Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

2

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15T23:59:59.000Z

3

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1999-05-01T23:59:59.000Z

4

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01T23:59:59.000Z

5

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

NONE

1998-10-29T23:59:59.000Z

6

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

7

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

8

Technology Readiness Assessment Report  

Broader source: Energy.gov [DOE]

This document has been developed to guide individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the...

9

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

None

1999-09-01T23:59:59.000Z

10

Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

2011-09-15T23:59:59.000Z

11

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DECEMBER 2012 DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal li- ability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific

12

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect (OSTI)

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

13

Technology Readiness Assessments | Department of Energy  

Office of Environmental Management (EM)

Technology Readiness Assessments Technology Readiness Assessments Documents Available for Download August 1, 2013 Technology Readiness Assessment (TRA)Technology Maturation Plan...

14

Technology Readiness Assessment Report  

Broader source: Energy.gov (indexed) [DOE]

Technology Readiness Assessment Report Technology Readiness Assessment Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t Technology Readiness Assessment (TRA) / Technology Maturation Plan (TMP) Process Guide March 2008 U.S. DOE Office of Environmental Management March 2008 TRA/TMP Process Guide Page 2 of 48 TABLE OF CONTENTS 1.0 INTRODUCTION ...................................................................................................................... 4 1.1 Document Purpose............................................................................................................................ 4 2.0 OVERVIEW OF TECHNOLOGY READINESS ASSESSMENTS AND TECHNOLOGY MATURATION PLANS

15

Development of high-temperature turbine subsystem technology to a technology readiness status, Phase II. Quarterly report, January-March 1981  

SciTech Connect (OSTI)

progress in developing a technical readiness vehicle (TRV) for demonstrating the performance of a combined-cycle power plant with high-temperature, 2600 to 3000/sup 0/F firing temperature, gas turbines using coal-derived gas fuel is reported. Work on the combined-cycle power plant and TRV design, component development, aerodynamics studies, simulation, and fuel gas cleanup systems is described. (LCL)

Horner, M.W.

1981-04-01T23:59:59.000Z

16

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

NONE

1997-12-31T23:59:59.000Z

17

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

NONE

1997-12-31T23:59:59.000Z

18

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

NONE

1997-12-31T23:59:59.000Z

19

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

20

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...  

Office of Scientific and Technical Information (OSTI)

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL...

22

Property:Technology Readiness Level | Open Energy Information  

Open Energy Info (EERE)

Readiness Level Readiness Level Jump to: navigation, search Property Name Technology Readiness Level Property Type Text Pages using the property "Technology Readiness Level" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + TRL 5 6 System Integration and Technology Laboratory Demonstration MHK Technologies/Aegir Dynamo + TRL 5 6 System Integration and Technology Laboratory Demonstration MHK Technologies/AirWEC + TRL 5/6: System Integration and Technology Laboratory Demonstration MHK Technologies/Anaconda bulge tube drives turbine + TRL 4 Proof of Concept MHK Technologies/AquaBuoy + TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering MHK Technologies/Aquantis + TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering

23

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

24

MHK Technologies/Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WWTurbine has developed and introduced a new commercially viable system for the extraction of Potential and Kinetic Energy from large fast moving water currents for conversion into Electric Energy Mooring Configuration Monopile Optimum Marine/Riverline Conditions min current velocity of 2 m s Technology Dimensions Technology Nameplate Capacity (MW) 0 5 3 0 MW Device Testing

25

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

26

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Broader source: Energy.gov (indexed) [DOE]

(TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

27

MHK Technologies/Open Centre Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group Limited Project(s) where this technology is utilized *MHK Projects/OpenHydro Alderney Channel Islands UK *MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Open-Centre Turbine is designed to be deployed directly on the seabed. The Open-Centre Turbine is a horizontal axis turbine with a direct-drive, permanent magnetic generator that has a slow-moving rotor and lubricant-free operation, which decreases maintenance and minimizes risk to marine life.

28

Technology Readiness Assessments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Management » Tank Waste and Waste Processing » Waste Management » Tank Waste and Waste Processing » Technology Readiness Assessments Technology Readiness Assessments Documents Available for Download January 1, 2012 Compilation of TRA Summaries A compilation of all TRA Summaries November 1, 2011 Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report February 7, 2011 Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP) Full Document and Summary Versions are available for download February 7, 2011 Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Full Document and Summary Versions are available for download November 1, 2009 K Basins Sludge Treatment Project Phase 1 Full Document and Summary Versions are available for download

29

MHK Technologies/Zero Impact Water Current Turbine | Open Energy  

Open Energy Info (EERE)

Zero Impact Water Current Turbine Zero Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp GWEC Project(s) where this technology is utilized *MHK Projects/Green Wave Mendocino *MHK Projects/Green Wave San Luis Obispo Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Green Wave Zero Impact Water Current Turbine is a water current turbine that will revolutionize power generation as we know it Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Zero_Impact_Water_Current_Turbine&oldid=681718

30

MHK Technologies/GreenFlow Turbines | Open Energy Information  

Open Energy Info (EERE)

GreenFlow Turbines GreenFlow Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GreenFlow Turbines.jpg Technology Profile Primary Organization Gulfstream Technologies Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Targeted at commercial sites with large water flow volume These hydro turbines range in size from 50kW to 750kW with many sites able to house multiple units Technology Dimensions Device Testing Date Submitted 55:53.9 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/GreenFlow_Turbines&oldid=681584

31

MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Davidson Hill Venturi DHV Turbine MHK Technologies/Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile Primary Organization Tidal Energy Pty Ltd Project(s) where this technology is utilized *MHK Projects/QSEIF Grant Sea Testing *MHK Projects/Stradbroke Island *MHK Projects/Tidal Energy Project Portugal Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Davidson Hill Venturi DHV Turbine is a horizontal axis turbine that utilizes a Venturi structure in front of the intake The device can be mounted on the seabed or can float slack moored in a tidal stream

32

MHK Technologies/SeaUrchin Vortex Reaction Turbine | Open Energy  

Open Energy Info (EERE)

SeaUrchin Vortex Reaction Turbine SeaUrchin Vortex Reaction Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaUrchin Vortex Reaction Turbine.jpg Technology Profile Primary Organization Elemental Energy Technologies Limited ABN 46 128 491 903 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A revolutionary vortex reaction turbine branded the SeaUrchin an advanced third generation marine turbine technology capable of delivering inexpensive small to large scale baseload or predictable electricity by harnessing the kinetic energy of free flowing ocean currents tides and rivers Technology Dimensions Device Testing Date Submitted 55:15.2

33

Small gas turbine technology  

Science Journals Connector (OSTI)

Small Gas Turbine Technology: Small gas turbine, in the power range up to 500 kW, requires a recuperated thermodynamic cycle to achieve an electrical efficiency of about 30%. This efficiency is the optimum, which is possible for a cycle pressure ratio of about 41. The cycle airflow is function of the power requirement. To increase the efficiency, in view to reduce the CO2 emission, it is mandatory to develop a more efficient thermodynamic cycle. Different thermodynamic cycles were examined and the final choice was made for an Intercooled, Recuperated cycle. The advantage of this cycle, for the same final electrical efficiency of about 35%, is the smaller cycle airflow, which is the most dimensional parameter for the important components as the heat exchanger recuperator and the combustion chamber. In parallel with the thermodynamic cycle it is necessary to develop the High Speed Alternator technology, integrated on the same shaft that the gas turbine rotating components, to achieve the constant efficiency at part loads, from 50% up to 100%, by the capacity to adjust the engine speed at the required load. To satisfy the stringent requirement in pollutant emissions of \\{NOx\\} and CO, the catalytic combustion system is the most efficient and this advance technology has to be proven. The major constraints for the small gas turbine technology development are the production cost and the maintenance cost of the unit. In the power range of 0500 kW the gas turbine technology is in competition with small reciprocating engines, which are produced in large quantity for automotive industry, at a very low production cost.

Andre Romier

2004-01-01T23:59:59.000Z

34

MHK Technologies/Gorlov Helical Turbine GHT | Open Energy Information  

Open Energy Info (EERE)

Gorlov Helical Turbine GHT Gorlov Helical Turbine GHT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine GHT.jpg Technology Profile Primary Organization Lucid Energy Technologies GCK Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Gorlov Helical Turbine GHT evolved from the Darrieus turbine design which was altered to have helical blades foils In the GHTs design the blades are twisted about the axis so that there is always a foil section at every possible angle of attack The optimal placement and angle of the blades allow the GHT to operate under a lift based principle Technology Dimensions

35

Utility advanced turbine system (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This initial report summarizes work accomplished during the third quarter of 1995. The most significant accomplishments reported include the following. Overall design continued, progressing from preliminary and conceptual design activities to detailed design activities. The aerodynamic design of six out of eight 9H turbine airfoils was completed. The 9H compressor design concept was finalized including rotor configuration, aerodynamic design of compressor, and compressor structure. Conceptual on-base and external piping layout was begun. The ATS Phase 3 Cooperative Agreement was negotiated and signed.

NONE

1995-12-31T23:59:59.000Z

36

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

37

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

NONE

1996-12-31T23:59:59.000Z

38

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

39

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

40

Preliminary Technology Readiness Assessment (TRA) for the Calcine...  

Broader source: Energy.gov (indexed) [DOE]

Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project...

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

42

MHK Technologies/Wells Turbine for OWC | Open Energy Information  

Open Energy Info (EERE)

Turbine for OWC Turbine for OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wells Turbine for OWC.png Technology Profile Primary Organization Voith Hydro Wavegen Limited Project(s) where this technology is utilized *MHK Projects/Siadar Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description From Brochure Wells turbine is a fixed pitch machine with only one direction of rotation Therefore the rotor is symeteric with respect to the rotation plane Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

43

MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine | Open Energy  

Open Energy Info (EERE)

Horizontal Axis Logarithmic Spiral Turbine Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden Turbines LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description A Horizontal axis Water turbine following the logarithmic spiral to generate clean electric energy from slow moving currents like rivers or ocean currents and with least impact on marine life and the environment because it doesn t require a damn or building huge structures Technology Dimensions Device Testing Date Submitted 36:09.5 << Return to the MHK database homepage

44

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

45

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

46

MHK Technologies/Ocean Current Linear Turbine | Open Energy Information  

Open Energy Info (EERE)

Linear Turbine Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary Organization Ocean Energy Company LLC Technology Type Click here Seabed mooring system Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Endless cable loop with parachutes spliced to cable which moored in an ocean current pulls the cable through rotors which in turn power conventional electricity generators See US Patent 3 887 817 Additional patent pending Technology Dimensions Device Testing Date Submitted 30:08.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Ocean_Current_Linear_Turbine&oldid=681618"

47

MHK Technologies/The Davis Hydro Turbine | Open Energy Information  

Open Energy Info (EERE)

Hydro Turbine Hydro Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Davis Hydro Turbine.jpg Technology Profile Primary Organization Blue Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Blue Energy Ocean Turbine acts as a highly efficient underwater vertical axis windmill Four fixed hydrofoil blades of the turbine are connected to a rotor that drives an integrated gearbox and electrical generator assembly The turbine is mounted in a durable concrete marine caisson that anchors the unit to the ocean floor and the structure directs flow through the turbine further concentrating the resource supporting the coupler gearbox and generator above the rotor These sit above the surface of the water and are readily accessible for maintenance and repair The hydrofoil blades employ a hydrodynamic lift principal that causes the turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is unidirectional on both the ebb and flow of the tide

48

MHK Technologies/Anaconda bulge tube drives turbine | Open Energy  

Open Energy Info (EERE)

Anaconda bulge tube drives turbine Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile Primary Organization Checkmate SeaEnergy Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anaconda uses a large water filled distensible rubber tube floating just beneath the ocean surface and oriented parallel to wave direction As a wave passes the bulge tube is lifted with the surrounding water and this causes a bulge wave to be excited which then passes down the tubes walls gathering energy from the ocean wave as it passes By matching the speed of the bulge wave to that of the sea wave resonance is achieved and high power capture becomes possible The bulge waves are then used to drive a turbine generator located at the stern of the device

49

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

50

MHK Technologies/EnCurrent Turbine | Open Energy Information  

Open Energy Info (EERE)

EnCurrent Turbine EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy Corporation Project(s) where this technology is utilized *MHK Projects/Bonnybrook Wastewater Facility Project 1 *MHK Projects/Bonnybrook Wastewater Facility Project 2 *MHK Projects/Canoe Pass *MHK Projects/Great River Journey *MHK Projects/Miette River *MHK Projects/Pointe du Bois *MHK Projects/Ruby ABS Alaskan *MHK Projects/Western Irrigation District Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering

51

MHK Technologies/Gorlov Helical Turbine | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine.jpg Technology Profile Primary Organization GCK Technology Inc Project(s) where this technology is utilized *MHK Projects/GCK Technology Amazon River Brazil *MHK Projects/GCK Technology Cape Cod Canal MA US *MHK Projects/GCK Technology Merrimack River Amesbury MA US *MHK Projects/GCK Technology Shelter Island NY US *MHK Projects/GCK Technology Uldolmok Strait South Korea *MHK Projects/GCK Technology Vinalhaven ME US *MHK Projects/General Sullivan and Little Bay BRI Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering

52

MHK Technologies/Savanious Turbine | Open Energy Information  

Open Energy Info (EERE)

Savanious Turbine Savanious Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Savanious Turbine.jpg Technology Profile Primary Organization Rugged Renewables EMAT Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The large blade area of the Savonious Turbine allows for low blade loading which eases the mechanical design The low speed in relation to flow speed ensures minimal environmental disturbance The output characteristic is peaked with a maximum free running speed at a tip speed ratio of about 1 5 Hence a runaway Savonius freewheeling in a fast flow current is quite tame and over speed protection is not required Since the turbine is unidirectional it does not require an alignment system The turbine is capable of extracting energy from flow which is fluctuating rapidly in speed and direction The swept area is rectangular in shape fitting it for applications unsuitable for propeller turbines

53

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

Rotech Tidal Turbine RTT Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization Lunar Energy Project(s) where this technology is utilized *MHK Projects/Lunar Energy St David s Peninsula Pembrokeshire South Wales UK *MHK Projects/Lunar Energy Wando Hoenggan Waterway South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description he Rotech Tidal Turbine (RTT) is a bi-directional horizontal axis turbine housed in a symmetrical venturi duct. The Venturi duct draws the existing ocean currents into the RTT in order to capture and convert energy into electricity. Use of a gravity foundation will allow the RTT to be deployed quickly with little or no seabed preparation at depths in excess of 40 meters. This gives the RTT a distinct advantage over most of its competitors and opens up a potential energy resource that is five times the size of that available to companies using pile foundations.

54

MHK Technologies/THOR Ocean Current Turbine | Open Energy Information  

Open Energy Info (EERE)

THOR Ocean Current Turbine THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary Organization THOR Turner Hunt Ocean Renewable LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The THOR ocean current turbine ROCT is a tethered fully submersible hydrokinetic device with a single horizontal axis rotor that operates at constant speed by varying the depth of operation using a patented power feedback control technology Rotor diameters can reach 60 meters for a 2 0MW class turbine and operations can be conducted as deep as 250 meters Arrays of THOR s ROCTs can be located in outer continental shelf areas 15 to 100 miles offshore in well established ocean currents such as the Gulf Stream or the Kuroshio and deliver electrical power to onshore load centers via submarine transmission line

55

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

56

Preliminary Technology Readiness Assessment (TRA) for the Calcine...  

Office of Environmental Management (EM)

2 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP) Full Document and Summary Versions are available for download...

57

EM Performs Tenth Technology Readiness Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Performs Tenth Technology Readiness Assessment Performs Tenth Technology Readiness Assessment EM Performs Tenth Technology Readiness Assessment January 31, 2012 - 12:00pm Addthis Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. WASHINGTON, D.C. - EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006. A TRA is an intensive peer review process through which the maturity of a technology is evaluated. A TRA utilizes the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration

58

EM Performs Tenth Technology Readiness Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EM Performs Tenth Technology Readiness Assessment EM Performs Tenth Technology Readiness Assessment EM Performs Tenth Technology Readiness Assessment January 31, 2012 - 12:00pm Addthis Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. WASHINGTON, D.C. - EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006. A TRA is an intensive peer review process through which the maturity of a technology is evaluated. A TRA utilizes the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration

59

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

60

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MHK Technologies/HydroCoil Turbine | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » MHK Technologies/HydroCoil Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroCoil Turbine.jpg Technology Profile Primary Organization HydroCoil Power Inc Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The HydroCoil device is set inside of a molded plastic cylinder six inches in diameter to produce hydro electric power at low cost and with high efficiency in places with low head and low water flow The unit s coiled vane sequentially slows the water thereby extracting more energy

62

MHK Technologies/Turbines OWC | Open Energy Information  

Open Energy Info (EERE)

OWC OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbines OWC.png Technology Profile Primary Organization Neo Aerodynamic Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The patent pending Neo Aerodynamic turbine invented by Phi Tran harnesses torque from both kinetic and pneumatic energy of the fluid flow wind or water Since the lift forces are caused by artificial flow of the fluid air wind around the center of the turbine the turbine s worst enemy turbulence is neutralized On the wind facing wind make side the flow are then redirect outward form the center It then causes the lift on airfoils to push it turning Once the device is turning it causes the center to have lower pressure the outside air then rushes in to fill those vacuums This flow is then redirected to cause lift on the airfoil When turning the special arrange of the airfoil allowing the volume of the air passing through the upper chamber are always more then of the lower chamber This also causes the lift to make the device turn In short Neo Aerodynamic uses the artificial flow of the air to cause the lift on its airfoils That s why it s called Neo AeroDy

63

MHK Technologies/MRL Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The MRL turbine equally converts both the lift and drag force in any given flow to rotational energy The benefits of using lift and increase the potential energy when compared to solely lift based machines such as propellers The base efficiency of the MRL device is 54 before various optimization features are installed 10 Other benefits to the MRL technology 1 Modular Design Lower risk financially and environmentally 2 Variable aspect ratio Unlike propellers estuaries require letterbox shaped extraction profile Particularly suitable for shallow water sites such as rivers estuaries Suitable also for deep water applications 3 Near surface operation Placed in highest velocity stream Easy to maintain 4 Movable If silting or flow profile shifts over the years devices can re sited and optimized for best extraction 5 Highly efficient Higher efficiency means smaller device size and weight Self starting and much lower cut in speed 6 Cheap to install No high cost ves

64

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

65

Technologies for Evaluating Fish Passage Through Turbines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies for Evaluating Fish Passage Through Turbines Technologies for Evaluating Fish Passage Through Turbines This report evaluated the feasibility of two types of...

66

MHK Technologies/Denniss Auld Turbine | Open Energy Information  

Open Energy Info (EERE)

Denniss Auld Turbine Denniss Auld Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Denniss Auld Turbine.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The turbine used in an Oscillating Water Column (OWC) is a key element in the devices economic performance. The Oceanlinx turbine uses variable pitch blades, which, with the slower rotational speed and higher torque of the turbine, improves efficiency and reliability and reduces the need for maintenance. The turbine uses a sensor system with a pressure transducer that measures the pressure exerted on the ocean floor by each wave as it approaches or enters the capture chamber. The transducer sends a voltage signal proportional to the pressure that identifies the height, duration and shape of each wave. The signal from the transducer is sent to a Programmable Logic Controller (PLC) that adjusts various parameters, such as the blade angle and turbine speed, in real time. The generator, which is coupled to the Oceanlinx turbine, is designed so that the electrical control will vary the speed and torque characteristic of the generator load in real time to maximize the power transfer. An induction machine will be used for the generator, with coupling to the electricity grid provided by a fully regenerative electronic control system. The grid interconnection point and the control system are located in a weatherproof building external to the air duct. The voltage of the three phase connection at this point is 415 V L-L at 50 Hz. With the appropriate phase and pulse width modulation, power is transferred in either direction with harmonies and power factor variation contained within the electricity authoritys requirements. The system is normally configured to operate at a power factor of 0.95 or better.

67

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Tank 48H Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry D. Harmon Joan B. Berkowitz John C. DeVine, Jr. Herbert G. Sutter Joan K. Young SPD-07-195 July 31, 2007 Prepared by the U.S. Department of Energy Aiken, South Carolina SRS Tank 48H Waste Treatment Project SPD-07-195 Technology Readiness Assessment July 31, 2007 Signature Page 7/31/07 ___________________________ _________________________ John C. DeVine, Jr., Team Member Date SRS Tank 48H Waste Treatment Project SPD-07-195 Technology Readiness Assessment July 31, 2007 Executive Summary The purpose of this assessment was to determine the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's

68

Vehicle Technologies Office: Community and Fleet Readiness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Community and Fleet Readiness Community and Fleet Readiness As researchers work to lower the costs and increase the convenience of plug-in electric vehicles (PEVs), it's also necessary to make similar strides on the local level. State and local incentives, such as tax credits or access to HOV lanes, can encourage consumers and vehicle fleets to purchase PEVs. In contrast, difficult permitting procedures for chargers or a lack of signage can discourage adoption. To help communities prepare themselves for plug-in and other alternative fuel vehicles, the Office works with nearly 100 Clean Cities coalitions across the country. Clean Cities offers a wide variety of resources to cities and regions that want to encourage citizens and businesses to drive PEVs. They also offer resources to both public and private fleets that wish to adopt these vehicles.

69

U.S. Department of Energy Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

2009-10-12T23:59:59.000Z

70

Technology Readiness Assessment of Department of Energy Waste Processing Facilities: When is a Technology Ready for Insertion?  

SciTech Connect (OSTI)

This paper will describe a technology readiness assessment process (TRA) that the U.S. Department of Energy (DOE) piloted at Hanford's Waste Treatment and Immobilization Plant (WTP) and has subsequently applied to other projects at Hanford and the Savannah River Site. The methodology used for these TRAs was based upon detailed guidance contained in the U.S. Department of Defense (DoD), Technology Readiness Assessment Desk-book and adapted a technology readiness scale developed by the DOD and National Aeronautics and Space Administration (NASA) to the DOE. This paper will discuss the application of the TRA process to the WTP and the development of a Technology Maturation Plan (TMP) based on the TRA findings. (authors)

Alexander, D. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gerdes, K. [Department of Energy, Office of Waste Processing, Germantown, Maryland (United States); Holton, L. [Pacific Northwest National Laboratory, Richland, Washington (United States); Krahn, St. [Department of Energy, Office of Waste Processing, Germantown, Maryland (United States); Sutter, H. [Consultant, Department of Energy, Office of Project Recovery, Germantown, Maryland (United States)

2008-07-01T23:59:59.000Z

71

Technological features and operating modes of bottom turbines  

Science Journals Connector (OSTI)

Technological features and the startup and operation modes of a power unit consisting of an R-type turbine and a bottom turbine connected to it are considered.

L. S. Ioffe

2010-09-01T23:59:59.000Z

72

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

73

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

74

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Readiness Level Marine and Hydrokinetic Technology Readiness Level Jump to: navigation, search << Return to the MHK database homepage This field indicates the stage of development/deployment that technologies, which are undergoing partial or full-scale device testing, are currently in. Contents 1 TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering 2 TRL 4: Proof of Concept 3 TRL 5/6: System Integration and Technology Laboratory Demonstration 4 TRL 7/8: Open Water System Testing, Demonstration, and Operation 5 TRL 9: Commercial-Scale Production / Application TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering The purpose of this stage is to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to

75

CCSI Technology Readiness Levels Likelihood Model (TRL-LM) Users Guide  

SciTech Connect (OSTI)

This is the manual for the Carbon Capture Simulation Initiative (CCSI) Technology Readiness Level Likelihood model based on PNNL velo.

Engel, David W.; Dalton, Angela C.; Sivaramakrishnan, Chandrika; Lansing, Carina

2013-03-26T23:59:59.000Z

76

MHK Technologies/OCGen turbine generator unit TGU | Open Energy Information  

Open Energy Info (EERE)

OCGen turbine generator unit TGU OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile Primary Organization Ocean Renewable Power Company Project(s) where this technology is utilized *MHK Projects/Cook Inlet Tidal Energy *MHK Projects/East Foreland Tidal Energy *MHK Projects/Lubec Narrows Tidal *MHK Projects/Nenana Rivgen *MHK Projects/Treat Island Tidal *MHK Projects/Western Passage OCGen Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description he OCGen turbine-generator unit (TGU) is unidirectional regardless of current flow direction. Two cross flow turbines drive a permanent magnet generator on a single shaft. OCGen modules contain the ballast/buoyancy tanks and power electronics/control system allowing for easier installation. The OCGen TGU can be stacked either horizontally or vertically to form arrays.

77

Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines January 10, 2013 - 2:12pm Addthis This is an...

78

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

79

High Temperature Capabililty and Innovative Cooling with a Spar and Shell Turbine Blade - Florida Turbine Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temperature Capability and Temperature Capability and Innovative Cooling with a Spar and Shell Turbine Blade-Florida Turbine Technologies Background Florida Turbine Technologies, Inc. (FTT) is currently developing advanced aerothermal technologies centered on spar and shell airfoil concepts meant to provide highly durable turbine components that require the lowest cooling flow possible. The spar-shell system represents a unique opportunity for the use of advanced, high-temperature materials

80

Final Report on HOLODEC 2 Technology Readiness Level  

SciTech Connect (OSTI)

During the period of this project, the Holographic Detector for Clouds 2 (HOLODEC 2) instrument has advanced from a laboratory-proven instrument with some initial field testing to a fully flight-tested instrument capable of providing useful cloud microphysics measurements. This can be summarized as 'Technology Readiness Level 8: Technology is proven to work - Actual technology completed and qualified through test and demonstration.' As part of this project, improvements and upgrades have been made to the optical system, the instrument power control system, the data acquisition computer, the instrument control software, the data reconstruction and analysis software, and some of the basic algorithms for estimating basic microphysical variables like droplet diameter. Near the end of the project, the instrument flew on several research flights as part of the IDEAS 2011 project, and a small sample of data from the project is included as an example. There is one caveat in the technology readiness level stated above: the upgrades to the instrument power system were made after the flight testing, so they are not fully field proven. We anticipate that there will be an opportunity to fly the instrument as part of the IDEAS project in fall 2012.

Shaw, RA; Spuler, SM; Beals, M; Black, N; Fugal, JP; Lu, L

2012-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report  

Broader source: Energy.gov (indexed) [DOE]

Small Column Ion Exchange Technology at Small Column Ion Exchange Technology at Savannah River Site U.S. Department of Energy Office of Environmental Management Office of Technology Innovation and Development Technology Readiness Assessment Report November 2011 U.S. DOE-EM Office of Technology Innovation and Development November 11, 2011 Small Column Ion Exchange Program Technology Readiness Assessment Page 2 of 112 This page intentionally left blank November 11, 2011 U.S. DOE-EM Office of Technology Innovation and Development Small Column Ion Exchange Program Technology Readiness Assessment Page 3 of 112 APPROVALS ________________________ _ Harry D. Harmon Date

82

MHK Technologies/Blue Motion Energy marine turbine | Open Energy  

Open Energy Info (EERE)

Motion Energy marine turbine Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile Primary Organization Blue Motion Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Description The Blue Motion Energy marine turbine however uses a patented system of seawalls A placed radial around the vertically mounted rotor B this way it is possible to funnel the current and significantly increase the flow velocity independent of the direction of the current Technology Dimensions Device Testing Date Submitted 59:30.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Blue_Motion_Energy_marine_turbine&oldid=681547

83

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Broader source: Energy.gov (indexed) [DOE]

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

84

DOE Taps Universities for Turbine Technology Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. Development of high-efficiency, ultra-clean turbine systems requires significant advances in high temperature materials science, understanding of combustion phenomena, and innovative cooling techniques to maintain integrity of turbine components. Such necessary technology advancements are

85

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Broader source: Energy.gov (indexed) [DOE]

Seven Universities Selected To Conduct Advanced Turbine Technology Seven Universities Selected To Conduct Advanced Turbine Technology Studies Seven Universities Selected To Conduct Advanced Turbine Technology Studies August 4, 2010 - 1:00pm Addthis Washington, DC - Seven universities have been selected by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The universities - located in Georgia, Texas, North Dakota, Louisiana, California, and New York - will investigate the technology needed for the clean and efficient operation of turbines using coal-derived systhesis gas (syngas) and high hydrogen content (HHC) fuels. This technology is crucial to developing advanced coal-based power generation processes, such as

86

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Broader source: Energy.gov (indexed) [DOE]

Seven Universities Selected To Conduct Advanced Turbine Technology Seven Universities Selected To Conduct Advanced Turbine Technology Studies Seven Universities Selected To Conduct Advanced Turbine Technology Studies August 4, 2010 - 1:00pm Addthis Washington, DC - Seven universities have been selected by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The universities - located in Georgia, Texas, North Dakota, Louisiana, California, and New York - will investigate the technology needed for the clean and efficient operation of turbines using coal-derived systhesis gas (syngas) and high hydrogen content (HHC) fuels. This technology is crucial to developing advanced coal-based power generation processes, such as

87

Wind Turbine Inspection Technology Reaches New Heights | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

week, we announced our advancement in technology that will make the inspection of wind turbines faster and more reliable for our customers. Currently, an inspector examines the...

88

NETL: News Release - Enabling Turbine Technologies for Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 8, 2005 September 8, 2005 Enabling Turbine Technologies for Hydrogen Fuels Turbine Program Advances Ultra-Clean, Coal-Based Systems WASHINGTON, DC - The Department of Energy's Office of Fossil Energy Turbine Technology R&D Program was recently expanded with the selection of 10 new projects valued at $130 million. The new program will advance turbines and turbine subsystems for integrated gasification combined cycle (IGCC) power plants, and address the use of hydrogen in small-scale turbines for industrial applications. Resulting technologies will operate cleanly and efficiently when fueled with coal-derived hydrogen or synthesis gas. Turbines can generate electrical power on a large scale-in central power stations sized 250 megawatts and larger-or on a small scale-in local, industrial power systems sized 1-100 megawatts. Small-scale systems also produce mechanical power for jet engines, compressors, heating systems, and other applications.

89

Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide  

Broader source: Energy.gov (indexed) [DOE]

U U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t Technology Readiness Assessment (TRA) / Technology Maturation Plan (TMP) Process Guide March 2008 U.S. DOE Office of Environmental Management March 2008 TRA/TMP Process Guide Page 2 of 48 TABLE OF CONTENTS 1.0 INTRODUCTION ...................................................................................................................... 4 1.1 Document Purpose............................................................................................................................ 4 2.0 OVERVIEW OF TECHNOLOGY READINESS ASSESSMENTS AND TECHNOLOGY MATURATION PLANS ............................................................................................................

90

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

91

MHK Technologies/SMART Duofloat | Open Energy Information  

Open Energy Info (EERE)

Colombia SHP *MHK ProjectsMunich Germany SHP Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production ...

92

MHK Technologies/SMART Monofloat | Open Energy Information  

Open Energy Info (EERE)

Peru SHP *MHK ProjectsRosenheim Germany SHP Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production ...

93

DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.  

SciTech Connect (OSTI)

The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

Barone, Matthew Franklin; White, Jonathan

2011-09-01T23:59:59.000Z

94

An overview of current and future sustainable gas turbine technologies  

Science Journals Connector (OSTI)

In this work an overview of current and future sustainable gas turbine technologies is presented. In particular, the various gas turbine technologies are described and compared. Emphasis has been given to the various advance cycles involving heat recovery from the gas turbine exhaust, such as, the gas to gas recuperation cycle, the combined cycle, the chemical recuperation cycle, the Cheng cycle, the humid air turbine cycle, etc. The thermodynamic characteristics of the various cycles are considered in order to establish their relative importance to future power generation markets. The combined cycle technology is now well established and offers superior to any of the competing gas turbine based systems, which are likely to be available in the medium term for large-scale power generation applications. In small-scale generation, less than 50MWe, it is more cost effective to install a less complex power plant, due to the adverse effect of the economics of scale. Combined cycle plants in this power output range normally have higher specific investment costs and lower electrical efficiencies but also offer robust and reliable performance. Mixed air steam turbines (MAST) technologies are among the possible ways to improve the performance of gas turbine based power plants at feasible costs (e.g. peak load gas turbine plants).

Andreas Poullikkas

2005-01-01T23:59:59.000Z

95

MHK Technologies/Benkatina Turbine | Open Energy Information  

Open Energy Info (EERE)

Benkatina Turbine Benkatina Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Benkatina Turbine.jpg Technology Profile Primary Organization Leviathan Energy Technology Resource Click here Current Technology Description The Benkatina TurbineTM is designed to be integrated into any existing or planned pipe and other downhill flow systems including Fresh water Waste water Open canals Industrial output Rain gutters etc A unique patented coupling mechanism is deployed allowing total separation between the liquids running in the pipes from the gear and shaft thus preventing any possibility of leaks and contaminations Technology Dimensions Device Testing Date Submitted 55:57.8 << Return to the MHK database homepage Retrieved from

96

Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992  

SciTech Connect (OSTI)

This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

Not Available

1993-03-01T23:59:59.000Z

97

The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.  

SciTech Connect (OSTI)

This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

2008-10-01T23:59:59.000Z

98

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

99

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia River Gorge. Photo: C. Bruce Forster  

E-Print Network [OSTI]

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia and wildlife recovery. At a conceptual level, the Act aimed for a power system that would meet energy demands pressure off Columbia River fish and wildlife. For the power system, moving ahead would require modified

100

Dynamic gas bearing turbine technology in hydrogen plants  

Science Journals Connector (OSTI)

Dynamic Gas Bearing Turbines - although applied for helium refrigerators and liquefiers for decades - experienced limitations for hydrogen applications due to restrictions in axial bearing capacity. With a new design concept for gas bearing turbines developed in 2004 axial bearing capacity was significantly improved enabling the transfer of this technology to hydrogen liquefiers. Prior to roll-out of the technology to industrial plants the turbine bearing technology passed numerous tests in R&D test benches and subsequently proved industrial scale demonstration at Linde Gas' hydrogen liquefier in Leuna Germany. Since its installation this turbine has gathered more than 16 000 successful operating hours and has outperformed its oil bearing brother in terms of performance maintainability as well as reliability. The present paper is based on Linde Kryotechnik AG's paper published in the proceedings of the CEC 2009 concerning the application of Dynamic Gas Bearing Turbines in hydrogen applications. In contrast to the former paper this publication focuses on the steps towards final market launch and more specifically on the financial benefits of this turbine technology both in terms of capital investment as well as operating expenses.

Klaus Ohlig; Stefan Bischoff

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines  

Science Journals Connector (OSTI)

Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor or other heat source to electrical power using a closed?loop cycle. The operating fluid in the closed?loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed and the effects of very high ambient pressure start?up torque and misalignment have been observed and are reported here.

Samuel A. Howard; Robert J. Bruckner; Christopher DellaCorte; Kevin C. Radil

2007-01-01T23:59:59.000Z

102

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP)  

Broader source: Energy.gov (indexed) [DOE]

TECHNOLOGY READINESS ASSESSMENT TECHNOLOGY READINESS ASSESSMENT OF THE CALCINE DISPOSITION PROJECT VOLUME ONE Anthony F. Kluk Hoyt C. Johnson Clyde Phillip McGinnis Michael Rinker Steven L. Ross Herbert G. Sutter John Vienna February 2011 Prepared by the U.S. Department of Energy Washington, DC February 2011 ii This page intentionally left blank. Review of Calcine Disposition Project Self-Assessment of Technology Maturation iii SIGNATURES ____________________________________ ____________________________________ Anthony F. Kluk, Team Lead Date ____________________________________ ____________________________________ Hoyt C. Johnson Date ____________________________________ ____________________________________ Clyde Phillip McGinnis Date ____________________________________ ____________________________________

103

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment...  

Office of Environmental Management (EM)

Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation...

104

MHK Technologies/Underwater Electric Kite Turbines | Open Energy  

Open Energy Info (EERE)

Underwater Electric Kite Turbines Underwater Electric Kite Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Underwater Electric Kite Turbines.jpg Technology Profile Primary Organization UEK Corporation Project(s) where this technology is utilized *MHK Projects/Atchafalaya River Hydrokinetic Project II *MHK Projects/Chitokoloki Project *MHK Projects/Coal Creek Project *MHK Projects/Half Moon Cove Tidal Project *MHK Projects/Indian River Tidal Hydrokinetic Energy Project *MHK Projects/Luangwa Zambia Project *MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration *MHK Projects/Passamaquoddy Tribe Hydrokinetic Project *MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project *MHK Projects/UEK Yukon River Project Technology Resource

105

Turbine Inflow Characterization at the National Wind Technology Center  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

106

Utility Advanced Turbine Systems Program (ATS) Technical Readiness Testing and Pre-Commercial Demonstration  

SciTech Connect (OSTI)

The objective of the ATS program is to develop ultra-high efficiency, environmentally superior and cost competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Specific performance targets have been set using natural gas as the primary fuel: {lg_bullet} System efficiency that will exceed 60%(lower heating value basis) on natural gas for large scale utility turbine systems; for industrial applications, systems that will result in a 15% improvement in heat rate compared to currently available gas turbine systems. {lg_bullet} An environmentally superior system that will not require the use of post combustion emissions controls under full load operating conditions. {lg_bullet} Busbar energy costs that are 10% less than current state-of-the-art turbine systems, while meeting the same environmental requirements. {lg_bullet} Fuel-flexible designs that will operate on natural gas but are capable of being adapted to operate on coal-derived or biomass fuels. {lg_bullet} Reliability-Availability-Maintainability (RAM) that is equivalent to the current turbine systems. {lg_bullet} Water consumption minimized to levels consistent with cost and efficiency goals. {lg_bullet} Commercial systems that will enter the market in the year 2000. In Phase I of the ATS program, Siemens Westinghouse found that efficiency significantly increases when the traditional combined-cycle power plant is reconfigured with closed-loop steam cooling of the hot gas path. Phase II activities involved the development of a 318MW natural gas fired turbine conceptual design with the flexibility to burn coal-derived and biomass fuels. Phases I and II of the ATS program have been completed. Phase III, the current phase, completes the research and development activities and develops hardware specifications from the Phase II conceptual design. This report summarizes Phase III Extension activities for a three-month period. Additional details may be found in monthly technical progress reports covering the period stated on the cover of this report. Background information regarding the work to be completed in Phase III may be found in the revised proposal submitted in response to A Request for Extension of DE-FC21-95MC32267, dated May 29, 1998 and the Continuing Applications of DE-FC21-95MC32267, dated March 31, 1999 and November 19, 1999.

Siemens Westinghouse

2001-06-30T23:59:59.000Z

107

Externally fired gas turbine technology: A review  

Science Journals Connector (OSTI)

Abstract Externally fired heat engines were used widely since helium the industrial revolution using dirty solid fuels for example coal, due to the lack of refined fuels. However, with the availability of clean fuels, external firing mode was abandoned, except for steam power plants. Lately, with the global trend moving towards green power production, the idea of the external fired system has captured the attention again especially externally fired gas turbine (EFGT) due to its wider range of power generation and the potential of using environment friendly renewable energy sources like biomass. In this paper, a wide range of thermal power sources utilizing EFGT such as concentrated solar power (CSP), fossil, nuclear and biomass fuels are reviewed. Gas turbine as the main component of EFGT is investigated from micro scale below 1MWe to the large scale central power generation. Moreover, the different high temperature heat exchanger (HTHE) materials and designs are reviewed. Finally, the methods of improving cycle efficiency such as the externally fired combined cycle (EFCC), humidified air turbine (HAT), EFGT with fuel cells and other cycles are reviewed thoroughly.

K.A. Al-attab; Z.A. Zainal

2015-01-01T23:59:59.000Z

108

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility were established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.

George Rizeq; Janice West; Raul Subia; Arnaldo Frydman; Parag Kulkarni; Jennifer Schwerman; Valadimir Zamansky; John Reinker; Kanchan Mondal; Lubor Stonawski; Hana Loreth; Krzysztof Piotrowski; Tomasz Szymanski; Tomasz Wiltowski; Edwin Hippo

2005-02-28T23:59:59.000Z

109

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP)  

Broader source: Energy.gov (indexed) [DOE]

PRELIMINARY TECHNOLOGY PRELIMINARY TECHNOLOGY OF THE CALCINE Prepared by the U.S. Department of Energy ECHNOLOGY READINESS ASSESSMENT ALCINE DISPOSITION PROJECT VOLUME TWO Anthony F. Kluk Hoyt C. Johnson Clyde Phillip McGinnis Michael Rinker Steven L. Ross Herbert G. Sutter John Vienna February 2011 Prepared by the U.S. Department of Energy Washington, DC SSESSMENT ROJECT 412.09 (06/03/2009 - Rev. 11) CALCINE DISPOSITION PROJECT TECHNOLOGY MATURATION PLAN Identifier: Revision*: Page: PLN-1482 2 C-1 of C-317 Appendix C Appendix C Checklists for Critical Technology Elements and Technology Readiness Levels This appendix provides the CTE and TRL checklists for the CTEs. For the TRL questions that receive a "Y" (yes) response, the supporting documentation is provided with a complete reference at the

110

ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991  

SciTech Connect (OSTI)

Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

Not Available

1992-12-01T23:59:59.000Z

111

MHK Technologies/SmarTurbine | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » MHK Technologies/SmarTurbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SmarTurbine.jpg Technology Profile Primary Organization Free Flow Power Corporation Project(s) where this technology is utilized *MHK Projects/Algiers Light Project *MHK Projects/Anconia Point Project *MHK Projects/Ashley Point Project *MHK Projects/Avondale Bend Project *MHK Projects/Bar Field Bend *MHK Projects/Barfield Point *MHK Projects/Bayou Latenache *MHK Projects/Bondurant Chute *MHK Projects/Breeze Point *MHK Projects/Brilliant Point Project *MHK Projects/Burke Landing *MHK Projects/Carrolton Bend Project *MHK Projects/Cat Island Project *MHK Projects/Claiborne Island Project

112

Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EEREs support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy TechnologyNew Zealand (WET-NZ) device.

113

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EEREs support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy TechnologyNew Zealand (WET-NZ) device.

114

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology Wind Turbine Blade Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210012 Sector Wind energy Product Jiangsu-based wind turbine blade manufactuer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Wind turbine technologynot as simple as it looks  

Science Journals Connector (OSTI)

Wind is a clean and inexhaustible energy resource serving mankind for many centuries by driving windmills to grind grain and pump water. This presentation gives a brief historical review from the earliest drag?type windmills existing as early as 2000 BC through the early electricity?generating units in the early 1900s to the present?day wind turbine parks. The 1973 oil embargo and 197980 price increases brought new awareness of conservation and promoted new interest in renewable energy resources and wind turbine technology. Many lessons are being learned in the design of modern wind turbines. The quest for low installation and maintenance costs energy conversion efficiency and high reliability continues. Unforeseen environmental issues such as visual pollution noiseimpacts and TV reception interference are to be addressed. The technical features and operating characteristics of various designs are presented including problems encountered and their solutions.

Michael C. Wehrey

1986-01-01T23:59:59.000Z

116

Technology readiness and usage: a global-identity perspective  

Science Journals Connector (OSTI)

Extant research also suggests that consumer values and traits affect technology usage through an interaction effect with perceived ease of use, perceived usefulness and enjoyment (Dabholkar and Bagozzi 2002; Srite

Stanford A. Westjohn; Mark J. Arnold

2009-09-01T23:59:59.000Z

117

DOE Technology Successes - "Breakthrough" Gas Turbines | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines For years, gas turbine manufacturers faced a barrier that, for all practical purposes, capped power generating efficiencies for turbine-based power generating systems. The barrier was temperature. Above 2300 degrees F, available cooling technologies were insufficient to protect the turbine blades and other internal components from heat degradation. Since higher temperatures are the key to higher efficiencies, this effectively limited the generating efficiency at which a turbine power plant could convert the energy in the fuel into electricity. The Department of Energy's Office of Fossil Energy took on the challenge of turbine temperatures in 1992, and nine years later, its private sector

118

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

119

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-04-01T23:59:59.000Z

120

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-07-01T23:59:59.000Z

122

New Developments in the Technology Readiness Assessment Process in US DOE-EM - 13247  

SciTech Connect (OSTI)

A Technology Readiness Assessment (TRA) is a systematic, metric-based process and accompanying report that evaluates the maturity of the technologies used in systems; it is designed to measure technology maturity using the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration (NASA) in the 1980's. More recently, DoD has adopted and provided systematic guidance for performing TRAs and determining TRLs. In 2007 the GAO recommended that the DOE adopt the NASA/DoD methodology for evaluating technology maturity. Earlier, in 2006-2007, DOE-EM had conducted pilot TRAs on a number of projects at Hanford and Savannah River. In March 2008, DOE-EM issued a process guide, which established TRAs as an integral part of DOE-EM's Project Management Critical Decision Process. Since the development of its detailed TRA guidance in 2008, DOE-EM has continued to accumulate experience in the conduct of TRAs and the process for evaluating technology maturity. DOE has developed guidance on TRAs applicable department-wide. DOE-EM's experience with the TRA process, the evaluations that led to recently developed proposed revisions to the DOE-EM TRA/TMP Guide; the content of the proposed changes that incorporate the above lessons learned and insights are described. (authors)

Krahn, Steven [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235 (United States)] [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235 (United States); Sutter, Herbert [Consultant, 910 Laurel Green Dr., North Canton, OH, 44720 (United States)] [Consultant, 910 Laurel Green Dr., North Canton, OH, 44720 (United States); Johnson, Hoyt [DOE-EM, 1000 Independence Ave., Washington, DC, 20585 (United States)] [DOE-EM, 1000 Independence Ave., Washington, DC, 20585 (United States)

2013-07-01T23:59:59.000Z

123

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

124

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2000 and ending December 31, 2000. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of initial program activities covering program management and preliminary progress in first year tasks including lab- and bench-scale design, facilities preparation, and process/kinetic modeling. More over, the report presents and discusses preliminary results particularly form the bench-scale design and process modeling efforts including a process flow diagram that incorporates the AGC module with other vision-21 plant components with the objective of maximizing H{sub 2} production and process efficiency.

George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

2001-01-01T23:59:59.000Z

125

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2002-10-01T23:59:59.000Z

126

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

2002-01-01T23:59:59.000Z

127

NREL: Wind Research - Viryd Technologies' CS8 Turbine Testing and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viryd Technologies' CS8 Turbine Testing and Results Viryd Technologies' CS8 Turbine Testing and Results Viryd Technologies CS8 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing Viryd Technologies' CS8 small wind turbine at the National Wind Technology Center (NWTC). The CS8 is an upwind, horizontal-axis, three-bladed, stall controlled turbine rated at 8 kilowatts (kW). It has an 8.5-meter rotor diameter and is mounted on a guyed tilt-up lattice tower with a hub height of 24.9 meters. The CS8 uses a single-phase, grid-connected, induction generator that operates at 240 volts AC. Testing Summary Supporting data and explanations for data included in this table are provided in the final reports.

128

NETL: News Release - Climate Technology: DOE Readies First Big U.S.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 , 2007 3 , 2007 Climate Technology: DOE Readies First Big U.S. Projects in CO2 Capture and Storage Regional Partnerships' Effort Could Triple World's Largest Demonstration, Blaze Trails WASHINGTON, DC - The U.S. Department of Energy is preparing to commission this year America's first large-scale demonstrations of CO2 capture and deep geologic storage in fulfillment of a commitment announced last October to Phase III of the Carbon Sequestration Regional Partnerships Program. The projects could lead to a tripling of the world's present large-scale demonstrations. MORE INFO Learn more about DOE's Carbon Sequestration Regional Partnerships Program Proposals for the Phase III demonstrations, part of the President's Climate Change Technology Initiative, include the world's earliest examination of

129

Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine  

Broader source: Energy.gov [DOE]

Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

130

DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...  

Energy Savers [EERE]

Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

131

Turbines  

Science Journals Connector (OSTI)

... with his torical notes and some explanations of the principles involved in the working of turbines. This is fol lowed by three chapters on water-wheels, ... . This is fol lowed by three chapters on water-wheels, turbine pumps, and water ...

1922-02-09T23:59:59.000Z

132

Assessment of research needs for wind turbine rotor materials technology  

SciTech Connect (OSTI)

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

133

Vertical-axis wind turbines -- The current status of an old technology  

SciTech Connect (OSTI)

Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

Berg, D.E.

1996-12-31T23:59:59.000Z

134

Expressive participation in Internet social movements: Testing the moderating effect of technology readiness and sex on student SNS use  

Science Journals Connector (OSTI)

An understanding of students' use of social networking sites (SNS) for expressive participation in Internet Social Movements (ISMs) is absent in the literature on the social psychology of student social networking behavior. Using the Unified Theory of ... Keywords: Gender, Internet social movement, Sex, Social networking sites, Technology readiness, UTAUT

Juan D. Borrero; Shumaila Y. Yousafzai; Uzma Javed; Kelly L. Page

2014-01-01T23:59:59.000Z

135

The role of technology readiness in consumers' adoption of mobile internet services between South Korea and China  

Science Journals Connector (OSTI)

This study built a causal model using the technology readiness and acceptance model TRAM to identify the factors influencing the adoption of mobile internet services in South Korea and China. In order to compare South Korea and China, a survey was conducted ...

Jong Chul Oh; Sung Joon Yoon; Namho Chung

2014-05-01T23:59:59.000Z

136

Zhiyu Jiang, Department of Marine Technology & Centre for Ships and Ocean Structures Dynamic response of wind turbines in fault and  

E-Print Network [OSTI]

response of wind turbines in fault and shutdown conditions Zhiyu Jiang Deptartment of Marine Technology://www.newscientist.com/blogs/onepercent/2011/12/why-did-a-wind-turbine-self-co.html #12;3 Zhiyu Jiang, Department of Marine Technology & Centre & Centre for Ships and Ocean Structures Control and protection of wind turbines Emergency shutdown Pitch

Nørvåg, Kjetil

137

Developments of cast superalloys and technology for gas turbine blades in BIAM  

Science Journals Connector (OSTI)

Since 1960's many important subjects relating to cast turbine blades including alloy developments, directional solidification (DS) and single crystal (SC) technique and casting technology for blades have been ...

R. Z. Chen

1995-09-01T23:59:59.000Z

138

Chapter 10.2 - Heat-Resistant Coating Technology for Gas Turbines  

Science Journals Connector (OSTI)

The operating temperature of gas turbines in the 1990s and later has been notably high in order to achieve high-efficiency power-generating plants by combining these gas turbines and steam turbines. Such high operating temperatures has been made possible with the development of heat-resistant superalloys forming turbine hot parts, as well as advances made in heat-resistant coating technology and cooling technology. For 1500C-class gas turbines, the adoption of single-crystal Ni-based superalloy blades and ceramic thermal barrier coatings is indispensable, and additionally, steam-cooled technology should be employed. In particular, thermal barrier coating (TBC) technology is recognized as important. Therefore, this paper reviews the trend of development of heat-resistant coating technology for gas turbines by paying attention to coating processes and evaluation. The paper also reviews the trend of development and standardization of heat-resistance evaluation test methods for coatings, because such evaluation test methods are indispensable for the development of heat-resistant coating technology.

Yoshiyasu Ito

2013-01-01T23:59:59.000Z

139

Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place Wuxi, Jiangsu Province, China Sector Wind energy Product Chinese wind turbine blade manufacturer. Coordinates 31.574011°, 120.288223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.574011,"lon":120.288223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Hydropower R&D: Recent Advances in Turbine Passage Technology...  

Broader source: Energy.gov (indexed) [DOE]

describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that...

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Turbine Technology (ATTAP) Applications Project. 1992 Annual report  

SciTech Connect (OSTI)

ATTAP activities during the past year included reference powertrain design (RPD) updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. RPD revisions included updating the baseline vehicle as well as the turbine RPD. Comparison of major performance parameters shows that the turbine engine installation exceeds critical fuel economy, emissions, and performance goals, and meets overall ATTAP objectives.

NONE

1993-12-01T23:59:59.000Z

142

Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Office of Geothermal and Wind Technologies Blades are where the turbine meets the wind. Turbine blades take advantage of aero- dynamics to extract the wind's energy, which can then be converted to useful electricity. Airfoils-the cross-sectional shape of the blades-determine the aerodynamic forces on blades. They are key to blade design. In the seventies, the young and fast-growing U.S. wind industry used airfoil designs from airplane wings to design turbine blades because those airfoil designs were widely available, and engineers understood how they performed on aircraft. Airfoils specifically designed for wind turbines did not yet exist. The industry quickly learned, however, how harsh the operating environment is for wind turbines as compared to that for airplanes.

143

Expressive participation in Internet social movements: Testing the moderating effect of technology readiness and sex on student SNS use  

Science Journals Connector (OSTI)

Abstract An understanding of students use of social networking sites (SNS) for expressive participation in Internet Social Movements (ISMs) is absent in the literature on the social psychology of student social networking behavior. Using the Unified Theory of Acceptance and Use of Technology (UTAUT) as a theoretical framework and survey data collected from 214 students in Spain, we empirically test the UTAUT theory in this context. Our results confirm that effort expectancy, social influence, and performance expectancy significantly affect students intentions to use SNS for expressive participation in Internet social movements. We also test the moderating effect of students sex and Technology Readiness (TR) on these UTAUT relationships. Our results show that the intention to use SNS is strongly influenced by effort expectancy for female students and students with self-reported low-levels of technology readiness. For male students and students with self-reportinghigh-levels of technology readiness, the relationship is strongly influenced by social influence. The implications of our findings for theory and practice are discussed.

Juan D. Borrero; Shumaila Y. Yousafzai; Uzma Javed; Kelly L. Page

2014-01-01T23:59:59.000Z

144

NETL: News Release - DOE-Fossil Energy: World's Most Advanced Gas Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 18, 2000 February 18, 2000 DOE-Fossil Energy: World's Most Advanced Gas Turbine Now Ready to Cross Commercial Threshold Secretary Richardson Cites Success of Government-Industry Partnership For natural gas turbines - the technology likely to dominate the growing market for new electric power generation - the future was unveiled today in Greenville, South Carolina. GE's MS7001H Advanced Gas Turbine The 4000-ton Model MS7001H advanced gas turbine is the size of a locomotive. Secretary of Energy Bill Richardson and U.S. Senator Ernest Hollings joined General Electric today in announcing that the company's newest H System™ gas turbine, the most advanced combustion turbine in the world, is ready to cross the commercial threshold. "Today, we are seeing the most advanced combustion turbine anywhere,

145

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors  

Science Journals Connector (OSTI)

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors ... Also, the application of oxy-combustion technology into gas turbines is possible; however, the combustion temperature will be increased tremendously, which needs more control to make safe the turbine blades. ... technologies, a simplified model of a power plant with two forms of CO2 capture was developed. ...

Mohamed A. Habib; Medhat Nemitallah; Rached Ben-Mansour

2012-11-19T23:59:59.000Z

146

NREL: Technology Transfer - White Earth Nation Installs Turbines: A Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

White Earth Nation Installs Turbines: A Wind Powering America Success Story White Earth Nation Installs Turbines: A Wind Powering America Success Story February 11, 2013 Almost 8 years after taking the initial steps to harness the wind, the White Earth Nation recently completed the installation of two small wind turbines that will help offset energy costs for Minnesota's largest and most populous Native American reservation. Mike Triplett, economic development planner with the White Earth Development Office, believes that the project represents a unique opportunity for tribal entities in the United States. He noted that tribes don't qualify for tax-based incentives. "And as for working with investors, we never found that to be a viable option," Triplett said. "So we've relied heavily on grants." Funded through nearly $1.8 million in congressional appropriations along

147

Steam turbine maintenance and repair technology: Reducing planned-outage costs  

SciTech Connect (OSTI)

The North American Electric Reliability Council (NAERC) reported that the average loss of equivalent availability per outage for a major fossil turbine overhaul is 323,000 MW-HR. The Electric Power Research Institute (EPRI) Generation and Storage Division, is in the first phase of a major research project to reduce the duration and/or frequency of steam turbine maintenance outages. This project consists of an assessment of the current state-of-the-art turbine maintenance and repair techniques and technologies. It is based on a review of current turbine maintenance practices of the US, European, Japanese, and Australian utility industries. Emphasized are maintenance and repair activities that have the most significant impact on outage duration or frequency. Twenty-six key turbine maintenance activities and the current best techniques were identified for use by utility maintenance personnel. Overall outage durations could be reduced if the duration of these activities were shortened or if they were performed more effectively. Recommended projects for development of advanced steam turbine maintenance technology were identified. 29 refs., 46 figs., 9 tabs.

Grace, H.P.; McClintock, M. (General Physics Corp., Columbia, MD (USA)); Lamping, G. (Southwest Research Inst., San Antonio, TX (USA))

1990-04-01T23:59:59.000Z

148

Technological Advances in Hydraulic Drive Trains for Wind Turbines  

Science Journals Connector (OSTI)

The reliability of frequency converters is a major concern for wind turbines. ChapDrive AS has built and tested a hydraulic drive train for variable speed wind turbines which includes a synchronous generator that is connected to the grid without the use of a frequency converter. The hydraulic drive train consists of a hydraulic pump, a variable displacement hydraulic motor, and a synchronous generator, which enables rotor speed control while maintaining synchronous speed of the generator. It has been proven that the hydraulic drive train and the ChapDrive Control system are able to absorb fluctuations in the wind speed and maintain a constant power output without the use of frequency converters. The hydraulic drive train and the ChapDrive Control system has been modeled analytically and compared to measurements, demonstrating a good agreement between simulations and measurements.

K.E.Thomsen; O.G. Dahlhaug; M.O.K. Niss; S.K. Haugset

2012-01-01T23:59:59.000Z

149

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect (OSTI)

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

150

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect (OSTI)

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

151

INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE RADAR INTERFERENCE MITIGATION TECHNOLOGIES  

Broader source: Energy.gov [DOE]

These documents include a final report on the Interagency Field Test & Evaluation (IFT&E) program and summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector technologies in mitigating that interference.

152

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

153

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants  

SciTech Connect (OSTI)

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

Kenneth A. Yackly

2005-12-01T23:59:59.000Z

154

High-temperature turbine technology program hot-gas path development test. Part II. Testing  

SciTech Connect (OSTI)

This topical report of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) Phase II program presents the results of testing full-scale water-cooled first-stage and second-stage turbine nozzles at design temperature and pressure to verify that the designs are adequate for operation in a full-scale turbine environment. Low-cycle fatigue life of the nozzles was demonstrated by subjecting cascade assemblies to several hundred simulated startup/shutdown turbine cycles. This testing was accomplished in the Hot-Gas Path Development Test Stand (HGPDTS), which is capable of evaluating full-scale combustion and turbine nozzle components. A three-throat cascade of the first-stage turbine nozzle was successfully tested at a nozzle inlet gas temperature of 2630/sup 0/F and a nozzle inlet pressure of 11.3 atmospheres. In addition to steady-state operation at the design firing temperature, the nozzle cascade was exposed to a simulated startup/shutdown turbine cycle by varying the firing temperature. A total of 42 h at the design point and 617 thermal cycles were accumulated during the test periods. First-stage nozzle test results show that measured metal and coolant temperatures correspond well to the predicted design values. This nozzle design has been shown to be fully satisfactory for the application (2600/sup 0/F), with growth capability to 3000/sup 0/F firing temperature. A post-test metallurgical examination of sectioned portions of the tested nozzles shows a totally bonded structure, confirming the test results and attesting to the successful performance of water-cooled composite nozzle hardware.

Horner, M.W.

1982-03-01T23:59:59.000Z

155

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Scheibel (1997) Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines, October 2000. Available onlineNext Evolution of the F Gas Turbine, April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

156

MHK Technologies/Atlantis AS 400 | Open Energy Information  

Open Energy Info (EERE)

AS 400 AS 400 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Atlantis AS 400.jpg Technology Profile Primary Organization Atlantis Resources Corporation Project(s) where this technology is utilized *MHK Projects/Gujarat Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description AS series turbines are ducted Horizontal Axis Turbines HAT suitable for deployment with mono directional blades in river environments and bi directional blades in diurnal tidal locations AS turbines feature a unique swept back blade design and control system to optimize turbine efficiency across flow velocity distributions The AS 400 the first of the AS series has been designed from first principles using extensive computer modelling and following tow testing in August 2008 is recognized as the world s most efficient water to wire turbine as verified by Black Veatch

157

Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel - Georgia Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prediction of Combustion Stability Prediction of Combustion Stability and Flashback in Turbines with High- Hydrogen Fuel-Georgia Institute of Technology Background Georgia Institute of Technology (Georgia Tech), in collaboration with Pennsylvania State University and gas turbine manufacturers, is conducting research to improve the state-of-the-art in understanding and modeling combustion instabilities, one of the most critical problems associated with burning high-hydrogen content (HHC) fuels in

158

Recent developments on Air Liquide advanced technologies turbines  

Science Journals Connector (OSTI)

Air Liquide Advanced Technologies has developed for more than 40 years turboexpanders mainly for hydrogen and helium liquefiers and refrigerators and has in total more than 600 references of cryogenic turbo-expanders and cold compressors. The latest developments are presented in this paper. The key motivation of these developments is to improve the efficiency of the machines and also to widen the range of operation. New impellers have been designed for low and high powers the operation range is now between 200W and 200kW. The thrust bearings have been characterized in order to maximize the load which can be withstood and to increase the turbo-expander cold power. Considering low power machines 3D open wheels have been designed and machined in order to increase the adiabatic efficiencies. A new type of machine a turbobooster for methane liquefaction has been designed manufactured and tested at AL-AT test facility.

2012-01-01T23:59:59.000Z

159

Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

Johnson, K. E.; Fleming, P. A.

2011-06-01T23:59:59.000Z

160

MHK Technologies/Vertical Axis Venturi System | Open Energy Information  

Open Energy Info (EERE)

Axis Venturi System Axis Venturi System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Warrior Girl Corporation Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The proprietary venturi system uses two venturies one on the upstream side of the vertical axis turbine to force the water flow into the turbine and one at the downstream side of the turbine which creates a lower pressure region that pulls the water through the turbine The vertical axis orientation of the turbine is believed by the company to allow for efficiency gains

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment  

SciTech Connect (OSTI)

Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutions are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.

Vishik, Claire [Intel Corporation] [Intel Corporation; Sheldon, Frederick T [ORNL] [ORNL; Ott, David [Intel Corporation] [Intel Corporation

2013-01-01T23:59:59.000Z

162

Rotor Support Technology Developments for Long Life Closed Brayton Cycle Turbines  

Science Journals Connector (OSTI)

Power conversion systems based upon the Closed Brayton Cycle (CBC) turbine are under consideration for space power generation applications. Using this approach inert gas heated with a nuclear reactor or other means is used to drive a turbine?generator in a recirculating flow path. As a closed system contamination of the working fluid for instance with bearing lubricating oil cannot be tolerated. To prevent this possibility compliant surface gas film bearings are employed that use the working fluid as their lubricant. Foil gas bearings are in widespread use in turbocompressors and microturbines in aeronatuics and terrestrial applications. To successfully implement them for space power CBC systems research is underway at NASAs Glenn Research Center to assess foil bearing start?up torque requirements bearing thermal management and the effects of high ambient pressures in inert gases on performance. This paper introduces foil gas bearing rotor support technologies and provides an update on bearing performance testing and evaluations being conducted to integrate foil bearings in future CBC turbine systems.

Christopher DellaCorte; Kevin C. Radil; Robert J. Bruckner; Steven W. Bauman; Bernadette J. Puleo; Samuel A. Howard

2006-01-01T23:59:59.000Z

163

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

164

NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

examines current U.S. manufacturing and supply examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE). National Renewable Energy Laboratory (NREL) researchers conducted a study for the U.S. Department of Energy to assess the state of the nation's manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. The findings helped determine the

165

Capture-Ready Coal Plants -Options, Technologies and Economics Mark C. Bohm1  

E-Print Network [OSTI]

-five years. While coal-fired power plants offer significant cost and energy security advantages , John E. Parsons2 , Ram C. Sekar1 1 Laboratory for Energy and the Environment, Massachusetts Institute and pricing of alternative generation technologies, such as solar and wind. In the United States alone

166

Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology  

SciTech Connect (OSTI)

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01T23:59:59.000Z

167

Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet  

Science Journals Connector (OSTI)

...not energy technology research (11...technological readiness also appear...stabilization levels, such as 550-ppm...options refer to technologies that exist in...In a given technology class, efficiency...centuries, and levels off at some...earliest gas turbines could...

Martin I. Hoffert; Ken Caldeira; Gregory Benford; David R. Criswell; Christopher Green; Howard Herzog; Atul K. Jain; Haroon S. Kheshgi; Klaus S. Lackner; John S. Lewis; H. Douglas Lightfoot; Wallace Manheimer; John C. Mankins; Michael E. Mauel; L. John Perkins; Michael E. Schlesinger; Tyler Volk; Tom M. L. Wigley

2002-11-01T23:59:59.000Z

168

Operating experience of large ultra super critical steam turbine with latest technology  

SciTech Connect (OSTI)

In Japan, the main large capacity fossil-fuel power plant larger than 500 MW are supercritical units and the steam condition of 24.2 MPa, 538/566 C has been adopted. Through extensive development work, design and material technologies for steam turbines with a 593 C steam temperature have been established, and the steam condition of 24.2 MPa, 583/593 C was applied to the 700 MW steam turbine of Hekinan No.3 Unit, Chubu Electric Power Co., Inc. for the first time in Japan. This is also the world`s largest unit with a steam condition of 593 C. The Hekinan No. 3 Unit was designed and manufactured applying the latest technologies established for 593 C application. The unit was first rolled with steam in July 1992 and after successful trial operation and tests, the No. 3 Unit started commercial operation in April 1993. This paper introduces the latest technologies and the overhaul inspection results after about one year`s commercial operation.

Kishimoto, Masaru; Minami, Yoshihiro [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Takayanagi, Kiyoshi; Umaya, Masahide [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)

1994-12-31T23:59:59.000Z

169

System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heat for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.

Emmanuel Ohene Opare, Jr.; Charles V. Park

2011-06-01T23:59:59.000Z

170

Turbine-Fact-Sheets | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-High Temperature Thermal Barrier Coatings HiFunda, LLC Hydrogen Turbines SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines Florida Turbine Technologies...

171

Energy technology expert elicitations: An application to natural gas turbine efficiencies  

Science Journals Connector (OSTI)

Abstract Expert elicitations are critical tools for characterizing technological uncertainty, since historical data on technical progress may not provide a sufficient basis for forecasting future advances. The objectives of this paper are to describe the protocol and results for an expert elicitation on the future performance of gas-turbine-based technologies in the electric power sector and to discuss how these insights relate to the current elicitation literature in energy modeling. Elicitation results suggest that prospective efficiency gains are likely to be slower than historical trends; however, the assessed values are still appreciably higher than the efficiencies used in many energy models. The results also indicate that conducting face-to-face elicitations may be important for minimizing overconfidence and for critically examining reported values, especially when assessing non-central probabilities in the tails of a distribution.

John E. Bistline

2014-01-01T23:59:59.000Z

172

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

SciTech Connect (OSTI)

This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

2008-02-01T23:59:59.000Z

173

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

gasification-based combustion turbine systems. The paper dmws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy...-14, 1994 Coupled with gasification, combustion turbine power generation also may provide attractive opportunities for other fuels, such as low-value residual oils and petroleum coke. Residual oil firing of boilers in large steam turbine-based power...

Karp, A. D.; Simbeck, D. R.

174

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

175

Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint  

SciTech Connect (OSTI)

As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

Muljadi, E.; Singh, M.; Gevorgian, V.

2012-11-01T23:59:59.000Z

176

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

SciTech Connect (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

177

DOE Zero Energy Ready Home Consolidated Renewable Energy Ready...  

Energy Savers [EERE]

Consolidated Renewable Energy Ready Checklist DOE Zero Energy Ready Home Consolidated Renewable Energy Ready Checklist All homes certified as DOE Zero Energy Ready Homes must meet...

178

Study of the Reliability Enhancement of Wind Turbines Employing Direct-drive Technology.  

E-Print Network [OSTI]

??In traditional wind turbines employing gearboxes, the blades spin a shaft that is connected through a gearbox to the generator. The multiple wheels and bearings (more)

Sara George, Reeba

2012-01-01T23:59:59.000Z

179

MHK Technologies/Mi2 | Open Energy Information  

Open Energy Info (EERE)

Mi2 Mi2 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mi2.jpg Technology Profile Primary Organization Mavi Innovations Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The turbines convert the kinetic energy of flowing water in tidal or river currents into clean and reliable power At the core of their technology lies a high efficiency turbine module consisting of a vertical axis rotor housed inside a duct Mooring Configuration Depending on the specific application the turbine modules can be either floating gravity mounted or integrated into existing civil infrastructures Optimum Marine/Riverline Conditions Tidal and river sites with mean flows above 5 knots and depths over 8 meters are ideal locations for our turbine units

180

NREL: Technology Transfer - Fabric-Covered Blades Could Make Wind Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient A photo of a crew of workers watching as a wind blade is hauled up to a turbine for assembly. A new fabric-wrapped wind blade could eventually replace the traditional fiberglass blade, providing for lighter turbine components that could be built and assembled on site. January 2, 2013 A new design that calls for wrapping architectural fabric around metal wind turbine blades-instead of the traditional fiberglass-could be the latest revolution in dramatically reducing the cost of wind-produced power. That's the focus of a new project that partners NREL with General Electric (GE) and Virginia Polytechnic Institute & State University. Together, they are rethinking the way wind blades are designed,

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MHK Technologies/Hydroomel | Open Energy Information  

Open Energy Info (EERE)

Hydroomel Hydroomel < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Eco cinetic Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Hydroomel r composed of little modules that perfectly fits into natural and urban environments and on existing structures where it could be located Technology Dimensions Device Testing Date Submitted 59:09.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Hydroomel&oldid=680955" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

182

High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979  

SciTech Connect (OSTI)

Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

Not Available

1980-01-01T23:59:59.000Z

183

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

184

The efficiency of using gas turbine technologies in developing small oil-and-gas-condensate deposits  

Science Journals Connector (OSTI)

The paper considers the technical and economic features of using stream-gas and gas-turbine power generators in developing small oil-and-gas-condensate deposits in Irkutsk oblast under conditions of carrying o...

A. M. Karasevich; A. V. Fedyaev; G. G. Lachkov; O. N. Fedyaeva

2012-02-01T23:59:59.000Z

185

MHK Technologies/TREK | Open Energy Information  

Open Energy Info (EERE)

TREK TREK < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TREK.jpg Technology Profile Primary Organization Renewable Energy Research Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description Each TREK turbine has a nameplate capacity of 250 kW However TREK is capable of outputting 333 kW Its benefits are many Requires no dam land conservation for wildlife agriculture and recreation Easily installed requiring minimal civil works structures Operates in many climate and river types Flexible Functions independently or can be connected to an isolated and or interconnected power grid Scalable more turbines can be added should demands increase helping communities with sustainable development Competitive electricity cost is on par with other renewable energy power production options

186

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

187

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

188

MHK Technologies/TidEl | Open Energy Information  

Open Energy Info (EERE)

TidEl TidEl < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidEl.jpg Technology Profile Primary Organization SMD Hydrovision Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The TidEl device consists of twin horizontal axis turbines The device is moored to the sea floor but the twin turbines are free to move and change direction in accordance with the tide As of 2005 the company had completed construction on a 1 10 scale model which has since undergone tank testing Technology Dimensions Device Testing Date Submitted 41:42.2 << Return to the MHK database homepage

189

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

190

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

191

NETL: Turbines - Oxy-Fuel Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

192

MHK Technologies/Osprey | Open Energy Information  

Open Energy Info (EERE)

Osprey Osprey < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Osprey.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Osprey is a vertical axis turbine mounted to the bottom of a 30 aluminium catamaran test rig float Technology Dimensions Device Testing Date Submitted 57:37.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Osprey&oldid=681630" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

193

MHK Technologies/Current Power | Open Energy Information  

Open Energy Info (EERE)

Power Power < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Power.jpg Technology Profile Primary Organization Current Power AB Project(s) where this technology is utilized *MHK Projects/Norde lv Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Current Power device is a slow speed vertical axis turbine that utilizes a direct drive permanent magnet rotating generator The concept is based on a vertical axle turbine directly coupled to a permanent magnet synchronous generator The system is intended to be placed on the bottom of the ocean or a river where it would be protected from storm surges and strong waves The output from the generator has to be rectified and inverted before connection to the grid Robustness is achived by the simple mechanical construction

194

MHK Technologies/Evopod E35 | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Evopod E35.jpg Technology Profile Primary Organization Oceanflow Development Ltd Project(s) where this technology is utilized *MHK Projects/Evopod E35 35kW grid connected demonstrator Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Evopod E35 is a 35kW community scale tidal turbine prototype that is being developed for installation in Scotland in late summer 2012 The project value is approximately 1 2 million and will be the first grid connected floating tidal turbine for a community energy scheme The area where it is being installed was environmentally monitored during 2011 as part of the consenting process The unit is being connected into the local supply through a Scottish and Southern Energy SSE grid extension

195

MHK Technologies/In stream River Hydrokinetics | Open Energy Information  

Open Energy Info (EERE)

In stream River Hydrokinetics In stream River Hydrokinetics < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description New Energy Corporation EnCurrent vertical axis turbine mounted on pontoon barge Technology Dimensions Device Testing Date Submitted 10:01.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/In_stream_River_Hydrokinetics&oldid=680959" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

196

Community Readiness Project Helps State Get Ready for Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Community Readiness Project Helps State Get Ready for Electric Vehicles Community Readiness Project Helps State Get Ready for Electric Vehicles April 10, 2013 - 12:00am Addthis In...

197

MHK Technologies/Seadov | Open Energy Information  

Open Energy Info (EERE)

Seadov Seadov < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seadov.jpg Technology Profile Primary Organization Seadov Pty Ltd Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 3 wind turbines power the reverse osmosis plant on board to desalinate the ocean water into potable water Subject to site location wave solar wind and tidal energy devices may be used to harness the available prevailing natural energy surrounding the site Technology Dimensions Device Testing Date Submitted 33:09.8 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Seadov&oldid=681648

198

MHK Technologies/Sabella River Generator | Open Energy Information  

Open Energy Info (EERE)

Sabella River Generator Sabella River Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sabella River Generator.jpg Technology Profile Primary Organization Sabella Energy Project(s) where this technology is utilized *MHK Projects/SR 01 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A unidirectional river bed turbine Technology Dimensions Technology Nameplate Capacity (MW) 2 Device Testing Date Submitted 7/11/2012 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sabella_River_Generator&oldid=680598

199

Accelerating the Electrification of U.S. Drive Trains: Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced...

200

EV Community Readiness projects: American Lung Association of...  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti027kelly2013o.pdf More Documents & Publications EV Community Readiness projects: Center for...

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Adopting New Technologies for  

E-Print Network [OSTI]

Readiness 6 Organizational Readiness 8 Motivational Readiness 10 Microcultures 12 Conclusion 13 References. The main purpose of IPAS technologies is not to increase administrative efficiency or information. Many authors writing about organizational behavior have sought to understand why particular innova

Qian, Ning

202

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

203

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

204

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect (OSTI)

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

Not Available

2002-01-01T23:59:59.000Z

205

Shipbuilding: Cunard Turbines Examined  

Science Journals Connector (OSTI)

... judge. It will be a great achievement if he can devise an assessment of the turbine troubles to satisfy all three parties. The Minister of Technology, Mr Anthony Wedgwood Benn ... Arnold to examine reports from all three companies on the faults which arose in the turbines during the recent trials of the QE2, and to assess the remedial measures that ...

1969-02-15T23:59:59.000Z

206

NETL: Turbines Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

207

Ceramics for ATS industrial turbines  

SciTech Connect (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

208

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

TidalStar TidalStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The horizontal axis TidalStar device uses a bidirectional twin rotor turbine to produce approximately 50 kW at peak capacity in both ebb and flood tides Technology Dimensions Length (m) 6 Width (m) 6 Freeboard (m) 1 Technology Nameplate Capacity (MW) 5 Device Testing Date Submitted 46:38.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/TidalStar&oldid=681677

209

MHK Technologies/Bluetec | Open Energy Information  

Open Energy Info (EERE)

Bluetec Bluetec < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Bluetec.jpg Technology Profile Primary Organization Bluewater Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Bluetec platform is a unified floating support structure which can hold any type of turbines in any waterdepth It offers waterproof housing for vulnerable systems above the waterline unique in the tidal industry Power cables are connected dry rather than under water reducing risks and costs significantly The Bluetec structure is much lighter than the gravity based designs requiring less tonnage steel per MW The device itself is floating and therefore installation can be executed with widely available vessels without the need for expensive floating cranes or jack ups

210

MHK Technologies/Hydroflo | Open Energy Information  

Open Energy Info (EERE)

Hydroflo Hydroflo < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydroflo.jpg Technology Profile Primary Organization IBIS LLC Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The force of the flow of water impacting the turbine blades causes them to rotate The rotating blades are attached to a cylinder causing the cylinder to rotate Inside the cylinders a disk is attached to the walls This disk has 60 magnets radiating from the center to the periphery Oppposite to this rotating disk is a second disk with 60 coils this disk does not rotate The rotating magnetic disk act to induce a current in the coils An undersea transmission line takes power to a conditioner on shore The current is rectified and then inverted and transmitted to the load as standard 60 hz AC

211

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

212

The military aircraft gas turbine  

Science Journals Connector (OSTI)

The development of the gas turbine for use in military aircraft is discussed. The advancing fields of component technology and engine testing are also outlined

R.M. Denning; R.J. Lane

1983-01-01T23:59:59.000Z

213

MHK Technologies/Atlantis AR 1000 | Open Energy Information  

Open Energy Info (EERE)

Atlantis AR 1000 Atlantis AR 1000 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Atlantis AR 1000.jpg Technology Profile Primary Organization Atlantis Resources Corporation Project(s) where this technology is utilized *MHK Projects/Castine Harbor Badaduce Narrows *MHK Projects/Gujarat *MHK Projects/Tidal Energy Device Evaluation Center TIDEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The AR series turbines are commercial scale Horizontal Axis Turbines designed for open ocean deployment in the harshest environments on the planet AR turbines feature a single rotor set with highly efficient fixed pitch blades The AR turbine is rotated as required with each tidal exchange using the on board yaw system This is done in the slack period between tides and fixed in place for the optimal heading for the next tide AR turbines are rated at 1MW 2 65m s of water flow velocity The AR 1000 the first of the AR series was successfully deployed and commissioned at the EMEC facility during the summer of 2011

214

Gas Turbine Emissions  

E-Print Network [OSTI]

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

Frederick, J. D.

215

MHK Technologies/Microturbine River In Stream | Open Energy Information  

Open Energy Info (EERE)

Microturbine River In Stream Microturbine River In Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Microturbine River In Stream.png Technology Profile Primary Organization Whitestone Power Communications Project(s) where this technology is utilized *MHK Projects/Microturbine River In Stream Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description HDPE blades are the only moving parts in the water.This gives the turbine high resistance to silty or salty water. Blades designed to survive impact of 1500 lb object. HDPE provides flexibility and strength. Blades penetrate water 24 inches allowing for deep and shallow operation. Mounting design allows for variable depth operation for varying river conditions.All submerged prime-mover parts constructed from HDPE. No underwater gearboxes, generators or electrical cables. Velocity of blades 50% of velocity of river current.

216

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

217

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

218

Analysis and Optimisation of a Novel Wind Turbine .  

E-Print Network [OSTI]

??The technologies of urban wind turbines have been rapidly developed in recent years, but urban wind turbines have not found a wide application due to (more)

Zhang, Xu

2014-01-01T23:59:59.000Z

219

Beamline Commissioning Readiness Review Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ES&H and User Safety Officer T. Kruy AES Front Ends Readiness G. Markovich AES PSS & EPS Readiness M. Merritt AES Insertion Device Readiness M. Ramanathan AES CCSM & Chair AES...

220

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: Turbine Projects - Cost Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

222

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

223

In 2006, the Alliance of Coastal Technology (ACT) evaluated the performance of five commercial-ready, in situ turbidity sensors at  

E-Print Network [OSTI]

commercial-ready, in situ turbidity sensors at eight test sites located throughout North America (Fig. 1, and a freshwater lake (Fig. 1) . The sensors used in this study consisted of: A backscatter Turbidity Probe ( =660 A transmissometer ( =660nm) ­ data denoted by cp Both scattering sensors were equipped with integrated copper wipers

Boss, Emmanuel S.

224

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network [OSTI]

Capture Ready is a design concept enabling fossil fuel plants to be retrofitted more economically with carbon dioxide capture and storage (CCS) technologies, however financing the cost of capture ready can be problematic, especially...

Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

225

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the countrys industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits

2007-09-01T23:59:59.000Z

226

MHK Technologies/SeaGen | Open Energy Information  

Open Energy Info (EERE)

SeaGen SeaGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaGen.jpg Technology Profile Primary Organization Marine Current Turbines Ltd Project(s) where this technology is utilized *MHK Projects/Seaflow Tidal Energy System *MHK Projects/SeaGen 2 *MHK Projects/SeaGen KyleRhea *MHK Projects/Seagen Strangford *MHK Projects/The Skerries Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application Technology Description Two 16m diameter rotors mounted on a steel cross beam Mooring Configuration Jacketed quadrapod structure with 4 pinpiles each of 1m diameter penetrating 9m into bedrock. SeaGen can also be supplied on a 3.5m monopile and its predecessor the 300kW Seaflow was installed on a 2.1m diameter monopile.

227

MHK Technologies/Hydro Helix | Open Energy Information  

Open Energy Info (EERE)

Helix Helix < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydro Helix.jpg Technology Profile Primary Organization Hydrohelix Energies Project(s) where this technology is utilized *MHK Projects/Marenergie Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Hydro-Helix horizontal axis turbines are stabilized by gravity and/or anchored depending on the nature of the site. They are pre-oriented to face the the tidal currents, and the profile of the rotor's blades can capture the flow and ebb tide. The rotor is activated at low speeds (10 to 15tr/mn) by the flow of the tide.

228

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

229

MHK Technologies/Ocean | Open Energy Information  

Open Energy Info (EERE)

Ocean Ocean < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK Projects/Alaska 35 *MHK Projects/Maine 1 Project *MHK Projects/Mississippi 6 *MHK Projects/Mississippi 7 *MHK Projects/New York 1 *MHK Projects/New York 2 Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description Hydro Green Energy's HydroKinetic Turbine Arrays operate differently than a traditional hydropower plant. Like a traditional hydropower station, the electricity that we produce is clean and renewable, however, there are significant differences. Hydro Green Energy's Krouse Turbines are kinetic turbines. This means that the renewable power that is generated comes from the energy in the "motion" of the moving water, i.e. the velocity of the moving water be it river, tidal or ocean current to generate river, tidal energy or ocean energy, respectively.

230

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

231

Aviation turbine fuels, 1980  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1980 are presented in this report. The samples represented are typical 1980 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 98 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5 and commercial type Jet A.

Shelton, E.M.

1981-03-01T23:59:59.000Z

232

Aviation turbine fuels, 1982  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

233

Aviation turbine fuels, 1979  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1979 are presented in this report. The samples represented are typical 1979 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 93 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1980-05-01T23:59:59.000Z

234

Aviation turbine fuels, 1981  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1981 are presented in this report. The samples represented are typical 1981 production and were analyzed in the laboratories of 15 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 95 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1982-04-01T23:59:59.000Z

235

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

236

Emergency Readiness Assurance Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

1992-02-27T23:59:59.000Z

237

MHK Technologies/CoRMaT | Open Energy Information  

Open Energy Info (EERE)

CoRMaT CoRMaT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage CoRMaT.jpg Technology Profile Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The CoRMat employs two closely spaced contra rotating rotors driving a contra rotating electrical generator The first rotor has three blades rotating in a clockwise direction while the second rotor located directly behind the first has four blades rotating in an anti clockwise direction The turbine directly drives a flooded permanent magnet contra rotating generator without a gearbox The flooded generator is cooled passively by the water eliminating parasitic energy losses associated with gearbox driven water tight active oil based gearbox generator cooling systems and power absorbing shaft seals

238

MHK Technologies/W2 POWER | Open Energy Information  

Open Energy Info (EERE)

POWER POWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage W2 POWER.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Point absorbers for waves pump water to a Peltor turbine But on the same platform we also combine this with offshore wind mills Mooring Configuration Slack mooring but allowed to sway 90 degree around prevailing wind direction All within a frame mooring with capasity of i e 10 units This is similar to the type of mooring used by modern type ferrfloting fish faring i Norway but in larger scale Optimum Marine/Riverline Conditions Offshore deep water with average significant wave hight 2 5 m and periode average 5 6 Sice we combine wave and offshore wind power we also desired good wind conditions

239

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

240

NREL: Wind Research - Midsize Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gas Turbine Engine Collaborative Research - NASA Glenn Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbine Engine Collaborative Gas Turbine Engine Collaborative Research-NASA Glenn Research Center Background Advancing the efficiency and performance levels of gas turbine technology requires high levels of fundamental understanding of the actual turbine component level technology systems. The National Aeronautics and Space Administration Glenn Research Center (NASA Glenn), with support from the Ohio State University, is planning research to compile

242

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

243

MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Oceanlinx Mark 3 Wave Energy Converter Oceanlinx Mark 3 Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oceanlinx Mark 3 Wave Energy Converter.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Oceanlinx Mark 3 Wave Energy Converter is a floating multi Oscilating Water Chamber Wave Energy Converter. The airflow generated by the OWC passes through a patented Denniss Auld turbine which converts the bidirectional airflow of the OWC to a unidirectional rotation of the axial flow turbine which in turn drives a generator.

244

MHK Technologies/Sea wave Slot cone Generator SSG | Open Energy Information  

Open Energy Info (EERE)

Sea wave Slot cone Generator SSG Sea wave Slot cone Generator SSG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sea wave Slot cone Generator SSG.jpg Technology Profile Primary Organization Wave Energy AS Project(s) where this technology is utilized *MHK Projects/Wave Energy AS Project 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Slot-Cone Generator (SSG) is based on the overtopping principle. It utilizes a total of three reservoirs stacked on top of one other (referred to as a 'multi-stage water turbine') in which the potential energy of the incoming wave will be stored. The water captured in the reservoirs will then run through the multi-stage turbine for highly efficient electricity production.

245

Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine  

Science Journals Connector (OSTI)

Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.

R Braun; K Kusterer; T Sugimoto; K Tanimura; D Bohn

2013-01-01T23:59:59.000Z

246

MHK Technologies/hyTide | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/hyTide MHK Technologies/hyTide < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyTide.jpg Technology Profile Primary Organization Voith Siemens Hydro Power Generation Project(s) where this technology is utilized *MHK Projects/South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description hyTide is a horizontal axis tidal turbine optimized for reliability and low maintenance costs. Voith Hydro therefore develops innovative tidal power stations that do not utilize the water storage but, similar to wind power stations, exploit the kinetic energy of the current and are operated fully under water. For this purpose, up to three turbines, each with a nominal power of 1 MW, are installed within a bridge-like structure. These turbines can be rotated around their horizontal axis, which allows them to make optimum use of the water and its flow direction, which changes every six hours.

247

MHK Technologies/SPERBOY | Open Energy Information  

Open Energy Info (EERE)

SPERBOY SPERBOY < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SPERBOY.jpg Technology Profile Primary Organization Embley Energy Project(s) where this technology is utilized *MHK Projects/Plymouth Sound Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description SPERBOY is a floating buoy Oscillating Water Column (OWC) device consisting of a buoyant structure with a submerged, enclosed column. Housed above the OWC on top of the buoy is the plant: turbines, generators and associated system facilities. The principle of operation is similar to that of fixed OWCs designed for shoreline and fixed installations, except that the device is capable of deployment in deep water to maximize greatest energy source; and the entire body floats and maintains optimum hydrodynamic interactions for the prevailing wave spectrum, producing high energy capture at minimal cost.

248

MHK Technologies/Atlantisstrom | Open Energy Information  

Open Energy Info (EERE)

Atlantisstrom Atlantisstrom < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Atlantisstrom.jpg Technology Profile Primary Organization Atlantisstrom Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Five drop shaped vanes 20 meters length are placed between two circular metal plates 8 meter diameter and are held in place by two supports The assembly is fixed between two opposing rock faces in a narrow fjord and rotates at approximately 7 RPM Technology Dimensions Device Testing Date Submitted 51:25.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Atlantisstrom&oldid=681544

249

MHK Technologies/Grampus | Open Energy Information  

Open Energy Info (EERE)

Grampus Grampus < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Grampus.jpg Technology Profile Primary Organization Offshore Wave Energy Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Grampus is a floating wave energy platform that uses wave action to compress air in a horizontal duct The compressed air is accumulated in a reservoir and is then used to drive a unidirectional turbine Technology Dimensions Device Testing Date Submitted 52:18.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Grampus&oldid=681581

250

Construction Readiness RM  

Broader source: Energy.gov (indexed) [DOE]

Construction Readiness Review Module Construction Readiness Review Module March 2010 CD- [This Rev Readiness -0 view Module w s Review (CRR OFFICE O CD-1 was used to dev R). This Review OF ENVIRO Standard R Construc Rev Critical D CD-2 M velop the Revie w Module cont ONMENTA Review Pla ction Rea view Modul Decision (CD C March 2010 ew Plan for Sal tains the lesson Review.] AL MANAG an (SRP) adiness le D) Applicabili D-3 lt Waste Proce ns learned from GEMENT ity CD-4 ssing Facility ( m the SWPF Co Post Ope (SWPF) Const onstruction Re eration truction eadiness Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental

251

Modular Turbine Control Software: A Control Software Architecture for the ABB Gas Turbine Family  

Science Journals Connector (OSTI)

ABB Power Generations family of gas turbines covers the power range of 35 to 270 MW with five basic turbine types, which vary in size, combustion technology and equipment. Each type comes in several variatons...

Dr. Christopher Ganz; Michael Layes

1998-01-01T23:59:59.000Z

252

MHK Technologies/FRI El Sea Power System | Open Energy Information  

Open Energy Info (EERE)

El Sea Power System El Sea Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The device is composed of a floating structure vessel and various horizontal axis turbines positioned at regular intervals on a horizontal adjustable and modular tube the so called line This tube also functions as transmission shaft for the power captured from water flows and transferred to the electric generator which eventually transforms it into electrical energy

253

MHK Technologies/Multi Resonant Chambers MRC 1000 | Open Energy Information  

Open Energy Info (EERE)

Resonant Chambers MRC 1000 Resonant Chambers MRC 1000 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Resonant Chambers MRC 1000.jpg Technology Profile Primary Organization ORECon Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A 1 5MW Multi Resonant Chamber MRC using Oscillating Water Column OWC principles Consists of 3 x 500kW independent chambers each with a Dresser Rand HydroAir turbine driving an induction generator Full power conversion system delivers grid compliant power 1 5MW 33kV 60Hz to shore Device is tension moored to maximise power capture and minimise footprint All maintenance is done on board No moving parts in the water Turbines are low speed 300rpm high efficiency 75 and low noise

254

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

255

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

and gas turbines has been continuously improved by technology, and new devices and procedures under development

Anderson, Byron P.

2011-01-01T23:59:59.000Z

256

8 - Radial-Inflow Turbines  

Science Journals Connector (OSTI)

Publisher Summary The inward-flow radial turbine covers tremendous ranges of power, rates of mass flow, and rotational speeds from very large Francis turbines used in hydroelectric power generation and developing hundreds of megawatts down to tiny closed cycle gas turbines for space power generation of a few kilowatts. The widespread adoption of variable geometry turbines for diesel engine turbochargers has been the major factor in increasing the commercial use of this technology. Variable area is commonly, but not exclusively, achieved by pivoting the nozzle vanes about an axis disposed in the span-wise direction. The most common radial-inflow turbine applications are turbochargers for internal combustion engines, natural gas, diesel, and gasoline powered units. The advantage of a turbocharger is that it compresses the air, thus letting the engine squeeze more air into a cylinder, and more air means that more fuel can be added. Applications of turbo expanders in the chemical industry abound in the petrochemical and chemical industries. Turbo expanders using radial-inflow turbines have a much higher ruggedness than turbo expanders using axial-flow turbines. The radial-inflow turbine for gas turbine application is basically a centrifugal compressor with reversed flow and opposite rotation. The performance of the radial-inflow turbine is being investigated with increased interest by the transportation and chemical industries. In the petrochemical industry, it is used in expander designs, gas liquefaction expanders and other cryogenic systems. The radial-inflow turbines greatest advantage is that the work produced by a single stage is equivalent to that of two or more stages in an axial turbine. Its cost is also much lower than that of a single- or multi-stage axial-flow turbine. The configurations and designs of the two types of radial-inflow turbine (cantilever and mixed-flow) are described. The thermodynamic and aerodynamic principles governing a radial-inflow turbine are summarized. The design and performance of a radial-inflow turbine are discussed. The potential problems (erosion; exducer blade vibration; noise) and types of losses in a radial-inflow turbine are described. Applications of radial-inflow turbines (e.g. turbochargers) are discussed.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

257

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

258

MHK Technologies/Swanturbine | Open Energy Information  

Open Energy Info (EERE)

Swanturbine Swanturbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Swanturbine.jpg Technology Profile Primary Organization Swanturbines Ltd Project(s) where this technology is utilized *MHK Projects/Cygnet Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Swanturbine was designed to allow for simple installation and maintenance retrieval in both shallow and deep water. The device has a gearless low speed generator with only one moving part in the drivetrain, which offers high efficiency over a range of speeds with minimal maintenance demands through the use of novel structural and electromagnetic topologies. A simple, robust and serviceable 360 degree yawing mechanism is used to allow the device to maximize flow capture.

259

MHK Technologies/Waveberg | Open Energy Information  

Open Energy Info (EERE)

Waveberg Waveberg < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Waveberg.jpg Technology Profile Primary Organization Waveberg Development Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Waveberg is an articulated set of connected floats that flex as the waves pass under them using this bending motion to pump seawater The resulting high pressure water is brought ashore through piping from the Waveberg and can be pumped through a turbine Engineered plastic pipe and fiberglass are the main materials since they are durable corrosion resistant low cost and easy to fabricate

260

MHK Technologies/TETRON | Open Energy Information  

Open Energy Info (EERE)

TETRON TETRON < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TETRON.jpg Technology Profile Primary Organization Joules Energy Efficiency Services Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The TETRON device utilizes both the heave and surge motion of the waves The TETRON device uses an immersed sphere at the centroid of a tetrahedron cable stayed structure with double acting tube pump power take off in telescopic struts a Pelton turbine and an electric generator Currently only a 1 38 scale prototype has been built and wave tank tested Technology Dimensions

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE Zero Energy Ready Home Resources  

Broader source: Energy.gov [DOE]

DOE Zero Energy Ready Home provides resources for successfully building and selling zero-energy ready homes in today's market.

262

The value of steam turbine upgrades  

SciTech Connect (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

263

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

264

Robotic Wind Turbine Inspection | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trials GE Global Research is advancing technology that will make the inspection of wind turbines faster and more reliable for customers. Currently, an inspector examines the...

265

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

266

MHK Technologies/Atlantis AN 150 | Open Energy Information  

Open Energy Info (EERE)

Atlantis AN 150 Atlantis AN 150 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Atlantis AN 150.jpg Technology Profile Primary Organization Atlantis Resources Corporation Project(s) where this technology is utilized *MHK Projects/Gujarat Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The AN400 is a 400kW shallow water hydro kinetic turbine which has been extensively operated at an open ocean, grid connected test facility located at San Remo, Australia. The AN400 turbine uses Aquafoils to capture the kinetic energy present in the flow of water which drives a chain drive system powering 2 X 75kW induction generators. The system has 220o yaw capability, vertical recovery for maintenance and cleaning, and the system is fully autonomous and can be remotely controlled via internet connection. The converter and PLC/power conditioning/control systems are located on top of a surface piercing pylon. The turbine is robust and can withstand water flow containing significant debris. It is fully scalable and has been developed over a 6 year period with multiple tow-testing and continual optimisation.

267

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Improvement Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction July 9, 2005 - July 8, 2006 J. Cohen and T. Schweizer Princeton Energy Resources International (PERI) Rockville, Maryland A. Laxson, S. Butterfield, S. Schreck, and L. Fingersh National Renewable Energy Laboratory Golden, Colorado P. Veers and T. Ashwill Sandia National Laboratories Albuquerque, New Mexico Technical Report NREL/TP-500-41036 February 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

268

Planning and Conducting Readiness Reviews  

Broader source: Energy.gov (indexed) [DOE]

3006-2010 3006-2010 ________________________ Superseding DOE-STD-3006-2000 June 2000 DOE STANDARD PLANNING AND CONDUCTING READINESS REVIEWS U.S. Department of Energy AREA OPER Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3006-YR i CONTENTS FOREWORD................................................................................................................................. 1

269

MHK Technologies/Kensington | Open Energy Information  

Open Energy Info (EERE)

Kensington Kensington < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Kensington.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK Projects/Alaska 35 *MHK Projects/Maine 1 Project *MHK Projects/Mississippi 6 *MHK Projects/Mississippi 7 *MHK Projects/New York 1 *MHK Projects/New York 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Kensington horizontal axis turbine (Patented: US 6955049 and 43 international patents. 87 additional US Patents Pending) has asymmetrical dual optimized ducts that have the highest coefficient of performance of any current based system in the industry. The Kensington generates 2.5 to 3 times more power than a non-ducted pinwheel turbine. Water to wire, the Kensington has a first generation efficiency of 60%, and a second generation efficiency of 70%.

270

MHK Technologies/Water Air Pump WAP | Open Energy Information  

Open Energy Info (EERE)

Pump WAP Pump WAP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Air Pump WAP.jpg Technology Profile Primary Organization Shamil Ayntrazi Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Water Air Pump WAP uses a partially submerged funnel shaped air pump to compress air collect it in a piping network and feed it to an air turbine Mooring Configuration Gravity base installed at the sea bed Technology Dimensions Device Testing Date Submitted 11:50.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Water_Air_Pump_WAP&oldid=681697"

271

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

272

Readiness Review RM  

Broader source: Energy.gov (indexed) [DOE]

Readiness Review Module Readiness Review Module March 2010 CD-0 O 0 OFFICE OF C CD-1 F ENVIRO Standard R Readin Rev Critical Decis CD-2 M ONMENTAL Review Plan ness Rev view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) view e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-

273

Readiness Review Program  

Broader source: Energy.gov (indexed) [DOE]

Review Program Review Program FUNCTIONAL AREA GOAL: DOE/NNSA Headquarters and Field organizations and their contractors responsible for the startup and operation of nuclear facilities have defined and implemented contractual requirements to manage, evaluate, and approve the startup and restart of nuclear facilities and activities. REQUIREMENTS:  DOE Order 425.1C, Startup and Restart of Nuclear Facilities  DOE P 450.4, Safety Management System Policy  DOE/NNSA Safety Management Functions, Responsibilities and Authorities Manual Guidance:  DOE-STD-3006-2000, Planning and Conduct of Operational Readiness Reviews  DOE-HDBK- 3012-2003, Operational Readiness Review Team Leaders Handbook  DOE G 450.4-1B, Integrated Safety Management System Guide

274

MHK Technologies/OWC | Open Energy Information  

Open Energy Info (EERE)

OWC OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OWC.jpg Technology Profile Primary Organization RWE npower renewables Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The breaking waves force water into an opening below water level which is then sucked out again when the waves retreat This constant rise and fall sets a column of water trapped in several chambers in motion The air mass above water is thus alternately compressed and sucked in powering a turbine that generates electricity The pilot plant s output will be enough to supply around 1 500 homes with electricity

275

Readiness Review Training - Member | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Member Member Readiness Review Training - Member November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory Course provides tools and tips to be an effective readiness review team member. Topics include: An understanding of the background behind the Readiness Review Process; Training in the mechanics of performance and reporting of a Readiness Review; Knowledge of current DOE Orders, Directives, and References for the Readiness Review process; Training in Performance-Based Assessment Processes and Official DOE Team Member Readiness Review Training Methods Readiness Review Training - Member More Documents & Publications Readiness Review Training - Team Leader Readiness Review Training - Development of Criteria And Review Approach Documents

276

Steam Turbines  

Science Journals Connector (OSTI)

... chapters take up the design of nozzles and blades, and descriptions of commercial types of turbines. The treatment of low-pressure, mixed pressure, bleeder, and marine ... . The treatment of low-pressure, mixed pressure, bleeder, and marine turbines occupies separate chapters. Of these, the section dealing with the marine ...

1917-09-20T23:59:59.000Z

277

MHK Technologies/The Multi Energy Device | Open Energy Information  

Open Energy Info (EERE)

The Multi Energy Device.jpg The Multi Energy Device.jpg Technology Profile Primary Organization Ing Arvid Nesheim Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Multi Energy Device utilizes pressure differences to create a water flow that drives a water turbine and generator The water turbine can be integrated into the device or can be situated onshore using a flexible pipe between the device and water turbine The pressure differential is obtained by creating high pressure at one part of the device and low pressure at the other part of the device resulting in a water flow from the high to low pressure through the water turbine Low water pressure in the device occurs due to drag and inertia forces and the increased velocity of the water flowing past the device The degree of reduction in water pressure is related to the amount of kinetic energy of the water mass acting on the device

278

MHK Technologies/Hydroair | Open Energy Information  

Open Energy Info (EERE)

Hydroair Hydroair < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydroair.jpg Technology Profile Primary Organization Dresser Rand Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Incoming surface waves induce an oscillating flow of air within the chamber which in turn flows backwards and forwards through an air turbine installed in a duct connecting the chamber to the atmosphere The turbine converts this air movement into electrical energy The VRT design comprises two sets of static guide vanes located on either side and at a larger diameter than that of the rotor These vanes are connected by a shaped duct to provide a route for the airflow Air enters the duct at a relatively low velocity and acquires a swirl motion as it passes through the inlet guide vanes The air then accelerates as it passes down the narrowing duct toward the turbine rotor The air drives the rotor and then decelerates as it travels back through the expanding duct before passing over the outlet guide vanes The process is repeated in reverse for the next wave cycle

279

MHK Technologies/Pulse Stream 100 | Open Energy Information  

Open Energy Info (EERE)

Pulse Stream 100 Pulse Stream 100 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pulse Stream 100.jpg Technology Profile Primary Organization Pulse Tidal Ltd Project(s) where this technology is utilized *MHK Projects/Pulse Stream 100 Demonstration Project Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The 100kW Humber prototype system uses tidal streams to oscillate horizontal blades rather than extracting energy in the same way as a wind turbine through rotary blades. This mode of operation is the key to the device's unique access to shallow water and has so far shown that it can harness enough energy to power 70 homes. The device is connected to the national grid through nearby industrial process plant Millennium Inorganic Chemicals and Ethernet connected through neighbouring resin manufacturing company Cray Valley.

280

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

Delay Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Delay utilizes an existing natural land formation such as a peninsula or isthmus that creates a natural tidal barrier separating moving rising and falling bodies of seawater As the seawater on each side of the natural barrier rises and falls the device captures the energy resulting from the difference in water levels across the barrier using proven hydroelectric technology The device utilizes a standard impulse turbine installed in siphon pipe over under the natural barrier

282

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

283

Ready, set, go . . . well maybe  

E-Print Network [OSTI]

at the 2011 Applied Ergonomics Conference By Melaniesustainable? Case study of ergonomics program that was notwas not! Case study of ergonomics program that was ready

Alexandre, Melanie M

2011-01-01T23:59:59.000Z

284

Readiness Review | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is documented on a Readiness Review Activity Approval Form. Once the agreed upon conditions and requirements are met the review is finalized through Operational Approval...

285

Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review  

Science Journals Connector (OSTI)

The energy in flowing river streams, tidal currents or other artificial water channels is being considered as viable source of renewable power. Hydrokinetic conversion systems, albeit mostly at its early stage of development, may appear suitable in harnessing energy from such renewable resources. A number of resource quantization and demonstrations have been conducted throughout the world and it is believed that both in-land water resources and offshore ocean energy sector will benefit from this technology. In this paper, starting with a set of basic definitions pertaining to this technology, a review of the existing and upcoming conversion schemes, and their fields of applications are outlined. Based on a comprehensive survey of various hydrokinetic systems reported to date, general trends in system design, duct augmentation, and placement methods are deduced. A detailed assessment of various turbine systems (horizontal and vertical axis), along with their classification and qualitative comparison, is presented. In addition, the progression of technological advancements tracing several decades of R&D efforts are highlighted.

M.J. Khan; G. Bhuyan; M.T. Iqbal; J.E. Quaicoe

2009-01-01T23:59:59.000Z

286

MHK Technologies/DeltaStream | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search << Return to the MHK database homepage DeltaStream.jpg Technology Profile Primary Organization Tidal Energy Ltd Project(s) where this technology is utilized *MHK Projects/DeltaStream *MHK Projects/DeltaStream Pembrokeshire Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DeltaStream device is a nominal 1 2MW unit which sits on the seabed without the need for a positive anchoring system generating electricity from three separate horizontal axis turbines mounted on a common frame The use of three turbines on a single circa 30m wide triangular frame produces a low center of gravity enabling the device to satisfy its structural stability requirements including the avoidance of overturning and sliding The device utilizes fixed pitch blades designed to maximize the energy extracted from the tidal flow distribution at the deployment site A mechanical yaw system allows the nacelles to oscillate by a control system which is programmed to seek the optimum flow The rotors extract the energy from the water flow at an elevation of between approximately 5 20m above the seabed assuming a 15m rotor diameter

287

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...R. SODERBERG THE GAS TURBINE AND ITS SIGNIFICANCE...MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRDGE Read before...The emergence of the gas turbine as an accepted mem...implications of this development. This paper gives a...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

288

MHK Technologies/Tocardo Aqua 2800 | Open Energy Information  

Open Energy Info (EERE)

Tocardo Aqua 2800 Tocardo Aqua 2800 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tocardo Aqua 2800.jpg Technology Profile Primary Organization Tocardo Tidal Energy Ltd Project(s) where this technology is utilized *MHK Projects/Ijsselmeer barrage at Den Oever NL Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application Technology Description The Tocardo Aqua 2800 is a direct drive generator that eliminates the need for a gearbox The device also has intelligent speed tuning stall control which eliminates the need for expensive and vulnerable pitching mechanisms while matching the device to a wide range of tidal stream variations

289

MHK Technologies/OceanStar | Open Energy Information  

Open Energy Info (EERE)

OceanStar OceanStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OceanStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OceanStar device captures the underlying pressure wave through a series of small turbine generators The OceanStar relies upon a proprietary energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is essential to reach the large surface areas required to reach utility scale ocean power generation Technology Dimensions

290

MHK Technologies/Hydrovolts Inc | Open Energy Information  

Open Energy Info (EERE)

Hydrovolts Inc Hydrovolts Inc < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrovolts Inc.jpg Technology Profile Primary Organization Hydrovolts Inc Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The hinged blades or paddles are pushed by the current against the center shaft driving the rotation As the blades begin their reverse upstream stroke they flip open backwards and present only their edge to the current This eliminates almost all resistance and provides a pressure differential across the axis of about 95 Technology Dimensions Device Testing Date Submitted 20:00.9

291

MHK Technologies/Seatricity wave energy converter | Open Energy Information  

Open Energy Info (EERE)

Seatricity wave energy converter Seatricity wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seatricity wave energy converter.jpg Technology Profile Primary Organization Seatricity Project(s) where this technology is utilized *MHK Projects/Seatricity Antigua *MHK Projects/Seatricity Orkney Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected together to produce substantial amounts of pressurized water. Once ashore the pressurized sea water is used to drive a standard hydroelectric turbine to produce electricity.

292

MHK Technologies/HydroGen 10 | Open Energy Information  

Open Energy Info (EERE)

HydroGen 10 HydroGen 10 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroGen 10.jpg Technology Profile Primary Organization HydroGen Aquaphile sarl Project(s) where this technology is utilized *MHK Projects/Hydro Gen Technology Resource Click here Current/Tidal Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydro Gen is a big floating paddle wheels turbine included in a catamaran frame venturi shaped The frame is optimized to allow tapping a maximum of water in move in order to capture a maximum of kinetic energy which is transformed in mechanical energy by the wheel motion and then transformed into electrical energy through a generator mechanically driven by the wheel And then finally changed by a power control station to a steady electrical current normed at the customer request

293

MHK Technologies/Deep Green | Open Energy Information  

Open Energy Info (EERE)

Green Green < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Green.jpg Technology Profile Primary Organization Minesto AB Technology Resource Click here Current Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A wind kite assembly consisting of a kite and turbine is attached by a tether to a fixed point in the ocean bed Can operate in low current velocities and large depths It is lightweight and minature compared to other tidal solutions Mooring Configuration To be decided Optimum Marine/Riverline Conditions Water depth of 80 m and a current velocity of 1 5 m s Technology Dimensions Length (m) 4 Width (m) 12 Height (m) 2.5 Freeboard (m) 0 Draft (m) 40 Technology Nameplate Capacity (MW) 500 kW

294

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

295

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

296

MHK Technologies/Titan Platform | Open Energy Information  

Open Energy Info (EERE)

Titan Platform Titan Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Titan Platform.jpg Technology Profile Primary Organization Grays Harbor Ocean Energy Company LLC Project(s) where this technology is utilized *MHK Projects/Grays Harbor Ocean Energy and Coastal Protection Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Titan platform eliminates the need for specialized offshore construction and crane ships The platform along with the wind turbine and wave energy converters are assembled on shore with the platform legs raised The platform and devices are towed to the site and the legs are then lowered to the seafloor and the platform is jacked up on the legs

297

MHK Technologies/Wave Dragon | Open Energy Information  

Open Energy Info (EERE)

Dragon Dragon < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Dragon.jpg Technology Profile Primary Organization Wave Dragon ApS Project(s) where this technology is utilized *MHK Projects/Wave Dragon Nissum Bredning Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Wave Dragon is a floating wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp. Behind the ramp there is a large reservoir where the water that runs up the ramp is collected and temporarily stored. The water leaves the reservoir through hydro turbines that utilize the head between the level of the reservoir and the sea level.

298

MHK Technologies/eelGrass | Open Energy Information  

Open Energy Info (EERE)

eelGrass eelGrass < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EelGrass.jpg Technology Profile Primary Organization AeroVironment Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description AV has developed an innovative device for harnessing the ocean s energy Anchored to the sea floor and floating beneath the surface its turbine generates clean energy as the float moves horizontally through the water responding to pressure changes from passing waves Unobtrusive silent and reliable it is an attractive alternative to other ocean energy devices Mooring Configuration Proprietary Technology Dimensions

299

MHK Technologies/European Pico Pilot Plant | Open Energy Information  

Open Energy Info (EERE)

European Pico Pilot Plant European Pico Pilot Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage European Pico Pilot Plant.jpg Technology Profile Primary Organization Wave Energy Centre Project(s) where this technology is utilized *MHK Projects/OWC Pico Power Plant Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description A bottom mounted shoreline oscillating water column structure equipped with a horizontal axis Wells turbine generator set and a guide vane stator installed on each side of the rotor Control options are facilitated by a relief valve presently a slow acting valve with plans to substitute a fast acting mechanism in the wave chamber

300

MHK Technologies/SurfPower | Open Energy Information  

Open Energy Info (EERE)

SurfPower SurfPower < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SurfPower.jpg Technology Profile Primary Organization Seawood Designs Inc Project(s) where this technology is utilized *MHK Projects/Lake Huron Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The SurfPower is a constant pressure, fluid operated rectangular plate point absorber. The device is anchored to the seabed via hydraulic cylinders that operate as piston pumps. The upward and lateral motion of a pontoon forces fluid from the piston pump, at high pressure (200 bar), to a collection main on the seabed. This high pressure fluid is delivered to an onshore Pelton turbine that drives an asynchronous electrical generator.

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Technologies/Sub Surface Counter Rotation Current Generator | Open  

Open Energy Info (EERE)

Sub Surface Counter Rotation Current Generator Sub Surface Counter Rotation Current Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sub Surface Counter Rotation Current Generator.jpg Technology Profile Primary Organization Cyclocean LLC Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description Self regulated sub surface current generators that operate independently that tether freely anchored offshore in deep waters in the Gulf Stream Current producing continuos clean energy for the eastern seaboard Technology Dimensions Device Testing Date Submitted 20:10.1 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sub_Surface_Counter_Rotation_Current_Generator&oldid=681657

302

Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Infrastructure Market Readiness Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results Marc Melaina, PhD Hydrogen Technologies and Systems Center, NREL Distributed electronically to workshop attendees for review March 24, 2011 Goal of this presentation * This presentation is being disseminated to workshop attendees to convey the aggregate and "raw" feedback collected during the workshop * This feedback will be compiled in a final report * We would like to accomplish two things with these slides: 1. Share the preliminary results with participants 2. Get your feedback now on any corrections or omissions * We are still open to receiving additional feedback on the workshop topic, but will report it as having been received outside of the workshop if it is included in the final report

303

MHK Technologies/Aquantis | Open Energy Information  

Open Energy Info (EERE)

Aquantis Aquantis < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Aquantis.jpg Technology Profile Primary Organization Ecomerit Technologies LLC see Dehlsen Associates LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Proprietary Mooring Configuration Proprietary Optimum Marine/Riverline Conditions The Aquantis Current Plane C Plane technology is a marine current turbine designed to extract the kinetic energy from the flow and is capable of achieving reliable competitively priced base load power generation The technology is suitable for both steady marine currents and tidal currents although there are system differences and specific arraying and deployment requirements for each Aquantis is designed to harness the energy from the Gulf Stream and other steady marine currents around the world Aquantis deployment is projected to be cost competitive with thermal power generation when CO2 emissions and other environmental costs are accounted for

304

Chapter 9 - Hydraulic Turbines  

Science Journals Connector (OSTI)

This chapter covers the following topics: Features of hydraulic turbines; Early history and development; Efficiency of various types of turbine; Size of the various turbine types; The Pelton wheel turbine and controlling its speed; Energy losses; Reaction turbines; The Francis and the Kaplan turbines; Calculation of performance; Effect of size on the performance of hydraulic turbines; Cavitation and its avoidance; Calculation of the various specific speeds of turbines; The Wells turbine- Design and performance variables; Tidal power turbines- The SeaGen tidal turbine and its operational principles.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

305

Industrial Advanced Turbine Systems Program overview  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

1995-10-01T23:59:59.000Z

306

METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

1982-05-01T23:59:59.000Z

307

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

308

Clean Cities: Electric Vehicle Community Readiness Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Electric Vehicle Community Readiness Projects to someone by E-mail Share Clean Cities: Electric Vehicle Community Readiness Projects on Facebook Tweet about Clean Cities: Electric Vehicle Community Readiness Projects on Twitter Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Google Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Delicious Rank Clean Cities: Electric Vehicle Community Readiness Projects on Digg Find More places to share Clean Cities: Electric Vehicle Community Readiness Projects on AddThis.com... Current Opportunities Related Opportunities Funded Projects Recovery Act Projects Community Readiness Projects Alternative Fuel Market Projects

309

Solar Ready: An Overview of Implementation Practices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that solar ready itself does not reduce energy use or replace conventional energy with green energy. Solar ready does not contribute toward carbon emissions reduction until...

310

Wind Offshore Port Readiness | Department of Energy  

Office of Environmental Management (EM)

Wind Offshore Port Readiness Wind Offshore Port Readiness This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore...

311

Readiness Review Training - Member | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Member November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory Course provides tools and tips to be an effective readiness review team member....

312

On the Fatigue Analysis of Wind Turbines  

SciTech Connect (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

Sutherland, Herbert J.

1999-06-01T23:59:59.000Z

313

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

314

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy  

Office of Energy Efficiency and Renewable Energy (EERE)

Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

315

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

316

MHK Technologies/Open Cycle OTEC | Open Energy Information  

Open Energy Info (EERE)

OTEC OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Cycle OTEC.jpg Technology Profile Primary Organization Ocean Engineering and Energy Systems Technology Resource Click here OTEC Technology Type Click here OTEC - Open Cycle Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Closed Cycle OTEC In the closed cycle OTEC system warm seawater vaporizes a working fluid such as ammonia flowing through a heat exchanger evaporator The vapor expands at moderate pressures and turns a turbine coupled to a generator that produces electricity The vapor is then condensed in another heat exchanger condenser using cold seawater pumped from the ocean s depths through a cold water pipe The condensed working fluid is pumped back to the evaporator to repeat the cycle The working fluid remains in a

317

MHK Technologies/Current Electric Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Electric Generator.jpg Technology Profile Primary Organization Current Electric Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Current Electric Generator will create electricity in three different processes simultaniously by harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The generators will be wired up together in large fields on open waterways sumerged from harm The electricity will be sent back to mainland via an underwater wire for consumption The Current Electric Generator is designed with the environment in mind and will primarilly be constructed from recycled materials cutting emmisions cost

318

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

319

MHK Technologies/Yu Oscillating Generator YOG | Open Energy Information  

Open Energy Info (EERE)

Oscillating Generator YOG Oscillating Generator YOG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yu Oscillating Generator YOG.jpg Technology Profile Primary Organization Yu Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description By harnessing force located on top of the device s mast Known as a form of actuator You would get a levered mechanical gain converted to torque for a period of time oscillating the lower half side to side The lower half will then drive a turbine producing power As it slows due to resistance the actuator will harness force again to drive the device Making up for any loss motion do to resistance

320

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

322

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

323

1 - Introduction to gas turbines  

Science Journals Connector (OSTI)

Abstract: This chapter provides an overview of the importance of gas turbines for the power generation and oil and gas sector and in less detail the aviation sector. Worldwide trends in power generation and electricity conversion processes and the role of gas turbines to minimise CO2 emissions are addressed. Gas turbines are essential and crucial to reduce emissions both in aviation and in power production. Technologies for improving gas turbine and system efficiency, through higher turbine inlet temperatures, improved materials, cooling methods and thermal barrier coatings are described. New thermodynamic approaches, including intercooling, water and steam injection and hybrid cycles are addressed. Major issues are also fuel and operational flexibility, reliability and availability, cost reduction and power density, especially for the offshore sector. Market trends have been sketched. In the coming decades, gas turbines will be one of the major technologies for CO2 emission reductions in the power generation, aviation, oil and gas exploration and transport sectors. This prognosis is based on their high current efficiency and further efficiency improvement potential, both for simple cycle as for combined-cycle applications.

A.J.A. Mom

2013-01-01T23:59:59.000Z

324

Condition Based Monitoring of Gas Turbine Combustion Components  

SciTech Connect (OSTI)

The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

2012-09-30T23:59:59.000Z

325

MHK Technologies/Severn Barrage | Open Energy Information  

Open Energy Info (EERE)

Severn Barrage Severn Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Severn Barrage.jpg Technology Profile Primary Organization Severn Tidal Power Group STpg Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Severn Barrage is a proposed tidal power station to be built across the Bristol Channel Severn Estuary Along the length of the Severn Barrage open sluice gates would allow the tide to flow in These gates would then be closed at high tide trapping enormous quantities of water behind the barrage A total of 214 40MW turbines would be built into the barrage through which the trapped water would return at high pressure when the tide turns generating electricity In order to permit shipping to pass through the barrage an enormous set of shipping locks would be constructed The tidal turbines along the barrage would generate the same amount of electricity as three of the latest nuclear power stations 8 6 GW during flow and 2 GW on average This would be sufficient to provide 5 6 of the current electricity usage of England and Wales equivalent to 8 large coal fired power stations

326

MHK Technologies/HyPEG | Open Energy Information  

Open Energy Info (EERE)

HyPEG HyPEG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyPEG.jpg Technology Profile Primary Organization Hydrokinetic Laboratory Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Their Hydro kinetically Powered Electrical Generators HyPEGs converts the unimpeded flow and the massive current of large deep rivers and ocean currents into useful electrical power on a large scale 4 to 8MW each This innovative system design approach is viable because of the unique power head cup design and location in which the unit is placed Unlike conventional turbine type or propeller type current generators being tested today HyPEGs can operate in fairly shallow rivers since they rotate in the horizontal plane rather than the vertical Turbine propeller type generators can only operate in water that is sufficiently deep that it is not a hazard to navigation worse they are greatly limited in power output due to a limited sized power head Once a suitable location is found a HyPEG can be made in any diameter and are limited only by their side to side clearance Additionally they need far less support structure than vertical generators

327

Question and Answers Alternative Fuel Readiness Plans  

E-Print Network [OSTI]

Question and Answers Alternative Fuel Readiness Plans PON-13-603 September 3, 2013 Eligibility Q1 to readiness plans? A1 This solicitation is limited to readiness planning only for alternative fuels. Q2 In regards to PON-13-603 - Alternative Fuel Readiness Plans, is electricity used for transportation

328

Physical Activity Readiness Medical Examination  

E-Print Network [OSTI]

Conveyance/Referral: NAME ______________________________________________________ ADDRESS or prescribed exercise. · Physical Activity Readiness Conveyance/Referral Form - an optional tear-off tab for the physician to convey clearance for physical activity participation, or to make a referral to a medically

Waterloo, University of

329

Hydrogen Infrastructure Market Readiness Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) hosted the Hydrogen Infrastructure Market Readiness Workshop February 1617, 2011, in Washington, D.C....

330

An Overview of Readiness for REDD: A compilation of readiness activities  

Open Energy Info (EERE)

An Overview of Readiness for REDD: A compilation of readiness activities An Overview of Readiness for REDD: A compilation of readiness activities prepared on behalf of the Forum on Readiness for REDD Jump to: navigation, search Tool Summary LAUNCH TOOL Name: An Overview of Readiness for REDD: A compilation of readiness activities prepared on behalf of the Forum on Readiness for REDD Agency/Company /Organization: The Woods Hole Research Center Sector: Land Focus Area: Forestry Topics: Implementation, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.cbd.int/forest/doc/overview-readiness-redd.pdf An Overview of Readiness for REDD: A compilation of readiness activities prepared on behalf of the Forum on Readiness for REDD Screenshot References: Overview of REDD[1] Background "This background document aims to provide a snapshot view of readiness

331

Evaluation of Organizational E-Government Readiness in the Public Sector  

Science Journals Connector (OSTI)

The purpose of this paper is to provide an integrated framework to evaluate organizational e-government readiness for government organizations. This framework is necessary as current ones ignore challenges that arise due to organizational transformation ... Keywords: E-Government, E-Readiness, Information and Communication Technologies ICTs, Organizational Adoption, Organizational Strategy

Ibrahim A. Alghamdi; Robert Goodwin; Giselle Rampersad

2013-04-01T23:59:59.000Z

332

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

333

Multi-Scale Thermal Measurement and Design of Cooling Systems in Gas Turbine  

Science Journals Connector (OSTI)

The present gas turbine technology increases the turbine inlet temperature to a limitation which is very high gas temperature accomplished by recently developed material and cooling technology. In order to overco...

Hyung Hee Cho; Kyung Min Kim; Sangwoo Shin

2009-01-01T23:59:59.000Z

334

The U.S. Department of Energy`s advanced turbine systems program  

SciTech Connect (OSTI)

Advanced Turbine Systems (ATS) are poised to capture the majority of new electric power generation capacity well into the next century. US Department of Energy (DOE) programs supporting the development of ATS technology will enable gas turbine manufacturers to provide ATS systems to the commercial marketplace at the turn of the next century. A progress report on the ATS Program will he presented in this paper. The technical challenges, advanced critical technology requirements, and system configurations meeting the goals of the program will be discussed. Progress has been made in the are as of materials, heat transfer, aerodynamics, and combustion. Applied research conducted by universities, industry, and Government has resulted in advanced designs and power cycle configurations to develop an ATS which operates on natural gas, coal, and biomass fuels. Details on the ATS Program research, development, and technology validation and readiness activities will be presented. The future direction of the program and relationship to other Government programs will be discussed in this paper.

Layne, A.W. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center; Layne, P.W. [Dept. of Energy, Washington, DC (United States)

1998-06-01T23:59:59.000Z

335

MHK Technologies/Device for the Power Advantage of Sea Currents | Open  

Open Energy Info (EERE)

for the Power Advantage of Sea Currents for the Power Advantage of Sea Currents < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Device for the Power Advantage of Sea Currents.jpg Technology Profile Primary Organization Carmelo Vell n Technology Resource Click here Current Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The project is a device for connection of turbines or hydraulic wheels in order to obtain energy from a water current variable in depth and direction of flow Its installation is executed by a mechanism of pivots in a direct way or a ballast at the sub aqueous bottom Its particular hydrodynamic morphology contributes to the direction and stabilization of all the set in the direction and sine of the current It has a series of devices able to measure the intensity of the current flow to orient the equipment towards the most favorable angle of attack of that flow towards the turbine It s applicable to any type of water current but it s especially suitable for the location in a basic sea current It allows to lodge different types from turbines or hydraulic wheels with the main object of the obtaining of energy preferably electrical which can be obtained by the combination of the turbine installed with a generator The project is placed then in the scope of the ecological and rene

336

MHK Technologies/IPS OWEC Buoy | Open Energy Information  

Open Energy Info (EERE)

IPS OWEC Buoy IPS OWEC Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IPS OWEC Buoy.jpg Technology Profile Primary Organization Interproject Service AB Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The IPS OWEC Offshore Wave Energy Converter Buoy is a system for generating electricity from ocean waves at a cost competitive with fossil fuel generated power Cluster of buoys gives energy and act as wave breaker Off shore wave energy converters and systems with great flexibility Units from 10 kW 150 kW annual mean power A new interesting alternative for the internal energy conversion is based on a set of hose pumps driven by the piston in the acceleration tube pumping water to a small turbine directly coupled to a special generator

337

MHK Technologies/Floating Duck Type Device | Open Energy Information  

Open Energy Info (EERE)

Type Device Type Device < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating Duck Type Device.jpg Technology Profile Primary Organization Guangzhou Institute of Energy Conversion Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Guangzhou Institute of Energy Conversion GIEC of Chinese Academy of Sciences CAS plans to build an isolated power system with renewable energy on Dawanshan Island Guangdong Province before August 2012 with total installed capacity of 500kW including 300kW from wave energy device and 200kW from wind turbine The design of 100kW floating duck type device charging process and special transporting boat has been completed and the scale prototype is testing Technology Dimensions

338

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

339

Reduction of Film Coolant in High Pressure Turbines  

E-Print Network [OSTI]

Institute of Propulsion Technology, German Aerospace Center #12;Abstract Gas turbine development has been Wirsum Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen Prof. Dr.-Ing. Ingo Röhle) developed at the Institute of Propulsion Technology of the German Aerospace Center. Furthermore

340

MHK Technologies/Multi Energy Device | Open Energy Information  

Open Energy Info (EERE)

Multi Energy Device.png Multi Energy Device.png Technology Profile Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Vertical cylinder shaped like a double sided hydrofoil The basic working principle consist of using the pressure reduction that occurs when water flow along a curved surface shaped like a hydrofoil to create a new water flow which can drive a water turbine The device comprises a cylinder with curved side panels and with a water turbine placed inside the cylinder Water flowing past the device will result in pressure reduction at the outer surface of the side panels due to hydrodynamic lift and pressure drag The pressure reduction creates a new water flow where the water flows into the cylinder at the underside further through the water turbine and out through the side panels The new panel design enables them to work even if turbulence occur moreover the design enable concentration of the hydrodynamic lift and drag forces resulting in increased pressure difference between the side panel and the water inlet

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories: wind turbines produce rated power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines produce rated power Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership,...

342

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

343

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Centers Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic Universitys South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMRECs experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

344

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

345

Fuel Cell and Micro Gas Turbine Integrated Design; Integrerad Design av Brnsle cell och Mikro Gas Turbin.  

E-Print Network [OSTI]

?? This work represents the integration of a hybrid system based on Micro Gas Turbine system available at the division of Heat and Power Technology (more)

Woldesilassie, Endale

2014-01-01T23:59:59.000Z

346

Advanced controls for floating wind turbines  

E-Print Network [OSTI]

Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

Casanovas, Carlos (Casanovas Bermejo)

2014-01-01T23:59:59.000Z

347

The Forging of Gas Turbine Discs  

Science Journals Connector (OSTI)

The history and development of the forging process with particular reference to the production of discs for aero gas turbine engines have been reviewed. How the technological requirements of the engine manufac...

F. Turner

1981-01-01T23:59:59.000Z

348

Uranium Downblending and Disposition Project Technology Readiness...  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory,...

349

NGNP Risk Management through Assessing Technology Readiness  

SciTech Connect (OSTI)

Throughout the Next Generation Nuclear Plant (NGNP) project life cycle, technical risks are identified, analyzed, and mitigated and decisions are made regarding the design and selection of plant and sub-system configurations, components and their fabrication materials, and operating conditions. Risk resolution and decision making are key elements that help achieve project completion within budget and schedule constraints and desired plant availability. To achieve this objective, a formal decision-making and risk management process was developed for NGNP, based on proven systems engineering principles that have guided aerospace and military applications.

John W. Collins

2010-08-01T23:59:59.000Z

350

Uranium Downblending and Disposition Project Technology Readiness...  

Office of Environmental Management (EM)

to a temperature above the dew point to prevent water from absorbing on the HEPA filter media and causing a HEPA failure. Following the HEPA filter, a fan is used to increase the...

351

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network [OSTI]

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

352

Concepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013  

E-Print Network [OSTI]

influenced by turbine operational parameters such as rotational speed and blade pitch angle as well as wind turbine source noise mitigation techniques as well as how these technologies and turbine operation canConcepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013 Chicago, IL May 6

McCalley, James D.

353

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

354

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

355

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

Technology Type Technology Type Property Type Text Pages using the property "Technology Type" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + OTEC - Closed Cycle MHK Technologies/Aegir Dynamo + Point Absorber - Floating MHK Technologies/Anaconda bulge tube drives turbine + Oscillating Wave Surge Converter MHK Technologies/AquaBuoy + Point Absorber MHK Technologies/Aquanator + Cross Flow Turbine MHK Technologies/Aquantis + Axial Flow Turbine MHK Technologies/Archimedes Wave Swing + Point Absorber MHK Technologies/Atlantis AN 150 + Axial Flow Turbine MHK Technologies/Atlantis AR 1000 + Axial Flow Turbine MHK Technologies/Atlantis AS 400 + Axial Flow Turbine MHK Technologies/Atlantisstrom + Cross Flow Turbine MHK Technologies/BOLT Lifesaver + Oscillating Wave Surge Converter

356

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

357

Steam turbine upgrades: A utility based approach  

SciTech Connect (OSTI)

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

358

Advanced coal-fueled gas turbine systems  

SciTech Connect (OSTI)

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

359

MHK Technologies/Neptune Proteus NP1000 | Open Energy Information  

Open Energy Info (EERE)

Neptune Proteus NP1000 Neptune Proteus NP1000 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Proteus NP1000.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Neptune Proteus Tidal Power Pontoon consists of a 6m x 6m vertical axis crossflow turbine mounted within a patented, symmetrical diffuser duct and beneath a very simple steel deck and buoyancy packages. The Neptune Proteus is designed for estuarine sites, which can exhibit powerful currents yet have lower access, cabling and maintenance costs than offshore environments. The vertical shaft connects to the gearbox and generator/alternator, located on the top of the pontoon with associated valves and electrical processing and control machinery. The power pontoon is easily moored in the free stream, thus minimizing environmental impact and operates just as efficiently in both flood and ebb currents. The rotor is maintained at optimal power outputs by sets of computer-controlled shutters within the duct. Theoretical work on 1/10th, 1/40th and 1/100th scale laboratory experiments suggest an overall efficiency of greater than 45%.

360

MHK Technologies/Evopod E1 | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Evopod E1.jpg Technology Profile Primary Organization Oceanflow Energy Ltd Project(s) where this technology is utilized *MHK Projects/Evopod E1 1 10 scale grid connected demonstrator Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Evopod E1 is a 1 10th scale 1kW tidal turbine prototype that is being operated by Oceanflow Energy in Strangford Lough Northern Ireland The projects main aims are to show proof of the technical solutions inherant in the technology take record of it s operational reliability and monitor the environmental impact of the unique device The project has received backing through the award of two UK R D grant awards and academic studies have been carried out in collaboration with several Universities The project has won several awards

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

362

Clean Cities: Electric Vehicle Community Readiness Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Electric Vehicle Community Readiness Workshop to someone by E-mail Share Clean Cities: Electric Vehicle Community Readiness Workshop on Facebook Tweet about Clean Cities: Electric Vehicle Community Readiness Workshop on Twitter Bookmark Clean Cities: Electric Vehicle Community Readiness Workshop on Google Bookmark Clean Cities: Electric Vehicle Community Readiness Workshop on Delicious Rank Clean Cities: Electric Vehicle Community Readiness Workshop on Digg Find More places to share Clean Cities: Electric Vehicle Community Readiness Workshop on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure

363

Zero Energy Ready Home Update Newsletter  

Broader source: Energy.gov [DOE]

Welcome to Zero Energy Ready Home Updateyour connection to news from the U.S. Department of Energys Zero Energy Ready Home program, which supports housing industry leaders with the tools...

364

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

365

Life cycle assessment: A case study of two wind turbines used in Mexico  

Science Journals Connector (OSTI)

Abstract This paper presents the case study of two wind turbines installed in Mexico which are analyzed using the life cycle assessment (LCA) methodology. Environmental impacts of different fabrication materials and electricity consumption were studied for the main turbine components. The designs of both turbines were examined through the phases of manufacture, construction, and final disposal. Both turbines (turbine A and turbine B) were of 2.0megawatts(MW). Results ascertain that the most intensive environmental impacts come from the nacelle and tower components of both turbines; and that within life cycle phases, turbine A influences the environment less than turbine B, specifically during manufacture and final disposal. This study is valuable for decision makers in the domain of technological product design and marketing; in order to determine which features of the wind turbines can be modified to mitigate environmental impacts, contributing to technological innovation in the domains of sustainability and renewable energies in Mexico.

A.V. Vargas; E. Zenn; U. Oswald; J.M. Islas; L.P. Gereca; F.L. Manzini

2015-01-01T23:59:59.000Z

366

Solar Ready: An Overview of Implementation Practices  

SciTech Connect (OSTI)

This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

2012-01-01T23:59:59.000Z

367

Digital Forensic Readiness: Are We There Yet?  

E-Print Network [OSTI]

Digital Forensic Readiness: Are We There Yet? Antonis Mouhtaropoulos, Chang-Tsun Li Department.co.za Abstract--Digital Forensic Readiness is defined as the pre- incident plan that deals with an organization for a common forensic readiness standard. This article reviews a number of key initiatives in order to point

Li, Chang-Tsun

368

MHK Technologies/OE Buoy OE 50 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 50 OE Buoy OE 50 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OE Buoy OE 50.jpg Technology Profile Primary Organization Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Ocean Energy Galway Bay IE *MHK Projects/OE Buoy OE 30 Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The OEBuoy device uses wave energy to compress air in a plenum chamber and pump it through an air turbine system. This isolates the power conversion system from the seawater and also provides a high-speed air flow to the turbine. The device is a floating system with the mouth of the OWC facing away from the wave direction. This results in high energy efficiencies at the operating point because of the motions of the float system relative to the waves.

369

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

370

Scour around an offshore wind turbine W.F. Louwersheimer  

E-Print Network [OSTI]

Scour around an offshore wind turbine MSc Thesis W.F. Louwersheimer January, 2007 Delft University of Technology Ballast Nedam Faculty of Civil Engineering Egmond Offshore Energy Section of Hydraulic Engineering #12;Scour around an offshore wind turbine Delft University of Technology Ballast Nedam - Egmond

Langendoen, Koen

371

Operational Readiness Team: OPERATIONAL READINESS REVIEW PLAN FOR THE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oak ridge oak ridge 12 ...... Prepared by the Operational Readiness Team: OPERATIONAL READINESS REVIEW PLAN FOR THE RAD1 0 1 SOT0 PE THERMOELECTRIC GENERATOR MATERIALS PRODUCTION TASKS R. H. Cooper M. M. Martin C. R. Riggs R. L. Beatty E. K. Ohriner R. N. Escher OISTRIBUTIQM OF THIS DOCUMENT IS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

372

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

373

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect (OSTI)

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

374

MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information  

Open Energy Info (EERE)

Kinetic Hydropower System KHPS Kinetic Hydropower System KHPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Verdantpower.jpg Technology Profile Primary Organization Verdant Power Project(s) where this technology is utilized *MHK Projects/Roosevelt Island Tidal Energy RITE *MHK Projects/Cornwall Ontario River Energy CORE Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Verdant Power's central technology is the Kinetic Hydropower System (KHPS), a water-to-wire system that consists of three main components: 1) KHPS TURBINE: a three-bladed horizontal-axis turbine with four major assemblies: a) Composite rotor with 3-fixed blades that rotate at the relatively slow and constant speed of approximately 40 RPM, with tip-speeds of 35 feet per second. This is well below normal water vessel propeller speeds and conventional hydropower turbine blade speeds. b) Sealed nacelle, pylon and passive yaw mechanism that is hydrodynamically designed to allow the turbine to self-rotate into the prevailing current (like a weathervane) so that the blades are optimally aligned to generate energy. c) Custom-designed drivetrain unit (with induction generator) enclosed within the nacelle that integrates the bearing housing with a special long-life planetary gearbox, with mechanical shaft seals and a minimum of sealed lubricants. d) Streambed mounting system that can vary depending on site conditions as a single drilled monopile, a single gravity-based structure, or a gravity-based triframe mount that supports 3 turbines. 2) UNDERWATER CABLING: low-voltage shielded cable of short distance; and shoreline switchgear vaults, control room, and interconnection point(s). 3) APPURTENANT FACILITIES: for navigation safety, such as Public Aides to Navigation (PATON) buoys and lighted warning signs, as well as instrumentation including Acoustic Doppler Current Profilers (ADCPs). In order to maximize the application of the KHPS within the global MHK resource, Verdant Power has designed the technology as a simple and uniquely scalable system that can be operated in tidal, river and ocean current settings. Possible KHPS installations range from distributed generation arrangements in near-shore urban and village settings to base power generation at offshore deepwater locales.

375

NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects  

Broader source: Energy.gov [DOE]

In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

376

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume I, January 2000  

Broader source: Energy.gov [DOE]

An assessment of the opportunities for micropower and fuel cell/gas turbine hybrid technologies in the industrial sector.

377

Solar Ready Buildings Planning Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

78 78 December 2009 Solar Ready Buildings Planning Guide L. Lisell, T. Tetreault, and A. Watson National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-46078 December 2009 Solar Ready Buildings Planning Guide L. Lisell, T. Tetreault, and A. Watson Prepared under Task No. PVC9.92DA NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

378

Solar Ready Buildings Planning Guide  

Broader source: Energy.gov (indexed) [DOE]

6078 6078 December 2009 Solar Ready Buildings Planning Guide L. Lisell, T. Tetreault, and A. Watson National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-46078 December 2009 Solar Ready Buildings Planning Guide L. Lisell, T. Tetreault, and A. Watson Prepared under Task No. PVC9.92DA NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

379

Full-scale modal wind turbine tests: comparing shaker excitation with wind excitation  

Science Journals Connector (OSTI)

The test facilities at the National Wind Technology Center (NWTC) of the National ... control schemes and equipment for reducing loads on wind turbine components. As wind turbines become lighter and more flexible...

Richard Osgood; Gunjit Bir; Heena Mutha

2011-01-01T23:59:59.000Z

380

Domestic equipment for the development of gas-turbine based power engineering  

Science Journals Connector (OSTI)

A brief analysis of characteristics and specific features of foreign gas-turbine installations is presented. Prospects of introduction of combined-cycle and gas-turbine technologies in power engineering of Rus...

G. G. Olkhovskii

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars  

Science Journals Connector (OSTI)

Observations of the wake generated by a single utility-scale turbine and collected by the Texas Tech University Ka-band mobile research radars on 27 October 2011 are introduced. Remotely sensed turbine wake observations using lidar technology have ...

Brian D. Hirth; John L. Schroeder; W. Scott Gunter; Jerry G. Guynes

2012-06-01T23:59:59.000Z

382

8 - Turbogenerators in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The functioning of turbogenerators is explained as the final link between the turbine and the grid. Basic physical laws are given, and principles to calculate the performance and application of generators to gas turbines are derived. It is shown how generators developed with the progress of gas turbines. Modern designs are described and latest test results of generators are reported. Finally, an outlook is given about the future trends in technology and products. The chapter utilizes the authors in-house experience, and describes also achievements of other manufacturers.

B. Gellert

2013-01-01T23:59:59.000Z

383

MHK Technologies/Small power take off module | Open Energy Information  

Open Energy Info (EERE)

power take off module power take off module < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Small power take off module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The 18 5kW power modules consist of a 5th generation Wells turbine valve and noise attenuator The complete modules weigh less than a tonne so installation or removal is easily achievable using a small mobile crane The modules are very simple and rugged the blades are fixed onto the rotor have no pitching mechanism no gearbox and have no contact with seawater

384

Technology-to-Market Portfolio  

Broader source: Energy.gov [DOE]

BTOs Technology-to-Market (T2M) team drives high impact technologies from R&D to market readiness, preparing these technologies for real building demonstration, market deployment, and ultimately mass-market adoption.

385

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

386

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

387

7,511,624 Wind Energy Overview: Device for monitoring the balance and integrity of wind turbine blades either in  

E-Print Network [OSTI]

oscillations (including imbalances and tracking variations) in wind turbine blades. This technology was tested covering the RPM rate of any wind turbine blade. This invention directly targets the operational monitoring://tto.montana.edu/technologies Technology Available for License In-Field LIDAR Monitoring and Manufacturing Control of Wind Turbine Montana

Maxwell, Bruce D.

388

Development of biomass as an alternative fuel for gas turbines  

SciTech Connect (OSTI)

A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

1991-04-01T23:59:59.000Z

389

MHK Technologies/OMI Combined Energy System | Open Energy Information  

Open Energy Info (EERE)

OMI Combined Energy System OMI Combined Energy System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OMI Combined Energy System.png Technology Profile Primary Organization Ocean Motion International LLC OMI Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Combined Energy System CES consists of four sub system components a seawater wave pump a hydro turbine electric generator a reverse osmosis filtration unit and an electrolysis hydrogen generation unit The CES is designed to operate on a large offshore platform which is essentially a modified version of a standard modular offshore drilling unit The system produces potable water electricity and hydrogen which is delivered to shore through service piping and cabling The OMI WavePump is technically described as a mass displacement wave energy conversion device The patented seawater pump and heart of the CES is an innovative design which uses a small number of simple moving components for minimal maintenance and wear The hydro turbine electric generator is driven by the output of multiple WavePumps which provide a constant flow of high volume high pressure seawater

390

MHK Technologies/HydroVenturi | Open Energy Information  

Open Energy Info (EERE)

HydroVenturi HydroVenturi < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroVenturi.jpg Technology Profile Primary Organization HydroVenturi Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description HydroVenturi marine system a submarine Venturi is used to accelerate the water and create a subsequent pressure drop which can be made to drive a turbine This design does not require impounding large bodies of water to extract energy economically nor does it require submarine turbines or submarine moving or electrical parts Expensive maintenance operations that typically arise when complex mechanical systems are submerged in a marine or river environment can thus be avoided This is expected significantly to reduce total system lifecycle costs and eventually enable HydroVenturi to generate electricity at costs competitive with fossil fuels with low recurring maintenance or fuel costs

391

NREL: Wind Research - Mariah Power's Windspire Wind Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mariah Power's Windspire Wind Turbine Testing and Results Mariah Power's Windspire Wind Turbine Testing and Results A video of Mariah Power's Windspire wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Mariah Power's Windspire Giromill small wind turbine at the National Wind Technology Center (NWTC) through January 14, 2009 when NREL terminated its testing. Read a chronology of events and letter from Mariah Power to NREL. The Windspire is a 1.2-kilowatt (kW) vertical-axis small wind turbine. The turbine tower is 9.1 meters tall, and its rotor area is 1.2 by 6.1 meters. The turbine has a permanent-magnet generator with a single-phase output at 120 volts AC. Testing Summary Testing was terminated January 14, 2009. Published test reports include

392

New Small Hydropower Technology to be Deployed in the United States  

SciTech Connect (OSTI)

Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

Hadjerioua, Boualem [ORNL; Opsahl, Egil [CleanPower AS; Gordon, Jim [Earth By Design Inc., EBD; Bishop, Norm [Knigth Piesold Co.

2012-01-01T23:59:59.000Z

393

Aquantis Ocean Current Turbine Development Project Report  

SciTech Connect (OSTI)

The Aquantis Current Plane (C-Plane) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

Fleming, Alex J.

2014-08-23T23:59:59.000Z

394

Wind Turbines Benefit Crops  

SciTech Connect (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2010-01-01T23:59:59.000Z

395

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

396

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

397

NETL: News Release - Universities Begin Critical Turbine Systems Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30, 2008 30, 2008 Universities Begin Critical Turbine Systems Research WASHINGTON, D.C. - The U.S. Department of Energy announced the selection of four projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently when fueled with coal-derived synthesis gas and hydrogen fuels. The overall goal of the Department of Energy's (DOE) Turbine Program is to provide high-efficiency, near-zero emissions and lower-cost turbines for coal-based stationary power systems. Developing turbine technology to operate on high hydrogen content (HHC) fuels derived from coal synthesis gas is critical to the development of advanced, near-zero-emission integrated gasification combined cycle (IGCC) power generation plants that separate and capture carbon dioxide (CO2).

398

An Evaluation of Gas Turbines for APFBC Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

399

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

prototype floating offshore wind turbine was deployed. AlsoWind Technologies Market Report No Commercial Offshore Turbineswind turbine nacelle assembly capacity; Charlie Bloch, Terese Decker, and Bruce Hamilton (Navigant Consulting) for assistance with the section on offshore

Wiser, Ryan

2014-01-01T23:59:59.000Z

400

OTM and UTARI personnel will perform Technology  

E-Print Network [OSTI]

OTM and UTARI personnel will perform Technology Readiness (TRL) & Manufacturing Readiness (MRL to the Office of Technology Management via the OTM webpage OTM and UTARI personnel will review the IPD and meet for the technology; At the same time, OTM may assist in obtaining funding (SBIR/STTR, etc.) and/or technology may (a

Huang, Haiying

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MHK Technologies/CETO Wave Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology Wave Energy Technology < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage CETO Wave Energy Technology.png Technology Profile Primary Organization Carnegie Wave Energy Limited Project(s) where this technology is utilized *MHK Projects/CETO La Reunion *MHK Projects/CETO3 Garden Island *MHK Projects/Perth Wave Energy Project PWEP Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The CETO system distinguishes itself from other wave energy devices by operating out of sight and being anchored to the ocean floor. Each CETO unit consists of a pump unit moored to the ocean floor and connected to a submerged Buoyant Actuator via a tether. The Buoyant Actuator moves in an orbital motion, in harmony with the wave, capturing the power of the passing waves. The Buoyant Actuator is connected to a tether (marine rope) that creates a vertical upward force which actuates the seabed mounted piston pump. This force pressurises fluid in the CETO system. The high pressure fluid is then sent ashore via a subsea pipeline. Onshore the fluid passes through a standard hydroelectric turbine to generate zero-emission electricity and/or through a reverse osmosis plant to directly create zero-emission desalinated water (replacing greenhouse gas emitting electrically driven pumps usually required for such plants). The fluid is then re-circulated at low-pressure to the CETO units offshore creating a closed-loop system. The generation capacity of CETO projects is scalable. To increase the project capacity additional units can be added offshore and connected back to a larger power house onshore.

402

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of  

E-Print Network [OSTI]

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of Transportation Systems (Infrastructure, Systems, Organization and Services) to Deter, Detect Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle

403

Sliding vane geometry turbines  

SciTech Connect (OSTI)

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30T23:59:59.000Z

404

Wind Turbine Competition Introduction  

E-Print Network [OSTI]

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

405

Organizational Readiness in Specialty Mental Health Care  

E-Print Network [OSTI]

readiness for change (ORC) measure, and key stake- holders43 clinical staff completed the ORC, and 38 key stakeholdersdeviations (SDs) of the ORC scores are also illuminating in

Hamilton, Alison B.; Cohen, Amy N.; Young, Alexander S.

2010-01-01T23:59:59.000Z

406

ORISE: Asset Readiness Management System (ARMS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Asset Readiness Management System (ARMS) Database tracks emergency response exercises and equipment to help DOE asses emergency preparedness Developed by the Oak Ridge Institute...

407

Hydrogen Infrastructure Market Readiness Workshop Agenda | Department...  

Broader source: Energy.gov (indexed) [DOE]

Market Readiness Workshop, hosted by the U.S. Department of Energy's National Renewable Energy Laboratory, February 16-17, 2011, in Washington, DC. wkshpmarketreadinessagenda....

408

Hydrogen Infrastructure Market Readiness: Opportunities and Potential...  

Broader source: Energy.gov (indexed) [DOE]

Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

409

The Cascaded Humidified Advanced Turbine (CHAT)  

SciTech Connect (OSTI)

This paper introduces the Cascaded Humidified Advanced Turbine (CHAT) plant, a gas turbine based power generation plant utilizing intercooling, reheat, and humidification. It is based upon the integration of an existing heavy duty gas turbine with an additional shaft comprising industrial compressors and high pressure expander. CHAT capitalizes on the latest proven gas turbine technology, which, combined with a sophisticated thermal cycle configuration, results in substantial improvement in gas turbine efficiency, compared to a simple cycle, while still maintaining typical advantages and merits of a combustion turbine plant. Built with a commercial combustion turbine and available industrial compressors and expanders, the CHAT plant does not require extensive product development and testing. As a result, the CHAT power plant can be offered with specific capital costs up to 20 percent lower than the combined cycle plant, and with competing efficiency. Compared to a combined cycle plant, the CHAT plant offers lower emissions (due to air humidification) and other significant operating advantages with regard to start-up time and costs, better efficiency at part load, lower power degradation at higher ambient temperatures, and simpler operations and maintenance due to elimination of the complexities and costs associated with steam production. The CHAT plant also integrates very effectively with coal gasification and particularly well with the water quench design. This feature has been discussed in previous publications.

Nakhamkin, M.; Swensen, E.C. [Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States); Wilson, J.M.; Gaul, G. [Westinghouse Electric Corp., Orlando, FL (United States); Polsky, M. [Polsky Energy Corp., Northbrook, IL (United States)

1996-07-01T23:59:59.000Z

410

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

can significantly increase turbine efficiency. Exploratorymodel indicate that turbine efficiencies exceeding 75% canand experimental turbine efficiencies. The CFD solutions of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

411

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

412

MHK Technologies/Oyster | Open Energy Information  

Open Energy Info (EERE)

Oyster Oyster < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oyster.png Technology Profile Primary Organization Aquamarine Power Project(s) where this technology is utilized *MHK Projects/40MW Lewis project *MHK Projects/Brough Head Wave Farm *MHK Projects/Oyster 1 Project *MHK Projects/Oyster 800 Project Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Oyster is a nearshore hydroelectric wave energy converter. The Oyster wave energy converter comprises a buoyant, bottom-hinged flap. Incoming waves cause the flap to oscillate backwards and forwards. This oscillating action drives double-acting hydraulic cylinders which pump fresh water through a high-pressure pipeline to an onshore hydroelectric power plant. The pressurised water drives a Pelton wheel turbine connected to an electrical generator. Multiple Oyster devices can feed through a pipe manifold into a single onshore hydroelectric system.

413

NETL: Turbines - Research&Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R & D R & D Turbines Research and Development NETL In-house R&D for Turbines The Combustion and Engine Dynamics Division within NETL's Office of Science and Technology provides skills, expertise, equipment, and facilities to conduct research and provides technical support for NETL product lines and programs in combustion science and technology and in the dynamics of prime movers or engines, such as gas turbines; fuel cells; internal combustion engines; or hybrid cycles that utilize fossil fuels, biomass, wastes, or other related fuel sources. Research is conducted with the primary goals of improving cycle efficiency, reducing capital cost, and improving environmental performance. Studies on supporting technologies, such as combustion instability, fuels versatility, and fluid and particle dynamics, are performed as well.

414

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

415

Marine Current Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Ltd Turbines Ltd Jump to: navigation, search Name Marine Current Turbines Ltd (MCT) Place Bristol, United Kingdom Zip BS34 8PD Sector Marine and Hydrokinetic Product Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in particular. Coordinates 51.454513°, -2.58791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.454513,"lon":-2.58791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Designing an ultrasupercritical steam turbine  

SciTech Connect (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

417

Planning and Conduct of Operational Readiness Reviews (ORR)  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-3006-2000 DOE-STD-3006-2000 June 2000 Superseding DOE-STD-3006-95 November 1995 DOE STANDARD PLANNING AND CONDUCT OF OPERATIONAL READINESS REVIEWS (ORR) U.S. Department of Energy AREA OPER Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823 Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3006-2000 iii PLANNING AND CONDUCT OF OPERATIONAL READINESS REVIEWS (ORR)

418

Fish-Friendly Turbine Making a Splash in Water Power  

Office of Energy Efficiency and Renewable Energy (EERE)

A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. The Alden Fish-Friendly Turbine could change the game for hydropower generation in the United States, and it is likely to have significant export potential.

419

AIAA-2001-0047 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE  

E-Print Network [OSTI]

. INTRODUCTION Design constraints for wind turbine structures fall into either extreme load or fatigue categoriesAIAA-2001-0047 1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance at Austin, Austin, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque

Sweetman, Bert

420

PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN  

E-Print Network [OSTI]

loads. #12;2 INTRODUCTION Design constraints for wind turbine structures fall into either extreme load1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance Manuel1 Paul S, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque, NM 87185

Sweetman, Bert

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Zero Energy Ready Home Verification | Department of Energy  

Energy Savers [EERE]

Verification DOE Zero Energy Ready Home Verification DOE Zero Energy Ready Homes Verification, a publication of the U.S. Department of Energy Zero Energy Ready Homes program. DOE...

422

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

423

Project Get Ready | Open Energy Information  

Open Energy Info (EERE)

Get Ready Get Ready Jump to: navigation, search Name Project Get Ready Agency/Company /Organization Rocky Mountain Institute Sector Energy Focus Area Transportation Topics Implementation Resource Type Dataset Website http://projectgetready.com/ Equivalent URI http://cleanenergysolutions.org/content/project-get-ready-pgr-total-cost-vehicle-ownership-calculator-0, http://cleanenergysolutions.org/content/project-get-ready-pgr-total-cost-vehicle-ownership-calculator References [1] Abstract The calculator allows individuals to consider the purchase cost (including financing) and the fuel cost of electric vehicles compared to conventional vehicles over a lifetime of 15 years. Consumers should also consider driving habits, maintenance costs, insurance, resale value, and potential battery and charging infrastructure costs.

424

Hawaii Gets 'EV Ready' | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gets 'EV Ready' Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program By 2030, the Hawaii Clean Energy Initiative will:

425

Hawaii Gets 'EV Ready' | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program

426

Robertsons Ready Mix | Open Energy Information  

Open Energy Info (EERE)

Robertsons Ready Mix Robertsons Ready Mix Jump to: navigation, search Name Robertsons Ready Mix Facility Robertsons Ready Mix Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Robertsons Ready Mix Location Cabazon CA Coordinates 33.915842°, -116.81325° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.915842,"lon":-116.81325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin  

E-Print Network [OSTI]

Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin energy has made wind turbine technology a suitable candidate for pollution-free energy. With its great that received many complaints from the residents living near the large wind turbine poles. Many scientists

Mountziaris, T. J.

428

Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory  

Science Journals Connector (OSTI)

...coatings for gas-turbine engine applications...Materials Science and TechnologyA Comprehensive Treatment...for industrial gas turbines . P I Mech Eng...Singheiser L ( 1999 ) Development of NiCrAlY alloys...barrier coatings of gas turbine components...

Kristen A. Marino; Berit Hinnemann; Emily A. Carter

2011-01-01T23:59:59.000Z

429

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

430

Proceedings: EPRI Workshop on Condition and Remaining Life Assessment of Hot Gas Path Components of Combustion Turbines  

SciTech Connect (OSTI)

The severity of modern combustion turbine operation is a reflection of industry competition to achieve higher thermal efficiency. This competitive stance has resulted in new turbine designs and material systems that have at times outpaced condition and remaining life assessment (CARLA) technology. These proceedings summarize a two-day workshop on CARLA technology for hot section components of large combustion turbines.

None

2000-05-01T23:59:59.000Z

431

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

Kong, Lingbo

2014-01-01T23:59:59.000Z

432

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network [OSTI]

Outline of 145 MW Combined Cycle Power Plant for KawasakiGas Firing Gas Turbine Combined Cycle Plant, Journal ofgasifier/gas turbine combined cycle technology and its

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

433

Lightning Arrestor Connectors Production Readiness  

SciTech Connect (OSTI)

The Lightning Arrestor Connector (LAC), part M, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

2008-10-20T23:59:59.000Z

434

DOE Zero Energy Ready Home Case Study: John Hubert Associates...  

Energy Savers [EERE]

Homes, Double Oak, TX DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study, Preferred Builders, Old Greenwich, CT, Custom...

435

Quality Management Systems for Zero Energy Ready Home Webinar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quality Management Systems for Zero Energy Ready Home Webinar (Text Version) Quality Management Systems for Zero Energy Ready Home Webinar (Text Version) Below is the text version...

436

Energy -- and Water -- Efficiency in the DOE Zero Energy Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program...

437

EV Community Readiness projects: Center for Transportation and...  

Broader source: Energy.gov (indexed) [DOE]

EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council of Governments (NC) EV Community Readiness projects: Center for...

438

DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit...  

Energy Savers [EERE]

Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI...

439

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom...  

Energy Savers [EERE]

TX More Documents & Publications DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

440

DOE Zero Energy Ready Home Case Study: Caldwell and Johnson,...  

Broader source: Energy.gov (indexed) [DOE]

Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI Case study of a DOE Zero Energy Ready affordable home in...

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland...  

Office of Environmental Management (EM)

Old Greenwich, CT, Custom DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit Lake, Iowa DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI...

442

Readiness Review Training - Team Leader | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Team Leader November 10, 2010 Readiness Review Team Leader Training at the Idaho National Laboratory Course provides tools and tips to be an effective readiness review team leader....

443

EV Community Readiness projects: New York City and Lower Hudson...  

Broader source: Energy.gov (indexed) [DOE]

ACCOMPLISHMENTS NYCLHVCC: Clean Cities 2011 EV Community Readiness DUANE Reade's Smith EV at Plug-In Day in Times Square Clean Cities 2011 Community Readiness & Planning...

444

NETL Publications: 2011 University Turbine Systems Research Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 University Turbine Systems Research Workshop 2011 University Turbine Systems Research Workshop October 25-27, 2011 PRESENTATIONS Tuesday, October 25, 2011 H2 Turbine Development for IGCC with CCS: Project Overviews and Technical Issues [PDF-1.12MB] Susan Scofield, Siemens Energy, Inc. GE Energy's DOE Advanced IGCC/Hydrogen Gas Turbine Program [PDF-1.16MB] Roger Schonewald, GE Energy DOE FE Hydrogen Turbine Program Overview [PDF-1.66MB] Richard Dennis, U.S. Department of Energy, National Energy Technology Laboratory Natural Gas Combined Cycle Power Generation [PDF-1.56MB] Robert Steele, Electric Power Research Institute Overview of Gas Turbine R&D at The Ohio State University [PDF-6.02MB] Meyer (Mike) Benzakein, Director of The Ohio State University's Center for Propulsion and Power An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels [PDF-1.61MB]

445

NREL: Wind Research - Abundant Renewable Energy's ARE 442 Wind Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Get the Adobe Flash Player to see this video. A video of Abundant Renewable Energy's ARE 442 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Abundant Renewable Energy's ARE 442 turbine at the National Wind Technology Center (NWTC). The ARE 442 is a 10-kilowatt (kW), three-bladed, horizontal-axis upwind small wind turbine. It has a hub height of 30.9 meters and a rotor diameter of 7.2 meters. The turbine has a single-phase permanent-magnet generator that operates at variable voltages up to 410 volts AC. Testing Summary The summary of the tests is below with the final reports.

446

NREL: Wind Research - SWIFT Wind Turbine Testing and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SWIFT Wind Turbine Testing and Results SWIFT Wind Turbine Testing and Results The SWIFT wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing the SWIFT small wind turbine at the National Wind Technology Center (NWTC). The competitive grant was awarded to Cascade Engineering. The SWIFT is a 1-kilowatt (kW), five-bladed with outer ring, horizontal-axis upwind small wind turbine. The turbine's rotor diameter is 2 meters, and its hub height is 13.72 meters. The SWIFT uses a single-phase permanent-magnet generator rated at 1 kW grid connected through an inverter at 240 volts AC. Testing Summary Supporting data and explanations for data provided in this table will be provided in the final reports. Data presented are preliminary and subject

447

Environmental Mitigation Technology (Innovative System Testing...  

Broader source: Energy.gov (indexed) [DOE]

Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

448

MHK Technologies | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Click one of the following Marine Hydrokinetic Technologies for more information: Loading... 14 MW OTECPOWER Aegir Dynamo AirWEC Anaconda bulge tube drives turbine AquaBuoy Aquanator Aquantis Archimedes Wave Swing Atlantis AN 150 Atlantis AR 1000 Atlantis AS 400 Atlantisstrom BOLT Lifesaver Benkatina Turbine Blue Motion Energy marine turbine Bluetec Brandl Generator C Plane C Wave C5 CETO Wave Energy Technology Centipod Closed Cycle OTEC CoRMaT Cross Flow Turbine Current Catcher Current Electric Generator Current Power CurrentStar DEXA Wave Converter Davidson Hill Venturi DHV Turbine Deep Gen Tidal Turbines Deep Green Deep Ocean Water Application Facility DOWAF Deep Water Pipelines Deep water capable hydrokinetic turbine

449

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

450

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

451

E-Print Network 3.0 - axial turbine experimentelle Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering ; Computer Technologies and Information Sciences 8 DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES Summary: (emphasize reduced...

452

E-Print Network 3.0 - advanced turbine development Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences ; Biology and Medicine 10 Offshore Wind Turbines: Some Technical Challenges Summary: for the first round of offshore windfarm...

453

Larger Turbines and the Future Cost of Wind Energy (Poster)  

SciTech Connect (OSTI)

The move to larger turbines has been observed in the United States and around the world. Turbine scaling increases energy capture while reducing general project infrastructure costs and landscape impacts, each of which of can reduce the cost of wind energy. However, scaling in the absence of innovation, can increase turbine costs. The ability of turbine designers and manufacturers to continue to scale turbines, while simultaneously reducing costs, is an important factor in long-term viability of the industry. This research seeks to better understand how technology innovation can allow the continued development of larger turbines on taller towers while also achieving lower cost of energy. Modeling incremental technology improvements identified over the past decade demonstrates that cost reductions on the order of 10%, and capacity factor improvements on the order of 5% (for sites with annual mean wind speed of 7.25 m/s at 50m), are achievable for turbines up to 3.5 MW. However, to achieve a 10% cost reduction and a 10% capacity factor improvement for turbines up to 5 MW, additional technology innovations must be developed and implemented.

Lantz, E.; Hand, M.

2011-03-01T23:59:59.000Z

454

Chapter 18 - Future Trends in the Gas Turbine Industry  

Science Journals Connector (OSTI)

Abstract The future of gas turbine systems design development and the gas turbine business is steered by several factors. Business and political factors are a far greater influence on technology than the average engineer feels comfortable acknowledging. The major change in the gas turbine and gas turbine systems industries over the past several years has been the changes in turbine fuels strategy. In the power generation and land-based turbine sector, coal has lost its number 1 place in the USA, due mostly to the advent of natural gas fracking exploration and production. Coal still remains number 1 in countries like China and much of Eastern Europe, because of those countries huge coal reserves. Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30% range with todays steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40% range, with near-100% CO2 capture and near-zero \\{NOx\\} emissions. I am enough of an artist to draw freely on my imagination. Imagination is more important that knowledge. Knowledge is limited. Imagination encircles. Albert Einstein

Claire Soares

2015-01-01T23:59:59.000Z

455

Analyses of Value-added for Case-ready Beef, with Special Emphasis on Texas.  

E-Print Network [OSTI]

beef at retail and increasing the value-added from beef at the packer /processor level. Adoption of case-ready packaging technology by the beef industry trans fers the function of retail cutting and packaging of fresh beef from the retail store... beef at retail and increasing the value-added from beef at the packer /processor level. Adoption of case-ready packaging technology by the beef industry trans fers the function of retail cutting and packaging of fresh beef from the retail store...

Dietrich, R.A.; Farris, D.E.; Ward, J.B

1992-01-01T23:59:59.000Z

456

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

457

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

458

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

459

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

460

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine technology readiness" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8 9