Division Risø-R-1714(EN) January 2010-basis for wind turbines". The objective of this project has been to assess and analyze the consequences

66

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

67

Materials for Advanced Turbine Engines (MATE). Project 3: design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner. Final Report  

SciTech Connect (OSTI)

The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

Henricks, R.J.; Sheffler, K.D.

1984-02-01T23:59:59.000Z

68

Evaluation of synthetic-fuel character effects on rich-lean stationary gas-turbine combustion systems. Volume 2. Full-scale test program. Final report  

SciTech Connect (OSTI)

The effect of burner geometric scale on the emissions and performance produced by staged, rich lean combustors was investigated. Tests were conducted using a 25-cm diameter burner and the results obtained were compared with results previously obtained using a similar, but smaller (12.5-cm diameter) burner. The larger burner employed a convectively-cooled rich-burn section; the size of the burner is the size of the burner cans employed in the 25 Megawatt FT4 industrial gas turbine. Scale effects are of concern in staged rich/lean combustors because of the suspected critical importance of quench air jet penetration and fuel injector spray distribution, both processes being scaled dependent. Tests were conducted both with No. 2 petroleum distillate and with a nitrogen-bearing, middle-distillate synthetic fuel produced by the H-Coal process. Measurements of burner exit temperature profile, liner temperature, gaseous emission, and smoke emissions are presented and the results compared with subscale test results.

Kennedy, J.B.; McVey, J.B.; Rosfjord, T.J.; Russel, P.; Beal, G.

1983-05-01T23:59:59.000Z

69

EA-1923: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment EA-1923: Final Environmental Assessment Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands This EA...

70

EIS-0342: Final Environmental Impact Statement | Department of...  

Broader source: Energy.gov (indexed) [DOE]

2: Final Environmental Impact Statement EIS-0342: Final Environmental Impact Statement Wanapa Energy Center The participants propose to install highly efficient combustion turbines...

71

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

72

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

73

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

74

Wind Turbines Benefit Crops  

SciTech Connect (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2010-01-01T23:59:59.000Z

75

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

76

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

77

Assumptions to the Annual Energy Outlook 2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and U.S. Energy Information Administration, The Cost and Performance of Distributed Wind Turbines, 2010-35 Final Report, ICF International, August 2010. 43 U.S. Energy Information...

78

Sliding vane geometry turbines  

SciTech Connect (OSTI)

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30T23:59:59.000Z

79

Wind Turbine Competition Introduction  

E-Print Network [OSTI]

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

80

2.10 - Electrical Parts of Wind Turbines  

Science Journals Connector (OSTI)

Abstract This section presents the electrical subsystem of a wind turbine. Specifically, the power control, the generator, the power electronics, the grid connection, and the lightning protection modules are discussed. Though the content is targeted to present-day megawatt turbine, small machines are shortly presented. A list of the most important manufacturers in the field is also included. Finally, future outlook is described.

G.S. Stavrakakis

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Turbines - Oxy-Fuel Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

82

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

can significantly increase turbine efficiency. Exploratorymodel indicate that turbine efficiencies exceeding 75% canand experimental turbine efficiencies. The CFD solutions of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

83

10MW Class Direct Drive HTS Wind Turbine, CRADA Number CRD-08...  

Office of Scientific and Technical Information (OSTI)

10MW Class Direct Drive HTS Wind Turbine Cooperative Research and Development Final Report CRADA Number: CRD-08-00312 NREL Technical Contact: Walter Musial CRADA Report NREL...

84

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

85

NREL: Wind Research - Abundant Renewable Energy's ARE 442 Wind Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Get the Adobe Flash Player to see this video. A video of Abundant Renewable Energy's ARE 442 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Abundant Renewable Energy's ARE 442 turbine at the National Wind Technology Center (NWTC). The ARE 442 is a 10-kilowatt (kW), three-bladed, horizontal-axis upwind small wind turbine. It has a hub height of 30.9 meters and a rotor diameter of 7.2 meters. The turbine has a single-phase permanent-magnet generator that operates at variable voltages up to 410 volts AC. Testing Summary The summary of the tests is below with the final reports.

86

NREL: Wind Research - SWIFT Wind Turbine Testing and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SWIFT Wind Turbine Testing and Results SWIFT Wind Turbine Testing and Results The SWIFT wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing the SWIFT small wind turbine at the National Wind Technology Center (NWTC). The competitive grant was awarded to Cascade Engineering. The SWIFT is a 1-kilowatt (kW), five-bladed with outer ring, horizontal-axis upwind small wind turbine. The turbine's rotor diameter is 2 meters, and its hub height is 13.72 meters. The SWIFT uses a single-phase permanent-magnet generator rated at 1 kW grid connected through an inverter at 240 volts AC. Testing Summary Supporting data and explanations for data provided in this table will be provided in the final reports. Data presented are preliminary and subject

87

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

88

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

89

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

90

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

91

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

92

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

93

Economical Condensing Turbines?  

E-Print Network [OSTI]

an engineer decide when to conduct an in depth study of the economics either in the company or outside utilizing professional engineers who are experts in this type of project. Condensing steam turbines may not be economical when the fuel is purchased...Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown...

Dean, J. E.

94

Ris-R-Report 12MW: final report  

E-Print Network [OSTI]

the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st char.): `12MW: final report' is for the project with the full title `12 MW wind turbines

95

EA-1792: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment EA-1792: Final Environmental Assessment University of Maine's DeepWater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine...

96

EA-1859: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1859: Final Environmental Assessment Kirkwood Community College Wind Turbine Project The U.S. Department of Energy (DOE) has provided Federal funding to...

97

Turbines and turbulence  

Science Journals Connector (OSTI)

... Will wind turbines wreck the environment? Last month, the South China Morning Post published a news story ... dismissive official quoted probably has a point. There is no solid scientific evidence that wind turbines can trigger major changes in rainfall. And given Nature's conversations with atmospheric modellers ...

2010-12-22T23:59:59.000Z

98

Modern Gas Turbines  

Science Journals Connector (OSTI)

... THE published information on gas turbines is both voluminous and widely dispersed, a considerable part of the technical literature of ... hands of students whose imagination has been fired by the rapid development of the gas turbine, and whose knowledge of thermodynamics may not be sufficient to detect such errors. There ...

E. G. STERLAND

1948-06-12T23:59:59.000Z

99

Shipbuilding: Cunard Turbines Examined  

Science Journals Connector (OSTI)

... judge. It will be a great achievement if he can devise an assessment of the turbine troubles to satisfy all three parties. The Minister of Technology, Mr Anthony Wedgwood Benn ... Arnold to examine reports from all three companies on the faults which arose in the turbines during the recent trials of the QE2, and to assess the remedial measures that ...

1969-02-15T23:59:59.000Z

100

Single rotor turbine engine  

DOE Patents [OSTI]

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ceramic Cerami Turbine Nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

102

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

103

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

104

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

105

Cooled snubber structure for turbine blades  

DOE Patents [OSTI]

A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

2014-04-01T23:59:59.000Z

106

Composite turbine bucket assembly  

DOE Patents [OSTI]

A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

Liotta, Gary Charles; Garcia-Crespo, Andres

2014-05-20T23:59:59.000Z

107

Aviation turbine fuels, 1980  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1980 are presented in this report. The samples represented are typical 1980 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 98 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5 and commercial type Jet A.

Shelton, E.M.

1981-03-01T23:59:59.000Z

108

Aviation turbine fuels, 1982  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

109

Aviation turbine fuels, 1979  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1979 are presented in this report. The samples represented are typical 1979 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 93 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1980-05-01T23:59:59.000Z

110

Aviation turbine fuels, 1981  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1981 are presented in this report. The samples represented are typical 1981 production and were analyzed in the laboratories of 15 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 95 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1982-04-01T23:59:59.000Z

111

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

112

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

113

Category:Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine Jump to: navigation, search Pages in category "Wind turbine" This category contains only the following page. W Wind turbine Retrieved from "http:en.openei.orgw...

114

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

115

NETL: Turbines Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

116

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

117

Gas Turbine Emissions  

E-Print Network [OSTI]

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

Frederick, J. D.

118

Scale Models & Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

119

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

120

Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development  

SciTech Connect (OSTI)

Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2010-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

122

Chapter 4 - Axial-Flow Turbines: Mean-Line Analysis and Design  

Science Journals Connector (OSTI)

This chapter begins with a historical perspective on the development of the modern axial turbine, which is now a highly advanced technology that is critical for aircraft propulsion and power generation. The basic analysis of axial turbines is covered, including velocity triangles and the principle mean-line relationships. The derivation of turbine efficiency from loss coefficients is presented as well as a detailed discussion of the various loss sources that lead to efficiency reduction. The main calculations used in the initial design of a multistage turbine are then detailed along with worked examples and comparisons between designs with low and high levels of reaction. Turbine efficiency correlations are also explored for different design styles. In the final sections, the centrifugal stresses in turbine rotor blades and the effects of turbine blade cooling are considered.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

123

Hydrogen Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

124

Distributed Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distributed Wind Turbines Distributed Wind Turbines Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to...

125

Hydraulic Turbines: Types and Operational Aspects  

Science Journals Connector (OSTI)

The turbine is considered to be the heart of ... , the proper selection and operation of the turbine is very important.

Prof. Dr.-Ing Hermann-Josef Wagner…

2011-01-01T23:59:59.000Z

126

Efficient steam turbines produced by the “Ural Turbine Plant” company  

Science Journals Connector (OSTI)

Design features and efficiency of some steam turbines produced at present by a plant formed as a result of division of the “Turbine Motor Plant” Company into several enterprises are...

G. D. Barinberg; A. E. Valamin

127

Bottom steam turbines of the Ural Turbine Works  

Science Journals Connector (OSTI)

Basic design features, thermal schemes, and economic indicators of some bottom turbines that have been developed, as well as ... that have partially been manufactured at the Ural Turbine Works, are presented.

G. D. Barinberg; A. E. Valamin; Yu. A. Sakhnin

2008-08-01T23:59:59.000Z

128

Combined gas turbine-Rankine turbine power plant  

SciTech Connect (OSTI)

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

129

Turbine tip clearance loss mechanisms  

E-Print Network [OSTI]

Three-dimensional numerical simulations (RANS and URANS) were used to assess the impact of two specific design features, and of aspects of the actual turbine environment, on turbine blade tip loss. The calculations were ...

Mazur, Steven (Steven Andrew)

2013-01-01T23:59:59.000Z

130

Ceramics for ATS industrial turbines  

SciTech Connect (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

131

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

132

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

133

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

134

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

135

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

136

Turbine-generator replacement study  

SciTech Connect (OSTI)

This paper describes an engineering study for the replacement of a nominal 70 Mw turbine-generator in a multi-unit utility cogeneration station. The existing plant is briefly described, alternatives considered are discussed, and the conclusions reached are presented. Key topics are the turbine steam cycle evaluation and the turbine pedestal analysis.

Miller, E.F.; Stuhrke, S.P., Shah, A.A. (Burns and Roe Enterprises, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

137

Ceramic gas turbine shroud  

DOE Patents [OSTI]

An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

Shi, Jun; Green, Kevin E.

2014-07-22T23:59:59.000Z

138

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

139

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

140

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Multiple piece turbine airfoil  

DOE Patents [OSTI]

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

142

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

143

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

144

41737 Final  

Office of Scientific and Technical Information (OSTI)

Water Treatment Cycle chemistry Makeup demineralizer Demineralized and raw water tanks Waste water treatment Stack Stack sizing and number of flues Stack materials Turbine...

145

Wind Turbine Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

146

Wind Turbine Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

147

NETL: Turbine Projects - Cost Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

148

8 - Radial-Inflow Turbines  

Science Journals Connector (OSTI)

Publisher Summary The inward-flow radial turbine covers tremendous ranges of power, rates of mass flow, and rotational speeds from very large Francis turbines used in hydroelectric power generation and developing hundreds of megawatts down to tiny closed cycle gas turbines for space power generation of a few kilowatts. The widespread adoption of variable geometry turbines for diesel engine turbochargers has been the major factor in increasing the commercial use of this technology. Variable area is commonly, but not exclusively, achieved by pivoting the nozzle vanes about an axis disposed in the span-wise direction. The most common radial-inflow turbine applications are turbochargers for internal combustion engines, natural gas, diesel, and gasoline powered units. The advantage of a turbocharger is that it compresses the air, thus letting the engine squeeze more air into a cylinder, and more air means that more fuel can be added. Applications of turbo expanders in the chemical industry abound in the petrochemical and chemical industries. Turbo expanders using radial-inflow turbines have a much higher ruggedness than turbo expanders using axial-flow turbines. The radial-inflow turbine for gas turbine application is basically a centrifugal compressor with reversed flow and opposite rotation. The performance of the radial-inflow turbine is being investigated with increased interest by the transportation and chemical industries. In the petrochemical industry, it is used in expander designs, gas liquefaction expanders and other cryogenic systems. The radial-inflow turbine’s greatest advantage is that the work produced by a single stage is equivalent to that of two or more stages in an axial turbine. Its cost is also much lower than that of a single- or multi-stage axial-flow turbine. The configurations and designs of the two types of radial-inflow turbine (cantilever and mixed-flow) are described. The thermodynamic and aerodynamic principles governing a radial-inflow turbine are summarized. The design and performance of a radial-inflow turbine are discussed. The potential problems (erosion; exducer blade vibration; noise) and types of losses in a radial-inflow turbine are described. Applications of radial-inflow turbines (e.g. turbochargers) are discussed.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

149

NREL: Wind Research - Entegrity Wind Systems's EW50 Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Entegrity Wind Systems's EW50 Turbine Testing and Results Entegrity Wind Systems's EW50 Turbine Testing and Results Entegrity Wind Systems' EW50 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Entegrity Wind Systems' EW50 turbine at the National Wind Technology Center (NWTC). The EW50 is a 50-kilowatt (kW), three-bladed, horizontal-axis downwind small wind turbine. The turbine's rotor diameter is 15 meters, and its hub height is 30.5 meters. It has a three-phase induction generator that operates at 480 volts AC. Testing Summary The summary of the tests is listed below, along with the final reports. Cumulative Energy Production 3/11/2009: 17; 3/12/2009: 17; 3/13/2009: 17; 3/14/2009: 17; 3/15/2009: 17;

150

NREL: Wind Research - Gaia-Wind's 11 Kilowatt Wind Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results A video of Gaia-Wind's 11-kW wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Gaia-Wind's 11-kilowatt (kW) small wind turbine at the National Wind Technology Center (NWTC). Gaia-Wind's turbine is a three-phase induction generator that operates at 480 volts. The turbine's downwind rotor has a 13-meter diameter, and its tower is 18 meters tall. The two-bladed, oversized rotor is designed for low to moderate wind speeds. Testing Summary The summary of the tests is below with the final reports. Cumulative Energy Production 6/11/2008: 210; 6/13/2008: 528; 6/16/2008: 716; 6/18/2008: 731; 6/19/2008:

151

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

152

Turbine blade tip gap reduction system  

SciTech Connect (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

153

Dynamic gas bearing turbine technology in hydrogen plants  

Science Journals Connector (OSTI)

Dynamic Gas Bearing Turbines - although applied for helium refrigerators and liquefiers for decades - experienced limitations for hydrogen applications due to restrictions in axial bearing capacity. With a new design concept for gas bearing turbines developed in 2004 axial bearing capacity was significantly improved enabling the transfer of this technology to hydrogen liquefiers. Prior to roll-out of the technology to industrial plants the turbine bearing technology passed numerous tests in R&D test benches and subsequently proved industrial scale demonstration at Linde Gas' hydrogen liquefier in Leuna Germany. Since its installation this turbine has gathered more than 16 000 successful operating hours and has outperformed its oil bearing brother in terms of performance maintainability as well as reliability. The present paper is based on Linde Kryotechnik AG's paper published in the proceedings of the CEC 2009 concerning the application of Dynamic Gas Bearing Turbines in hydrogen applications. In contrast to the former paper this publication focuses on the steps towards final market launch and more specifically on the financial benefits of this turbine technology both in terms of capital investment as well as operating expenses.

Klaus Ohlig; Stefan Bischoff

2012-01-01T23:59:59.000Z

154

Sandia National Laboratories: turbine-to-turbine interaction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

155

Turbine seal assembly  

DOE Patents [OSTI]

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

156

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

157

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

158

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

159

Multiple piece turbine airfoil  

SciTech Connect (OSTI)

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

160

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Turbine cooling waxy oil  

SciTech Connect (OSTI)

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

162

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

163

Anticipatory control of turbine generators  

E-Print Network [OSTI]

of Turbine Generators. (Nay 1971) Freddie Laurel Nessec, B. S. E. E, , Texas Tech University; Directed by: Professor J. S . Denison An investigation is made of the use of predicted loads in controlling turbine generators. A perturbation model of a turbine... generator is presented along with typical parameter values. A study is made of the effects of applying control action before a load change occurs. Two predictive control schemes are investi- gated using a load cycle which incorporates both ramp and step...

Messec, Freddie Laurel

1971-01-01T23:59:59.000Z

164

Externally fired gas turbine technology: A review  

Science Journals Connector (OSTI)

Abstract Externally fired heat engines were used widely since helium the industrial revolution using dirty solid fuels for example coal, due to the lack of refined fuels. However, with the availability of clean fuels, external firing mode was abandoned, except for steam power plants. Lately, with the global trend moving towards green power production, the idea of the external fired system has captured the attention again especially externally fired gas turbine (EFGT) due to its wider range of power generation and the potential of using environment friendly renewable energy sources like biomass. In this paper, a wide range of thermal power sources utilizing EFGT such as concentrated solar power (CSP), fossil, nuclear and biomass fuels are reviewed. Gas turbine as the main component of EFGT is investigated from micro scale below 1 MWe to the large scale central power generation. Moreover, the different high temperature heat exchanger (HTHE) materials and designs are reviewed. Finally, the methods of improving cycle efficiency such as the externally fired combined cycle (EFCC), humidified air turbine (HAT), EFGT with fuel cells and other cycles are reviewed thoroughly.

K.A. Al-attab; Z.A. Zainal

2015-01-01T23:59:59.000Z

165

NREL: Wind Research - Advanced Research Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control schemes...

166

Computational Aerodynamics and Aeroacoustics for Wind Turbines  

E-Print Network [OSTI]

Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

167

Large eddy simulation applications in gas turbines  

Science Journals Connector (OSTI)

...exhaust plume development. The application...modelling in the gas turbine combustor...modelling strategies for the complex...flows in the gas turbine, as surveyed...of typical gas turbine parts necessitates...made in the development and application...

2009-01-01T23:59:59.000Z

168

Motion of floating wind turbines.  

E-Print Network [OSTI]

?? Motion of floating wind turbines has been studied. A literature study on different concepts and what tools are available for simulating them is presented.… (more)

Linde, Břrge

2010-01-01T23:59:59.000Z

169

The military aircraft gas turbine  

Science Journals Connector (OSTI)

The development of the gas turbine for use in military aircraft is discussed. The advancing fields of component technology and engine testing are also outlined

R.M. Denning; R.J. Lane

1983-01-01T23:59:59.000Z

170

Aerodynamic Analysis of wind turbine.  

E-Print Network [OSTI]

??The thesis investigates the application of vortex theory for analyzing the aerodynamic loads on wind turbine blades. Based on this method, a graphical user friendly… (more)

Zarmehri, Ayyoob

2012-01-01T23:59:59.000Z

171

On modelling of grouped reliability data for wind turbines  

Science Journals Connector (OSTI)

......Special Issue Maintenance Modelling...data for wind turbines F. P. A...generation by wind turbines (WTs) has...turbines or maintenance activities...generation by wind turbines (WTs) has...turbines or maintenance activities......

F. P. A. Coolen; F. Spinato; D. Venkat

2010-10-01T23:59:59.000Z

172

Developing Biological Specifications for Fish Friendly Turbines...  

Broader source: Energy.gov (indexed) [DOE]

Developing Biological Specifications for Fish Friendly Turbines Developing Biological Specifications for Fish Friendly Turbines This factsheet explains studies conducted in a...

173

Brilliant Wind Turbine | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries The conventional wisdom around wind is that the...

174

Turbine Electric Power Inc | Open Energy Information  

Open Energy Info (EERE)

Turbine Electric Power Inc Sector: Vehicles Product: US-based, holder of the 'exclusive worldwide rights' to install, sell, market and distribute a new 'high tech' micro turbine...

175

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

176

Addressing Wind Turbine Tribological Challenges with Surface...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addressing Wind Turbine Tribological Challenges with Surface Engineering Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Addressing...

177

Recent Advances in Turbines1  

Science Journals Connector (OSTI)

... ON two previous occasions I have addressed this institution on the steam turbine. At the time of the first lecture, in 1900, the ... . At the time of the first lecture, in 1900, the turbine may be described as having been in the “advanced experimental stage.”Six years later ...

1911-04-20T23:59:59.000Z

178

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

inclination angle was about 1°. The spinner anemometer measurements were correlated with wind speed and windOptimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy

179

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

180

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Aero Turbine | Open Energy Information  

Open Energy Info (EERE)

Aero Turbine Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine Energy Company Location Riverside County CA Coordinates 33.7437°, -115.9925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7437,"lon":-115.9925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

NREL: Wind Research - Viryd Technologies' CS8 Turbine Testing and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viryd Technologies' CS8 Turbine Testing and Results Viryd Technologies' CS8 Turbine Testing and Results Viryd Technologies CS8 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing Viryd Technologies' CS8 small wind turbine at the National Wind Technology Center (NWTC). The CS8 is an upwind, horizontal-axis, three-bladed, stall controlled turbine rated at 8 kilowatts (kW). It has an 8.5-meter rotor diameter and is mounted on a guyed tilt-up lattice tower with a hub height of 24.9 meters. The CS8 uses a single-phase, grid-connected, induction generator that operates at 240 volts AC. Testing Summary Supporting data and explanations for data included in this table are provided in the final reports.

183

NREL: Wind Research - Ventera's VT 10 Turbine Testing and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventera's VT 10 Turbine Testing and Results Ventera's VT 10 Turbine Testing and Results Ventera's VT10 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing Ventera's VT10 small wind turbine at the National Wind Technology Center (NWTC). The VT10 is a horizontal-axis downwind, three-bladed turbine rated at 10 kilowatts (kW). Its diameter is 6.7 meters, and it is mounted on a lattice tower with a hub height of 21.7 meters. The VT10 uses a single-phase, grid-connected, permanent-magnet generator that operates at 240 volts AC. Testing Summary The summary of the tests is listed below, along with the final reports. Cumulative Energy Production 3/22/2010: 0; 3/29/2010: 26; 3/31/2010: 74; 4/1/2010: 75; 4/2/2010: 174;

184

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

185

Installing Small Wind Turbines Seminar and Workshop  

E-Print Network [OSTI]

Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

186

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

187

5th International Meeting Wind Turbine Noise  

E-Print Network [OSTI]

1 5th International Meeting on Wind Turbine Noise Denver 28 ­ 30 August 2013 Wind Turbine Noise Broadband noise generated aerodynamically is the dominant noise source for a modern wind turbine(Brooks et, clean energy. While profiting from wind energy, the noise produced by a modern wind turbine becomes

Paris-Sud XI, Université de

188

NREL: Wind Research - Small Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

189

NREL: Wind Research - Midsize Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

190

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

191

Turbine efficiency test on a large hydraulic turbine unit  

Science Journals Connector (OSTI)

The flow rate measurements are the most difficult part of efficiency tests on prototype hydraulic turbines. Among the numerous flow rate measurement methods ... the Winter Kennedy method is preferred for measurin...

ZongGuo Yan; LingJiu Zhou; ZhengWei Wang

2012-08-01T23:59:59.000Z

192

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

193

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

194

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

195

Sprayed skin turbine component  

DOE Patents [OSTI]

Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

Allen, David B

2013-06-04T23:59:59.000Z

196

Steam turbines of the Ural Turbine Works for advanced projects of combined-cycle plants  

Science Journals Connector (OSTI)

We describe the design features, basic thermal circuits, and efficiency of steam turbines developed on the basis of serially produced steam turbines of Ural Turbine Works and used as part of combined-cycle plants...

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev

2009-09-01T23:59:59.000Z

197

Development of a low swirl injector concept for gas turbines  

E-Print Network [OSTI]

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

198

Turbine Aeration Physical Modeling and Software Design | Department...  

Broader source: Energy.gov (indexed) [DOE]

Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design...

199

Impulse Turbine Efficiency Calculation Methods with Organic Rankine Cycle.  

E-Print Network [OSTI]

?? A turbine was investigated by various methods of calculating its efficiency. The project was based on an existing impulse turbine, a one-stage turbine set… (more)

Dahlqvist, Johan

2012-01-01T23:59:59.000Z

200

Turbine-Fact-Sheets | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-High Temperature Thermal Barrier Coatings HiFunda, LLC Hydrogen Turbines SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines Florida Turbine Technologies...

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

a steel 1-MW wind turbine tower. ” Engineering Structures,testing of a steel wind turbine tower. ” Proceedings of theanalysis of steel wind turbine towers in the canadian

Prowell, I.

2011-01-01T23:59:59.000Z

202

Current Challenges in Wind Turbine Tribology | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Challenges in Wind Turbine Tribology Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Tribological Challenges in Wind Turbine...

203

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

for floating turbines [4]. ..15 Figure 3.1: Floating turbine degrees of freedom [the motion of a 5 MW floating turbine subjected to ocean

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

204

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

How Do Wind Turbines Work?  

Broader source: Energy.gov [DOE]

Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.

206

Vertical axis wind turbine acoustics  

E-Print Network [OSTI]

Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

Pearson, Charlie

2014-04-08T23:59:59.000Z

207

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

208

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

209

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

210

Rim seal for turbine wheel  

DOE Patents [OSTI]

A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

211

1 - Introduction to gas turbines  

Science Journals Connector (OSTI)

Abstract: This chapter provides an overview of the importance of gas turbines for the power generation and oil and gas sector and – in less detail – the aviation sector. Worldwide trends in power generation and electricity conversion processes and the role of gas turbines to minimise CO2 emissions are addressed. Gas turbines are essential and crucial to reduce emissions both in aviation and in power production. Technologies for improving gas turbine and system efficiency, through higher turbine inlet temperatures, improved materials, cooling methods and thermal barrier coatings are described. New thermodynamic approaches, including intercooling, water and steam injection and hybrid cycles are addressed. Major issues are also fuel and operational flexibility, reliability and availability, cost reduction and power density, especially for the offshore sector. Market trends have been sketched. In the coming decades, gas turbines will be one of the major technologies for CO2 emission reductions in the power generation, aviation, oil and gas exploration and transport sectors. This prognosis is based on their high current efficiency and further efficiency improvement potential, both for simple cycle as for combined-cycle applications.

A.J.A. Mom

2013-01-01T23:59:59.000Z

212

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

213

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

214

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

include some offshore wind turbines. That said, the factoffshore wind still accounts for a relatively small portion of Vestas’ turbine

Bolinger, Mark

2012-01-01T23:59:59.000Z

215

Seismic fragility analysis of 5 MW offshore wind turbine  

Science Journals Connector (OSTI)

Abstract Considering nonlinear soil–pile interaction, seismic fragility analysis of offshore wind turbine was performed. Interface between ground soils and piles were modeled as nonlinear spring elements. Ground excitation time histories were applied to spring boundaries. Two methods of applying ground motion were compared. Different time histories from free field analysis were applied to each boundary in the first loading plan (A). They were compared with the second loading plan (B) in which the same ground motion is applied to all boundaries. Critical displacement for wind turbine was proposed by using push-over analysis. Both the stress based and the displacement based fragility curves were obtained using dynamic responses for different peak ground accelerations (PGAs). In numerical example, it was shown that seismic responses from loading plan A are bigger than from plan B. It seems that the bigger ground motion at surface can cause less response at wind turbine due to phase difference between ground motions at various soil layers. Finally, it can be concluded that layer by layer ground motions from free field analysis should be used in seismic design of offshore wind turbine.

Dong Hyawn Kim; Sang Geun Lee; Il Keun Lee

2014-01-01T23:59:59.000Z

216

Performance of propeller wind turbines  

SciTech Connect (OSTI)

Presented herein is a parametric study of the performance of propeller wind turbines with realistic drag/lift ratios. Calculations were made using the complete Glauert vortex blade element theory in annular streamtube elements with the complete turbine performance being the sum of the elemental results up to a specified tip speed ratio. The objective here is to exhibit a new computational technique which yields performance directly when tangential speed ratio and section aerodynamic characteristics are specified. It was found that for a tip speed ratio of 4, turbines with drag/lift ratios of 0.00 and 0.01 had power coefficients of 0.575 and 0.55, respectively. The off-design performance of the finite drag/lift was far better than that of their zero drag counterparts, except in a + or - 20% region about the design conditions. Tolerance to off-design operation increased with decreasing tip speed ratios so that the annual energy capture for tip speed ratios between 2 and 4 was about 87% of the ideal turbine value. The results are intended to provide a basis for re-evaluation of the power range classes of fixed pitch turbines and design tip speed ratios.

Wortman, A.

1983-11-01T23:59:59.000Z

217

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect (OSTI)

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

218

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network [OSTI]

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

219

Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science  

SciTech Connect (OSTI)

Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

Not Available

2011-05-01T23:59:59.000Z

220

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radial-Radial Single Rotor Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. Available for thumbnail of Feynman Center (505) 665-9090 Email Radial-Radial Single Rotor Turbine A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power. U.S. Patent No.: 7,044,718 (DOE S-100,626) Patent Application Filing Date: July 8, 2003 Patent Issue Date: May 16, 2006 Licensing Status: Available for Express Licensing (?). View terms and a sample license agreement.

222

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

223

Building the Basic PVC Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

Energy Smart CD- Building PVC Turbine 8 Some Blade Building Tips KidWind model wind turbines are designed for use in science classes, or as a hobby or science fair project....

224

Diffuser Augmented Wind Turbine Analysis Code  

E-Print Network [OSTI]

, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

Carroll, Jonathan

2014-05-31T23:59:59.000Z

225

Golden Turbines LLC | Open Energy Information  

Open Energy Info (EERE)

Axis Logarithmic Spiral Turbine This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleGoldenTurbinesLLC&oldid76910...

226

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

gas turbines for combined heat and power”. In: Ap- plied10.1115/1.4001356. [3] Combined Heat and Power. Tech. rep.of Tesla Turbines for Combined Heat and Power Applications”.

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

227

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect (OSTI)

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

228

Consider Steam Turbine Drives for Rotating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

229

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

230

Speaker: Professor Alexander Turbiner, Instituto de Ciencias ...  

E-Print Network [OSTI]

Oct 27, 2009 ... PURDUE UNIVERSITY. Department of Mathematics Colloquium. Speaker: Professor Alexander Turbiner, Instituto de Ciencias Nucleares, ...

1910-91-01T23:59:59.000Z

231

TGM Turbines | Open Energy Information  

Open Energy Info (EERE)

TGM Turbines TGM Turbines Jump to: navigation, search Name TGM Turbines Place Sertaozinho, Sao Paulo, Brazil Zip 14175-000 Sector Biomass Product Brazil based company who constructs and sells boilers for biomass plants. Coordinates -21.14043°, -48.005154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-21.14043,"lon":-48.005154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Advanced coal-fueled gas turbine systems. Final report  

SciTech Connect (OSTI)

The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

Not Available

1993-08-01T23:59:59.000Z

233

Erosion resistant coatings for steam turbines: Final report  

SciTech Connect (OSTI)

A family of Cr/sub 3/C/sub 2/-based plasma sprayed coatings with a Fe-Cr-Al-Y or Co-Cr-Ni-W matrix were developed with up to a ten-fold improvement in solid particle erosion resistance over the type 422 stainless base at 1000/sup 0/F, and erodent velocities up to 1040 ft./sec. This high level of erosion resistance was achieved by defining a method of precipitation strengthening the Cr/sub 3/C/sub 2/ with Cr/sub 7/C/sub 3/. During conventional, high-energy plasma spraying, the Cr/sub 3/C/sub 2/ loses 20% of its carbon by oxidation and deposits as a ultrafine-grained (200 A to 5 micron), metastable phase that, under proper conditions, will decompose to Cr/sub 3/C/sub 2/ + Cr/sub 7/C/sub 3/. The reaction can be promoted by use of the Fe-Cr-Al-Y or Co-Cr-Ni-W chemistries, spraying in air rather than in inert environments, use of -325 Cr/sub 3/C/sub 2/, and aging (1000 to 1200/sup 0/F). Attempts to develop coatings based on Cr-B were unsuccessful. 21 refs., 36 figs., 12 tabs.

Wlodek, S.T.

1987-09-01T23:59:59.000Z

234

Tuning thermal mismatch between turbine rotor parts with a thermal medium  

DOE Patents [OSTI]

In a turbine rotor, an aft shaft wheel and the final-stage wheel of the rotor are coupled together, including by a rabbeted joint. During shutdown and startup of the turbine, a thermal mismatch between the aft shaft wheel and final-stage wheel is avoided by respectively heating and cooling the aft shaft wheel to maintain the thermal mismatch within acceptable limits, thereby avoiding opening of the rabbeted joint and the potential for unbalancing the rotor and rotor vibration. The thermal medium may be supplied by piping in the aft bearing cavity into the cavity between the forward closure plate and the aft shaft wheel.

Schmidt, Mark Christopher (Niskayuna, NY)

2001-01-01T23:59:59.000Z

235

TIP DESENSITIZATION OF AN AXIAL TURBINE ROTOR  

E-Print Network [OSTI]

flow causes total pressure loss and significantly reduces turbine stage efficiency. Tip leakage relatedCC-63 TIP DESENSITIZATION OF AN AXIAL TURBINE ROTOR USING PARTIAL SQUEALER RIMS Debashis Dey1 of full and partial-length squealer rims in a turbine stage. Full and partial-length squealer rims

Camci, Cengiz

236

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

237

Prototype bucket foundation for wind turbines  

E-Print Network [OSTI]

Prototype bucket foundation for wind turbines -natural frequency estimation Lars Bo Ibsen Morten bucket foundation for wind turbines -natural frequency estimation by Lars Bo Ibsen Morten Liingaard foundation for wind turbines--natural frequency estimation" is divided into four numbered sections

238

Aircraft Gas Turbine Materials and Processes  

Science Journals Connector (OSTI)

...extend the life of a gas turbine air-foil...withstood higher turbine inlet tem-peratures...invented for the gas-pressure...from over. Remaining to be formu-lated...in rupture life. In addition...fabrication of gas turbine components...

B. H. Kear; E. R. Thompson

1980-05-23T23:59:59.000Z

239

Computational Analysis of Shrouded Wind Turbine Configurations  

E-Print Network [OSTI]

Computational Analysis of Shrouded Wind Turbine Configurations Aniket C. Aranake Vinod K. Lakshminarayan Karthik Duraisamy Computational analysis of diuser-augmented turbines is performed using high-dimensional simulations of shrouded wind turbines are performed for selected shroud geometries. The results are compared

Alonso, Juan J.

240

Wind Turbine Blockset in Matlab/Simulink  

E-Print Network [OSTI]

Wind Turbine Blockset in Matlab/Simulink General Overview and Description of the Models Florin Iov, Anca Daniela Hansen, Poul Sørensen, Frede Blaabjerg Aalborg University March 2004 #12;22 Wind Turbine to model, optimize and design wind turbines" and it has been used as a general developer tool for other

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microsoft Word - Clemson DTTF FINAL_EA  

Broader source: Energy.gov (indexed) [DOE]

ASSESSMENT ASSESSMENT for the CLEMSON UNIVERSITY WIND TURBINE DRIVETRAIN TEST FACILITY NORTH CHARLESTON, SOUTH CAROLINA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office SEPTEMBER 2010 DOE/EA-1761 FINAL ENVIRONMENTAL ASSESSMENT for the CLEMSON UNIVERSITY WIND TURBINE DRIVETRAIN TEST FACILITY NORTH CHARLESTON, SOUTH CAROLINA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office SEPTEMBER 2010 DOE/EA-1761 ACRONYMS AND ABBREVIATIONS AC Alternating Current APE Area of Potential Effect ARRA American Recovery and Reinvestment Act (Recovery Act) ASTM American Society of Testing and Materials AOC Area of Concern BFS Blade Force Simulator

242

The value of steam turbine upgrades  

SciTech Connect (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

243

Methods for measuring turbine efficiency  

SciTech Connect (OSTI)

This article describes the most common methods used for measuring hydro turbine efficiency. These methods are the acoustic flowmeter method, the Gibson (pressure-time) method, pressure drop across a flow restriction, propeller-driven flowmeters, the volumetric method, Winter-Kennedy taps, and the thermodynamic method. A new computerized variation of the Gibson method is also described.

O'Kelly, F.

1992-04-01T23:59:59.000Z

244

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

245

Energy 101: Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

246

Industrial Advanced Turbine Systems Program overview  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

1995-10-01T23:59:59.000Z

247

Aerodynamic interference between two Darrieus wind turbines  

SciTech Connect (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

248

Energy 101: Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

249

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect (OSTI)

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

250

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

251

Washington University Can the Sound Generated by Modern Wind Turbines  

E-Print Network [OSTI]

Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

Salt, Alec N.

252

Experimental research on tidal current vertical axis turbine with variable-pitch blades  

Science Journals Connector (OSTI)

Abstract Due to the limited storage and ever-increasing dependence on fossil fuel, the world is in the phase of shifting toward renewable energy. Tidal current energy is one of the most predictable forms of renewable energy, which is harnessed by utilizing a tidal current turbine. To study the performance of the tidal current turbine relating to the ability of energy absorption and exchanging, experimental tests play an important role which can not only validate the numerical results but also provide a reference for the prototype design. In this study, a series of experiments related to vertical-axis turbines (VAT) were carried out at Harbin Engineering University and a large quantity of experimental data to study the hydrodynamic performance of turbines was presented. Based on the different techniques used to control the pitch mechanism, the experiments can be classified as the cycloid type controllable-pitch, spring-control pitch and passive variable-pitch VAT experiment. The influences of the different parameters on the hydrodynamic performance of turbines were discussed. Finally, some control strategies for the blade for different turbines were given.

Fengmei Jing; Qihu Sheng; Liang Zhang

2014-01-01T23:59:59.000Z

253

INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE – RADAR INTERFERENCE MITIGATION TECHNOLOGIES  

Broader source: Energy.gov [DOE]

These documents include a final report on the Interagency Field Test & Evaluation (IFT&E) program and summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector technologies in mitigating that interference.

254

EA-1800: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment Final Environmental Assessment EA-1800: Final Environmental Assessment Monarch Warren County Wind Turbine Project The U.S. Department of Energy (DOE) has provided Federal funding to the Illinois Department of Commerce and Economic Opportunity (DCEO) under the State Energy Program (SEP). DCEO is seeking to provide $5 million of its SEP funds to Monarch Wind Power (MWP), who would use these funds for the design, permitting, and construction of 12, 1.6-megawatt wind turbines, for a combined generation capacity of 19.2 megawatts. Before DOE decides whether to authorize DCEO to provide SEP funds to the Monarch Warren County Wind Turbine Project (proposed project), DOE must first complete review under the National Environmental Policy Act (NEPA). This EA analyzes the

255

Definition: Turbine | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Dictionary.png Turbine A device or machine that converts the kinetic energy of a fluid (air, water, steam or other gases) to mechanical energy.[1][2] View on Wikipedia Wikipedia Definition Related Terms Electric generator, Electricity, Electricity generation, energy, bioenergy References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=T ↑ http://www1.eere.energy.gov/site_administration/glossary.html Retriev LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ed from "http://en.openei.org/w/index.php?title=Definition:Turbine&oldid=493149" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

256

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

257

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

258

Modular Turbine Control Software: A Control Software Architecture for the ABB Gas Turbine Family  

Science Journals Connector (OSTI)

ABB Power Generation’s family of gas turbines covers the power range of 35 to 270 MW with five basic turbine types, which vary in size, combustion technology and equipment. Each type comes in several variatons...

Dr. Christopher Ganz; Michael Layes

1998-01-01T23:59:59.000Z

259

Steam Turbine Materials and Corrosion  

SciTech Connect (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

260

Optomechanical Conversion by Mechanical Turbines  

Science Journals Connector (OSTI)

Liquid-crystal elastomers are rubbers with liquid-crystal order. They contract along their nematic director when heated or illuminated. The shape changes are large and occur in a relatively narrow temperature interval or at low illumination around the nematic-isotropic transition. We present a conceptual design of a mechanical, turbine-based engine using photoactive liquid-crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%.

Miloš Kneževi? and Mark Warner

2014-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optomechanical conversion by mechanical turbines  

E-Print Network [OSTI]

Liquid crystal elastomers are rubbers with liquid crystal order. They contract along their nematic director when heated or illuminated. The shape changes are large and occur in a relatively narrow temperature interval, or at low illumination, around the nematic-isotropic transition. We present a conceptual design of a mechanical, turbine-based engine using photo-active liquid crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%.

Milos Knezevic; Mark Warner

2014-11-02T23:59:59.000Z

262

On the Fatigue Analysis of Wind Turbines  

SciTech Connect (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

Sutherland, Herbert J.

1999-06-01T23:59:59.000Z

263

Steam Turbine Control Valve Noise  

Science Journals Connector (OSTI)

Although noise problems with steam turbine control valves have existed before they have become more prominent with nuclear turbines whose valves range to 20 in. in diameter. Our first?generation nuclear control valves were unacceptably noisy when operating under chocked conditions. These noise levels have been ameliorated by incorporation of a valve cage with numerous small holes. Rational design rules for this “dispersive muffler” have been developed from published multiple?jet noise data and improved through our own tests. However we are also evaluating other low?noise valve configurations which are consistent with turbine requirements. The approach we are developing is to investigate the internal aerodynamic noisegeneration in small air model tests and to combine this with measurements of pipe?wall transmission characteristics (being reported separately) to predict externally radiated noise. These predictions will be checked in a new steam test facility for complete scale?model valves. The small air tests show that acoustic efficiencies of throttling valve flows tend to vary with third power of Mach number when exhausting into space and with a lesser power when enclosed in a downstream pipe. At some pressure ratios narrow?band spikes appear in the spectrum and for some configurations step changes in sound power are associated with transitions in flow regimes.

Frank J. Heymann; Michael A. Staiano

1973-01-01T23:59:59.000Z

264

High Temperature Capabililty and Innovative Cooling with a Spar and Shell Turbine Blade - Florida Turbine Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temperature Capability and Temperature Capability and Innovative Cooling with a Spar and Shell Turbine Blade-Florida Turbine Technologies Background Florida Turbine Technologies, Inc. (FTT) is currently developing advanced aerothermal technologies centered on spar and shell airfoil concepts meant to provide highly durable turbine components that require the lowest cooling flow possible. The spar-shell system represents a unique opportunity for the use of advanced, high-temperature materials

265

Cooled turbine blades in the GTÉ-65 gas turbine power unit  

Science Journals Connector (OSTI)

Experience with the development, study, and manufacturing of cooled blades for the GTÉ-65 high temperature gas turbine is described.

V. V. Rtishchev; V. V. Krivonosova; Yu. M. Sundukov…

2009-11-01T23:59:59.000Z

266

Lightning protection system for a wind turbine  

DOE Patents [OSTI]

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

267

E-Print Network 3.0 - axis wind turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: axis wind turbines...

268

E-Print Network 3.0 - aircraft gas turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: aircraft gas turbines...

269

E-Print Network 3.0 - advanced gas turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced gas turbines...

270

E-Print Network 3.0 - aviation gas turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: aviation gas turbines...

271

E-Print Network 3.0 - axial flow turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: axial flow turbines...

272

E-Print Network 3.0 - axial flow turbine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbine Search Powered by Explorit Topic List Advanced Search Sample search results for: axial flow turbine...

273

E-Print Network 3.0 - axis wind turbine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbine Search Powered by Explorit Topic List Advanced Search Sample search results for: axis wind turbine...

274

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network [OSTI]

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

275

How Does a Wind Turbine Work? | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three...

276

Wind Turbine Scaling Enables Projects to Reach New Heights |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Scaling Enables Projects to Reach New Heights Wind Turbine Scaling Enables Projects to Reach New Heights August 18, 2014 - 9:42am Addthis Turbines at the National Wind...

277

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

278

Impacts of Wind Turbine Proximity on Property Values in Massachusetts  

E-Print Network [OSTI]

of Industrial Wind Turbine Noise on Sleep and Health.Waye, K. P. (2007) Wind Turbine Noise, Annoyance and Self-and Annoyance of Wind Turbine Noise. Acta Acus- tica United

Atkinson-Palombo, Carol

2014-01-01T23:59:59.000Z

279

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

280

Sandia National Laboratories: New Wind Turbine Blade Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyNew Wind Turbine Blade Design New Wind Turbine Blade Design More Energy with Less Weight ATLAS II Data Acquisition System New Wind Turbine Blade Design On May 18,...

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

282

Wind Turbine Transportation in Toyland | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edison's Desk > Wind Turbine Transportation in Toyland Wind Turbine Transportation in Toyland Charles (Burt) Theurer 2011.05.27 GE doesn't just make wind turbines. We also deliver...

283

Automatic Detection of Wind Turbine Clutter for Weather Radars  

Science Journals Connector (OSTI)

Wind turbines cause contamination of weather radar signals that is often detrimental and difficult to distinguish from cloud returns. Because the turbines are always at the same location, it would seem simple to identify where wind turbine ...

Kenta Hood; Sebastián Torres; Robert Palmer

2010-11-01T23:59:59.000Z

284

On modelling of grouped reliability data for wind turbines  

Science Journals Connector (OSTI)

......generation by wind turbines (WTs) has...large-scale offshore developments...generation by wind turbines (WTs) has...large-scale offshore developments...UK, most wind turbines (WTs) have...likely that offshore WTs will play......

F. P. A. Coolen; F. Spinato; D. Venkat

2010-10-01T23:59:59.000Z

285

Aeroelastic simulation of wind turbine blades  

Science Journals Connector (OSTI)

The aim of this chapter is to compute dynamic stresses acting on wind turbine blades. These stresses are essential in predicting fatigue of the rotor.

Z.L. Mahri; M.S. Rouabah; Z. Said

2009-01-01T23:59:59.000Z

286

Turbine bucket natural frequency tuning rib  

DOE Patents [OSTI]

A tuning rib is added preferably in the aft cavity of a cored turbine bucket to alter the bucket's natural frequencies. The tuning rib may be a solid rib or a segmented rib and is particularly suited for altering high order frequency modes such as 2T, 4F and 1-3S. As such, detrimental crossings of natural bucket frequencies and gas turbine stimuli can be avoided to thereby improve the reliability of a gas turbine without impacting other features of the bucket that are important to the performance of the gas turbine.

Wang, John Zhiqiang (Greenville, SC); Norton, Paul Francis (Greenville, SC); Barb, Kevin Joseph (Halfmoon, NY); Jacala, Ariel Caesar-Prepena (Simpsonville, SC)

2002-01-01T23:59:59.000Z

287

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Westwind Wind Turbines Place: Northern Ireland, United Kingdom Zip: BT29 4TF Sector: Wind energy Product: Northern Ireland based small scale wind...

288

Robotic Wind Turbine Inspection | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trials GE Global Research is advancing technology that will make the inspection of wind turbines faster and more reliable for customers. Currently, an inspector examines the...

289

Steam turbine upgrades: A utility based approach  

SciTech Connect (OSTI)

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

290

Dynamic Response of Floating Wind Turbines.  

E-Print Network [OSTI]

?? In this thesis the extreme values of tension in the mooring lines on Hywind Demo is investigated. Hywind Demo is a floating wind turbine… (more)

Neuenkirchen Godř, Sjur

2013-01-01T23:59:59.000Z

291

Aeroelastic analysis of an offshore wind turbine.  

E-Print Network [OSTI]

?? Aeroelastic design and fatigue analysis of large utility-scale wind turbine blades are performed. The applied fatigue model is based on established methods and is… (more)

Fossum, Peter Kalsaas

2012-01-01T23:59:59.000Z

292

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

293

Energy 101: Wind Turbines- 2014 Update  

Office of Energy Efficiency and Renewable Energy (EERE)

The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity.

294

Sandia National Laboratories: wind turbine blade materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

295

Sandia National Laboratories: wind turbine blade reliability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

296

Structural reliability of offshore wind turbines.  

E-Print Network [OSTI]

??Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the… (more)

Agarwal, Puneet, 1977-

2012-01-01T23:59:59.000Z

297

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

Science Journals Connector (OSTI)

SumTime-Turbine...produces textual summaries of archived time-series data from gas turbines. These summaries should help experts understand large...SumTime-Turbine is based on pattern detection, ...

Jin Yu; Ehud Reiter; Jim Hunter…

2003-01-01T23:59:59.000Z

298

Failure Analysis of Nozzle Guide Vane of a Low Pressure Turbine in an Aero Gas Turbine Engine  

Science Journals Connector (OSTI)

Failure of low pressure turbine nozzle guide vane (NGV) in an aero gas turbine engine is analyzed to determine its root ... failure has caused extensive damages in low pressure turbine modules. Remedial measures ...

R. K. Mishra; Johney Thomas; K. Srinivasan…

2014-10-01T23:59:59.000Z

299

10 MW Final Report Body.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

United States Department of Energy United States Department of Energy National Energy Technology Laboratory FINAL REPORT Cooperative Agreement No. DE-FC26-00NT 40804 Project Title: FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR From 1 September 2000 to 1 June 2003 Performed by: Clean Energy Systems, Inc. United States Department of Energy National Energy Technology Laboratory FINAL REPORT of a project to FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR Cooperative Agreement No. DE-FC26-00NT 40804 PROJECT DURATION: From 1 September 2000 to 1 June 2003 Authors: Eugene Baxter, Project Manager Roger E. Anderson, Principal Investigator Stephen E. Doyle, President, CES May 2003 Performed by: Clean Energy Systems, Inc.

300

Analysis and Optimisation of a Novel Wind Turbine .  

E-Print Network [OSTI]

??The technologies of urban wind turbines have been rapidly developed in recent years, but urban wind turbines have not found a wide application due to… (more)

Zhang, Xu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technologies for Evaluating Fish Passage Through Turbines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies for Evaluating Fish Passage Through Turbines Technologies for Evaluating Fish Passage Through Turbines This report evaluated the feasibility of two types of...

302

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...  

Broader source: Energy.gov (indexed) [DOE]

Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This...

303

Massachusetts: New Report States That Hydrokinetic Turbines Have...  

Energy Savers [EERE]

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental...

304

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Office of Environmental Management (EM)

of Indians Wind Turbine Project, Cattaraugus Territory, Chautauqua County, Irving, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory,...

305

Utility-Scale Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Utility-Scale Wind Turbines Jump to: navigation, search Field testing of a wind turbine drivetraintower damper using advanced design and validation techniques at the National Wind...

306

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

307

NREL: Wind Research - Utility-Scale Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative...

308

GE, Sandia National Lab Improve Wind Turbines | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines Use of...

309

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

310

Droplet Characterization in the Wake of Steam Turbine Cascades.  

E-Print Network [OSTI]

?? In low-pressure steam turbines, water droplet formation on the surfaces of stationary stator blades can lead to erosion on downstream turbine blades and other… (more)

Plondke, Adam Charles

2012-01-01T23:59:59.000Z

311

Technological features and operating modes of bottom turbines  

Science Journals Connector (OSTI)

Technological features and the startup and operation modes of a power unit consisting of an R-type turbine and a bottom turbine connected to it are considered.

L. S. Ioffe

2010-09-01T23:59:59.000Z

312

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Energy Savers [EERE]

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York...

313

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

as topping combustors for both turbines. A recuperated-heat exchanger recovers waste heat from the power turbine exhaust. This recuperated thermal energy partially heats the...

314

SMART Wind Turbine Rotor: Design and Field Test | Department...  

Energy Savers [EERE]

Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

315

,,,"with Any"," Steam Turbines Supplied by Either Conventional...  

U.S. Energy Information Administration (EIA) Indexed Site

or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,,"...

316

New Report States That Hydrokinetic Turbines Have Minimal Environmenta...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August...

317

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

of Seismic and Wind Load Combinations 8.5.2 Extremeextrapolation for wind turbine extreme loads. ” Wind Energy,extrapolation for wind turbine extreme loads. ” 46th AIAA

Prowell, I.

2011-01-01T23:59:59.000Z

318

Advanced coal-fueled gas turbine systems  

SciTech Connect (OSTI)

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

319

Tribological advancements for reliable wind turbine performance  

Science Journals Connector (OSTI)

...the gearbox components. Wind turbine gearboxes experience...the generators to the power grid, respectively...can produce a torsional wind-up of the components...Pontius2009Main shaft support for wind turbine with a fixed and...44061999 Hydraulic fluid power-fluids-method of coding...

2010-01-01T23:59:59.000Z

320

Small Wind Turbine Certifications Signal Maturing Industry  

Broader source: Energy.gov [DOE]

More than a dozen small wind turbine models have received certification to the U.S. industry standard from accredited certification bodies. This progress signals a maturing industry and that the DOE Wind Program is on track to reach its goal of certifying 40 turbine models by 2020.

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy 101: Wind Turbines - 2014 Update  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-06-05T23:59:59.000Z

322

GE Turbine Parts www.edisonmachine.com  

E-Print Network [OSTI]

vehicle: Has the code for a hydrogen car been cracked? World-first working eukaryotic cell mad from get swanky with the Equus Bass770 Zenos reveals details of the E10 roadster The Toyota FCV fuel cellGE Turbine Parts www.edisonmachine.com New authentic GE and Westinghouse Turbine Parts Muscle cars

Chiao, Jung-Chih

323

Principles of Jet Propulsion and Gas Turbines  

Science Journals Connector (OSTI)

... the presentation of the basic theory of jet propulsion and the thermodynamics of the gas-turbine and rocket types of engine. The layout follows a logical sequence, on the whole ... reader is treated to the now well-known thermodynamic analysis of the power-producing gas turbine cycle, which seems rather misplaced in a book dealing with jet propulsion. In his ...

S. J. MOYES

1949-08-06T23:59:59.000Z

324

Atmosphere: Turbines shoot upside-down lightning  

Science Journals Connector (OSTI)

... Wind turbines emit lightning flashes upwards, producing these electrical discharges at regular intervals relative to the ... emit lightning flashes upwards, producing these electrical discharges at regular intervals relative to the turbine's rotation, and can do so tens of kilometres away from an active thunderstorm ...

2014-02-19T23:59:59.000Z

325

Creep-Resisting Alloys For Gas Turbines  

Science Journals Connector (OSTI)

... ON February 22 and 23, a symposium on High-Temperature Steels and Alloys for Gas Turbines was held under the auspices of the Iron and Steel Institute in the rooms of ... metallurgical progress to which his invention gave rise, and discussing the problems of the gas turbine at its present stage of development.

N. P. ALLEN

1951-05-26T23:59:59.000Z

326

Hydraulic Motors: Turbines and Pressure Engines  

Science Journals Connector (OSTI)

... THE essential detail which lifts the mere water-wheel to the rank of a turbine consists, according to the author, in some arrangement for directing the water over the ... work at a time, the buckets of the remaining part being empty; while a turbine is arranged, as a rule, with a vertical axis, and all parts of ...

A. G. G.

1889-11-14T23:59:59.000Z

327

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network [OSTI]

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

328

Energy 101: Wind Turbines - 2014 Update  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-05-06T23:59:59.000Z

329

Offshore Wind Turbine Wakes Measured by Sodar  

Science Journals Connector (OSTI)

A ship-mounted sodar was used to measure wind turbine wakes in an offshore wind farm in Denmark. The wake magnitude and vertical extent were determined by measuring the wind speed profile behind an operating turbine, then shutting down the ...

R. J. Barthelmie; L. Folkerts; F. T. Ormel; P. Sanderhoff; P. J. Eecen; O. Stobbe; N. M. Nielsen

2003-04-01T23:59:59.000Z

330

Offshore Wind Turbines and Their Installation  

Science Journals Connector (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

331

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

332

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

333

Designing an ultrasupercritical steam turbine  

SciTech Connect (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

334

Optomechanical conversion by mechanical turbines  

E-Print Network [OSTI]

, “Photomobile polymer materials: towards light-driven plastic motors,” Angew. Chem. Int. Ed. 47, 4986 (2008). [2] Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine... design of a mechanical, turbine-based engine using photo-active liquid crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%. PACS numbers: 61.30.-v, 61.41.+e, 83.80.Va, 88.40.-j I. INTRODUCTION We propose a...

Kneževi?, Miloš; Warner, Mark

2014-10-30T23:59:59.000Z

335

Definition: Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity.[1][2] View on Wikipedia Wikipedia Definition A wind turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy in a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a wind turbine or wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Similarly, it may be referred to as a wind charger when used for charging batteries. The result of over a millennium of windmill development and modern engineering,

336

Energy 101: Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

337

Influence of refraction on wind turbine noise  

E-Print Network [OSTI]

A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

338

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

1996-01-01T23:59:59.000Z

339

Infinity Turbine LLC | Open Energy Information  

Open Energy Info (EERE)

Turbine LLC Turbine LLC Jump to: navigation, search Name Infinity Turbine LLC Place Madison, Wisconsin Zip 53705 Product Wisconsin-based small turbine manufacturer focusing on small-scale binary turbine manufacturing. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Final Reminder:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Reminder: Final Reminder: Final Reminder: Please save your $SCRATCH and $SCRATCH2 imporant files by 4/30/12 April 27, 2012 by Helen He (0 Comments) Franklin batch system is drained, and all batch queues are stopped as of 4/26 23:59pm. This is the final reminder that please make sure to save important files on your Franklin $SCRATCH and $SCRATCH2. ALL FILES THERE WILL BE DELETED, and there will be no mechanisms to recover any of the files after May 1. Mon Apr 30: Last day to retrieve files from Franklin scratch file systems Mon Apr 30, 23:59: User logins are disabled If you need help or have any concerns, please contact "consult at nersc dot gov". Post your comment You cannot post comments until you have logged in. Login Here. Comments No one has commented on this page yet.

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Final Report  

SciTech Connect (OSTI)

This the final report for the project "Large-Scale Optimization for Bayesian Inference in Complex Systems," for the work in the group of the co-PI George Biros.

Biros, George

2014-08-18T23:59:59.000Z

342

Final Report  

SciTech Connect (OSTI)

This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

DeTar, Carleton [P.I.

2012-12-10T23:59:59.000Z

343

Wind Turbines for Marine Propulsion  

Science Journals Connector (OSTI)

ABSTRACT The design and construction of an horizontal axis wind turbine drive for a small yacht is described. This system has been designed to test the performance of this novel type of propulsion for use in commercial shipping, the fisheries industry and for the recreational market. The use of wind turbines to harness the power available from the wind for propulsion purposes offers a number of distinct advantages over other wind propulsion systems. Propulsion is achieved in all directions of travel relative to the wind. Complete control of the system can be arranged from a remote control position such as the ships bridge. This control can be achieved with a small crew because of the opportunities for applying powered and automated control systems. The way in which each of these features is achieved, together with details of the rotor, shafting and gear-train arrangements are described here. An indication is given of the theoretical performance of the yacht under this form of propulsion.

N. Bose; R.C. McGregor

1984-01-01T23:59:59.000Z

344

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

345

Steam turbine materials and corrosion  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

346

Gas Turbine Engine Collaborative Research - NASA Glenn Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbine Engine Collaborative Gas Turbine Engine Collaborative Research-NASA Glenn Research Center Background Advancing the efficiency and performance levels of gas turbine technology requires high levels of fundamental understanding of the actual turbine component level technology systems. The National Aeronautics and Space Administration Glenn Research Center (NASA Glenn), with support from the Ohio State University, is planning research to compile

347

A low order model for vertical axis wind turbines  

E-Print Network [OSTI]

A new computational model for initial sizing and performance prediction of vertical axis wind turbines

Drela, Mark

348

Wind Turbines and Health A Rapid Review of the Evidence  

E-Print Network [OSTI]

1 Wind Turbines and Health A Rapid Review of the Evidence July 2010 #12;2 Wind Turbines and Health of the evidence from current literature on the issue of wind turbines and potential impacts on human health regarding wind turbines and their potential effect on human health. It is important to note that these views

Firestone, Jeremy

349

Doctoral Position Aeroelastic Analysis of Large Wind Turbines  

E-Print Network [OSTI]

Doctoral Position Aeroelastic Analysis of Large Wind Turbines In the research project "Aeroelastic Analysis Horizontal-axis wind turbine and numerical model. of Large Wind Turbines" funded by the Ger- man involving the in-house Finite-Element CFD code XNS to enable the simulation of wind turbines. The ability

350

Proceedings of design, repair, and refurbishment of steam turbines  

SciTech Connect (OSTI)

This book reports on the proceedings of design, repair and refurbishment of steam engines. Topics covered include: Advisor/Expert Systems for Steam Turbines; Moisture Effects on the Operating and Performance of Steam Turbines; Turbine Steam Path Development; Repair and Refurbishment of the Electric Generator Components; and Advanced Steam Turbine Designs.

Warnock, A.S. (Lehigh Univ., PA (United States))

1991-01-01T23:59:59.000Z

351

Design of a Transonic Research Turbine Facility Ruolong Ma*  

E-Print Network [OSTI]

and performance of modern gas-turbine engines. A detailed address of the various opportunities for flow control throughout the gas-turbine engine in terms of their impact on each engine component was given by Lord et al.1 in the new Advanced Performance Gas Turbine Laboratory at the University of Notre Dame. II. Turbine Rig

Morris, Scott C.

352

Gas-Turbine Propulsion in a Naval Vessel  

Science Journals Connector (OSTI)

... Messrs. Metropolitan-Vickers Electrical Co., Ltd., Trafford Park, Manchester, have installed gas- ...gas-turbine ...

1947-09-20T23:59:59.000Z

353

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network [OSTI]

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

354

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

355

The Cascaded Humidified Advanced Turbine (CHAT)  

SciTech Connect (OSTI)

This paper introduces the Cascaded Humidified Advanced Turbine (CHAT) plant, a gas turbine based power generation plant utilizing intercooling, reheat, and humidification. It is based upon the integration of an existing heavy duty gas turbine with an additional shaft comprising industrial compressors and high pressure expander. CHAT capitalizes on the latest proven gas turbine technology, which, combined with a sophisticated thermal cycle configuration, results in substantial improvement in gas turbine efficiency, compared to a simple cycle, while still maintaining typical advantages and merits of a combustion turbine plant. Built with a commercial combustion turbine and available industrial compressors and expanders, the CHAT plant does not require extensive product development and testing. As a result, the CHAT power plant can be offered with specific capital costs up to 20 percent lower than the combined cycle plant, and with competing efficiency. Compared to a combined cycle plant, the CHAT plant offers lower emissions (due to air humidification) and other significant operating advantages with regard to start-up time and costs, better efficiency at part load, lower power degradation at higher ambient temperatures, and simpler operations and maintenance due to elimination of the complexities and costs associated with steam production. The CHAT plant also integrates very effectively with coal gasification and particularly well with the water quench design. This feature has been discussed in previous publications.

Nakhamkin, M.; Swensen, E.C. [Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States); Wilson, J.M.; Gaul, G. [Westinghouse Electric Corp., Orlando, FL (United States); Polsky, M. [Polsky Energy Corp., Northbrook, IL (United States)

1996-07-01T23:59:59.000Z

356

Final Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Final Report to Improved Reservoir Access Through Refracture Treatments in Tight Gas Sands and Gas Shales 07122-41.FINAL June 2013 PI Mukul M. Sharma The University of Texas at Austin 200 E. Dean Keeton St. Stop C0300 Austin, Texas 78712 (512) 471---3257 msharma@mail.utexas.edu LEGAL NOTICE This report was prepared by The University of Texas at Austin as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of any of the entities: a. MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED WITH RESPECT TO ACCURACY, COMPLETENESS, OR USEFULNESS OF THE INFORMATION CONTAINED IN THIS DOCUMENT, OR THAT THE

357

EIS-0418: Final Environmental Impact Statement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0418: Final Environmental Impact Statement South Dakota PrairieWinds Project PrairieWinds, SD1, Incorporated (PrairieWinds) is a wholly owned subsidiary of Basin Electric Power Cooperative (Basin Electric). PrairieWinds proposes to construct, own, operate, and maintain the South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads. Final Environmental Impact Statement for the South Dakota PrairieWinds Project, DOE/EIS-0418 (July 2010) EIS-0418-FEIS-02-2010.pdf More Documents & Publications

358

1Design limits and solutions for very large wind turbines Design limits and solutions for very large wind turbines  

E-Print Network [OSTI]

#12;#12;1Design limits and solutions for very large wind turbines UpWind Design limits and solutions for very large wind turbines A 20 MW turbine is feasible March 2011 Supported by: #12;March 20112 Photo:Nordex #12;3Design limits and solutions for very large wind turbines Contents 1. UpWind: Summary

Leu, Tzong-Shyng "Jeremy"

359

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

E-Print Network [OSTI]

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu produces textual summaries of archived time- series data from gas turbines. These summaries should help evaluated. 1 Introduction In order to get the most out of gas turbines, TIGER [2] has been developed

Reiter, Ehud

360

Gas turbine bucket wall thickness control  

DOE Patents [OSTI]

A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas turbine engines with particle traps  

DOE Patents [OSTI]

A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

1992-01-01T23:59:59.000Z

362

Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method  

Science Journals Connector (OSTI)

Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

H Mirzaei Rafsanjani; A Rezaei Nasab

2012-01-01T23:59:59.000Z

363

DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.  

SciTech Connect (OSTI)

The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

Barone, Matthew Franklin; White, Jonathan

2011-09-01T23:59:59.000Z

364

Second Stage Turbine Bucket Airfoil.  

DOE Patents [OSTI]

The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

Xu, Liming (Simpsonville, SC); Ahmadi, Majid (Simpsonville, SC); Humanchuk, David John (Simpsonville, SC); Moretto, Nicholas (Clifton Park, NY); Delehanty, Richard Edward (Maineville, OH)

2003-05-06T23:59:59.000Z

365

Turbine airfoil to shround attachment  

DOE Patents [OSTI]

A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

2014-05-06T23:59:59.000Z

366

Cooled turbine vane with endcaps  

DOE Patents [OSTI]

A turbine vane assembly which includes an outer endcap having a plurality of generally straight passages and passage segments therethrough, an inner endcap having a plurality of passages and passage segments therethrough, and a vane assembly having an outer shroud, an airfoil body, and an inner shroud. The outer shroud, airfoil body and inner shroud each have a plurality of generally straight passages and passage segments therethrough as well. The outer endcap is coupled to the outer shroud so that outer endcap passages and said outer shroud passages form a fluid circuit. The inner endcap is coupled to the inner shroud so that the inner end cap passages and the inner shroud passages from a fluid circuit. Passages in the vane casting are in fluid communication with both the outer shroud passages and the inner shroud passages. Passages in the outer endcap may be coupled to a cooling system that supplies a coolant and takes away the heated exhaust.

Cunha, Frank J. (Avon, CT); Schiavo, Jr., Anthony L. (Ovideo, FL); Nordlund, Raymond Scott (Orlando, FL); Malow, Thomas (Oviedo, FL); McKinley, Barry L. (Chuluota, FL)

2002-01-01T23:59:59.000Z

367

Static seal for turbine engine  

DOE Patents [OSTI]

A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transverse to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.

Salazar, Santiago; Gisch, Andrew

2014-04-01T23:59:59.000Z

368

Conceptual Design and Instrumentation Study for a 2-D, Linear, Wet Steam Turbine Cascade Facility.  

E-Print Network [OSTI]

??The design of last stage low pressure steam (LP) turbines has become increasingly complicated as turbine manufacturers have pushed for larger and more efficient turbines.… (more)

McFarland, Jacob Andrew

2009-01-01T23:59:59.000Z

369

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available onlineNext Evolution of the F Gas Turbine,” April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

370

An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines  

E-Print Network [OSTI]

of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

Ibrahim, Zuhair M. A.

2007-01-01T23:59:59.000Z

371

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network [OSTI]

response analysis of wind turbine towers including soil-were attached to the wind turbine tower at 7 locations alongload demands on the wind turbine tower structure. Additional

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

372

Steam turbines produced by the Ural Turbine Works for combined-cycle plants  

Science Journals Connector (OSTI)

The most interesting and innovative solutions adopted in the projects of steam turbines for combined-cycle plants with capacities from...

A. E. Valamin; A. Yu. Kultyshev; T. L. Shibaev; A. A. Gol’dberg…

2013-08-01T23:59:59.000Z

373

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect (OSTI)

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

374

Structural Analyses of Wind Turbine Tower for 3 kW Horizontal Axis Wind Turbine.  

E-Print Network [OSTI]

?? Structure analyses of a steel tower for Cal Poly's 3 kW small wind turbine is presented. First, some general design aspects of the wind… (more)

Gwon, Tae gyun (Tom)

2011-01-01T23:59:59.000Z

375

GC China Turbine Corp | Open Energy Information  

Open Energy Info (EERE)

GC China Turbine Corp GC China Turbine Corp Jump to: navigation, search Name GC China Turbine Corp Place Wuhan, Hubei Province, China Sector Wind energy Product China-base wind turbine manufacturer. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Stakeholder Engagement and Outreach: Wind Turbine Ordinances  

Wind Powering America (EERE)

Information Information Resources Printable Version Bookmark and Share Publications Success Stories Webinars Podcasts Videos Stakeholder Interviews Lessons Learned Wind Working Groups Economic Impact Studies Wind Turbine Ordinances Wind Turbine Ordinances This page lists 135 state and local wind turbine ordinances. State and local governments and policymakers can use this collection of example wind turbine ordinances when drafting a new wind energy ordinance in a town or county without existing ordinances. Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by

377

Luther College Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Luther College Wind Turbine Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Luther College Wind Energy Project LLC Developer Luther College Energy Purchaser Alliant Energy Location Decorah IA Coordinates 43.30919891°, -91.81617737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.30919891,"lon":-91.81617737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Williams Stone Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wind Turbine Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Williams Stone Developer Sustainable Energy Developments Energy Purchaser Williams Stone Location Otis MA Coordinates 42.232526°, -73.070952° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.232526,"lon":-73.070952,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Charlestown Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Charlestown Wind Turbine Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Developer MWRA Energy Purchaser Distributed generation - net metered Location Boston MA Coordinates 42.39094522°, -71.07094288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.39094522,"lon":-71.07094288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

AFCEE MMR Turbines | Open Energy Information  

Open Energy Info (EERE)

AFCEE MMR Turbines AFCEE MMR Turbines Jump to: navigation, search Name AFCEE MMR Turbines Facility AFCEE MMR Turbines Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AFCEE Developer Air Force Center for Engineering and the Environment Energy Purchaser Distributed generation - net metered Location Camp Edwards Sandwich MA Coordinates 41.75754733°, -70.54557323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.75754733,"lon":-70.54557323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nature's Classroom Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Nature's Classroom Wind Turbine Nature's Classroom Wind Turbine Jump to: navigation, search Name Nature's Classroom Wind Turbine Facility Nature's Classroom Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Nature's Classroom Energy Purchaser Nature's Classroom Location Charlton MA Coordinates 42.113685°, -72.008475° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.113685,"lon":-72.008475,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Flow Efficiency and Excitation in Turbine Stages  

Science Journals Connector (OSTI)

The sources of non-steady forces in a turbine stage are reviewed. Procedures for line vortex stage flow analysis and for actuator disk analyses are described, together with details of certain important analyti...

Neville F. Rieger

1990-01-01T23:59:59.000Z

383

How Does a Wind Turbine Work?  

Broader source: Energy.gov [DOE]

Wind turbines operate on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which...

384

Advanced controls for floating wind turbines  

E-Print Network [OSTI]

Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

Casanovas, Carlos (Casanovas Bermejo)

2014-01-01T23:59:59.000Z

385

Flexible dynamics of floating wind turbines  

E-Print Network [OSTI]

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

386

How Does a Wind Turbine Work?  

Broader source: Energy.gov [DOE]

Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

387

Intelligent Wind Turbine Program - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

further straining the limits of current design standards. As a result, modern wind turbines, having a design lifespan of 20 years, typically fail 2.6 times per year during...

388

Biphase Turbine Tests on Process Fluids  

E-Print Network [OSTI]

. The performance of the Biphase turbine and its advantages over single-phase, energy-conversion devices has been demonstrated with subscale and commercial scale steam/water (geothermal wellhead) operations. Its development and application to two-phase process...

Helgeson, N. L.; Maddox, J. P.

1983-01-01T23:59:59.000Z

389

Laser Vibrometry for Wind Turbines Inspection  

Science Journals Connector (OSTI)

We report about a development of a new 1.5 µm laser vibrometer system to measure vibrations of rotating blades of wind turbines up to a distance of several hundred meters featuring a...

Ebert, Reinhard; Lutzmann, Peter; Scherer, Clemens; Scherer-Negenborn, Norbert; Göhler, Benjamin; van Putten, F

390

2014 University Turbine Systems Research Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Turbine Systems Research Workshop October 21-24, 2014 Accommodations Union Club Hotel 101 N. Grant Street West Lafayette, IN 47907 The Union Club Hotel will be the...

391

Types of Hydropower Turbines | Department of Energy  

Energy Savers [EERE]

type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding...

392

Vertical axis wind turbine control strategy  

SciTech Connect (OSTI)

Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

McNerney, G.M.

1981-08-01T23:59:59.000Z

393

Vertical Axis Wind Turbine Foundation parameter study  

SciTech Connect (OSTI)

The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

Lodde, P.F.

1980-07-01T23:59:59.000Z

394

Loss mechanisms in turbine tip clearance flows  

E-Print Network [OSTI]

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

395

Marine Current Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Ltd Turbines Ltd Jump to: navigation, search Name Marine Current Turbines Ltd (MCT) Place Bristol, United Kingdom Zip BS34 8PD Sector Marine and Hydrokinetic Product Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in particular. Coordinates 51.454513°, -2.58791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.454513,"lon":-2.58791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

The Forging of Gas Turbine Discs  

Science Journals Connector (OSTI)

The history and development of the forging process with particular reference to the production of discs for aero gas turbine engines have been reviewed. How the technological requirements of the engine manufac...

F. Turner

1981-01-01T23:59:59.000Z

397

Coyote Springs Cogeneration Project - Final Environmental Impact Statement and Record of Decision (DOE/EIS-0201)  

Broader source: Energy.gov (indexed) [DOE]

Coyote Springs Cogeneration Project - Final Environmental Impact Statement Coyote Springs Cogeneration Project - Final Environmental Impact Statement Summary-1 Summary Bonneville Power Administration (BPA) is a Federal power marketing agency in the U.S. Department of Energy. BPA is considering whether to transmit (wheel) electrical power from a proposed privately-owned, gas-fired combustion turbine power generation plant in Morrow County, Oregon. The proposed power plant would have two combustion turbines that would generate 440 average megawatts (aMW) of energy when completed. The proposed plant would be built in phases. The first combustion turbine would be built as quickly as possible. Timing for the second combustion turbine is uncertain. As a Federal agency subject to the Nation Environ- mental Policy Act, BPA must complete a review of environmental impacts before it makes a

398

Extending performance limits of turbine oils  

Science Journals Connector (OSTI)

Abstract New turbine oils providing both extremely high viscosity index (VI) and improved boundary/mixed lubrication performance are investigated. Comparisons are made in both laboratory scale testing using typical journal bearing sliding surfaces (steel and white metal) and full scale testing using a hydrodynamic journal bearing test machine. The results from these studies demonstrate the effectiveness of new, high VI, turbine oils for reducing friction at machine startup and improving performance during full film operation.

Gregory F. Simmons; Sergei Glavatskih; Michael Müller; Ĺke Byheden; Braham Prakash

2014-01-01T23:59:59.000Z

399

Passively cooled direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

Costin, Daniel P. (Chelsea, VT)

2008-03-18T23:59:59.000Z

400

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Turbine bearings and rotor dynamics workshop: proceedings  

SciTech Connect (OSTI)

An EPRI workshop to address turbine bearing reliability improvement and rotor dynamics was co-hosted by Detroit Edison in Dearborn, Michigan on September 8-10, 1982. The 136 attendees represented a broad spectrum of US utilities, equipment manufacturers, and consultants, as well as representatives from England, Japan, and Switzerland. These proceedings contain the text of the formal presentations as well as summaries of the working group sessions which were devoted to topics of particular interest to the workshop participants. Formal presentations were organized under the following general session titles: utility experience and advancements in turbine bearing and lubrication systems; recent advancements in turbine bearing and lubrication systems; utility experience and advancements in turbine-generator rotor dynamics; and recent advancements in turbine-generator rotor dynamics. In addition to the technical presentations, working group sessions were held on selected topics relevant to turbine bearing reliability improvement and rotor dynamics. These groups provided a forum for engineers to exchange ideas and information in a less formal environment. The discussions provided attendees with an opportunity to discuss key issues in more detail and address subjects not covered in the formal presentations. The subjects of these working groups were: rotor dynamic analysis and problem solving; vibration signature analysis and field balancing; oil contamination monitoring and control; and operation and maintenance practices. Individual papers have been entered individually into EDB and ERA.

Brown, R.G.; Quilliam, J.F. (eds.)

1985-06-01T23:59:59.000Z

402

Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project  

SciTech Connect (OSTI)

Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

2013-06-25T23:59:59.000Z

403

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

SciTech Connect (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

404

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

SciTech Connect (OSTI)

This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

Karstensen, K.W.

1995-07-01T23:59:59.000Z

405

Reconstructing the intermittent dynamics of the torque in wind turbines  

E-Print Network [OSTI]

We apply a framework introduced in the late nineties to analyze load measurements in off-shore wind energy converters (WEC). The framework is borrowed from statistical physics and properly adapted to the analysis of multivariate data comprising wind velocity, power production and torque measurements, taken at one single WEC. In particular, we assume that wind statistics drives the fluctuations of the torque produced in the wind turbine and show how to extract an evolution equation of the Langevin type for the torque driven by the wind velocity. It is known that the intermittent nature of the atmosphere, i.e. of the wind field, is transferred to the power production of a wind energy converter and consequently to the shaft torque. We show that the derived stochastic differential equation quantifies the dynamical coupling of the measured fluctuating properties as well as it reproduces the intermittency observed in the data. Finally, we discuss our approach in the light of turbine monitoring, a particular importa...

Lind, Pedro G; Peinke, Joachim

2014-01-01T23:59:59.000Z

406

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES  

E-Print Network [OSTI]

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection, Offshore wind turbines, Numerical response simulation. INTRODUCTION Offshore wind turbines are exposed

Paris-Sud XI, Université de

407

E-Print Network 3.0 - axis tidal turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weather... 36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected... by asymmetric loads, variable wind speeds, and se- vere weather...

408

Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units.  

E-Print Network [OSTI]

??The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical… (more)

Tsai, Chia-Chun

2012-01-01T23:59:59.000Z

409

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

410

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

411

Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine  

SciTech Connect (OSTI)

This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-05-01T23:59:59.000Z

412

FINAL REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FINAL REPORT AEC-ERDA Research Contract AT (11-1) 2174 Columbia University's Nevis Laboratories "Research in Neutron Velocity Spectroscopy" James RainwatGr DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

413

EA-1816: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6: Final Environmental Assessment 6: Final Environmental Assessment EA-1816: Final Environmental Assessment Town of Hempstead Wind-to-Hydrogen Project, Point Lookout, New York The U.S. Department of Energy (DOE) has provided a grant to the Town of Hempstead, New York (the Town) under the Energy Efficiency and Conservation Block Grant (EECBG) Program, and Town Hempstead intends to use the funds to design, permit, and construct a 100-kilowatt wind turbine at Point Lookout, New York. The proposed project would include installation of an underground electrical line from the turbine to the station. The system would convert wind energy to electricity and use that to power an electrolyzer to make pure hydrogen for the Town's fueling facility for the Town's small fleet of vehicles (proposed project). DOE provided the grant under the

414

EA-1816: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

816: Final Environmental Assessment 816: Final Environmental Assessment EA-1816: Final Environmental Assessment Town of Hempstead Wind-to-Hydrogen Project, Point Lookout, New York The U.S. Department of Energy (DOE) has provided a grant to the Town of Hempstead, New York (the Town) under the Energy Efficiency and Conservation Block Grant (EECBG) Program, and Town Hempstead intends to use the funds to design, permit, and construct a 100-kilowatt wind turbine at Point Lookout, New York. The proposed project would include installation of an underground electrical line from the turbine to the station. The system would convert wind energy to electricity and use that to power an electrolyzer to make pure hydrogen for the Town's fueling facility for the Town's small fleet of vehicles (proposed project). DOE provided the grant under the

415

EIS-0413: Final Environmental Impact Statement | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0413: Final Environmental Impact Statement The Department of the Interior's Bureau of Land Management, with DOE's Western Area Power Administration (WAPA) as a cooperating agency, prepared this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by WAPA. EIS-0413: Final Environmental Impact Statement - Volume 1 EIS-0413: Final Environmental Impact Statement - Appendix A-1 - Public Scoping Report EIS-0413: Final Environmental Impact Statement - Appendix A-2 - NOA and Publications EIS-0413: Final Environmental Impact Statement - Appendix A-3 - Public

416

12 - Advanced gas turbine asset and performance management  

Science Journals Connector (OSTI)

Abstract: A gas turbine degrades with use. The causes of degradation can often be related to the operating environment of the machine. Its consequent performance and other symptoms and changes are outlined in this chapter. Instrumentation in the engine can give, through a suitable analysis, useful clues that can benefit rectification of the causes of degradation. The interpretation of the information can be done effectively through specialist centres that can, remotely, receive information from different plants distributed widely geographically. They can handle disparate types of data coming through a range of streams. These features place complex requirements on information processing, analysis, staff preparation and management practice. This gives rise to the seven levels of gas path management: sensor, control and supervision, condition monitoring, performance and health assessment, prognostics, decision support and, finally, asset management.

T. Álvarez Tejedor; R. Singh; P. Pilidis

2013-01-01T23:59:59.000Z

417

Middelgrunden Wind Turbine Cooperative | Open Energy Information  

Open Energy Info (EERE)

Middelgrunden Wind Turbine Cooperative Middelgrunden Wind Turbine Cooperative Jump to: navigation, search Name Middelgrunden Wind Turbine Cooperative Place Copenhagen, Denmark Zip 2200 Sector Wind energy Product Copenhagen-based, partnership founded in May 1997 by the Working Group for Wind Turbines on Middelgrunden, with the aim to produce electricity through the establishment and management of wind turbines on the Middelgrunden shoal. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Modal testing of advanced wind turbine systems  

SciTech Connect (OSTI)

The US Department of Energy (DOE), in conjunction with the US wind industry, is supporting the development of technology for advanced, higher efficiency wind energy conversion systems. Under the Advanced Wind Turbine (AAWT) Program, the DOE, through the National Renewable Energy Laboratory (NREL), will assist US industry in incorporating advanced wind turbine technology into utility-grade wind turbines. As part of the AWT Program, NREL is conducting a range of activities aimed at assisting the wind industry with system design analysis and testing. One major activity is NREL`s Full System Model Testing (FSMT) task. In 1993 and 1994, NREL`s FSMT team conducted model surveys on several wind turbine systems developed by industry, including Atlantic Orient Corporation`s AOC 15/50, R. Lynette and Associates` AWT-26 P1, and Carter Wind Turbines Incorporated`s CWT-300. This paper describes how these model surveys were carried out and how industry and NREL wind researchers used the experimental results to validate their analytical models.

Osgood, R.M. [National Renewable Energy Laboratory, Golden, CO (United States). National Wind Technology Center

1995-09-01T23:59:59.000Z

419

Sea trials for Eurodyn gas turbine  

SciTech Connect (OSTI)

The Eurodyn gas turbine concept is a collaboration between Ulstein Turbine, Turbomeca and Volvo Aero. It is also supported by the European Community under its high-technology Eureka program (EU 159). A full-size Eurodyn prototype has been running on a test bed in France since October 1992. A complete engine, including a power output gear-box, began parallel test bed trials in Norway in March 1993. Results to date indicate that these test engines have achieved efficiencies of 32.8%. The corresponding output is recorded as being 2.6 MW (ISO) with NO{sub x} emissions stated as being as low as 24 ppm (15% O{sub 2}) running on marine diesel fuel. The Eurodyn gas turbine is designed to provide some 9000 hours of operation between overhauls, effectively giving a typical fast ferry application something like three years of operation. The TBO for power generation applications is 20000 hours, which also means about three years of operation. Of particular significance in this gas turbine package is the incorporation of a dedicated output gearbox. For marine applications the gearbox developed by Ulstein Propeller is a compact and light two-stage epicyclic unit reducing the power turbine output speed of 13000 r/min down to 1000 r/min. 3 figs.

Kunberger, K.

1995-04-01T23:59:59.000Z

420

New gas turbine combustor supports emissions limits  

SciTech Connect (OSTI)

Gas Research Institute, in partnership with Allison Engine Co. of Indianapolis, has introduced a natural gas-fired, low-emissions combustor that it says will give customers of industrial gas turbines a least-cost approach for meeting US emissions regulations. The LE IV combustor uses dry, low-nitrogen oxides (DLN) technology to reduce emissions from the Allison 501K industrial gas turbine to 25 parts per million or less (corrected to 15 percent oxygen)--levels that are expected to meet pending federal emissions regulations. GRI is funding similar efforts with other manufacturers of turbines commonly used at pipeline compressor stations and industrial power generation sites. The Allison combustor features a dual operating mode. During the pilot mode of operation, fuel is directly injected into the combustor`s liner where it is consumed in a diffusion flame reaction. During higher power operation, the fuel and air are uniformly premixed in fuel-lean proportions to control NO{sub x} formation. In addition, optimum engine performance is maintained by the dry, lean-mixed combustion technology as it suppresses NO{sub x} formation in the turbine`s combustion section. An added advantage of the LE IV combustor is its ability to lower emissions without any adverse affect on engine performance and operations, according to GRI> The combustor is available as either a retrofit or as an option on a new engine.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced turbine systems: Studies and conceptual design  

SciTech Connect (OSTI)

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

422

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

Glezer, B.; Bagheri, H.; Fierstein, A.R.

1996-02-27T23:59:59.000Z

423

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

424

Danish Wind Turbine Owners Association | Open Energy Information  

Open Energy Info (EERE)

Owners Association Owners Association Jump to: navigation, search Name Danish Wind Turbine Owners' Association Place Aarhus C, Denmark Zip DK-8000 Sector Wind energy Product Danish Wind Turbine Ownersâ€(tm) Association is a non-profit, independent association overseeing wind turbine ownersâ€(tm) mutual interests regarding the authorities, political decision-makers, utilities and wind turbine manufacturers. References Danish Wind Turbine Owners' Association[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Danish Wind Turbine Owners' Association is a company located in Aarhus C, Denmark . References ↑ "Danish Wind Turbine Owners' Association" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Wind_Turbine_Owners_Association&oldid=344068

425

Infrared thermography to detect residual ceramic in gas turbine blades  

Science Journals Connector (OSTI)

A serious problem in the production of gas turbine blades is the detection of residual ceramic cores inside the cooling passages; in ... the presence of even small ceramic pieces affects turbine performance and m...

C. Meola; G.M. Carlomagno; M. Di Foggia; O. Natale

2008-06-01T23:59:59.000Z

426

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...but in some industrial gas-turbine engines applications it can reach...shorter thermal-cycling lives than EB-PVD TBCs...extremely well in industrial gas-turbine engines, including “bucket...thermal” compressive residual stresses in...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

427

Interagency Field Test Evaluates Co-operation of Turbines and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department...

428

Wind Turbine Towers Establish New Height Standards and Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

429

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

430

California: Alden Fish Friendly Turbine Allows for Safe Fish...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alden Fish Friendly Turbine Allows for Safe Fish Passage California: Alden Fish Friendly Turbine Allows for Safe Fish Passage March 6, 2014 - 10:01am Addthis The Electric Power...

431

Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines January 10, 2013 - 2:12pm Addthis This is an...

432

DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...  

Energy Savers [EERE]

Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

433

How a Wind Turbine Works | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Works June 20, 2014 - 9:09am Addthis How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three...

434

Gamesa Wind Turbines Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

energy Product: Chennai-based wind turbine manufacturing JV. References: Gamesa Wind Turbines Pvt. Ltd.1 This article is a stub. You can help OpenEI by expanding it. Gamesa...

435

First wind turbine blade delivered to Pantex | National Nuclear...  

National Nuclear Security Administration (NNSA)

wind turbine blade delivered to Pantex Work crews began to erect the first of five wind turbines that will make up the Pantex Renewable Energy Project (PREP). The first wind...

436

Distributed Wind Market Report: Small Turbines Lead to Big Growth...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growth in Exports August 18, 2014 - 12:13pm Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than...

437

The Inside of a Wind Turbine | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the one shown here-face into the wind while downwind turbines face away. Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a...

438

Multi-hazard Reliability Assessment of Offshore Wind Turbines  

E-Print Network [OSTI]

A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

Mardfekri Rastehkenari, Maryam 1981-

2012-12-04T23:59:59.000Z

439

Scale Models and Wind Turbines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Models and Wind Turbines Scale Models and Wind Turbines Below is information about the student activitylesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy...

440

A doubly-fed permanent magnet generator for wind turbines  

E-Print Network [OSTI]

Optimum extraction of energy from a wind turbine requires that turbine speed vary with wind speed. Existing solutions to produce constant-frequency electrical output under windspeed variations are undesirable due to ...

Thomas, Andrew J. (Andrew Joseph), 1981-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Searching for Data Sets on existing turbines with various sensors...  

Open Energy Info (EERE)

turbines with various sensors Home > Groups > Future of Condition Monitoring for Wind Turbines In order to test our hypothesis and aid in our building of next-gen condition...

442

Comparative study of turbines for wave energy conversion  

Science Journals Connector (OSTI)

The objective of this paper is to compare the performances of the turbines, which could be used for wave energy ... future, under various irregular wave conditions. The turbines included in the paper are as follo...

Hideaki Maeda; Toshiaki Setoguchi; Manabu Takao…

2001-03-01T23:59:59.000Z

443

A simulation-based planning system for wind turbine construction  

Science Journals Connector (OSTI)

Wind turbine construction is a challenging undertaking due to the need to lift heavy loads to high locations in conditions of high and variable wind speeds. These conditions create great risks to contractors during the turbine assembly process. This ...

Dina Atef; Hesham Osman; Moheeb Ibrahim; Khaled Nassar

2010-12-01T23:59:59.000Z

444

Characterization of turbine rim seal flow and its sealing effectiveness  

E-Print Network [OSTI]

In a gas turbine engine, ingestion of hot gas from the flowpath into the gaps between the turbine rotor and stator can lead to elevated metal temperatures and a deterioration of component life. To prevent ingestion, bleed ...

Catalfamo, Peter T

2013-01-01T23:59:59.000Z

445

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network [OSTI]

MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can...

Bae, Yoon Hyeok

2013-04-23T23:59:59.000Z

446

Transition length in turbine/compressor blade flows  

Science Journals Connector (OSTI)

...with compressor/turbine blades. The computation...governs the spike development in central cycles...characteristic of gas turbine blades in the course...preliminary design strategy. The theoretical...pursue the nonlinear development of the emitted...

2006-01-01T23:59:59.000Z

447

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

Wind turbines are material-intensive. Each individual tower,and “towers and lattice masts,” and assume that 100% of the former and 95% of the latter are attributable to wind turbines.

Bolinger, Mark

2012-01-01T23:59:59.000Z

448

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes Presented by Paul John Baker of FrontierPro Services at the Wind Turbine Tribology Seminar 2014. 141030 Axial...

449

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...R. SODERBERG THE GAS TURBINE AND ITS SIGNIFICANCE...MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRDGE Read before...The emergence of the gas turbine as an accepted mem...implications of this development. This paper gives a...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

450

Long-Term Dynamic Monitoring of an Offshore Wind Turbine  

Science Journals Connector (OSTI)

Future Offshore Wind Turbines will be hardly accessible; therefore, in ... modes of the foundation and tower structures. Wind turbines are complex structures and their dynamics vary ... track changes in the dynam...

Christof Devriendt; Filipe Magalhăes…

2013-01-01T23:59:59.000Z

451

Suppression of the vibrations of wind turbine towers  

Science Journals Connector (OSTI)

......suppression of the vibrations of wind turbine towers. As a source of renewable and clean energy, wind power is rapidly increasing its...capacity in many countries. Large offshore turbines are subjected to severe weather......

Xiaowei Zhao; George Weiss

2011-09-01T23:59:59.000Z

452

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect (OSTI)

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

453

The Largest Tandem Compound Steam Turbines in the world  

Science Journals Connector (OSTI)

The improvement of turbine efficiency is extremely important subject from the...2 and consumption of fossil fuel.

Hiromitsu Iijima

2007-01-01T23:59:59.000Z

454

Identification of airfoil characteristics for optimum wind turbine performance / b  

E-Print Network [OSTI]

combine to determine how much power output is obtained. Oi' specific interest in this study is the influence of airi'oil section characteristics on horizontal axis wind turbine (HAWT) performance. By identifying these characteristics, better selection... characteristics f' or HAWT airfoil design or selection. EFFECT OF AIRFOIL CHARACTERISTICS ON INTEGRATED TURBINE PERFORMANCE Wind Turbine Performance Com uter Pro ram An existing horizontal axis wind turbine (HAWT) performance computer program" was modified f...

Miller, Leonard Scott

1983-01-01T23:59:59.000Z

455

NREL: Wind Research - Small Wind Turbine Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

456

Applied Materials Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wind Turbine Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Applied Materials Developer Applied Materials Energy Purchaser Applied Materials Location Gloucester MA Coordinates 42.62895426°, -70.65153122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.62895426,"lon":-70.65153122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Pioneer Asia Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Turbines Turbines Jump to: navigation, search Name Pioneer Asia Wind Turbines Place Madurai, Tamil Nadu, India Zip 625 002 Sector Wind energy Product Madurai-based wind energy division of the Pioneer Group. Coordinates 9.92544°, 78.1192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":9.92544,"lon":78.1192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Wind Turbine Design Cost and Scaling Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Turbine Design Cost Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Technical Report NREL/TP-500-40566 December 2006 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Prepared under Task No. WER6.0703 Technical Report NREL/TP-500-40566 December 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

459

Built-Environment Wind Turbine Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Built-Environment Wind Turbine Built-Environment Wind Turbine Roadmap J. Smith, T. Forsyth, K. Sinclair, and F. Oteri Technical Report NREL/TP-5000-50499 November 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Built-Environment Wind Turbine Roadmap J. Smith, T. Forsyth, K. Sinclair, and F. Oteri Prepared under Task No. WE11250 Technical Report NREL/TP-5000-50499 November 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

460

Portsmouth Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Wind Turbine Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Town of Portsmouth Energy Purchaser Town of Portsmouth Location Portsmouth RI Coordinates 41.614216°, -71.25165° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.614216,"lon":-71.25165,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Coatings for hot section gas turbine components  

Science Journals Connector (OSTI)

Components in the hot section of gas turbines are protected from the environment by oxidation-resistant coatings while thermal barrier coatings are applied to reduce the metal operating temperature of blades and vanes. The integrity of these protective coatings is an issue of major concern in current gas turbine designs. Premature cracking of the protective layer in oxidation-resistant coatings and of the interface in thermal barrier coating systems has become one of the life limiting factors of coated components in gas turbines. Following a brief overview of the state-of-the-art of coated material systems with respect to coating types and their status of application, the fracture mechanisms and mechanics of coated systems are presented and discussed.

J. Bressers; S. Peteves; M. Steen

2000-01-01T23:59:59.000Z

462

Meteorological aspects of siting large wind turbines  

SciTech Connect (OSTI)

This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

Hiester, T.R.; Pennell, W.T.

1981-01-01T23:59:59.000Z

463

Earth Turbines Inc | Open Energy Information  

Open Energy Info (EERE)

Turbines Inc Turbines Inc Jump to: navigation, search Name Earth Turbines Inc Place Hinesburg, Vermont Zip 5461 Sector Wind energy Product Start-up company developing small-scale wind technology for the residential and commercial market. Coordinates 44.335002°, -73.109687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.335002,"lon":-73.109687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

NETL: Turbines - Research&Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R & D R & D Turbines Research and Development NETL In-house R&D for Turbines The Combustion and Engine Dynamics Division within NETL's Office of Science and Technology provides skills, expertise, equipment, and facilities to conduct research and provides technical support for NETL product lines and programs in combustion science and technology and in the dynamics of prime movers or engines, such as gas turbines; fuel cells; internal combustion engines; or hybrid cycles that utilize fossil fuels, biomass, wastes, or other related fuel sources. Research is conducted with the primary goals of improving cycle efficiency, reducing capital cost, and improving environmental performance. Studies on supporting technologies, such as combustion instability, fuels versatility, and fluid and particle dynamics, are performed as well.

465

A Study of the Causes of the Service Fracture of Turbine Rotor Blade of Compressor Station Gas-Turbine Unit  

Science Journals Connector (OSTI)

On the basis of structural and fractographic the analysis of the fractured surface of working turbine blade of GTK-10-2 gas-turbine unit of compressor station it is established...

A. Ya. Krasovs’kyi; O. E. Gopkalo; I. O. Makovets’ka; O. O. Yanko

2013-07-01T23:59:59.000Z

466

Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine  

Science Journals Connector (OSTI)

Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better ... . The scope of improvement is possible through turbines having higher turbine inlet temperature...

S. Kumar; O. Singh

2012-10-01T23:59:59.000Z

467

Ris-PhD-Report Wind Turbines: Unsteady Aerodynamics and  

E-Print Network [OSTI]

Risø-PhD-Report Wind Turbines: Unsteady Aerodynamics and Inflow Noise Brian Riget Broe Risø-PhD-47 Title: Wind Turbines: Unsteady Aerodynamics and Inflow Noise Division: Wind Energy Division Risø-PhD-47(EN) December 2009 Abstract (max. 2000 char.): Aerodynamical noise from wind turbines due

468

Ris-R-1330(EN) Wind Turbine Power Performance  

E-Print Network [OSTI]

Risø-R-1330(EN) Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard on power performance measurements on individual wind turbines. The second one is a power performance

469

Ris-R-1352(EN) Models for Wind Turbines  

E-Print Network [OSTI]

Risø-R-1352(EN) Models for Wind Turbines ­ a Collection Andreas Baumgart Gunner C. Larsen, Morten H is to supply new approaches to stability investigations of wind turbines. The author's opinion #12;Contents 1 Preface 5 2 Author's Notes 7 3 Theory of Rods applied to Wind Turbine Blades 9 3

470

Dynamic Simulation of DFIG Wind Turbines on FPGA Boards  

E-Print Network [OSTI]

Dynamic Simulation of DFIG Wind Turbines on FPGA Boards Hao Chen, Student Member, IEEE, Song Sun is a friction coefficient. The wind turbine model is based on the relation between the upstream wind speed V w + 1 where p is the air density; Rw is the wind turbine radius; cp (A, (3) is the performance

Zambreno, Joseph A.

471

Wave Models for Offshore Wind Turbines Puneet Agarwal  

E-Print Network [OSTI]

Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility-scale wind turbine model for the simulations. Using, first, the sim- pler linear irregular wave modeling

Manuel, Lance

472

Detection of aeroacoustic sound sources on aircraft and wind turbines  

E-Print Network [OSTI]

Detection of aeroacoustic sound sources on aircraft and wind turbines Stefan Oerlemans #12;Detection of aeroacoustic sound sources on aircraft and wind turbines S. Oerlemans Thesis University;DETECTION OF AEROACOUSTIC SOUND SOURCES ON AIRCRAFT AND WIND TURBINES PROEFSCHRIFT ter verkrijging van de

Twente, Universiteit

473

Control of Wind Turbines for Power Regulation and  

E-Print Network [OSTI]

Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

474

AIAA-2004-1184 AN AEROACOUSTIC ANALYSIS OF WIND TURBINES*  

E-Print Network [OSTI]

AIAA-2004-1184 1 AN AEROACOUSTIC ANALYSIS OF WIND TURBINES* Philip J. Morris, Lyle N. Long computational aeroacoustic methods that are being applied to predict the noise radiated by wind turbines. Since the wind turbine noise problem is very challenging, only some of the important noise sources and mechanisms

475

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT)  

E-Print Network [OSTI]

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT) Yizhou Lu, T. M. Delorm, A. Christou of the reliability of these 5 Types Surrogate failure rate data Onshore wind turbines (OT) 1-1.5MW CONCLUSIONS., Faulstich, S. & van Bussel G. J. W. Reliability & availability of wind turbine electrical & electronic

Bernstein, Joseph B.

476

A Simplified Morphing Blade for Horizontal Axis Wind Turbines  

E-Print Network [OSTI]

A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

Recanati, Catherine

477

Taming Hurricanes With Arrays of Offshore Wind Turbines  

E-Print Network [OSTI]

Taming Hurricanes With Arrays of Offshore Wind Turbines Mark Z. Jacobson Cristina Archer, Willet #12;Representation of a vertically-resolved wind turbine in model Lines are model layers) or 50 m/s (destruction) speed. Can Walls of Offshore Wind Turbines Dissipate Hurricanes? #12;Katrina

Firestone, Jeremy

478

Condition Monitoring of Wind Turbines Based on Amplitude Demodulation  

E-Print Network [OSTI]

Condition Monitoring of Wind Turbines Based on Amplitude Demodulation Yassine Amirat University. In order to make wind turbine reliable and competitive, it is important to reduce the operational-stationary behavior. Index Terms--Wind turbine, Fault Detection, Bearings, Signal Processing, Amplitude Modulation I

Paris-Sud XI, Université de

479

Potential Flow Modelling for Wind Turbines Shane Cline  

E-Print Network [OSTI]

Potential Flow Modelling for Wind Turbines by Shane Cline B.Sc., University of Toledo, 2003 M means, without the permission of the author. #12;ii Potential Flow Modelling for Wind Turbines by Shane potential flow methods are a promising alternative to mainstream wind turbine aerodynamics tools

Victoria, University of

480

Development of Wind Turbines Prototyping Software Under Matlab/Simulink  

E-Print Network [OSTI]

204 1 Development of Wind Turbines Prototyping Software Under Matlab/Simulink® Through present the development of a wind turbine prototyping software under Matlab/Simulink® through and the end of 1999, around 75% of all new grid-connected wind turbines worldwide were installed in Europe [3

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "turbines 2010-35 final" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LIGHTNING EXPOSURE OF WIND TURBINES University of Toronto  

E-Print Network [OSTI]

LIGHTNING EXPOSURE OF WIND TURBINES Dale Dolan University of Toronto e-mail: dale@ecf.utoronto.ca Abstract This paper applies the electrogeometric model of lightning exposure to a wind turbine to compute. For a typical 45 m wind turbine, the probability of being struck by a downward negative flash, as predicted

Lehn, Peter W.

482

Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1  

E-Print Network [OSTI]

1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

Liu, Feng

483

GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE  

E-Print Network [OSTI]

1 GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE NOX INDICES OF FAME, GASOIL ("tallow"). A key factor for the use of biofuels in gas turbines is their Emissions Indices (NOx, CO, VOC to gas turbines is very scarce. Two recent, independent field tests carried out in Europe (RME

Paris-Sud XI, Université de

484

Disturbance Control of the Hydraulic Brake in a Wind Turbine  

E-Print Network [OSTI]

Disturbance Control of the Hydraulic Brake in a Wind Turbine Frank Jepsen, Anders Søborg brake in a wind turbine. Brake torque is determined by friction coefficient and clamp force; the latter brake is one1 of the two independent brake systems in a wind turbine. As a consequence of the gearing

Yang, Zhenyu

485

SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE  

E-Print Network [OSTI]

SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE UD - LEWES, DELAWARE January 2011 ` #12;SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE AT THE UNIVERSITY OF DELAWARE LEWES, DELAWARE A Gamesa G90 2.0-MW wind turbine operates at the University of Delaware (UD), Lewes campus on a parcel

Firestone, Jeremy

486

Low frequency noise from MW wind turbines --mechanisms of generation  

E-Print Network [OSTI]

Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy 3.6MW turbine 12 3.2 Noise as function of wind speed 12 3.3 Noise as function of rotor

487

Duration Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-12-01T23:59:59.000Z

488

Mechanisms of amplitude modulation in wind turbine , A. J. Bullmoreb  

E-Print Network [OSTI]

Mechanisms of amplitude modulation in wind turbine noise M. Smitha , A. J. Bullmoreb , M. M. Candb The environmental noise impact of wind turbine generators has to be assessed when planning new installations of installations. These instances cannot be . Figure 1: spectrogram of a sample of wind turbine noise. This paper

Paris-Sud XI, Université de

489

Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua  

E-Print Network [OSTI]

of the wind turbine to its desired power production; and ii) the stochastic force (noise), whichStochastic Analysis of Wind Turbine Power Curves Edgar Anahua Oldenburg 2007 Zur Homepage der Dissertation #12;#12;Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Von der Fakult¨at f

Peinke, Joachim

490

Heuristics for Balancing Turbine Fans Samir V. Amiouny  

E-Print Network [OSTI]

April 20, 1997 Abstract We develop heuristics for a problem that models the static balancing of turbine Reiger, 1986. In some cases, such as in the constructionof hydraulic, steam or gas turbines, fan blades to counteract the residual un- balance. For gas and steam turbines, this is necessary not only when the engine

Bartholdi III, John J.

491

Quantifying the hurricane risk to offshore wind turbines  

Science Journals Connector (OSTI)

...Quantifying the hurricane risk to offshore wind turbines 10.1073/pnas.1111769109...observed in typhoons, but no offshore wind turbines have yet been built in the...Gulf coast is 460 GW (2). Offshore wind turbines in these areas will be at...

Stephen Rose; Paulina Jaramillo; Mitchell J. Small; Iris Grossmann; Jay Apt

2012-01-01T23:59:59.000Z

492

Steam turbine path evaluation during maintenance  

SciTech Connect (OSTI)

The deterioration of a turbine (Steam & Gas) flow path affects the efficiency of the turbine. The most critical factors which affect the efficiency of turbines are: wearing out of the trailing edges of the blades by solid particle erosion, deposits, material loss due to corrosion (also sand blast) which increases the flow area, increases in blade surface roughness, etc. Wearing out of the seals caused by shaft vibrations or rapid start-up leads to significant leakage losses. Some of these effects can be estimated with some precision during operation of the turbine, but an exact evaluation can be carried out during a maintenance applying a special fluid flow analysis program. Such a program has been developed and then adapted to achieve this goal. During maintenance the complete geometry of the steam path is measured (blades lengths, widths, angles, clearances, etc.) in the condition encountered before any corrections. Then the similar measurement is undertaken after, for example, clearance corrections, blade replacements, cleaning of the blades, etc. Using the program first of all the design data is calculated. Then the actual data is fed into the program and compared to the design data. Thus the effect of the blade surface roughness, increased seal clearances, flow area increase, solid particle damage to the trailing edge and so on for each particular stage is calculated. The effect is expressed in [kW] as a deviation from the design points. This data can be helpful during online evaluation of the turbine performance. This evaluation helps the management of the plant in undertaking the correct decision concerning the date of the next major maintenance and replacement part procurement. Many turbines in the Mexican utility have been evaluated in such a manner. Some examples are presented.

Kubiak, J.; Angel, F. del; Carnero, A.; Campos, A. [Instituto de Investigaciones Electricas, Temixo, Morelos (Mexico)] [and others

1996-07-01T23:59:59.000Z

493

Stakeholder Engagement and Outreach: Siting Wind Turbines  

Wind Powering America (EERE)

Resources & Tools Resources & Tools Siting Wind Turbines Wind Powering America works to increase deployment of wind energy. This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists, state wildlife agencies, and wind industry leaders. Its purpose is to help lay the scientific groundwork and best practices for wind farm siting and operations, through targeted initiatives: wind-wildlife research, landscape assessment, mitigation, and education. Ordinances Regulating Development of Commercial Wind Energy Facilities

494

Development of an Offshore Direct-Drive Wind Turbine Model by Using a Flexible Multibody Simulation (Poster)  

SciTech Connect (OSTI)

Modern wind turbines are complex, highly-coupled systems. The dynamic interaction between various components is especially pronounced for multi-megawatt wind turbines. As a result, design process is generally split in several phases. First step consists of creating a global aero-elastic model that includes essential dynamics of structural components using the minimum-possible number of degrees of freedom (d.o.f.). The most important simplifications concern drivetrain and rotor-nacelle assembly (RNA). This approach has been shown valid for several wind turbine configurations. Nevertheless, with increasing size of wind turbines, any simplified design approach must be validated. The present work deals with the comparison and validation of the two modeling approaches for directdrive offshore wind turbines. ARNA/drivetrain model idealized as collection of lumped masses and springs is compared to a detailed Finite Element Method (FEM) based model. The comparison between models focuses on dynamic loads concerning drivetrain system. The comparison is performed in several operational conditions in order to explore the range of validity of the simplified model. Finally, the paper proposes a numerical-based workflow to assess the validity of simplified models of RNA/drivetrain in an aero-elastic global WT model.

Bergua, R.; Jove, J.; Campbell, J.; Guo, Y.; Van Dam, J.

2014-05-01T23:59:59.000Z

495

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect (OSTI)

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

496

Permanent Magnet Generators (PMG) for Wind Turbines and Micro Hydro Turbines  

Science Journals Connector (OSTI)

There are essential differences in the design of systems for water/air flow kinetic energy conversion into mechanical energy. First of all, speeds of rotation of the turbine rotors are different: the speed of tho...

Ion Bostan; Adrian Gheorghe; Valeriu Dulgheru; Ion Sobor…

2013-01-01T23:59:59.000Z

497

Influence of Turbine Inlet Temperature on the Efficiency of Externally Fired Gas Turbines  

Science Journals Connector (OSTI)

Many researchers have considered externally fired gas turbines (EFGT) as an option for the ... . The EFGT cycle with regeneration or the gas-vapor combined cycle using one EFGT, also ... is used to investigate th...

Paulo Eduardo Batista de Mello…

2014-01-01T23:59:59.000Z

498

Steam turbines of the Ural Turbine Works for combined-cycle plants  

Science Journals Connector (OSTI)

Matters concerned with selecting the equipment for combined-cycle plants within the framework of work on ... Works regarding the supplies of steam turbines for combined-cycle plants used at retrofitted and newly ...

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev; T. Yu. Linder

2009-09-01T23:59:59.000Z

499

The T-120/130-12.8 and PT-100/130–12.8/1.0 cogeneration steam turbines produced by the ural turbine works for replacing turbines of the T-100 family  

Science Journals Connector (OSTI)

The basic design features and technical characteristics of the turbines installed on the foundation of the T-100 family turbines are presented.

G. D. Barinberg; A. E. Valamin; Yu. A. Sakhnin; A. Yu. Kultyshev

2011-01-01T23:59:59.000Z

500

Flexible metallic seal for transition duct in turbine system  

SciTech Connect (OSTI)

A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

2014-04-22T23:59:59.000Z