Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

2

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

3

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

4

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

5

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

6

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

7

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

8

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

9

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

10

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine internals in situ by foaming an appropriate cleaning solution and injecting it through the turbine, dissolving the deposits and removing them from the system. Because disassembly of the turbine is not required, foam cleaning is a much faster and more cost-effective method of removing deposits. In recent years, HydroChem has removed copper deposits from over 130 Westinghouse and General Electric turbines nationwide using patented equipment.

Foster, C.; Curtis, G.; Horvath, J. W.

2000-04-01T23:59:59.000Z

11

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

12

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions decrease, and maintenance expenses decrease. These benefits can be achieved by using a computer program Encotech, Inc. developed for the utility industry to perform steam path audits. With the increased emphasis on industrial turbine efficiency, and as a result of the experience with the Destec Operating Company, Encotech is adapting the computer program to respond to the needs of the industrial steam turbine community. This paper describes the results of using the STPE computer program to conduct a steam path audit at Destec Energy's Lyondell Cogeneration power plant.

Mitchell, D. R.

1992-04-01T23:59:59.000Z

13

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

14

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

15

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

16

Field Guide: Turbine Steam Path Damage  

Science Conference Proceedings (OSTI)

Steam path damage, particularly of blades, has long been recognized as a leading cause of steam turbine unavailability for large fossil fuel plants. Damage to steam path components by various mechanisms continues to result in significant economic impact domestically and internationally. Electric Power Research Institute (EPRI) Report TR-108943, Turbine Steam Path Damage: Theory and Practice, Volumes 1 and 2, was prepared to compile the most recent knowledge about turbine steam path damage: identifying th...

2011-12-12T23:59:59.000Z

17

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

18

Steam turbine materials and corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

2007-12-01T23:59:59.000Z

19

Aerothermodynamics of low pressure steam turbines and condensers  

SciTech Connect

This book presents papers on steam turbines and steam condensers. Topics considered include the design of modern low pressure steam turbines, throughflow design methods, three-dimensional flow calculations, the calculation of wet steam stages, aerodynamic development of turbine blades, turbine performance measurement, turbine exhaust system design, and condensers for large turbines.

Moore, M.J.; Sieverding, C.H.

1987-01-01T23:59:59.000Z

20

Reliability Assessment of North American Steam Turbines  

Science Conference Proceedings (OSTI)

This survey provides statistics related to the reliability and maintenance of fossil-fueled steam turbines in the continental United States. The analysis focuses primarily on active turbines larger than 200 MW.

2002-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Steam Turbine Materials and Corrosion  

Science Conference Proceedings (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

22

Steam Turbine Materials and Corrosion  

E-Print Network (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60 % efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Gordon R. Holcomb; Derek Hsu

2007-01-01T23:59:59.000Z

23

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

24

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

25

Major Corrosion Problems in Steam Turbines  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

26

Steam turbine for geothermal power generation  

SciTech Connect

A steam turbine comprises a casing; turbine vanes rotatably set in the casing; a plurality of partition walls which extend along radial directions from the rotation center of the turbine vanes to define a plurality of steam valve chambers in the casing; steam supply pipes respectively connected to the corresponding steam valve chambers; and regulating valves which are fitted to the respective steam supply pipes to regulate respectively the flow rate of steam streams supplied to the respective steam valve chambers. At least one partition wall for dividing the interior space of the steam turbine into adjacent steam valve chambers is provided with at least one penetrating hole for causing the steam valve chambers to communicate with each other.

Tsujimura, K.; Hadano, Y.

1984-04-10T23:59:59.000Z

27

Designing an ultrasupercritical steam turbine  

Science Conference Proceedings (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

28

Steam Turbine Electronic Overspeed Protection System  

Science Conference Proceedings (OSTI)

BackgroundThe risk of turbine-generator destructive overspeed can be mitigated by employing protection systems that act to rapidly isolate the steam supply in the event of separation from the grid. These systems are the final line of defense against overspeed, and they are deployed separately from the systems used to control turbine load and speed during synchronized operation. Most steam turbines in operation today were commissioned with a mechanical trip device that ...

2013-12-23T23:59:59.000Z

29

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

30

Specific features of geothermal steam turbine control and emergency system  

SciTech Connect

There are significant construction as well as operational differences between geothermal and conventional steam turbines. These result in specific features associated with geothermal steam turbine control and emergency system. Several aspects of geothermal steam turbine control have been considered. Some proposals of geothermal steam turbine control have been presented. Among others the following operation modes have been considered: Driving turbine, driving well, turbine power and well steam pressure coupled control.

Domachowski, Z.; Gutierrez, A.

1986-01-01T23:59:59.000Z

31

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

32

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

33

The value of steam turbine upgrades  

Science Conference Proceedings (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

34

The economics of repowering steam turbines  

SciTech Connect

Repowering is defined as displacing steam presently generated in an existing fossil fuel fired boiler with a gas turbine-heat recovery steam generator (HRSG) system. The steam generated in the HRSG is expanded in the existing steam turbine generator. Repowering advantages include a significant increase in power output at an improved heat rate relative to the base value for the existing steam turbine cycle being repowered. In addition, the reduction in emissions can be advantageous in most locations. This paper discusses application and economic considerations associated with repowering. In addition, an illustration will show how repowering coal fired steam turbine systems may prove economic relative to retrofit scrubbers and/or low sulfur coal fuel substitution that may be part of the forthcoming acid rain legislation.

Kovacik, J.M.; Stoll, H.G. (General Electric Co., Schenectady, NY (United States))

1990-01-01T23:59:59.000Z

35

Initial steam flow regulator for steam turbine start-up  

SciTech Connect

In a combined steam generator-turbine system, a drain type is provided in front of the stop valve to drain the first steam supply with the stop valve closed until the temperature of the valve and/or the temperature of the steam exceeds the temperature of saturation by a predetermined amount, and logic circuitry is provided to generate permissive signals which combine to allow successive admission of steam to the gland seal and to the steam turbine.

Martens, A.; Hobbs, M. M.

1985-12-31T23:59:59.000Z

36

Combined plant having steam turbine and gas turbine connected by single shaft  

SciTech Connect

A combined plant including a gas turbine, a steam turbine and a waste heat recovery boiler using exhaust gases of the gas turbine as a heat source for producing steam serving as a drive source of the steam turbine further includes an ancillary steam source separate from and independent of the waste heat recovery boiler. At the time of startup of the plant, steam from the ancillary steam source is introduced into the steam turbine until the conditions for feeding air to the waste heat recovery boiler are set, to thereby avoid overheating of the steam turbine due to a windage loss.

Okabe, A.; Kashiwahara, K.; Urushidani, H.

1985-05-28T23:59:59.000Z

37

Guidelines for Maintaining Steam Turbine Lubrication Systems  

Science Conference Proceedings (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

1986-07-01T23:59:59.000Z

38

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

39

Steam Turbine Hydraulic Control system Maintenance Guide  

Science Conference Proceedings (OSTI)

Steam turbine hydraulic control system maintenance problems have been a significant factor in plant power reductions, shutdowns, and lost generation. This guide provides recommendations to improve the reliability of the hydraulic components and fluid.

1996-12-31T23:59:59.000Z

40

Remote NDE Technology for Steam Turbines  

Science Conference Proceedings (OSTI)

Remote nondestructive evaluation technology (NDE) for steam turbines has potential for use as an alternative to inspections requiring extensive machine disassembly and for use during short-term outages, to provide an interim look at machine operability.

2002-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

42

Corrosion of Low Pressure Steam Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). The development of an effective localized corrosion damage prediction technology is essential for the successful avoidance of unscheduled outages of steam

2000-11-28T23:59:59.000Z

43

Turbine Steam Path Damage: Theory and Practice  

Science Conference Proceedings (OSTI)

Historically, most treatises about steam turbines have concentrated on thermo-dynamics or design. In contrast, the primary focus of this book is on the problems that occur in the turbine steam path. Some of these problems have been long known to the industry, starting as early as A. Stodola's work at the turn of the century in which mechanisms such as solid particle erosion, corrosion and liquid droplet damage were recognized. What we have tried to do here is to provide, in a single, comprehensive refere...

1999-08-18T23:59:59.000Z

44

Overspeed protection method for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes a method for achieving overspeed protection in a combined cycle gas and steam turbine power plant. It comprises solidly coupling together to rotate at all times as a single rotor unit, including during sudden loss of load occurrences, the rotating members of a gas turbine with its associated combustor and air compressor, a high pressure steam turbine at least one lower pressure stream turbine and an electrical generator; transferring heat from the gas turbine exhaust to steam exhausted from the high pressure steam turbine in a steam reheater before it is input to the at least one lower pressure steam turbine; connecting an output of the steam reheater with an input of the lower pressure steam turbine via a valveless steam conduit; and using a single overspeed control to detect a sudden loss of load occurrence and, in response, simultaneously reducing steam input to the high pressure steam turbine and reducing fuel input to the gas turbine combustor while permitting residual reheater output to continue to expand freely through the at least one lower pressure steam turbine.

Moore, J.H.

1991-08-27T23:59:59.000Z

45

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers.  

E-Print Network (OSTI)

?? This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of… (more)

Kim, Yong Sung

2010-01-01T23:59:59.000Z

46

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

47

A small pelton turbine for steam turbocharger  

SciTech Connect

The use of exhaust gas turbocharger for internal combustion engines is usually accompanied by mechanical loss. This loss is due to the raise of exhaust gas back pressure with the increase of engine speed. This back pressure prevents the discharge of the exhaust gas from the engine and causes mechanical loss. To avoid this undesirable phenomenon, a Clausius-Rankine cycle is used. In this case the thermal energy in the exhaust gas is used to vaporise water in a steam generator. The generated steam expands in a steam turbocharger which supercharges the engine. A small Pelton steam turbine has been designed and fabricated. The expected output for this small turbine is 10 kW. A computer program has been prepared to estimate the values of optimum cycle parameters.

Rautenberg, M.; Abdelkader, M.; Malobabic, M.; Mobarak, A.

1984-08-01T23:59:59.000Z

48

Steam turbine upgrading: low-hanging fruit  

Science Conference Proceedings (OSTI)

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

49

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network (OSTI)

Fossil fuels remain the dominant source for primary energy production worldwide. In relation to this trend, energy consumption in turbomachinery has been increasing due to the scale up of both the machinery itself as well as the processing plants in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance configurations and applications / selections of steam turbines. According to the change in output demand, in some cases the original plants are modified by increasing capacity and consequently the turbines and compressors are revamped internally or replaced totally. The authors will introduce several case studies on revamping to increase efficiency and reliability as per the following cases: a) Replacement of High Pressure Section Internals b) Replacement of Low Pressure Section Internals c) Replacement of All Internals d) Internals and Casing Replacement e) Efficiency Recovery Technique Modification Finally, life cycle cost (LCC) evaluation and sensitivity due to turbomachinery performance are explained as a case study of a mega ethylene plant.

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

50

Proceedings: Steam Turbine Stress Corrosion Workshop  

Science Conference Proceedings (OSTI)

A recent survey of utilities commissioned by EPRI indicated that cracking of steam turbine disk rims by stress corrosion was a pervasive problem in both fossil and nuclear power plants. There is a clear need to document industry experience in this area so that guidelines can be provided to utilities on managing the problem.

1997-11-03T23:59:59.000Z

51

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

52

Steam deflector assembly for a steam injected gas turbine engine  

SciTech Connect

A steam injected gas turbine engine is described having a combustor, a casing for the combustor and an annular manifold comprising a part of the casing, the annular manifold having an exterior port formed therein and a plurality of holes formed in the manifold leading to the interior of the combustor, the improvement comprising a steam carrying line connected to the port and a steam deflector means for protecting the casing from direct impingement by the steam from the steam line and for distributing the steam about the annular manifold, the steam deflector means being mounted adjacent the port and within the manifold.

Holt, G.A. III.

1993-08-31T23:59:59.000Z

53

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

54

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

55

Steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01T23:59:59.000Z

56

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbine cogeneration is a well established technology which is widely used in industry. However, smaller previously unfeasible applications can now be cost effective due to the packaged system approach which has become available in recent years. The availability of this equipment in a packaged system form makes it feasible to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between $200 and $800 per kW of capacity. Simple system paybacks between one and three years are common.

Ewing, T. S.; Di Tullio, L. B.

1991-06-01T23:59:59.000Z

57

Oxidation of alloys for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.

2005-01-01T23:59:59.000Z

58

International Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report reviews the state of the art in materials usage for steam turbine valves manufactured and used in Europe and looks at materials options for the higher-temperature applications now being considered for advanced high-efficiency power plants. The emphasis is on valves for extreme service conditions (high temperatures, pressures, and flow rates), of which bypass valves represent a good example. Some consideration is also given to degradation and failure mechanisms. In focusing on practices outsid...

2011-09-27T23:59:59.000Z

59

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine including a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, a plurality of solid couplings serving to solidly couple the rotating members together as a single rotor, the rotor having a single thrust bearing, and control means for sensing a potential overspeed condition operatively connected to the control valves to prevent overspeed, whereby the steam in the steam reheater and in the valveless steam conduit may freely expand through the lower pressure steam turbine and potential overspeed of the rotor is resisted by the combined inertia of the coupled rotating members and by the braking torque of the air compressor, wherein the heat recovery steam generator includes a low pressure steam generating section connected to supply low pressure steam to the steam reheater section along with the steam exhausted from the high pressure steam turbine section.

Moore, J.H.

1992-03-31T23:59:59.000Z

60

State-of-the-art gas turbine and steam turbine power plant  

SciTech Connect

A state-of-the-art power plant in which the heat from solid or low quality fuels is utilized to heat indirectly a motive stream composition of a mixture of steam and gases to drive a gas turbine. The thermal energy from the burning of the solid or low quality fuels is also utilized to generate steam which powers a steam turbine. Excess steam may be generated to be utilized as process steam.

Willyoung, D. M.; Anand, A. K.

1985-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

62

U.S. Steam Turbine Valve Actuator Condition Assessment  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators.

2008-12-23T23:59:59.000Z

63

Materials Selection for Steam Turbine Components in Advanced ...  

Science Conference Proceedings (OSTI)

Presentation Title, Materials Selection for Steam Turbine Components in Advanced ... Co-Production of Pure Hydrogen and Electricity from Coal Syngas via the ...

64

U.S. Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the metallurgical aspects of the steam turbine valve components used in U.S. power plants.

2009-03-30T23:59:59.000Z

65

Apparatus and methods of reheating gas turbine cooling steam ...  

... cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG.

66

Cam-driven valve system for steam turbines  

SciTech Connect

This patent describes, in a steam turbine system including a source of motive steam and a turbine adapted to operate at less than a full load, the turbine including an improved cam-driven valve system for activating a varying number of steam control valves to permit transferring between a maximum arc-admission mode and a minimum arc-admission mode. It comprises: a steam chest for receiving the motive steam from the source, the steam chest including a plurality of valves connected to a corresponding turbine section and set for a minimum admission of motive steam into the turbine below 100 percent; a first cam lift means for actuating a portion of the valves and second cam lift means for actuating the remainder of the valves.

Silvestri, G.J. Jr.

1990-02-27T23:59:59.000Z

67

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

68

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

69

Reconstruction of steam turbine blade twisted based on NURBS surface  

Science Conference Proceedings (OSTI)

NURBS (Non-Uniform Rational B-Spline) is the most popular mathematical descriptor for surface modeling. To construct steam turbine blade efficiently and accurately, 2´3 NURBS was obtained to fitted blade surface as its cross-section is different tangent ... Keywords: steam turbine blade, surface modeling, NURBS surfac, reconstruction

Yue Ying; Wang Zhangqi; Han Qingyao

2010-06-01T23:59:59.000Z

70

Closed cycle steam turbine system with liquid vortex pump  

SciTech Connect

A closed cycle steam generating system is described comprising a steam boiler, and a steam turbine includes a vacuum pump of the liquid vortex type for condensing the exhaust steam from the turbine, a feedwater pump being employed for returning the condensate to the boiler. The tank of the vortex pump is maintained filled with water and the pressure in the tank is regulated automatically to maintain a predetermined value thereof.

Brown, K.D.

1976-08-10T23:59:59.000Z

71

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

72

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

73

System and method for individually testing valves in a steam turbine trip control system  

SciTech Connect

This patent describes a steam turbine power plant. It comprises: a steam generator; a steam turbine adapted to receive steam form the steam generator; a throttle valve for regulating the flow of the steam received by the steam turbine; and an electro-hydraulic trip control system for causing the throttle valve to close when a predetermined condition has been reached.

Hurley, J.D.

1992-07-28T23:59:59.000Z

74

Dongfang Steam Turbine Works DFSTW | Open Energy Information  

Open Energy Info (EERE)

Dongfang Steam Turbine Works DFSTW Dongfang Steam Turbine Works DFSTW Jump to: navigation, search Name Dongfang Steam Turbine Works (DFSTW) Place Deyang, Sichuan Province, China Zip 618000 Sector Wind energy Product Manufacturer of several kinds of steam turbines and accessory equipment. Manufactures wind turbines under licence from REpower. Coordinates 31.147209°, 104.375023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.147209,"lon":104.375023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Apparatus and method for controlling steam turbine operating conditions during starting and loading  

SciTech Connect

A steam turbine-generator system is described which consists of: a high-pressure steam turbine; a reheat turbine; a boiler including means for heating stem for delivery to the high-pressure steam turbine and a boiler reheat portion for reheating an exhaust steam from the high-pressure steam turbine for delivery to the reheat turbine; main valve means for admitting steam from the boiler to the high-pressure steam turbine; an intercept control valve for admitting steam from the boiler reheat portion to the reheat turbine; means for maintaining at least a selectable predetermined pressure in the boiler reheat portion; a reheater bypass assembly connected between a high-pressure turbine exhaust line of the high-pressure steam turbine and a reheat turbine inlet line of the reheat turbine, the reheater bypass assembly bypassing the reheat portion and the intercept control valve; a check valve in the high-pressure turbine exhaust line downstream of the reheater bypass assembly; and the check valve including means for preventing a flow of steam from the high-pressure turbine exhaust line to the reheat portion while an exhaust pressure of steam from the high-pressure steam turbine is less than the selectable predetermined pressure, whereby exhaust steam from the high pressure steam turbine passes through the reheater bypass assembly directly to the reheat turbine without passing through and reheat portion during at least a portion of a startup cycle.

Dimitroff, V.T. Jr.; Wagner, J.B.

1986-07-08T23:59:59.000Z

76

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

77

Steam Turbines for Critical Applications and Emergency or Standby Drives  

E-Print Network (OSTI)

Steam turbines are frequently preferred over electric motors where operational continuity is important. This often imposes extreme premiums in operating cost. The parameters affecting relative economics are explored and a range of alternatives are discussed. Some light is shed on the often controversial (and even emotional) topics of automatic quick-start turbine drives, “slow” rolling of standby turbines, and the use of other types of emergency drives.

Waterland, A. F.

1986-06-01T23:59:59.000Z

78

Architecting a plug-in based steam turbine design tool  

Science Conference Proceedings (OSTI)

At a leading manufacturer of equipment for power generation, the engineers currently design a steam turbine, a key component of a power plant, using a large number of disjoint legacy tools written mostly in Fortran; These tools encapsulate significant ... Keywords: dynamic graph, eclipse rcp, osgi, turbine engineering

Stefanos Zachariadis; Tim Cianchi

2011-05-01T23:59:59.000Z

79

Steam Turbine Casing and Valve Body Repair Guidelines  

Science Conference Proceedings (OSTI)

Today’s flexible mode of operation can result in damage to heavy-section components, such as steam turbine and valve casings. Thus, owners and operators are often faced with repairing a critical component. This report is part of a set of documents that address the key areas in the asset management of steam turbine casings and valve bodies—nondestructive evaluation and damage detection, repair, and life ...

2013-12-14T23:59:59.000Z

80

Dynamic computer simulation of the Fort St. Vrain steam turbines  

SciTech Connect

A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

Conklin, J.C.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Steam Turbine Blade Failure Root Cause Analysis Guide  

Science Conference Proceedings (OSTI)

Steam Turbine Blade Failure Root Cause Analysis Guide is a concise reference written for operators to plan and conduct an investigation into the most probable causes of a steam turbine blade (bucket) failure. The report provides both an overview and step-by-step approach to identifying the damage mechanisms most common to turbine blade failures. It proceeds to show how damage mechanisms are related to the operating history prior to the blades failure and how they are evaluated to establish their role as ...

2008-03-31T23:59:59.000Z

82

Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud  

SciTech Connect

A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

2002-01-01T23:59:59.000Z

83

Compatibility of gas turbine materials with steam cooling  

DOE Green Energy (OSTI)

Objective is to investigate performance of gas turbine materials in steam environment and evaluate remedial measures for alleviating the severity of the problem. Three superalloys commonly used in gas turbines were exposed to 3 steam environments containing different impurity levels for 2 to 6 months. Results: Cr2O3-forming alloys containing 1-4% Al such as IN 738 are susceptible to heavy internal oxidation of Al. High Al (>5%) alloys in which continuous Al2O3 scale can be formed, may not be susceptible to such attack. Deposition of salts from steam will accentuate hot corrosion problems. Alloys with higher Cr content such as X-45 are generally less prone to hot corrosion. The greater damage observed in IN 617 make this alloy less attractive for gas turbines with steam cooling. Electrochemical impedance spectroscopy is a good nondestructive method to evaluate microstructural damage.

Desai, V.; Tamboli, D.; Patel, Y. [University of Central Florida, Orlando, FL (United States). Dept. of Mechanical and Aerospace Engineering

1995-12-31T23:59:59.000Z

84

Control system for single shaft combined cycle gas and steam turbine unit  

SciTech Connect

This patent describes a method for starting and controlling a combined cycle turbine of the type having a gas turbine with a fuel flow control valve and a steam turbine with at least one steam control valve both disposed on a single shaft and having a heat recovery steam generator heated by the gas turbine and connected to supply steam to the steam control valve, the combined cycle turbine having a unified control system and driving a load, and also having an auxiliary steam source connected to the steam control valve. It comprises controlling of steam from the auxiliary steam source with the steam control valve to crank the combined cycle turbine for starting, initiating and controlling fuel flow to the gas turbine with the fuel flow control valve and initiating combustion, controlling initial acceleration of the combined cycle turbine with the steam control valve on auxiliary steam, coordinating control of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine to the fuel flow control valve and gradually reducing the opening of the steam control valve to a minimum value when the turbine reaches rated speed.

Moore, J.H.; Kure-Jensen, J.; Rowen, W.I.

1991-08-27T23:59:59.000Z

85

Infrared Probe for Application to Steam Turbine Blade Vibration Detection  

Science Conference Proceedings (OSTI)

Technology for non-contacting steam turbine blade tip vibration measurement has advanced to the point of being a viable tool for risk management in situations where turbine blade high-cycle vibration occurs as a result of operating parameters or blade condition. This report describes the development and prototype testing of a new type of blade tip time-of-arrival sensing system for use with commercial signal processing systems.

2004-12-16T23:59:59.000Z

86

Introduction to Nuclear Plant Steam Turbine Control Systems  

Science Conference Proceedings (OSTI)

Since Nuclear Power Plants produce their power through the use of Steam Turbine Generators, any problems associated with the Turbine Control System has a direct effect on power generation. Although considerable effort has been expended in improving control system reliability, failures resulting in lost generation and high maintenance cost still plague the industry. On an individual basis, improvements have been made through maintenance techniques, modifications and upgrades. Unfortunately, this informati...

1995-03-02T23:59:59.000Z

87

Steam Turbine Valve Actuator Condition Assessment: 2013 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators. It covers the actuators that are typically found on the turbines of the two major U.S. original equipment manufacturers (OEMs), as well as those of several non-U.S. OEMs. The scope encompasses both mechanical hydraulic control (MHC) and electronic hydraulic control (EHC) types of hydraulic ...

2013-07-25T23:59:59.000Z

88

Turbine Steam Path Damage: Theory and Practice, Volume 1: Turbine Fundamentals  

Science Conference Proceedings (OSTI)

Historically, most treatises about steam turbines have concentrated on thermo-dynamics or design. In contrast, the primary focus of this book is on the problems that occur in the turbine steam path. Some of these problems have been long known to the industry, starting as early as A. Stodola's work at the turn of the century in which mechanisms such as solid particle erosion, corrosion and liquid droplet damage were recognized. What we have tried to do here is to provide, in a single, comprehensive refere...

1999-08-20T23:59:59.000Z

89

IMPROVEMENTS IN AND RELATING TO STEAM CONDENSER INSTALLATIONS FOR STEAM TURBINE POWER PLANT  

SciTech Connect

A steam condenser arrangement for turbine power plants which have excess steam at times is described. A dump condenser with cooling water connections in parallel with steam turbine condensers receives surplus steam. Cooling water from the turbine condensers is mixed with coolant from the dump condenser so that a predetermined maximum temperature is not exceeded. The quantity of cooling water passing through the dump condenser is a proportion of the total circulating water requirements of the condenser installation, and the pressure drop across it is less than that across the main condensers. (T.R.H.)

1960-05-18T23:59:59.000Z

90

Centrifugal exhauster driven by steam turbine achieves 55% energy savings  

SciTech Connect

A steam turbine/centrifugal exhauster system is being used in a felt dewatering operation in a Michigan pulp and papermill at a hp energy savings of 55%. The system operates at 170 bhp, replacing 375 hp used for conventional liquid ring vacuum pumps. The steam turbine utilizes 450 psig steam into the turbine with a 50 psig back pressure on the discharge side. The mill has also installed an additional felt dewatering box that was never employed before the exhauster system was installed. Since operation first began, the mill reports equal or improved dewatering compared to the previous liquid ring system. The hot air discharge is utilized to heat the machine room wet end area, replacing some space heater requirements.

Bonady, F.M.

1984-05-01T23:59:59.000Z

91

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

2002-01-01T23:59:59.000Z

92

On H8Robust Control for Hydraulic Servo System of Steam Turbine  

Science Conference Proceedings (OSTI)

Digital Electrical Hydraulic Servo System (DEH )of steam turbine has perfect performance, but it is difficult to format mathematical model accurately. Due to complexity of steam turbine and hydraulic servo system and the complex factors of applying field, ... Keywords: component, Steam turbine, hydraulic Servo System, H8 Robust control, hybrid Sensitiveness, disturbance

Lian-yu Chen

2010-06-01T23:59:59.000Z

93

Why Condensing Steam Turbines are More Efficient than Gas Turbines  

E-Print Network (OSTI)

Consider the following questions: 1. Which is bigger, a nickel or a dime? 2. Which weighs more? 3. Which is worth more? The answers are obvious: a nickel is bigger and it weighs more, but a dime is worth more. So size and weight are the wrong measurements of a coin's value. The real value of a coin is how much it will buy. In much the same way, enthalpy (Btu/lb) is the wrong measurement for the value of steam. It tells what the heat content of the steam is, but heat content is not the same as value. The real value of steam is how much work can be obtained from it. This paper deals with some of the interesting conclusions that can be drawn when ability to do work is substituted for enthalpy as the primary system efficiency measurement.

Nelson, K. E.

1988-09-01T23:59:59.000Z

94

Adaptive temperature control system for the supply of steam to a steam turbine  

SciTech Connect

A combined-cycle steam turbine power generating plant is described including a heat recovery steam generator for outputting steam at an instantaneous temperature and pressure, and a steam turbine having rotor expanding steam therethrough from the steam generator; means providing a signal representative of the temperature of the rotor of the turbine; and means for controlling the generation of steam by the steam generator to control the temperature of steam in accordance with a predetermined temperature gradient, the combination of: function generator means responsive to a signal representative of steam turbine throttle pressure for providing a throttle pressure related steam limit temperature according to a constant enthalpy characteristic; bias means responsive to the rotor temperature representative signal for providing a bias signal in excess of the rotor temperature signal by a predetermined amount; means responsive to the larger of the limit temperature signal and the bias signal for controlling the generation of steam by the steam generator to control the temperature of steam to iteratively raise the temperature of the rotor in accordance with the constant enthalpy characteristic and the bias signal during soaking.

Martens, A.; Myers, G.A.

1986-05-20T23:59:59.000Z

95

Steam Turbine Rotor Life Assessment: Volumes 1-5  

Science Conference Proceedings (OSTI)

To assess the integrity and residual life of an in-service steam turbine rotor, utilities need to know the rotor's current creep and/or fatigue damage. This series of reports presents procedures for non-destructively estimating this damage using hardness, replication, and X-ray based approaches.

1994-05-21T23:59:59.000Z

96

Automatic Identification of Shaft Orbits for Steam Turbine Generator Sets  

Science Conference Proceedings (OSTI)

The shaft orbits and dynamic characteristics of the shaft centre orbit contain abundant information for the fault diagnosis of rotating machinery and reflect different faults of rotating machine. Therefore the shaft orbits recognition plays an important ... Keywords: shaft orbit, steam turbine generator sets, morphological filter, invariant moment, BP neural network

Changfeng Yan; Hao Zhang; Hui Li; Li Yang; Wen Huang

2009-05-01T23:59:59.000Z

97

Shutdown Protection of Steam Turbines Using Dehumidified Air  

Science Conference Proceedings (OSTI)

EPRI research has determined that proper protection of the steam turbine during shutdown periods is essential to the prevention of damage by stress corrosion cracking and corrosion fatigue. This report provides information on both the incipient damage of improper shutdown and techniques for assessing and applying dehumidified air for shutdown protection.

2008-03-26T23:59:59.000Z

98

Steam as turbine blade coolant: Experimental data generation  

DOE Green Energy (OSTI)

Steam as a coolant is a possible option to cool blades in high temperature gas turbines; however there is practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

99

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

100

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine  

SciTech Connect

The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

102

The Economics of Back-Pressure Steam Turbines  

E-Print Network (OSTI)

Recently, back-pressure steam turbines have become the focal point in many cogeneration applications. This is a result of the savings in operating costs associated with the generation of electrical or mechanical power coincident with the economical use of available thermal energy. The benefits and constraints of back-pressure systems, however, are not always readily apparent and may result in the misapplication of this technology. This paper, therefore, will examine new turbine installations and backpressure retrofits and will determine the most economical back-pressure turbine applications. A generalized methodology is highlighted, allowing the reader to readily evaluate and determine the economic justification of back-pressure turbines in many cogeneration applications. The impact on plant energy use and cost is calculated, and the effects of load variation and the value of high-efficiency turbines are discussed. The specific process plant case studies reviewed involve back-pressure turbines of 100 to 5000 hp for mechanical drives, for generator drives, and as pressure reducing station replacements.

Wagner, J. R.; Choroszylow, E.

1982-01-01T23:59:59.000Z

103

Solid particle magnetic deflection system for protection of steam turbine plants  

SciTech Connect

A method for removing metallic particles from a flow of steam supplied by a steam generator through a supply path to a steam turbine, the metallic particles being entrained in the flow of steam and, at least in part, having defoliated from boiler pipes of the steam generator is described comprising: defining an axial section of a predetermined axial direction, circumferential configuration and length, in the steam flow path from the steam generator to the steam turbine; producing a magnetic field in the defined section of the steam flow path; and trapping and collecting the deflected metallic particles, thereby to remove same from the flow of steam supplied to the turbine.

Viscovich, P.W.

1988-02-23T23:59:59.000Z

104

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

2010-05-01T23:59:59.000Z

105

Blade-Vortex Interactions in High Pressure Steam Turbines  

E-Print Network (OSTI)

A detailed experimental and numerical investigation of the transport of streamwise (passage) vortices in high-pressure axial turbines and their interaction with the downstream blade rows was performed. The results indicate large variations in the downstream flow field, notably the development of the secondary flows. The mechanism of passage vortex transport was studied in two differently configured high-pressure turbine stages. In the first configuration, the blades are radially stacked while the second configuration features three-dimensionally stacked high-pressure steam turbine blading. The stator hub passage vortex is chopped by the downstream blade row in a similar way to the wake. The bowed vortex tube near the inlet to the rotor appeared to develop two counter-rotating legs extending back to the leading edges of the adjacent blades. These were termed the suction side leg and the pressure side leg. The two legs of the incoming passage vortex then convect with the respective velocities on the blade surfaces. The results are discussed for the radially stacked turbine and the 3-D turbine separately.

Venkata Siva Prasad Chaluvadi

2000-01-01T23:59:59.000Z

106

Documentation of Steam Turbine-Generator Failures—2010  

Science Conference Proceedings (OSTI)

This technical update report presents a review of turbine-generator failures that occurred during 2010.

2011-02-28T23:59:59.000Z

107

Oxidation of alloys targeted for advanced steam turbines  

Science Conference Proceedings (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12T23:59:59.000Z

108

Superalloys for ultra supercritical steam turbines--oxidation behavior  

Science Conference Proceedings (OSTI)

Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

109

Gas turbine bottoming cycles: Triple-pressure steam versus Kalina  

SciTech Connect

The performance of a triple-pressure steam cycle has been compared with a single-stage Kalina cycle and an optimized three-stage Kalina cycle as the bottoming sections of a gas turbine combined cycle power plant. A Monte Carlo direct search was used to find the optimum separator temperature and ammonia mass fraction for the three-stage Kalina cycle for a specific plant configuration. Both Kalina cycles were more efficient than the triple pressure steam cycle. Optimization of the three-stage Kalina cycle resulted in almost a two percentage point improvement.

Marston, C.H. [Villanova Univ., PA (United States); Hyre, M. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

1995-01-01T23:59:59.000Z

110

Bore tube assembly for steam cooling a turbine rotor  

SciTech Connect

An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

111

Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater  

SciTech Connect

An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

Luongo, M.C.

1975-08-12T23:59:59.000Z

112

Development of forgeable Ni-base alloys for USC steam turbine ...  

Science Conference Proceedings (OSTI)

stationary power plants. In the first phase of the ... growth resistance) of these alloys were investigated with respect to their applications for steam turbines above ...

113

Method of optimizing the efficiency of a steam turbine power plant  

SciTech Connect

A method is disclosed for improving the operational efficiency of a steam turbine power plant by governing the adjustment of the throttle steam pressure of a steam turbine at a desired power plant output demand value. In the preferred embodiment, the impulse chamber pressure of a high pressure section of the steam turbine is measured as a representation of the steam flow through the steam turbine. At times during the operation of the plant at the desired output demand value, the throttle pressure is perturbed. The impulse chamber pressure is measured before and after the perturbations of the throttle pressure. Because changing thermodynamic conditions may occur possibly as a result of the perturbations and provide an erroneous representation of the steam flow through the turbine, the impulse chamber pressure measurements are compensated for determined measurable thermodynamic conditions in the steam turbine. A compensated change in impulse chamber pressure measurement in a decreasing direction as a result of the direction of perturbation of the steam throttle pressure may indicate that further adjustment in the same direction is beneficial in minimizing the steam flow through the steam turbine at the desired plant output demand value. The throttle steam pressure adjustment may be continually perturbed in the same direction until the compensated change in impulse chamber pressure before and after measurements falls below a predetermined value, whereby the steam flow is considered substantially at a minimum for the desired plant output demand value.

Silvestri, G.J.

1981-11-03T23:59:59.000Z

114

System for minimizing valve throttling losses in a steam turbine power plant  

SciTech Connect

A system which integrates the controls of a steam turbine power plant for minimizing power plant energy losses substantially caused by steam flow valve throttling is disclosed. The steam turbine power plant includes boiler pressure controls for controlling the boiler throttle pressure of a steam producing boiler and turbine-generator controls for positioning a plurality of turbine steam admission values to regulate the steam flow conducted through a steam turbine which governs the electrical energy generated by an electrical generator at a desired power generation level. The turbine-generator controls predetermine a plurality of valve position states to establish a predetermined valve grouping sequential positioning pattern for the steam admission valves to regulate steam flow through the steam turbine across the range of power generation, each predetermined state substantially corresponding to a minimum of valve throttling losses. The steam admission valves may be positioned at a present valve position state, which is other than one of the predetermined states, as a result of a change in desired power generation level. The disclosed system responds to this condition by governing the boiler pressure controls to adjust the boiler throttle pressure at a desired rate and in a direction to cause steam admission valves to be repositioned according to the sequential positioning pattern to a selected one of the predetermined efficient valve position states. The repositioning of the steam admission valves is performed by maintaining the generated energy substantially at the new desired power generation level.

Stern, L.P.; Johnson, S.J.

1979-12-18T23:59:59.000Z

115

Gas turbine row #1 steam cooled vane  

DOE Patents (OSTI)

A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

Cunha, Frank J. (Longwood, FL)

2000-01-01T23:59:59.000Z

116

The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration  

E-Print Network (OSTI)

This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas turbine. Several modifications to the gas turbine (Brayton Cycle) and the effects of cycle parameters such as pressure ratio and turbine inlet temperature are discussed. Steams injected cycles are examined and the concept of the ECSI gas turbine is introduced. The discussion includes criteria for selecting a suitable heat exchanger and considerations for start-up cycles. The feasibility of the concept and discussion of problem areas in the prototype are discussed.

Boyce, M. P.; Meher-Homji, C.; Ford, D.

1981-01-01T23:59:59.000Z

117

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On-Line Disturbance Data  

E-Print Network (OSTI)

Neural Network Based Modeling of a Large Steam Turbine-Generator Rotor Body Parameters from On technique to estimate and model rotor- body parameters of a large steam turbine-generator from real time

118

Demonstration of EPRI STEEM Optical Probe for LP Turbine Steam Quality Measurement  

Science Conference Proceedings (OSTI)

EPRI has developed the STEEM system, which contains an optical probe for measurement of saturated steam quality that is deployed at the exhaust of low-pressure (LP) turbines. As part of EPRI's development effort, tests of the probe's performance have been conducted in operating turbines, and the results compared with standard measurements of the steam cycle.

2001-11-07T23:59:59.000Z

119

Steam Turbine Mechanical Hydraulic Control System - Operation, Inspection, Setup, Troubleshooting, and Maintenance Guide, Revision 1  

Science Conference Proceedings (OSTI)

This report describes the components of General Electric and Westinghouse steam turbine mechanical hydraulic control systems and provides typical drawings. It focuses on systems located on the front standards and valve enclosures of utility-sized fossil and nuclear steam turbines manufactured by General Electric and Westinghouse. The report is intended to assist in maintaining, calibrating, and troubleshooting these systems.

2009-06-25T23:59:59.000Z

120

ANN Models for Steam Turbine Power Output Toward Condenser Circulating Water Flux  

Science Conference Proceedings (OSTI)

Aimed the costliness and the complex process of performance test for steam turbine power output toward circulating water flux and in view of the non—linear advantage about neural network, it brings forward predicting the performance using artificial ... Keywords: Artificial neural network, steam turbine power output, performance prediction

Jia Ruixuan; Xu Hong

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electrostatic Charge and Its Influence on the Condensation of Steam in a Turbine  

Science Conference Proceedings (OSTI)

Some major contributors to efficiency loss in a fossil or nuclear plant are associated with nucleation of moisture from superheated steam, formation and release of liquid films on turbine surfaces, and flow of moist steam into the turbine exhaust and condenser. This document provides a state-of-knowledge report on the various electrostatic processes involved.

2001-09-28T23:59:59.000Z

122

Combined cycle electric power plant with a steam turbine having a sliding pressure main bypass and control valve system  

SciTech Connect

A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an operator analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. The control system is of the sliding pressure type and maintains a predetermined steam pressure as a function of steam flow according to a predetermined characterization depending on the number of steam generators in service to limit the maximum steam velocity through the steam generators, and reduce the probability of water carryover into the steam turbine. Such control is always maintained by the bypass valve. The turbine control valve responds to the speed/load demand only, except when the bypass valve is closed and the rate of steam generation is insufficient to maintain a predetermined pressure flow relationship.

Uram, R.

1980-05-06T23:59:59.000Z

123

Geothermal turbine installation  

SciTech Connect

A geothermal turbine intallation in which high-pressure steam is separated from geothermal steam, which is a mixture of steam and water, with the high pressure steam connected to a high pressure turbine. Low pressure steam produced by flashing the hot water component of the geothermal steam is introduced to a low pressure turbine which is constructed and operates independently of the high pressure turbine. The discharge steam from the high pressure turbine is introduced to a steam condenser operating at a low vacuum while discharge steam from the low pressure turbine is introduced into a steam condenser operating at a high vacuum. The cooling water system of the high and low pressure condensers are connected in series with one another. A maximum power increase is obtained if the flow rates of the high and low pressure steams at the extraction ports of the high and low pressure turbines are made substantially equal to one another.

Nishioka, R.

1983-01-04T23:59:59.000Z

124

Effect of thermal barrier coatings on the performance of steam- and water-cooled gas turbine: steam turbine combined cycle systems  

SciTech Connect

An analytical study was made of the performance of air-, steam-, and water-cooled gas-turbine/steam-turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal-barrier coatings permit an increase in the turbine inlet temperature from 1205/sup 0/C to 1370/sup 0/C, resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4% when the turbine inlet temperature is increased from 1425/sup 0/C to 1675/sup 0/C and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683/sup 0/C and the maximum specific power improvement is 36.6% by increasing the turbine inlet temperature from 1425/sup 0/C to 1730/sup 0/C and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air-cooling at a turbine inlet temperature of 1205/sup 0/C. The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

Nainiger, J.J.

1978-12-01T23:59:59.000Z

125

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

126

Steam turbine system installation with protection of piping against seismic loading  

SciTech Connect

A steam turbine system installation is described with protection against seismic loading for piping between parts of the system comprising: at least one steam turbine rigidly mounted on a substantially fixed turbine foundation; an auxiliary part of the turbine system mounted by a selectively yielding mounting system on a substantially fixed auxiliary foundation spaced from the turbine foundation; piping connected between the steam turbine and the auxiliary part for fluid flow therebetween; the mounting system for the auxiliary part comprising means for allowing horizontal movement of the auxiliary part in relation to the auxiliary foundation in response to thermal expansion and contraction of the piping and means for resisting movement of the auxiliary part in relation to the auxiliary foundation due to seismic loading.

Pankowiecki, J.

1986-06-10T23:59:59.000Z

127

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect

The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in todayâ??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

2009-06-30T23:59:59.000Z

128

,,,"with Any"," Steam Turbines Supplied by Either Conventional...  

U.S. Energy Information Administration (EIA) Indexed Site

Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " ,,,"Cogeneration" "NAICS",,,"Technology" "Code(a)","Subsector and Industry","Establishments(b)","in...

129

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

130

FAST 1.0 - Flow Path Analysis for Steam Turbines, Version 1.0  

Science Conference Proceedings (OSTI)

FAST Software Flow Analysis of Steam Turbines is a tool for performance engineers, designers and financial analysts. This tool is for industry use by utilities and manufacturers to evaluate thermal performance characteristics of existing and proposed turbine steam-path modifications/upgrades. Description The FAST software diagnoses performance problems and facilitates the economic evaluation of steam-path upgrade options. FAST software is used primarily by the thermal performance engineer in both fossil ...

2007-05-30T23:59:59.000Z

131

Apparatus and method for partial-load operation of a combined gas and steam turbine plant  

SciTech Connect

Apparatus and method are disclosed for the partial load operation of a combined gas turbine and steam turbine plant, including a shaft being connected to the gas turbine and drivable at a given nominal speed of rotation, a first generator being connected to the shaft and electrically connectible to an electric network, a compressor being connected to the shaft and connected upstream of the gas turbine in gas flow direction, a heat exchanger having an output and a variable heat supply and being connected upstream of the gas turbine in gas flow direction, a steam generator for the steam turbine being connected downstream of the gas turbine in gas flow direction for receiving exhaust gases therefrom, a second generator being connected to the steam turbine and electrically connectible to the electric network for supplying given nominal power thereto along with the first generator, means for giving to the electric network and taking away from the network at least part of the nominal power if the shaft rotates at less than the nominal speed of rotation, and means for reducing the speed of rotation of the gas turbine for preventing a substantial drop in temperature at the output of the heat exchanger if the heat supply of the heat exchanger is reduced.

Becker, B.; Finckh, H.; Meyer-pittroff, R.

1982-07-20T23:59:59.000Z

132

Steam Turbine Efficiency and Corrosion: Effects of Surface Finish, Deposits, and Moisture  

Science Conference Proceedings (OSTI)

The causes of steam turbine losses have been recognized for over 50 years. In practice, deposits and surface finish account for major losses during turbine blade path audits. This report presents new experimental information on the effects of surface finish, moisture removal, and deposits.

2001-10-31T23:59:59.000Z

133

Stress and Fracture Analysis of Shrunk-On Steam Turbine Disks  

Science Conference Proceedings (OSTI)

Utilities spend millions of dollars each year to repair or replace cracked shrunk-on disks in low-pressure steam turbines. One reason for cracking, this project concludes, is that stress approaches the yield strength of disks in many current turbine designs.

1984-01-01T23:59:59.000Z

134

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Heat Recovery Steam Generator Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the heat recovery steam generator at a combustion gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and ...

2013-05-15T23:59:59.000Z

135

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

136

Project Management Guidance when Upgrading Steam Turbines at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

Many power producers upgrade steam turbines to gain megawatts (MW) instead of installing new capacity for a variety of reasons. The engineering challenges encounteredwhen managing procurement and adequately analyzing plant support systems affected by this upgradeare becoming more pronounced.

2007-01-15T23:59:59.000Z

137

Proceedings: Workshop on Corrosion of Steam Turbine Blading and Disks in the Phase Transition Zone  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). EPRI's Workshop on Corrosion of Steam Turbine Blading and Disks in the PTZ critically reviewed the state of knowledge of corrosion fatigue and stress corrosion cracking of LP blade and disk materials, with particular emphasis on the influence of the local environment.

1998-12-17T23:59:59.000Z

138

Steam Turbine and Generator Designs for Combined-Cycle Applications: Durability, Reliability, and Procurement Considerations  

Science Conference Proceedings (OSTI)

Combined-cycle power plants are currently preferred for new power generation capacity in much of the world, particularly in the United States. Steam turbines and electrical generators are vital components affecting plant performance and reliability. Over 90 percent of the world's combined-cycle steam turbines are provided by six major manufacturers: Alstom, General Electric, Siemens-Westinghouse, Mitsubishi, Toshiba, and Hitachi. This report provides information on their model offerings and consideration...

2003-03-18T23:59:59.000Z

139

Modification of Alloy 706 for High Temperature Steam Turbine Rotor ...  

Science Conference Proceedings (OSTI)

Alloy706 is a gas-turbine disk material. However, since Alloy706 suffers from a solidification defect (freckle defect) due to segregation of Nb, it is difficult to make  ...

140

Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques  

E-Print Network (OSTI)

Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed by installed condenser surface area and the steam space characteristics. Since the steam rate and shaft power costs are dependent on the available enthalpy drop across the machine, the steam must condense at the lowest practical thermal state. Thus, air presence and cooling rate must be controlled. The condensing turbine is not an isolated system. It directly affects the use of boiler fuel and the purchase of power. Its condensate requires reheating to feedwater temperature: steam is used, backpressure power is made, for example. Its performance affects the entire steam system and must be monitored persistently. Because of the complexities (and advantages) of systems analyses, computer modeling is demonstrated in this paper to fully evaluated the network effects and the financial impact of good condenser vacuum.

Viar, W. L.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

142

Economical Condensing Turbines?  

E-Print Network (OSTI)

Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: Letdown turbines produce power based upon steam requirements and not based upon power requirements, and if all the steam letdown does not have a use, letdown turbines can become a very expensive way of producing electric power. • Condensing turbines have the ability to handle rapid swings in electrical load. Unfortunately, they can only condense a small percentage of the steam, usually less than 14%. Therefore only a small percent of the heat of condensation is available for their use. Also equipment must be used to condense the remaining steam below atmospheric pressure. • Extraction/condensing turbines both extract steam at a useful temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from drawing electrical power from the grid. The method for analyzing the cost of the condensing steam produced power is exactly the same in all cases. This paper will attempt to provide a frame work for preliminary economic analysis on electric power generation for condensing steam turbines.

Dean, J. E.

1997-04-01T23:59:59.000Z

143

Stream-injected free-turbine-type gas turbine  

SciTech Connect

This patent describes an improvement in a free turbine type gas turbine. The turbine comprises: compressor means; a core turbine mechanically coupled with the compressor means to power it; a power turbine which is independent from the core turbine; and a combustion chamber for providing a heated working fluid; means for adding steam to the working fluid; means for providing a single flow path for the working fluid, first through the core turbine and then through the power turbine. The improvement comprises: means for preventing mismatch between the core turbine and the compressor due to the addition of steam comprising coupling a variable output load to the compressor.

Cheng, D.Y.

1990-02-13T23:59:59.000Z

144

Applications of an Improved Wavelet Network in the Low Pressure Cylinder of Turbine Steam Exhaust Enthalpies Calculation  

Science Conference Proceedings (OSTI)

this paper applies the principle of the immune system adjustment to optimize the structure parameters of wavelet network, so as to establish a new type of wavelet neural network model which will be applied to turbine exhaust steam enthalpies. The calculation ... Keywords: steam turbine, wavelet network Vector distance Eexhaust, steam enthalpy

Zhang Liping; Sun Quanhong; Xu Qi

2011-01-01T23:59:59.000Z

145

Program on Technology Innovation: Erosion Resistant Coatings for Gas and Steam Turbines - Advanced Nano-Coatings and Vendor Evaluati on Results  

Science Conference Proceedings (OSTI)

Erosion of steam turbine blades and gas turbine compressor blades costs power producers millions of dollars each year. Improved mitigation techniques to reduce erosion damage will improve turbine efficiency and reduce maintenance downtime.

2009-03-31T23:59:59.000Z

146

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

147

Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply  

SciTech Connect

A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

Braytenbah, A.S.; Jaegtnes, K.O.

1977-02-15T23:59:59.000Z

148

Method and apparatus for set point control for steam temperatures for start-up of the turbine and steam generator in unit power plants  

SciTech Connect

A method and apparatus are described for controlling the set point for steam temperatures for cold start-up of a steam generator-turbine unit wherein inlet steam temperature and turbine load absorption are steadily and substantially simultaneously increased in accordance with a predetermined relationship so as to reach their final values substantially synchronously.

Bloch, H.; Salm, M.

1978-05-23T23:59:59.000Z

149

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

Science Conference Proceedings (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

150

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

151

Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Holcomb, G.R. [US DOE, Albany, OR (United States)

2009-07-01T23:59:59.000Z

152

Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles  

SciTech Connect

Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

Rice, I.G. [Rice (I.G.), Spring, TX (United States)

1997-04-01T23:59:59.000Z

153

Program on Technology Innovation: Wireless Vibration Measurement of Low-Pressure Steam Turbine Blades  

Science Conference Proceedings (OSTI)

This report describes Phase 2 of a research and development effort to define a turbine blade vibration sensor (TBVS) system for measuring the mechanical vibrational spectrum of large steam turbine blades as they rotate. In Phase 1, the design concept and a number of alternative system components were considered for a wireless electronic device called a mote. In the Phase 2 research covered in this report, the final design of a custom accelerometer capable of operating under very high sustained centrifuga...

2010-12-22T23:59:59.000Z

154

Steam Turbine Supervisory Instrumentation Systems, Volume 1: Reducing Spurious Trips While Maintaining Machine Protection  

Science Conference Proceedings (OSTI)

Recently, personnel at a number of utilities operating steam turbine generators have expressed concern with regard to spurious or unnecessary unit trips caused by turbine supervisory instrumentation (TSI). Spurious trips can be costly, and they can cause unnecessary challenges to safety equipment, especially at nuclear units. A better understanding of the function and design basis surrounding TSI as well as how to appropriately use the instrumentation can help the industry to mitigate risks of false ...

2013-11-25T23:59:59.000Z

155

Program on Technology Innovation: Wireless Vibration Measurement of Low Pressure Steam Turbine Blades  

Science Conference Proceedings (OSTI)

Large turbine blades in the low pressure section of a steam turbine occasionally fatigue over time and break free of the turbine shaft. The damage is often substantial and the cost of an event, including the cost of the downtime, ranges from $3 million to $30 million--and in rare cases can reach hundreds of millions of dollars. Incipient failure can often be detected by monitoring changes in the vibration spectrum of the blades. This report describes the preliminary design and analysis of a wireless ele...

2010-03-18T23:59:59.000Z

156

Program on Technology Innovation: State-of-Knowledge Review of Erosion-Resistant Coatings for Steam and Gas Turbine Applications  

Science Conference Proceedings (OSTI)

Solid particle erosion (SPE) and liquid droplet erosion (LDE) cause severe damage to turbine components, such as gas turbine compressor blades and vanes as well as steam turbine control stage and later stage low-pressure blades. This report will provide a comprehensive knowledge base to turbine users on erosion coating properties, methods of application, details about the various vendors and their experience as well as the tests conducted to evaluate and qualify erosion-resistant coatings.

2008-08-15T23:59:59.000Z

157

Ultrasupercritical Steam Turbines: Design and Materials Issues for the Next Generation  

Science Conference Proceedings (OSTI)

The ultrasupercritical fossil power plant is one option for high-efficiency and low-emissions electricity generation. It is based on significant increases in steam temperature and pressure, beyond those traditionally employed for supercritical plants. Such steam conditions put new demands on the steam turbine design, particularly where the new unit has to operate in a business climate that demands flexible, reliable operation of generating plants. This report reviews demands on the ultrasupercritical ste...

2002-03-14T23:59:59.000Z

158

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

159

Metallurgical Guidebook for Steam Turbine Rotors and Discs, Volume 1: Chemistry, Manufacturing, Service Degradation, Life Assessment , and Repair  

Science Conference Proceedings (OSTI)

This guide is a compilation of information concerning steam turbine rotors and discs. Due to the variety of operating temperatures and conditions involved, factors such as material composition, manufacturing and heat treatment condition methods, and property requirements may differ from one steam turbine to another. Specifically, this guide addresses turbine rotor and disc materials used, vintages, manufacturing history, quality conditions, and chemical and mechanical properties, and it provides utility ...

2009-12-23T23:59:59.000Z

160

A Computer Program for Simulating Transient Behavior in Steam Turbine Stage Pressure of AHWR  

SciTech Connect

It is proposed to couple the Advanced Heavy water reactor (AHWR), which is being developed by Bhabha Atomic Research Centre, India, with a desalination plant. The objective of this coupling is to produce system make-up and domestic water. The proposed desalination plant needs about 1.9 kg/sec of steam and the minimum pressure requirement is 3 bars. The desalination plant can be fed with bled steam extracted from a suitable stage in low pressure turbine. As the turbine stage pressure changes with the load, it is essential to know the availability of bled steam at aforesaid pressure for various load condition. The objective of the present study is to identify a suitable extraction point so as to ensure availability of steam at desired condition for desalination plant, even at part load conditions. In order to fulfill the above objective a steam and feed system analysis code was developed which incorporates the mathematical formulation of different components of the steam and feed system such as, high pressure (HP) and low pressure (LP) turbines, re-heater, feed heaters etc. The dynamic equations are solved simultaneously to obtain the stage pressure at various load conditions. Based on the results obtained, the suitable extraction stage in LP turbine was selected. This enables to determine the lowest possible part load operation up to which availability of desalination plant could be ensured. (authors)

Dutta, Anu; Thangamani, I.; Chakraborty, G.; Ghosh, A.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of 2 Percent CrMoWV HP/LP Rotor Gap Forging for Single Cylinder Steam Turbine Use  

Science Conference Proceedings (OSTI)

There has been considerable industry interest in developing a single shaft rotor configuration that uses the same rotor in the high-pressure (HP) as well as the Low Pressure (LP) sections of a steam turbine. This report evaluates an HP/LP rotor forging for single cylinder steam turbines.

1998-11-24T23:59:59.000Z

162

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

163

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

164

Turbine Steam Path Damage: Theory and Practice, Volume 2: Damage Mechanisms  

Science Conference Proceedings (OSTI)

Historically, most treatises about steam turbines have concentrated on thermo-dynamics or design. In contrast, the primary focus of this book is on the problems that occur in the turbine steam path. Some of these problems have been long known to the industry, starting as early as A. Stodola's work at the turn of the century in which mechanisms such as solid particle erosion, corrosion and liquid droplet damage were recognized. What we have tried to do here is to provide, in a single, comprehensive refere...

1999-08-20T23:59:59.000Z

165

Turbine Overspeed Trip Modernization  

Science Conference Proceedings (OSTI)

This report provides guidance for power plant engineers contemplating modernization of their main turbine overspeed trip systems. When a large power plant turbine suddenly loses its output shaft loading due to a generator or power grid problem, the steam flow driving the turbine must be cut off very quickly to prevent an overspeed event. The overspeed trip system protects personnel and plant systems by preventing missiles that can result when turbines disintegrate at higher than normal rotational speeds....

2006-12-04T23:59:59.000Z

166

Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

2002-01-01T23:59:59.000Z

167

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

168

Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor  

SciTech Connect

The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

Choo, Y.K.; Burns, R.K.

1982-02-01T23:59:59.000Z

169

Research on Maintenance Optimization for Steam Turbine Digital Electro-Hydraulic Control System  

Science Conference Proceedings (OSTI)

As the substitute of mechanical hydraulic governing system, steam turbine digital electro-hydraulic control system presents different maintenance characteristics. If the traditional maintenance strategy is still adopted, that is the replacement or inspection ... Keywords: DEH control system, maintenance optimization, risk evaluation, fault tree

Zhenhe Wang; Shaocong Guo

2009-11-01T23:59:59.000Z

170

Steam Turbine-Generator Torsional Vibration Interaction With the Electrical Network  

Science Conference Proceedings (OSTI)

This Tutorial Report deals with steam turbine-generator torsional vibration arising from interaction with the electrical systems that connect to the generator. Besides providing background material on torsional vibration and fatigue, it reviews operating experience and machine torsional duty mitigation strategies and provides information on torsional vibration measurement, monitoring, diagnostic procedures, and non-destructive evaluation (NDE).

2005-11-14T23:59:59.000Z

171

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

172

Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply  

SciTech Connect

An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures.

Jaegtnes, K.O.; Braytenbah, A.S.

1977-02-15T23:59:59.000Z

173

NETL: Turbines - Oxy-Fuel Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

174

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

175

Test results of a steam injected gas turbine to increase power and thermal efficiency  

Science Conference Proceedings (OSTI)

The desire to increase both power and thermal efficiency of the gas turbine (Brayton cycle) engine has been pursued for a number of years and has involved many approaches. The use of steam in the cycle to improve performance has been proposed by various investigators. This was most recently proposed by International Power Technology, Inc. (IPT) and has been tested by Detroit Diesel Allison (DDA), Division of General Motors. This approach, identified as the Cheng dual-fluid cycle (Cheng/DFC), includes the generation of steam using heat from the exhaust, and injecting this steam into the engine combustion chamber. Test results on an Allison 501-KB engine have demonstrated that use of this concept will increase the thermal efficiency of the engine by 30% and the output power by 60% with no increase in turbine inlet temperature. These results will be discussed, as will the impact of steam rate, location of steam injection, turbine temperature, and engine operational characteristics on the performance of the Cheng/DFC.

Messerlie, R.L.; Tischler, A.O.

1983-08-01T23:59:59.000Z

176

GE Upgrades Top Selling Advanced Gas Turbine  

Science Conference Proceedings (OSTI)

Oct 30, 2009 ... According to GE, a typical power plant operating two new 7FA gas turbines with a single steam turbine in combined cycle configuration would ...

177

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

178

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

179

Low-Pressure Steam Turbine Corrosion Mechanisms and Interactions: State of Knowledge 2010  

Science Conference Proceedings (OSTI)

Corrosion, corrosion fatigue (CF), and stress corrosion cracking (SCC) are known issues that affect the service lives of various low-pressure (LP) steam turbine components. Considerable work has been performed to understand the individual mechanisms and the environmental conditions that lead to each of them. However, little progress has been made in understanding the interactions between these damage processes. In particular, little is known about the transition of pits to cracks and the early stages of ...

2010-07-08T23:59:59.000Z

180

Short-Term Shutdown Guidance for Steam Turbine-Generators and Auxiliary Systems  

Science Conference Proceedings (OSTI)

This report provides guidelines on the methods that utilities should consider to protect operating equipment when it is removed from service for short periods of time. The equipment and systems considered in this report include the steam turbine, generator, exciter, feedwater heaters, and related auxiliaries. The timeframe for this report includes outage periods from a weekend to six months. Improper layup can cause long-term equipment damage and premature failure. Increased shutdown frequency and durati...

2010-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

Science Conference Proceedings (OSTI)

Abstract Scope, The proposed steam inlet temperature in the Advanced Ultra ... 15 - The Effect of Primary ?' Distribution on Grain Growth Behavior of GH720Li ...

182

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

183

Demonstration of a Videoprobe Delivery Device for In Situ Inspection of Steam Turbine and Combustion Turbine Machines  

Science Conference Proceedings (OSTI)

In situ inspection of turbine rotors provides the potential advantages of minimized length of planned outages, increased intervals between outages, reduced numbers of turbine-related outages, and minimal machine disassembly to effect simple inspections. Two previous EPRI reports have identified industry experiences with in situ inspection and provided guidance for development of hardware and techniques for future efforts. Following those recommendations, this report describes the development and demonstr...

2002-04-18T23:59:59.000Z

184

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

185

Program on Technology Innovation: Development of a Corrosion-Fatigue Prediction Methodology for Steam Turbines – Test Results for 12% Cr Blade Steel (403/410 Stainless Steel)  

Science Conference Proceedings (OSTI)

The useful life of a steam turbine and the establishment of turbine outage schedules are often determined by corrosion to the low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective corrosion damage prediction methodology is an important step to successfully reduce the number of unscheduled steam turbine outages. This report provides test data and a methodology to assess risk for failure associated with corrosion-fatigue of Type 403 stainless steel steam ...

2013-02-19T23:59:59.000Z

186

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-12-31T23:59:59.000Z

187

A desiccant/steam-injected gas-turbine industrial cogeneration system  

SciTech Connect

An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

1993-01-01T23:59:59.000Z

188

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

Lack of materials with the necessary fabricability and resistance to creep, oxidation, corrosion, and fatigue at the higher steam temperatures and pressures currently limits adoption of advanced ultra supercritical (USC) steam conditions in pulverized coal-fired plants. A major five-year national effort sponsored by the Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) to develop materials for USC boilers for operation at 760C (1400F), 35 MPa (5000 psi) has been in progress and is be...

2007-06-20T23:59:59.000Z

189

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

Lack of materials that can be readily fabricated and that are resistant to creep, oxidation, corrosion, and fatigue at higher steam temperatures and pressures limits adoption of advanced ultrasupercritical (USC) steam conditions in pulverized coal-fired plants. An ongoing major five-year national effort8212sponsored by the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO)8212to develop materials for USC boilers for operation at 760C (1400F), 35 MPa (5000 psi) is being carried ou...

2008-03-04T23:59:59.000Z

190

Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.  

SciTech Connect

Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

2013-03-01T23:59:59.000Z

191

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

192

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

193

Nuclear steam turbines for power production in combination with district heating and desalination  

SciTech Connect

The optimization of the turbine plant of a nuclear power station in combination with heat production is dependent upon many factors, the most important being the heat requirements, full-load equivalent operating time, and the heat transport distance, i.e., the trunk mains' costs. With hot-water-based heat transport, this usually results in a large temperature difference between supply and return water and heating in two or three stages. The turbine can consist of a back-pressure turbine, a back-pressure turbine with condensing tail, or a condensing turbine with heat extractions. The most attractive solution from technical as well as economic points of view is the condensing turbine with extraction for district heating or desalination as appropriate. The turbines can be of conventional design, with only minor modifications needed to adapt them to the operating conditions concerned.

Frilund, B.; Knudsen, K.

1978-04-01T23:59:59.000Z

194

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

195

Turbine protection system for bypass operation  

SciTech Connect

In a steam turbine installation having a high pressure turbine, a steam generator is described for providing steam to the turbine, at least a lower pressure turbine, a reheater in the steam path between the high and lower pressure turbines, and a steam bypass path for bypassing the turbines, the high pressure turbine having a one-way check valve in its output steam line to prevent bypass steam from entering its output. The improvement described here consists of: (A) a second bypass path for passing steam around the high pressure turbine; (B) the second bypass path including, (i) steam jet compressor means including two input sections and an output section, with one input section being connected to the high pressure turbine output, the other input section being connected to receive steam from the steam generator and the output section being connected to the input of the reheater, (ii) valving means for controlling the steam supply from the steam generator to the steam jet compressor means; and (C) control means responsive to an output condition at the high pressure turbine output for controlling the valving means.

Silvestri, G.J. Jr.

1986-03-18T23:59:59.000Z

196

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

197

Generation Maintenance Application Center: Combined-Cycle Combustion Turbine Steam Turbine Stop and Control Valve Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, ...

2013-03-27T23:59:59.000Z

198

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

199

Processing of High Performance Alloys for A-USC Steam Turbine ...  

Science Conference Proceedings (OSTI)

Fracture Toughness Evaluation of Polymeric Materials for Wind Turbine Blades Using the Spiral Notch Torsion Test · High Performance Alloys for Advanced ...

200

Steam Turbine Rotor Life Assessment and Extension: Evaluation of Retired Rotors: Volume 1: Quantification of NDE Uncertainty  

Science Conference Proceedings (OSTI)

In the past, uncertainty in defect sizing during boresonic inspection has been a major source of inaccuracy in assessing the remaining life of steam turbine rotors. This report provides correlations between the boresonically reported defect sizes and the measured metallurgical sizes for

1994-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dynamic Analysis and Stability of the Load Frequency Control in Two Area Power System with Steam Turbine  

Science Conference Proceedings (OSTI)

The aim of this paper is to model, analysis and simulation of load frequency control in two area power system and parameters variation effects. State equations of a LFC in two area power system for a steam turbine are proposed. Then by examining some ... Keywords: load frequency control, dynamic analysis, integral controller

Ghazanfar Shahgholian; Serareh Yazdekhasti; Pegah Shafaghi

2009-12-01T23:59:59.000Z

202

SVM-Based Multiclass Cost-sensitive Classification with Reject Option for Fault Diagnosis of Steam Turbine Generator  

Science Conference Proceedings (OSTI)

The steam turbine generator faults not only damage the generator itself, but also cause outages and loss of profits, for this reason, many researchers work on the fault diagnosis. But misdiagnosing may also lead to serious losses. In order to improve ... Keywords: SVM, multiclass, cost-sensitive, fault diagnosis, reject option

Chao Zou; En-hui Zheng; Hong-wei Xu; Le Chen

2010-02-01T23:59:59.000Z

203

Castability of 718Plus® Alloy for Structural Gas Turbine Engine ...  

Science Conference Proceedings (OSTI)

This technology will be implemented for the manufacture of gas turbine structural components ... Cast Alloys for Advanced Ultra Supercritical Steam Turbines.

204

Case History of Reapplication of a 2500 KW Steam Turbine/Gear Drive Generator  

E-Print Network (OSTI)

In today' s equipment market more and more projects are turning toward existing equipment to justify a project. New equipment's delivery time and/or capital cost can keep a good project "grounded". In the turbomachinery industry, a few companies have developed the expertise to identify candidates of existing machines that can be adopted for many new applications. These companies can inspect, modify, recondition and rerate the equipment as needed, which helps bring in a project within budget and on time. This paper is the history of such an application. The delivery schedule requirements and limited capital made the project feasible only through the technology of reapplying existing machines to a new service. The project involves a plant that extracts landfill gas and converts it to diesel fuel, naphtha and a high grade of wax. The plant requires a steam turbine generator set to produce electrical power for its base load operation. This paper covers the history of how the turbine, gear and generator were selected, along with the highlights of the engineering work required to insure the mechanical operation of the string of equipment.

Smith, S.

1991-06-01T23:59:59.000Z

205

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

206

Cooling circuit for steam and air-cooled turbine nozzle stage  

SciTech Connect

The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

Itzel, Gary Michael (Clifton Park, NY); Yu, Yufeng (Guilderland, NY)

2002-01-01T23:59:59.000Z

207

Interim Guidelines for In-Situ Inspection and Monitoring Techniques for Steam Turbines: Volume 1: An Overview of Remote Visual Inspe ction  

Science Conference Proceedings (OSTI)

Steam turbine overhauls are expensive, time-consuming, and labor intensive and are usually carried out at intervals specified by the equipment manufacturer. The conservative nature of these recommendations often means that turbines are inspected more frequently than is warranted, thus incurring unnecessary costs. If some of these inspections could be performed with the turbine in situ, or even while on-load, this information could help decide whether further inspections involving full removal of the turb...

1999-11-17T23:59:59.000Z

208

An optical technique for characterizing the liquid phase of steam at the exhaust of an LP turbine  

SciTech Connect

Optical observation of velocity and size of water droplets in powerplant steam has several applications. These include the determination of steam wetness fraction, mass flow rate, and predicting erosion of turbine blades and pipe elbows. The major advantages of optical techniques are that they do not interfere with the flow or perturb the observation. This paper describes the measurement of the size and velocity of particles based on the observation and analysis of visibility patterns created by backscattered circularly polarized light. The size of latex particles in a dry nitrogen stream was measured in the laboratory. Visibility patterns of water droplets were observed in the low pressure turbine of Unit 6 of Alabama Power`s Gorgas Steam Plant.

Kercel, S.W.; Simpson, M.L. [Oak Ridge National Lab., TN (US); Azar, M. [Tennessee Technological Univ., Cookeville, TN (US); Young, M. [Alabama Power, Parrish, AL (US)

1993-06-01T23:59:59.000Z

209

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

to drive a secondary steam turbine – thus increasing theW501G turbines – incorporating closed-loop steam cooling –turbine cost for the MS7001FA stems from the additional cost of heat recovery steam

Ishii, Jun

2004-01-01T23:59:59.000Z

210

Closed-cycle gas turbine chemical processor  

SciTech Connect

A closed-cycle gas turbine chemical processor separates the functions of combustion air and dilution fluid in a gas turbine combustor. The output of the turbine stage of the gas turbine is cooled and recirculated to its compressor from where a proportion is fed to a dilution portion of its combustor and the remainder is fed to a chemical recovery system wherein at least carbon dioxide is recovered therefrom. Fuel and combustion air are fed to a combustion portion of the gas turbine combustor. In a preferred embodiment of the invention, the gas turbine is employed to drive an electric generator. A heat recovery steam generator and a steam turbine may be provided to recover additional energy from the gas turbine exhaust. The steam turbine may be employed to also drive the electric generator. additional heat may be added to the heat recovery steam generator for enhancing the electricity generated using heat recovery combustors in which the functions of combustion and dilution are separated. The chemical recovery system may employ process steam tapped from an intermediate stage of the steam turbine for stripping carbon dioxide from an absorbent liquid medium which is used to separate it from the gas stream fed to it. As the amount of carbon dioxide in the fuel fed to the chemical processor increases, the amount of process steam required to separate it from the absorbent fluid medium increases and the contribution to generated electricity by the steam turbine correspondingly decreases.

Stahl, C. R.

1985-07-16T23:59:59.000Z

211

Single condenser arrangement for side exhaust turbine  

SciTech Connect

This patent describes a large-scale power generating apparatus for converting steam energy into electrical energy. It comprises: a large turbine capable of converting steam energy into mechanical energy; a large generator for converting mechanical energy into electrical energy; a shaft disposed in and axially connecting the turbine and the generator, the shaft capable of being turned by steam energy in the turbine; a single condenser connected to the turbine and capable of drawing steam out of the turbine and condensing steam to water, the single condenser disposed alongside the turbine; and a low foundation which supports the turbine and the generator and a slab which supports the low foundation and the single condenser.

Stock, A.L.

1989-09-19T23:59:59.000Z

212

Single Rotor Turbine  

DOE Patents (OSTI)

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

213

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

214

Metallurgical Guidebook for Steam Turbine Rotors and Discs, Volume 2: Materials Property Database for HP-IP and LP Rotors  

Science Conference Proceedings (OSTI)

As the power plants are aging, many of the components have either surpassed or are nearing their intended design lives. Due to the range of temperatures the steam turbine components areexposed to, material composition, manufacturing and heat treatment methods, and property requirements vary widely. Having the proper knowledge about the vintage, manufacturing history, quality conditions, chemical and mechanical properties, etc., of the rotors and discs become vital when decisions about run, repair, or rep...

2010-12-23T23:59:59.000Z

215

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

216

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

217

Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units.  

E-Print Network (OSTI)

??The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical… (more)

Tsai, Chia-Chun

2012-01-01T23:59:59.000Z

218

Design and evaluation of a two-phase turbine for low quality steam--water mixtures  

DOE Green Energy (OSTI)

A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.

Comfort, W.J. III

1977-05-16T23:59:59.000Z

219

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

220

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A new emergency lubricating-oil system for steam turbine generators: Final report  

Science Conference Proceedings (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

222

Industrial gas turbines with subatmospheric expansion  

SciTech Connect

A modification is proposed to the basic Brayton cycle, by coupling the gas turbine with a jet pump. This allows subatmospheric pressure to exist at the exit of the turbine, a bigger turbine ratio and, hence, a higher efficiency. The jet pump operates with steam, produced from pressurized water heated by the exhaust gasses of the gas turbine. A simple configuration of the coupling is studied in detail.

Georgiou, D.P. (Patras Univ. (Greece))

1988-01-01T23:59:59.000Z

223

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

224

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

225

Generation Maintenance Applications Center: Combined-Cycle Combustion Turbine Steam Bypass Model Maintenance Guide  

Science Conference Proceedings (OSTI)

BackgroundCombustion turbine combined-cycle (CTCC) facilities use various systems and components that are unique to this type of power generation plants and are not typically found in a nuclear or fossil power plant. As such, current CTCC facility owners’ use of the Electric Power ...

2013-12-14T23:59:59.000Z

226

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

227

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

228

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...

229

Steam Generating Units (duct burners) 40 CFR Part 60 Subpart GG- Standards of Performance for Stationary Gas Turbines  

E-Print Network (OSTI)

For nitrogen oxides has been determined to be selective catalytic reduction. l As authorized by the Northwest Clean Air Agency Regulation Section 300, this order is issued subject to the following restrictions and conditions: 1) The gas turbines shall burn either pipeline natural gas, or number 2 distillate oil with a sulfur content not to exceed 0.05 weight percent. The HRSG duct burners shall burn only pipeline natural gas. 2) Pollutant concentrations for each gas turbinelheat recovery steam generator stack shall not exceed the following:

unknown authors

2007-01-01T23:59:59.000Z

230

Generation Maintenance Application Center: Combustion Turbine Combined-Cycle Steam Valves Maintenance Guide  

Science Conference Proceedings (OSTI)

 BackgroundCombustion turbine combined-cycle (CTCC) facilities use various components that are unique to these types of power generation plants. Therefore, use of the Electric Power Research Institute (EPRI) Preventive Maintenance Basis Database (1018758) by owners of CTCC facilities is somewhat limited to only those components that are common to both CTCC facilities and nuclear or fossil power plants. With the projected growth in the number of CTCC facilities, the ...

2013-05-14T23:59:59.000Z

231

Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation  

DOE Green Energy (OSTI)

This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

Sterzinger, G J [Economics, Environment and Regulation, Washington, DC (United States)

1994-05-01T23:59:59.000Z

232

Wind Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

This guideline provides component-level information regarding the maintenance of major components associated with a wind turbine. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of wind turbine facilities.

2012-06-29T23:59:59.000Z

233

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

234

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

235

The wind turbine  

Science Conference Proceedings (OSTI)

In this paper we present the modeling of a wing turbine, using the Euler Lagrange method and circuits theory. We get the mathematical equation (modeling) that describes the wind turbine and we simulate it using the mathlab program. Keywords: modeling, simulation, wind turbine

José De Jesús Rubio Avila; Andrés Ferreira Ramírez; Genaro Deloera Flores; Martín Salazar Pereyra; Fernando Baruch Santillanes Posada

2008-07-01T23:59:59.000Z

236

Turbine Imaging Technology Assessment  

DOE Green Energy (OSTI)

The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

Moursund, Russell A.; Carlson, Thomas J.

2004-12-31T23:59:59.000Z

237

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed water, condensate and cooling water facilities. The benefits of the high efficiency of combined cycle gas turbines can only be realized if the energy in the hot exhaust can be utilized. Data for several plants, in various stages of engineering, in which clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial processes, namely in the production of ammonia, LNG, and olefins. These options are briefly discussed.

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

238

Topping Turbines: Adding New Life to Older Plants  

E-Print Network (OSTI)

An existing power plant can be repowered at a modest investment cost through a topping turbine installation. Essentially, this consists of replacing the existing old, low pressure boilers with new, high pressure boilers and adding a new, high pressure, non-condensing turbine (topping turbine) . The high pressure steam generated in the new boilers is supplied to the throttle of the high pressure turbine and exhausted at the pressure required by the existing, old, low pressure, condensing turbines. The exhaust from the topping turbine is then supplied to the throttle of the existing turbines. The additional capacity results from the kilowatts generated in the topping turbine while reducing the steam pressure from the throttle to the exhaust conditions. Also, because this steam is not condensed, there is no loss of the latent heat of condensation of the steam to the condenser circulating water. Consequently, the thermal efficiency of the cycle is considerably enhanced.

Cadrecha, M.

1984-01-01T23:59:59.000Z

239

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

240

Cost Benefit Evaluation of HP Turbine Admission Schemes  

Science Conference Proceedings (OSTI)

The scheme used to position the control valves that admit steam to high-pressure turbines has a direct effect on the turbine’s performance. This report describes the two most common admission schemes, partial and full arc, and discusses their effects on heat rate, reliability, and cost versus benefit under different loading conditions and modes of operation.BackgroundHistorically, most steam turbines in coal-fired power plants operated in a ...

2012-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fault diagnosis of steam turbine-generator sets using CMAC neural network approach and portable diagnosis apparatus implementation  

Science Conference Proceedings (OSTI)

Based on the vibration spectrum analysis, this paper proposed a CMAC (Cerebellar Model Articulation Controller) neural network diagnosis technique to diagnose the fault type of turbine-generator sets. This novel fault diagnosis methodology contains an ... Keywords: CMAC, PIC, fault diagnosis, microcontroller, neural network, turbine-generator sets

Chin-Pao Hung; Wei-Ging Liu; Hong-Zhe Su

2009-09-01T23:59:59.000Z

242

Exit chimney joint and method of forming the joint for closed circuit steam cooled gas turbine nozzles  

SciTech Connect

A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.

Burdgick, Steven Sebastian (Schenectady, NY); Burns, James Lee (Schenectady, NY)

2002-01-01T23:59:59.000Z

243

Axial seal system for a gas turbine steam-cooled rotor  

DOE Patents (OSTI)

An axial seal assembly is provided at the interface between adjacent wheels and spacers of a gas turbine rotor and disposed about tubes passing through openings in the rotor adjacent the rotor rim and carrying a thermal medium. Each seal assembly includes a support bushing for supporting a land of the thermal medium carrying tube, an axially registering seat bushing disposed in the opposed opening and a frustoconical seal between the seal bushing and seat. The seal bushing includes a radial flange having an annular recess for retaining the outer diameter edge of the seal, while the seat bushing has an axially facing annular surface forming a seat for engagement by the inner diameter edge of the seal.

Mashey, Thomas Charles (Anderson, SC)

2002-01-01T23:59:59.000Z

244

Advanced Turbine Systems program  

SciTech Connect

Allison draws the following preliminary conclusions from this preliminary design effort: (1) All cycles investigated require a high temperature turbine capability to be developed under ATS. (2) The HAT and intercooled chemical recuperation cycles compete in only a narrow sector of the industrial engine market. This is the result of the complexity and water usage of the HAT cycle and the limitation of the chemical recuperation cycle to applications where natural gas is readily available. (3) From a cycle point of view, the ICR and chemical recuperation cycles are similar. Both optimize at fairly low compressor pressure ratios ({approximately}15) because both want high temperature in the exhaust to optimize the recuperation process. Excess steam production with the chemical recuperation process makes it somewhat doubtful that the two recuperation processes are interchangeable from a hardware point of view. Allison intends to perform a global optimization on this cycle during Phase 2 of ATS. (4). There appears to be no substitute for the simple cycle with steam generation in the cogen-steam market since steam is, by definition, a valuable product of the cycle.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1993-11-01T23:59:59.000Z

245

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

246

Ten years with turbine metering  

SciTech Connect

The operation and performance experience in using 110 turbine meters to monitor the gas flow in turbines used on natural gas pipelines are discussed. Information is included on turbine meter selection, installation, calibration, performance testing, failures, and maintenance. (LCL)

Judd, H.C.

1980-01-01T23:59:59.000Z

247

Hermetic turbine generator  

DOE Patents (OSTI)

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

248

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration… (more)

Flesland, Synnøve Mangerud

2010-01-01T23:59:59.000Z

249

Rampressor Turbine Design  

DOE Green Energy (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

250

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Syngas Particulate Deposition and Erosion at the Leading Edge of a Turbine Blade with Film Cooling Virginia Tech Danesh Tafti Project Dates: 812007 - 9302010 Area of...

251

Enhancing gas-turbine performance  

SciTech Connect

According to one report, around 80% of the large frame-size industrial and utility gas turbines (GTs) in service throughout the world were installed between 1965 and 1975. Because of substantial technology advancements since their commissioning, these older units make ideal candidates for capacity enhancements through such options as steam or water injection, inlet-air cooling, steam-cycle addition, hot-gas-path component uprates, and in the case of combined-cycles, supplementary firing of the heat-recovery steam generator (HRSG). This article reports that many gas-turbine owners are searching for upgrades that will enhance capacity or thermal efficiency--or both. Uprating hot-gas-path components is perhaps the most popular option, but economic evaluations must account for shortened hot-section life and higher O and M costs.

Swanekamp, R.

1995-09-01T23:59:59.000Z

252

HTGR power plant turbine-generator load control system  

SciTech Connect

A control system is disclosed for a high temperature gas cooled reactor power plant, wherein a steam source derives heat from the reactor coolant gas to generate superheated and reheated steam in respective superheater and reheater sections that are included in the steam source. Each of dual turbine-generators includes a high pressure turbine to pass superheated steam and an associated intermediate low pressure turbine to pass reheated steam. A first admission valve means is connected to govern a flow of superheated steam through a high pressure turbine, and a second admission valve means is connected to govern a flow of reheated steam through an intermediate-low pressure turbine. A bypass line and bypass valve means connected therein are connected across a second admission valve means and its intermediate-low pressure turbine. The second admission valve means is positioned to govern the steam flow through the intermediate-low pressure turbine in accordance with the desired power output of the turbine-generator. In response to the steam flow through the intermediate-low pressure turbine, the bypass valve means is positioned to govern the steam flow through the bypass line to maintain a desired minimum flow through the reheater section at times when the steam flow through the intermediate-low pressure turbine is less than such minimum. The power output of the high pressure turbine is controlled by positioning the first admission valve means in predetermined proportionality with the desired power output of the turbine-generator, thereby improving the accuracy of control of the power output of the high pressure turbine at low load levels.

Braytenbah, A.S.; Jaegtnes, K.O.

1976-12-28T23:59:59.000Z

253

Real time wind turbine simulator.  

E-Print Network (OSTI)

??A novel dynamic real-time wind turbine simulator (WTS) is developed in this thesis, which is capable of reproducing dynamic behavior of real wind turbine. The… (more)

Gong, Bing

2007-01-01T23:59:59.000Z

254

NETL: Turbine Projects - Efficiency Improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvemenet Turbine Projects Efficiency Improvemenet Advanced Hot Section Materials and Coatings Test Rig DataFact Sheets System Study for Improved Gas Turbine...

255

Turbine disc sealing assembly  

SciTech Connect

A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

Diakunchak, Ihor S.

2013-03-05T23:59:59.000Z

256

Single rotor turbine engine  

SciTech Connect

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

257

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

258

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

259

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

260

Ceramic Cerami Turbine Nozzle  

SciTech Connect

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

262

Evaluation of boride diffusion coatings to alleviate erosion of steam turbine components  

Science Conference Proceedings (OSTI)

This report describes a research program to evaluate boride diffusion coatings for protection on Types 403 and 422 martensitic stainless steel turbine components against solid particle erosion. Several commercial coating vendors supplied stainless steel specimens with simple iron boride, chromium enriched iron boride, and silicon-enriched iron boride coatings. These specimens were characterized as to microstructure, composition, and hardness. They were then exposed in a stream of abrasive particulates at 1000{degrees}F and 500 ft/sec for up to 100 hours with intermediate specimen weighing and examination at 20 hour intervals. After the tests the microstructures and thickness of the remaining coating and substrate of each specimen were determined and measured. The tests showed that the chromium- and silicon-enriched iron boride coatings had erosion rates up to 2 to 4 times lower than those of simple iron borides. Coating microstructures was found to be an important factor influencing erosion resistance; while through thickness microcracking had no apparent effect on coating performance, fine networks of surface cracking were observed to make a coating much more susceptible to loss.

Christman, T.K.; Martin, C.J.; Wright, I.G (Battelle, Columbus, OH (United States)); Shalvoy, R.S. (General Electric Co., Schenectady, New York (USA). General Eletric Power Generation)

1991-11-01T23:59:59.000Z

263

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

264

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

265

Early Identification of Steam Turbine Performance Issues via Real-Time Diagnostics:Concepts to Advance the State-of-the-Art  

Science Conference Proceedings (OSTI)

This report describes initial work performed to demonstrate how advanced analytics, coupled with existing monitoring tools, could be used to better identify the cause and location of steam turbine performance problems. Developing a full-fledged diagnostic system that incorporates this approach is potentially a multi-year project, but the payoff could be significant.BackgroundThe importance of power plant performance is well recognized since improving ...

2013-12-13T23:59:59.000Z

266

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

1997-07-08T23:59:59.000Z

267

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

1997-07-08T23:59:59.000Z

268

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

269

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

270

Use of Hydrogen for Economy of Fuel in Steam Turbine Plants  

Science Conference Proceedings (OSTI)

... The first method [1] is based on mixing of steam, exiting from the boiler's super-heater, with products of combustion of methane or hydrogen in ...

2006-07-20T23:59:59.000Z

271

Wind Turbine Acoustic Noise A white paper  

E-Print Network (OSTI)

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

272

Liquid impact erosion mechanism and theoretical impact stress analysis in TiN-coated steam turbine blade materials  

SciTech Connect

Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN-coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating-substrate interface.

Lee, M.K.; Kim, W.W.; Rhee, C.K.; Lee, W.J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Materials Science and Engineering

1999-04-01T23:59:59.000Z

273

Fuel cell and advanced turbine power cycle  

SciTech Connect

Solar has a vested interest in integration of gas turbines and high temperature fuels (particularly solid oxide fuel cells[SOFC]); this would be a backup for achieving efficiencies on the order of 60% with low exhaust emissions. Preferred cycle is with the fuel cell as a topping system to the gas turbine; bottoming arrangements (fuel cells using the gas turbine exhaust as air supply) would likely be both larger and less efficient unless complex steam bottoming systems are added. The combined SOFC and gas turbine will have an advantage because it will have lower NOx emissions than any heat engine system. Market niche for initial product entry will be the dispersed or distributed power market in nonattainment areas. First entry will be of 1-2 MW units between the years 2000 and 2004. Development requirements are outlined for both the fuel cell and the gas turbine.

White, D.J.

1996-12-31T23:59:59.000Z

274

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

275

NETL: Turbines Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

276

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

277

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for ‘green’ energy 1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

278

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for ‘green’ energy1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

279

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30T23:59:59.000Z

280

NETL: Turbines - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

- Catalytic Combustion PDF-855KB 41892 - Praxair Final Report - Low NOx Fuel Flexible Gas Turbine PDF-214KB 42176 - GT 2006 Annual Report PDF-504KB 42495 - UTEP H2 Kinetics...

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Turbines in the sky  

SciTech Connect

Gas turbines are being investigated as power sources for the proposed Star Wars weapons flatforms. The gas turbine engine offers the best opportunity for exploiting the high-temperature potential of both nuclear and chemical combustion. The use of mature gas turbine technology and existing materials would result in highly reliable PCUs capable of meeting SDI's requirements. However, operation under the temperature limits imposed by existing materials would result in a prohibitively heavy system. Cooled blades would somewhat increase temperature capability; however the turbine's mass, though reduced, would still be unacceptably large. The greatest improvements would result from the ability to operate at temperatures of up to 2000 K, pressures up to 14 MPa, and stress up to 690 MPa.

Boyle, R.V.; Riple, J.C.

1987-07-01T23:59:59.000Z

282

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

Norton, P.F.; Shaffer, J.E.

1996-01-30T23:59:59.000Z

283

Micro Turbine Generator Program  

Science Conference Proceedings (OSTI)

A number of micro turbines generators have recently been announced as currently commercially available for sale to customers, such as end users, utilities, and energy service providers. Manufacturers and others are reporting certain performance capabilities ...

Stephanie L. Hamilton

2000-01-01T23:59:59.000Z

284

SPACE HANDBOOK TURBINES  

SciTech Connect

Turbine specific weight vs. power plant output was investigated for rubidium, potassium, and sodium at several inlet temperatures to obtain order of magnitude performance and weight of possible nuclear power plant systems. (W.L.H.)

Grimaldi, J.

1960-08-29T23:59:59.000Z

285

Gas turbine noise control  

Science Conference Proceedings (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

286

Turbine Technologies for High Performance Light Water Reactors  

SciTech Connect

Available turbine technologies for a High Performance Light Water Reactor (HPLWR) have been analysed. For the envisaged steam pressures and temperatures of 25 MPa and 500 deg. C, no further challenges in turbine technologies have to be expected. The results from a steam cycle analysis indicate a net plant efficiency of 43.9% for the current HPLWR design. (authors)

Bitterman, D. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

2004-07-01T23:59:59.000Z

287

Combustion Turbine Experience and Intelligence Reports: 2007  

Science Conference Proceedings (OSTI)

Combustion turbine (CT) efficiency improvements coupled with heat recovery bottoming steam cycles has risen dramatically over the past 20 years. Much of this improvement is attributed to gas turbine technology transferred from military and commercial aircraft design. This technology advantage coupled with lower emissions inherent to natural gas combustion has effectively set the standard for new large generation additions in many regions. However, there are many concerns and issues related to effectively...

2008-03-27T23:59:59.000Z

288

Combustion Turbine Experience and Intelligence Report: 2008  

Science Conference Proceedings (OSTI)

Combustion turbine (CT) efficiency improvements, coupled with heat recovery bottoming steam cycles, have risen dramatically over the past 20 years. Much improvement is attributed to gas turbine technology transferred from military and commercial aircraft design. This technology advantage in combination with the lower emissions inherent to natural gas combustion has effectively set the standard for new large generation additions in many regions. However, there are many concerns and issues related to effec...

2009-03-23T23:59:59.000Z

289

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

290

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. June 26, 2013 Radial-Radial Single Rotor Turbine A rotor for use in...

291

Guidelines for Turbine Deposit Collection and Analysis  

Science Conference Proceedings (OSTI)

Steam impurities can deposit throughout the steam path, causing a variety of performance issues. Deposits can result in efficiency losses and component failures through stress corrosion cracking (SCC) or corrosion fatigue (CF) initiated by corrosive deposits. The potential for each of these mechanisms can be exacerbated by the reduced frequency of turbine overhauls or opportunities to conduct an inspection. Sampling and deposit analysis is an integral part of a steam path audit, as well as a reflection o...

2011-12-14T23:59:59.000Z

292

Definition: Turbine | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Dictionary.png Turbine A device or machine that converts the kinetic energy of a fluid (air, water, steam or other gases) to mechanical energy.[1][2] View on Wikipedia Wikipedia Definition Related Terms Electric generator, Electricity, Electricity generation, energy, bioenergy References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=T ↑ http://www1.eere.energy.gov/site_administration/glossary.html Retriev LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ed from "http://en.openei.org/w/index.php?title=Definition:Turbine&oldid=493149" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

293

Turbine inner shroud and turbine assembly containing such inner shroud  

DOE Patents (OSTI)

A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Corman, Gregory Scot (Ballston Lake, NY); Dean, Anthony John (Scotia, NY); DiMascio, Paul Stephen (Clifton Park, NY); Mirdamadi, Massoud (Niskayuna, NY)

2001-01-01T23:59:59.000Z

294

The evaporative gas turbine (EGT) cycle  

SciTech Connect

Humidification of the flow through a gas turbine has been proposed in a variety of forms. The STIG plant involves the generation of steam by the gas turbine exhaust in a heat recovery steam generator (HRSG), and its injection into or downstream of the combustion chamber. This increases the mass flow through the turbine and the power output from the plant, with a small increase in efficiency. In the evaporative gas turbine (or EGT) cycle, water is injected in the compressor discharge in a regenerative gas turbine cycle (a so-called CBTX plant--compressor [C], burner [B], turbine [T], heat exchanger [X]); the air is evaporatively cooled before it enters the heat exchanger. While the addition of water increases the turbine mass flow and power output, there is also apparent benefit in reducing the temperature drop in the exhaust stack. In one variation of the basic EGT cycle, water is also added downstream of the evaporative aftercooler, even continuously in the heat exchanger. There are several other variations on the basic cycle (e.g., the cascaded humidified advanced turbine [CHAT]). The present paper analyzes the performance of the EGT cycle. The basic thermodynamics are first discussed, and related to the cycle analysis of a dry regenerative gas turbine plant. Subsequently some detailed calculations of EGT cycles are presented. The main purpose of the work is to seek the optimum pressure ratio in the EGT cycle for given constraints (e.g., fixed maximum to minimum temperature). It is argued that this optimum has a relatively low value.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1998-04-01T23:59:59.000Z

295

Ceramic stationary gas turbine  

DOE Green Energy (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

296

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

297

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

298

Ceramics for ATS industrial turbines  

DOE Green Energy (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

299

Cavitation Erosion of Francis Turbines  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Presentation ...

300

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind turbine spoiler  

DOE Patents (OSTI)

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

302

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

303

Gas turbine sealing apparatus  

DOE Patents (OSTI)

A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

2013-02-19T23:59:59.000Z

304

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

305

Castability of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines  

Science Conference Proceedings (OSTI)

The high temperature components within conventional coal fired power plants are manufactured from ferritic/martensitic steels. In order to reduce greenhouse gas emissions the efficiency of pulverized coal steam power plants must be increased. The proposed steam temperature in the Advanced Ultra Supercritical (A-USC) power plant is high enough (760°C) that ferritic/martensitic steels will not work due to temperature limitations of this class of materials; thus Ni-based superalloys are being considered. The full size castings are quite substantial: ~4in thick, several feet in diameter and weigh 5-10,000lb each half. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled in order to produce relevant microstructures. A multi-step homogenization heat treatment was developed in order to better deploy the alloy constituents. The castability of two traditionally wrought Ni-based superalloys to which minor alloy adjustments have been made in order to improve foundry performance is further explored.

Jablonski, P D; Cowen, C J; Hawk, J A; Evens, N; Maziasz, P

2011-02-27T23:59:59.000Z

306

Applications: Wind turbine structural health  

E-Print Network (OSTI)

of turbine system management. The data obtained from this multi-scale sensing capability will be fullyCapability Applications: Wind turbine structural health monitoring Individual turbine maintenance for active control in the field Limit damage propagation and maintenance costs Maximize return

307

Flexibility and economics of combustion turbine-based cogeneration systems  

SciTech Connect

The major objective of this paper is to discuss various options that affect the efficiency of combustion turbine cogeneration plants and the commensurate net worth impact to the firm. Topics considered include technical evaluation parameters, an efficiency definition, a cogeneration heat rate definition, the qualitative value of efficiency and the cogeneration heat rate, economic evaluation techniques, industrial processes suitable for cogeneration, equipment requirements, the combustion turbine package, the heat recovery steam generator package, balance of plant equipment, engineering and construction, the total cost of incorporating the cogeneration plant, cogeneration with the basic combustion turbine/heat recovery steam generator (CT/HRSG) cycle, cogeneration-steam production increase by ductburning, dual-pressure HRSG, the backpressure steam turbine, supercharging, separating electrical power generation from steam demand, and incorporating a backup source of steam generation.

Wohlschlegel, M.V.; Marcellino, A.; Myers, G.

1983-01-01T23:59:59.000Z

308

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

309

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

310

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

311

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

312

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

313

Non-pollutant fuel generator and fuel burner with a non-pollutant exhaust and supplementary dc generator. [for use in MHD generator, steam turbine, gas turbine, or fuel cell  

SciTech Connect

A system for generating non-polluting fuel and a burner for using such fuel to produce energy in the form of heat with a non-polluting exhaust, together with means for utilizing such exhaust to produce supplementary direct current power is disclosed. An electrolyzer is operated to produce hydrogen and oxygen in gaseous form which is then stored in suitable fuel tanks. As needed, the fuel is combined with air and supplied under pressure to a combustion chamber where the mixture is burned, producing heat and a pollution free exhaust. The heat so produced may be used as a conventional heat source to generate steam, drive a turbine, or the like, while the combustion gases are directed to a magnetohydrodynamic generator to produce an electrical current which is usable in any desired manner.

Barros, M.J.

1976-12-21T23:59:59.000Z

314

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

315

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

316

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

317

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

318

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

that the average turbine’s rotor swept area has increasedthe average turbine hub height and rotor diameter also6. Average Turbine Capacity, Hub Height, and Rotor Diameter

Bolinger, Mark

2012-01-01T23:59:59.000Z

319

Turbine vane structure  

DOE Patents (OSTI)

A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

Irwin, John A. (Greenwood, IN)

1980-08-19T23:59:59.000Z

320

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-01-01T23:59:59.000Z

322

Temperature stratified turbine compressors  

SciTech Connect

A method and apparatus for improving the efficiency of a compressor of a gas turbine engine is disclosed. The inlet gas entering the compressor is stratified into two portions of different temperatures. The higher temperature gas is introduced adjacent the outer tipe of the compressor blades to reduce the relative Mach number of the flow at the area.

Earnest, E.R.; Passinos, B.

1979-01-09T23:59:59.000Z

323

ADVANCED TURBINE SYSTEMS PROGRAM  

Science Conference Proceedings (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

324

NETL: Turbine Projects - Cost Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

325

Plant Guide to Turbine Disk Rim Inspection  

Science Conference Proceedings (OSTI)

Steam turbine disk rims are one of the most highly stressed areas of the rotor. Periodic inspection of the rims provides information on the operability of the rotor, including the identification of conditions that could result in catastrophic failure of the rotor.

2006-12-18T23:59:59.000Z

326

SMART POWER TURBINE  

SciTech Connect

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

327

Turbine blade tip gap reduction system  

DOE Patents (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

328

Nuclear Maintenance Applications Center: Feed Pump Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Steam Turbines and Auxiliaries Program 65 and the Nuclear Maintenance Application Center have developed a series of maintenance guides to assist plant personnel with the performance of various maintenance tasks associated with a wide variety of plant components. The objective of this project was to publish a maintenance guide for the feed pump turbines that included an ...

2012-09-25T23:59:59.000Z

329

Hydro-flow supra-turbine engine  

SciTech Connect

A turbine engine operates at high pressure and at relatively low temperatures and revolutions per minute through the use of special carburetion, compressor, combustion unit, and turbine arrangements. The system is characterized by the use of water which is vaporized and concurrently reduces the temperature of the vaporized fuel and air mixture as compression occurs, and is not physically intermixed with the combustion gases until after initial combustion takes place. The compressor includes a pair of back-to-back, four stage composite compressors to which synchronized dual carburetion or meter-flow arrangements separately supply water and gasoline or other fuel, along with air. The water absorbs heat from the compression of both of the two compressors, and the resultant vaporous product gases are routed to the jacket of a combustion chamber in which the compressed fuel and air mixture is burned. Following initial ignition and some burning of the fuel, the superheated steam and combustion products are combined, and the combination is supplied to a multistage transverse flow turbine having in the order of 17 pressure stages. The turbine includes arrangements for directing the high pressure gases back and forth through the rotor blades at different radial distances from the axis of the turbine. Exhaust gases from the turbine are applied to a ''floating'' muffler, including a rotatable inner chamber to facilitate mixing exhaust gases with the ambient air, and to disperse the high moisture content of the exhaust gases.

Neale, A.B.

1981-08-04T23:59:59.000Z

330

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

331

Turbine seal assembly  

SciTech Connect

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

332

Gas turbine sealing apparatus  

SciTech Connect

A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

Marra, John Joseph; Wessell, Brian J.; Liang, George

2013-03-05T23:59:59.000Z

333

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

334

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

335

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

336

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

337

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

338

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

339

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

340

Gas turbine premixing systems  

SciTech Connect

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Snubber assembly for turbine blades  

DOE Patents (OSTI)

A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

Marra, John J

2013-09-03T23:59:59.000Z

342

Gas turbines for the future  

SciTech Connect

Utility gas turbine technology has been advancing fairly rapidly, one reason being that it shares in the benefits of the research and development for aviation gas turbines. In general, turbine progress is characterized by large, incremental advances in performance. At intervals of approx. 15 yr, new-generation turbines are introduced, refined, and eventually installed in relatively large numbers. A new generation of turbines is being readied for the market that will have power ratings into the 130- to 150-MW range (simple cycle), significantly higher than the 70 to 100 MW now in service. When the new turbines are installed in combined-cycle plants, the efficiency levels are expected to rise from the present value of approx. 42% higher heating value to approx. 46%.

Cohn, A.

1987-01-01T23:59:59.000Z

343

Tornado type wind turbines  

DOE Patents (OSTI)

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

344

Torsional Torques and Fatigue Life Expenditure for Large-Scale Steam Turbine-Generator Shafts and Blades Due to Power System Harmonics.  

E-Print Network (OSTI)

??During the three decades, the torsional impact on turbine-generator sets due to power system disturbances has been extensively discussed in many research works. However, most… (more)

Tsai, Jong-ian

2004-01-01T23:59:59.000Z

345

Evaluation of Temper Embrittlement in Turbine Rotor Material  

Science Conference Proceedings (OSTI)

To assess the integrity of in-service steam turbine rotors, utilities need to know their current toughness. This report presents a procedure for nondestructively estimating toughness on the basis of the chemical composition of the rotor steel.

1991-03-01T23:59:59.000Z

346

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

through a Tesla turbine microchannel . . . . . . . . . . .1.2 History of the Tesla Turbine 1.3 BackgroundCFD) Solution of Flow Through a Tesla Turbine 4.1 Summary of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

347

NREL: Wind Research - Advanced Research Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control...

348

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

camera. Bottom: tested turbine rotor housing diameter isfound in Figure 1.1. The turbine rotor consists of severalpower was reached. The turbine rotor and nozzle can be seen

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

349

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network (OSTI)

of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

Boone, Donald H.

2013-01-01T23:59:59.000Z

350

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name Howden Wind Turbines Ltd Place United Kingdom Sector Wind energy Product Howden was a manufacturer of wind turbines in the...

351

Design of high-efficiency turbomachinery and gas turbines  

SciTech Connect

The present treatment of pump, compressor, and turbine turbomachinery emphasizes thermodynamics, design methods, and the use that can be made of relatively simple rules for the choosing of cycle types, vector diagrams, blading types, heat exchanger configurations, etc. Gas dynamics are treated to the virtual exclusion of mechanical design considerations, although a brief historical account of the family of turbomachine systems notes gradual structural as well as thermodynamic and gas dynamic refinements. The complete systems described and analyzed include aircraft, marine, and electrical power generation gas turbines, steam turbines, and hydraulic pumps and turbines. Both axial and centrifugal flow turbomachine types are considered. 112 references.

Wilson, D.G.

1984-01-01T23:59:59.000Z

352

Microhydropower Turbines, Pumps, and Waterwheels  

Energy.gov (U.S. Department of Energy (DOE))

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity.

353

NETL Publications: 2012 University Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory Presentation PDF-7.41MB South Coast AQMD's Gas Turbine Experience-Regulations and Operations Mohsen Nazemi, Deputy Executive Officer,...

354

Engines, turbines and compressors directory  

SciTech Connect

This book is a directory of engines, turbines and compressors. It adds and deletes compressor engines in use by the gas industry.

1989-01-01T23:59:59.000Z

355

Baldrige Award Recipients--Solar Turbines (1998)  

Science Conference Proceedings (OSTI)

... Incorporated With customers in 86 countries, Solar Turbines Incorporated is the world's largest supplier of mid-range industrial gas turbine systems. ...

2012-11-30T23:59:59.000Z

356

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Westwind Wind Turbines Jump to: navigation, search Name Westwind Wind Turbines Place Northern Ireland, United Kingdom Zip BT29 4TF Sector Wind energy Product Northern Ireland based...

357

A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler  

Science Conference Proceedings (OSTI)

Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and ? phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

2011-02-27T23:59:59.000Z

358

A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler  

SciTech Connect

Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760°C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800°C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and ? phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

2011-02-27T23:59:59.000Z

359

Debris trap in a turbine cooling system  

SciTech Connect

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

360

Open cycle - OTEC turbine design  

Science Conference Proceedings (OSTI)

The design of a low-pressure, open cycle ocean thermal energy conversion system (OTEC) is described. Near-surface ocean water at 80 F is allowed to expand in a one-half psi evaporator for passage through a turbine cold water (40 F), pumped upward from a 3,000 ft depth, is used to recondense the steam. Plans for a 2.5-3 MWe prototype plant, as a proof-of-principle project for a 100 MWe plant, include seawater pumps driven off the generator shaft, potable water as a by-product of the condensor, ease of access for O and M, and an integrated, gear-driven deaerator system with reinjection into the warm seawater discharge. An inlet flow of 3,000,000 cu ft/sec, a single stage vertical turbine with 40 ft fiber reinforced composite blades, 200 rpm operation on a 65 ft diameter disk, and an overall efficiency of 3% are features of the 100 MWe plant. A flowfield analysis, a velocity triangle analysis, and a structural dynamics analysis are outlined, along with materials applications and manufacturing process considerations in blade design. The 3MWe OTEC will be one-sixth the size of a 100MWe OTEC.

Coleman, W.H. (Westinghouse Electric Corp., Lester, PA); Rogers, J.D. (TM Development, Inc., Chester, PA); Thompson, D.F. (Delaware University, Newark, DE)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industrial Advanced Turbine Systems Program overview  

DOE Green Energy (OSTI)

DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

Esbeck, D.W.

1995-12-31T23:59:59.000Z

362

Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation  

Science Conference Proceedings (OSTI)

In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

Souza Dos Santos, R. [Instituto de Engenharia Nuclear CNEN/IEN, Cidade Universitaria, Rua Helio de Almeida, 75 - Ilha do Fundiao, 21945-970 Rio de Janeiro (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores / CNPq (Brazil)

2012-07-01T23:59:59.000Z

363

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

364

Preliminary study of a frame for a two module turbine system.  

E-Print Network (OSTI)

?? The development of steam turbines is continuously moving forward and the aim is oftento develop configurations with higher power output. Siemens Industrial Turbomachinery AB… (more)

Lundberg, Anders

2011-01-01T23:59:59.000Z

365

Compilation of Results and Feedback Regarding Turbine Upgrades at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

This report compiles results and feedback and draws a number of conclusions and lessons learned regarding steam turbine generator upgrades at nuclear and fossil power plants.

2008-11-24T23:59:59.000Z

366

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

367

Advanced turbine systems: Studies and conceptual design  

SciTech Connect

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

368

How many gas turbines. Part 1  

SciTech Connect

This paper reports that gas turbine technology can serve a range of application needs. The short lead time and low capital cost of simple-cycle gas turbines make these units ideally suitable for peaking applications. Should oil/natural gas fuel prices increase, existing simple-cycle plants can have a steam cycle added which leads to an efficient combines-cycle plant. Should the need arise, a coal gasifier can be added so that coal can be used as the fuel for the combined-cycle plant. Gas turbine technology has high reliability and availability. High gas turbine reliability leads to high system reliability and the ability to lower overall generation system serve margin requirements. Lower reserve margin requirements lead to decreased needs for future capacity which can yield large capital and economic savings. Based on EPRI TAG economic data DRI fuel cost projections, simple-cycle gas turbines and combined-cycle plants are and will remain the most economic capacity additions during the 1990s.

Kaupang, B.M.; Oplinger, J.L.; Stoll, H.G.; Taylor, T.M. (General Electric Corp. (US))

1991-07-01T23:59:59.000Z

369

Aero Turbine | Open Energy Information  

Open Energy Info (EERE)

Aero Turbine Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine Energy Company Location Riverside County CA Coordinates 33.7437°, -115.9925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7437,"lon":-115.9925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Gas turbines face new challenges  

SciTech Connect

Gas turbines continue to increase the electric power generation market in both the peaking and the intermediate load categories. With the increase in unit size and operating efficiencies. capital costs per kilowatt are reduced. Clean fuels---gas, light oil, or alcohol-type fuel--are needed for the gas turbines. The most efficient method of power generation is now attained from gas turbines, but the shortage of clean fuels looms. Manufacturers are anticipating the availability of clean fuels and continue working on the development of high- pressure, high-temperature turbines. In the near-term, increased efficiency is sought by making use of the turbine exhaust heat. involving combined or regenerative cycles. (MCW)

Papamarcos, J.

1973-12-01T23:59:59.000Z

371

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-12-31T23:59:59.000Z

372

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-01-01T23:59:59.000Z

373

Biphase Turbine Tests on Process Fluids  

E-Print Network (OSTI)

The Biphase turbine is a device for effectively producing shaft power from two-phase (liquid and gas) pressure let-downs and for separating the resulting phases. No other device is currently available for simultaneously performing these tasks. The performance of the Biphase turbine and its advantages over single-phase, energy-conversion devices has been demonstrated with subscale and commercial scale steam/water (geothermal wellhead) operations. Its development and application to two-phase process streams is now being pursued and is the subject of this paper. The two-phase working fluid may be a single component, two-phase stream, as in a steam/ water combination, or it may be a multicomponent, two-phase process stream which may also include foam and/or entrained solids. Performance data from initial tests using a subscale Biphase turbine on a two-phase, expanding, gas-cleaning application (Selexol/C02 mixture) are presented. Turbine designs for tests scheduled for gas/oil wellhead applications are described.

Helgeson, N. L.; Maddox, J. P.

1983-01-01T23:59:59.000Z

374

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections 2010--Volume 4: Turbine Generat or Component Procurement Specifications  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2010-12-23T23:59:59.000Z

375

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2006; Volume 4: Turbine-Generat or Component Procurement Specifications  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability, while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.

2007-03-30T23:59:59.000Z

376

Coatings for gas turbines; Specialized coatings boost, maintain turbine efficiency  

SciTech Connect

Airlines have been coating their jet engines for the past 30 years, thereby avoiding corrosion, erosion and wear. More recently, operators of mechanical-drive gas turbines have come to realize the value of coatings as a way to keep down costs. This paper describes specialized coatings technology which has evolved for gas turbines. Coatings have been designed for specific areas and even specific components within the turbine. Because operators must often request these coatings when buying new equipment or at overhaul, a basic understanding of the technology is presented.

1988-10-01T23:59:59.000Z

377

Advanced Coating Development for Gas Turbine Components  

Science Conference Proceedings (OSTI)

Sacrificial, oxidation-resistant coatings on turbine blades in high-firing temperature gas turbines are wearing out at an unacceptably rapid rate, resulting in excessive downtime and repair costs for turbine operators. This report summarizes the results of an exploratory development project that assessed the feasibility of decelerating the degradation rate of an MCrAlY coating on several turbine blade alloys.

2000-08-01T23:59:59.000Z

378

Yale ME Turbine Test cell instructions Background  

E-Print Network (OSTI)

Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

Haller, Gary L.

379

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network (OSTI)

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

380

Turbine Condition Assessment and Monitoring Methodology  

Science Conference Proceedings (OSTI)

This report provides a broad overview of the process of steam turbine condition assessment and on-line monitoring (OLM). Describing the traditional approaches to condition assessment and the advanced techniques for automated OLM will encourage readers to consider strategies in their own organizations for applying the best features of each approach. Although new commercially available OLM systems have powerful data processing techniques, the equipment still requires a great deal of subject matter expertis...

2004-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

382

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

383

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

384

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

385

Turbine Blade Shape Favorable for Fish Survival  

Science Conference Proceedings (OSTI)

Various mechanisms associated with turbine design and operation injure fish passing through hydro turbines. Pilot-scale tests with various fish species and sizes showed that most turbine passage injury and mortality are caused by blade strike. Leading edge blade strike is particularly important for turbines with numerous blades. Very little information and data are available on the mechanics of fish struck by turbine blades and the resulting injury and mortality rates. Determining what leading edge blade...

2008-05-29T23:59:59.000Z

386

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

387

Wind turbine rotor aileron  

DOE Patents (OSTI)

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

388

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

389

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

390

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

391

Multiple piece turbine blade  

Science Conference Proceedings (OSTI)

A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

Kimmel, Keith D (Jupiter, FL)

2012-05-29T23:59:59.000Z

392

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

393

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

394

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

2.2.1 Turbine Description . . . . . . . . . . . . . . . . .112 4.2 Description of Turbine . . . . . . . . . . . . . . .3.2.1 Description of Test Wind Turbine . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

395

Experimental Study of Stability Limits for Slender Wind Turbine Blades.  

E-Print Network (OSTI)

??There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine… (more)

Ladge, Shruti

2012-01-01T23:59:59.000Z

396

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

397

Development of a low swirl injector concept for gas turbines  

E-Print Network (OSTI)

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

398

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .Wind Turbine . . . . . . . . . . . . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

399

Gamesa Wind Turbines Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Pvt Ltd Jump to: navigation, search Name Gamesa Wind Turbines Pvt. Ltd. Place Chennai, Tamil Nadu, India Sector Wind energy Product Chennai-based wind turbine...

400

Assessment of turbine generator technology for district heating applications  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of large cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. The performance of the 250 MW district heating turbine as applied to meet the heat load duration curve for Minneapolis--St. Paul area is analyzed, and associated fuel savings are estimated.

Oliker, I.

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Turbine Oil Lube Notes Compilation  

Science Conference Proceedings (OSTI)

This report is a special compilation of the EPRI Nuclear Maintenance Applications Center's (NMAC's) "Lube Notes" articles (extracted from "Lube Notes Compilation, 1989-2001 (Report Number 1006848)) that relate specifically to the topic of turbine oils.

2002-11-25T23:59:59.000Z

403

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

404

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

405

Repowering reheat units with gas turbines: Final report. [Adding gas turbines and heat recovery to present units  

SciTech Connect

Although conventional repowering on nonreheat units replaces existing boilers with gas turbines and heat recovery steam generators, options investigated by Virginia Power use gas turbine waste heat to supplement, rather than replace, the output of existing steam generators. Virginia Power's experience in considering feedwater heater repowering (FHR) and hot windbox repowering (HWR) as repowering options is described here. Studying five plants identified as potential repowering candidates, investigators first evaluated FHR, which uses a gas turbine generator set equipped with an economizer to heat boiler feedwater. This reduces the steam turbine extraction flow and increases the steam turbine capacity. HWR, the second method investigated, routes the hot, relatively oxygen-rich exhaust flow from a gas turbine into the boiler windbox, eliminating the need for an air preheater. A boiler stack gas cooler then heats feedwater, again increasing turbine capacity by reducing extraction steam flow requirements for feedwater heating. FHR provided the lowest installed cost, especially at Mount Storm unit 3, a coal-fired minemouth plant. Use of a gas turbine to heat feedwater at this plant resulted in a $523/kW (1985) installed cost and 124-MWe unit capacity increase at a design incremental heat rate of 8600 Btu/kWh. FHR at Mount Storm units 1, 2, and 3 cost less overall than installation and operation of a new combined cycle. Although the findings and conclusions in this series of repowering reports are largely unique to the individual plants, units, and applications studied, other utilities performing repowering studies can draw on the types of consideration entertained, alternatives examined, and factors and rationale leading to rejection or acceptance of a given repowering approach. 12 figs., 12 tabs.

Rives, J.D.; Catina, J.

1987-05-01T23:59:59.000Z

406

Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants  

SciTech Connect

Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-01-01T23:59:59.000Z

407

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

408

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

409

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

410

Rim seal for turbine wheel  

SciTech Connect

A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

411

Onshore Wind Turbines Life Extension  

Science Conference Proceedings (OSTI)

Wind turbines are currently type-certified for nominal 20-year design lives, but many wind industry stakeholders are considering the possibility of extending the operating lives of their projects by 5, 10, or 15 years. Life extension—the operation of an asset beyond the nominal design life—is just one option to maximize the financial return of these expensive assets. Other options include repowering, upgrading, or uprating a turbine.In order to make informed decisions ...

2012-10-01T23:59:59.000Z

412

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

413

Development of Code to Predict Stress Corrosion Cracking and Corrosion Fatigue of Low Pressure Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective localized corrosion damage prediction model is essential for successfully avoiding unscheduled outages of steam turbines. This report provides the initial electrochemical data needed for the model development.

2005-12-20T23:59:59.000Z

414

Development of Code to Predict Stress Corrosion Cracking and Corrosion Fatigue of Low Pressure Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). Developing an effective localized corrosion damage prediction technology is essential for successfully avoiding unscheduled outages of steam turbines.

2004-02-03T23:59:59.000Z

415

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

416

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

417

Examination of cracked turbine discs from nuclear power plants  

SciTech Connect

Investigations were performed on a cracked turbine disc from the Cooper Nuclear Power Station (BWR), and on two failed turbine discs from the Yankee-Rowe Nuclear Power Station (PWR). The Yankee-Rowe discs were subjected to SEM/EDAX, uniaxial tension tests, hardness testing, notch sensitivity tests, and environmental notched tensile tests. The results of this investigation support the model whereby the cracks initiated at startup of the turbine, probably from H/sub 2/S produced by hydrolysis of MoS/sub 2/, and grew at a rate consistent with published data for propagation of cracks in pure steam.

Czajkowski, C.J.; Weeks, J.R.

1983-03-01T23:59:59.000Z

418

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

419

GE power generation technology challenges for advanced gas turbines  

SciTech Connect

The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

Cook, C.S.; Nourse, J.G.

1993-11-01T23:59:59.000Z

420

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Obstacles and Opportunity: Turbine Motorization in Refineries Today  

E-Print Network (OSTI)

Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned in the refineries. This paper discusses the key aspects that should be considered in evaluating the feasibility of motorization projects. Based on the literature review and a refinery survey conducted by the authors, the key factors include the critical level of the related equipment, the potential energy savings and capital cost, the steam and power balance in the related area, and the reliability in the refinery's power supply. Based on the authors' experience, the utilities' energy efficiency incentive programs in California also influence the decision-making process for turbine motorization projects. Therefore, this paper includes a description of the utilities' guidelines for fuel substitution projects. In particular, the utilities' three-prong requirements on net source-BTU energy savings, cost effectiveness, and avoidance of adverse impacts to the environment are discussed. Two real life case studies are presented to demonstrate how the above criteria should be applied for determining if a motorization opportunity is economically viable. A discussion on suggested features is also included for prescreening turbine motorization project candidates for better energy and environment economics such as venting of exhaust steam from a back pressure turbine and oversized design of the existing turbine and pump.

Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

2012-01-01T23:59:59.000Z

422

Gas turbine engine braking and method  

SciTech Connect

A method is described of decelerating a ground vehicle driven by a gas turbine engine having a gas generator section and a free turbine output power section driven by a gas flow from the gas generator section, comprising the steps of: altering the incidence of gas flow from the gas generator section onto the free turbine section whereby said gas flow opposes rotation of the free turbine section; increasing gas generator section speed; and subsequent to said altering and increasing steps, selectively mechanically interconnecting said gas generator and free turbine sections whereby the rotational inertia of the gas generator section tends to decelerate the free turbine section.

Mattson, G.; Woodhouse, G.

1980-07-01T23:59:59.000Z

423

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01T23:59:59.000Z

424

Demonstration of EIC's copper sulfate process for removal of hydrogen sulfide and other trace contaminants from geothermal steam at turbine inlet temperatures and pressures. Final report  

DOE Green Energy (OSTI)

The results obtained during the operation of an integrated, one-tenth commercial scale pilot plant using EIC's copper sulfate process for the removal of hydrogen sulfide and other contaminants from geothermal steam at turbine upstream conditions are discussed. The tests took place over a six month period at Pacific Gas and Electric Company's Unit No. 7 at The Geysers Power Plant. These tests were the final phase of a development effort which included the laboratory research and engineering design work which led to the design of the pilot plant. Broadly, the objectives of operating the pilot plant were to confirm the preliminary design criteria which had been developed, and provide data for their revisions, if appropriate, in a plant which contained all the elements of a commercial process using equipment of a size sufficient to provide valid scale-up data. The test campaign was carried out in four phases: water testing; open circuit, i.e., non integrated scrubbing, liquid-solid separation and regeneration testing; closed circuit short term; and closed circuit long term testing.

Not Available

1980-05-01T23:59:59.000Z

425

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

426

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

427

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

428

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network (OSTI)

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

429

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

430

A Dynamic Wind Turbine Simulator of the Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

To study dynamic performances of wind turbine generator system (WTGS), and to determine the control structures in laboratory. The dynamic torque generated by wind turbine (WT) must be simulated. In there paper, a dynamic wind turbine emulator (WTE) is ... Keywords: dynamic wind turbine emulation, wind shear, tower shadow, torque compensation

Lei Lu; Zhen Xie; Xing Zhang; Shuying Yang; Renxian Cao

2012-01-01T23:59:59.000Z

431

Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

Not Available

2011-05-01T23:59:59.000Z

432

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

433

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. Available for thumbnail of Feynman Center (505) 665-9090 Email Radial-Radial Single Rotor Turbine A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power. U.S. Patent No.: 7,044,718 (DOE S-100,626) Patent Application Filing Date: July 8, 2003 Patent Issue Date: May 16, 2006 Licensing Status: Available for Express Licensing (?). View terms and a sample license agreement.

434

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

435

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

436

Gas Turbine World performance specs 1984  

SciTech Connect

The following topics are discussed: working insights into the performance specifications; performance and design characteristics of electric power plants, mechanical drive gas turbines, and marine propulsion gas turbines; and performance calculations.

1984-03-01T23:59:59.000Z

437

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

438

Investigation of flow characteristics of gas turbines  

SciTech Connect

Measurements carried out in the process of assimilation of gas turbine (GT) plants of 16 different types in starting and working conditions to estimate the operational conditions and characteristics of the main elements (in particular of the turbines) have created a basis for generaliztion of flow characteristics of different turbines and for extending them to a wider range of operational conditions. The studies showed that: flow characteristics of the investigated turbines, independently of the number of stages and the degree of reaction, are described by the elliptic flowrate equation; throughput of similar turbines, i.e., of turbines formed of stages with high reaction, which have low design degrees of expansion, can be determined with satisfactory accuracy by the unique function of the degree of expansion; and in operating the gas turbine plants considerable changes in throughput of the turbines are possible.

Ol' khovskii, G.G.; Ol' khovskaya, N.I.

1978-01-01T23:59:59.000Z

439

Large heavy-duty gas turbines for base-load power generation and heat cogeneration  

SciTech Connect

The predominant role of large gas turbines has shifted from peaking-load duty to midrange and base-load electric power generation, especially within combined-cycle plants. Such applications require heavy-duty industrial gas turbines to ensure the same high reliability and availability for continuous service as the associated steam turbines. It is also important that the gas turbines be designed for low maintenance to minimize the necessary outage times and costs for component repair and replacement. The basic design principles and applications of Model V94 gas turbines are discussed with special reference to highly reliable and economic bulk power generation.

Joyce, J.S.

1985-01-01T23:59:59.000Z

440

Environmental Coatings For Gas Turbine Engine Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Environmental Coatings For Gas Turbine Engine Applications. Author(s), Ming Fu, Roger Wustman, Jeffrey Williams, Douglas Konitzer.

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Charts estimate gas-turbine site performance  

SciTech Connect

Nomographs have been developed to simplify site performance estimates for various types of gas turbine engines used for industrial applications. The nomographs can provide valuable data for engineers to use for an initial appraisal of projects where gas turbines are to be considered. General guidelines for the selection of gas turbines are also discussed. In particular, site conditions that influence the performance of gas turbines are described.

Dharmadhikari, S.

1988-05-09T23:59:59.000Z

442

Aircraft Gas Turbine Blade and Vane Repair  

Science Conference Proceedings (OSTI)

Gas turbine blades experience dimensional .... platinum applied in separate gas phase or electroplating ..... surfaces are natural consequences of fluoride.

443

Advances in Hydroelectric Turbine Manufacturing and Repair  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Sponsorship ...

444

TGM Turbines | Open Energy Information  

Open Energy Info (EERE)

TGM Turbines TGM Turbines Jump to: navigation, search Name TGM Turbines Place Sertaozinho, Sao Paulo, Brazil Zip 14175-000 Sector Biomass Product Brazil based company who constructs and sells boilers for biomass plants. Coordinates -21.14043°, -48.005154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-21.14043,"lon":-48.005154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Vertical axis wind turbine airfoil  

DOE Patents (OSTI)

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18T23:59:59.000Z

446

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

447

AWEA Small Wind Turbine Global Market Study  

E-Print Network (OSTI)

wind turbines ­ those with rated capacities of 100 kilowatts (kW)1 and less ­ grew 15% in 2009 with 20 small wind turbines, 95 of which-- more than one-third--are based in the u.S. An estimated 100,000 unitsAWEA Small Wind Turbine Global Market Study YEAR ENDING 2009 #12;Summary 3 Survey Findings

Leu, Tzong-Shyng "Jeremy"

448

Chapter 14: Wind Turbine Control Systems  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by gravity, stochastic wind disturbances, and gravitational, centrifugal, and gyroscopic loads. The aerodynamic behavior of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional turbulent wind inflow field that drives fatigue loading. Wind turbine modeling is also complex and challenging. Accurate models must contain many degrees of freedom (DOF) to capture the most important dynamic effects. The rotation of the rotor adds complexity to the dynamics modeling. Designs of control algorithms for wind turbines must account for these complexities. Algorithms must capture the most important turbine dynamics without being too complex and unwieldy. Off-the-shelf commercial soft ware is seldom adequate for wind turbine dynamics modeling. Instead, specialized dynamic simulation codes are usually required to model all the important nonlinear effects. As illustrated in Figure 14-1, a wind turbine control system consists of sensors, actuators and a system that ties these elements together. A hardware or software system processes input signals from the sensors and generates output signals for actuators. The main goal of the controller is to modify the operating states of the turbine to maintain safe turbine operation, maximize power, mitigate damaging fatigue loads, and detect fault conditions. A supervisory control system starts and stops the machine, yaws the turbine when there is a significant yaw misalignment, detects fault conditions, and performs emergency shut-downs. Other parts of the controller are intended to maximize power and reduce loads during normal turbine operation.

Wright, A. D.

2009-01-01T23:59:59.000Z

449

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network (OSTI)

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

450

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

451

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network (OSTI)

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil solved, a DTI and EPSRC-sponsored research programme on foundations for wind turbines will be briefly

Houlsby, Guy T.

452

Satoshi Hada Department of Gas Turbine Engineering,  

E-Print Network (OSTI)

Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago must be prevented by developing envi- ronmentally friendly power plants. Industrial gas turbines play a major role in power generation with modern high temperature gas turbines being applied in the gas

Thole, Karen A.

453

Performance optimization of gas turbine engine  

Science Conference Proceedings (OSTI)

Performance optimization of a gas turbine engine can be expressed in terms of minimizing fuel consumption while maintaining nominal thrust output, maximizing thrust for the same fuel consumption and minimizing turbine blade temperature. Additional control ... Keywords: Fuel control, Gas turbines, Genetic algorithms, Optimization, Temperature control

Valceres V. R. Silva; Wael Khatib; Peter J. Fleming

2005-08-01T23:59:59.000Z

454

Radial-radial single rotor turbine  

SciTech Connect

A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

Platts, David A. (Los Alamos, NM)

2006-05-16T23:59:59.000Z

455

Scale Model Turbine Missile Casing Impact Tests  

Science Conference Proceedings (OSTI)

This report describes three 1/5-scale-model turbine missile impact experiments performed to provide benchmark data for assessing turbine missiles effects in nuclear plant design. The development of an explosive launcher to accelerate the turbine missile models to the desired impact velocities is described. A comparison of the test results with those from full-scale experiments demonstrates scalability.

1982-12-01T23:59:59.000Z

456

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

in a Heat Recovery Steam Generator (HRSG) to make additionalAuxiliary Power Block Steam turbine generator using steam

Lu, Xiaoming

2012-01-01T23:59:59.000Z

457

Theory and tests of two-phase turbines  

SciTech Connect

Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.

Elliot, D.G.

1982-03-15T23:59:59.000Z

458

Drag-disc turbine transducer data evaluation methods for dynamic steam-water mass flow measurements. [PWR  

SciTech Connect

The mechanical design of a two-phase mass flow rate transducer for a highly corrosive, high temperature (651 K) hot water environment is presented. Performance data for transient steam-water flows are presented. Details of the applications of the device during loss-of-coolant experiments in a pressurized water reactor environment are discussed.

Winsel, C.E.; Fincke, J.R.; Deason, V.A.

1979-01-01T23:59:59.000Z

459

Gas Turbine Considerations in the Pulp and Paper Industry  

E-Print Network (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena. Large quantities of process steam and electrical energy are required per unit of production. The pulp and paper industry has recognized the thermodynamic benefits and potentially attractive economics of developing power generation as an integral part of their power plant systems. The large requirements for process steam combined with process by-products and wood wastes make steam turbines a serious consideration in plant locations where suitable economic conditions are present. And many systems incorporating a wide variety of steam turbine types have been installed and are contributing toward profitable operations. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened the interest in power generation in the pulp and paper industry, as well as others. A strategic review of these issues creates the opportunity to favorably position the pulp and paper industry for the coming century. The industry has also become aware that gas turbine-based cogeneration systems can frequently be highly desirable relative to their traditional steam turbine approach.

Anderson, J. S.; Kovacik, J. M.

1990-06-01T23:59:59.000Z

460

Guidelines for Reducing the Time and Cost of Turbine-Generator Maintenance Overhauls and Inspections-2012  

Science Conference Proceedings (OSTI)

Up to 70% of the outages planned for conventional steam power plants involve work on the turbine. The challenge for the engineer is to improve performance and extend reliability while eliminating unproductive activities from the maintenance outage schedule. This report provides general guidelines for planning and performing maintenance on steam turbines during outages.BackgroundAs a focus of innovative approaches and techniques, maintenance of aging steam ...

2012-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "turbine steam turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, Paul L. (Morgantown, WV); Williams, Mark C. (Morgantown, WV); Parsons, Edward L. (Morgantown, WV)

1995-01-01T23:59:59.000Z

462

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, P.L.; Williams, M.C.; Parsons, E.L.

1993-12-31T23:59:59.000Z

463

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

Micheli, P.L.; Williams, M.C.; Parsons, E.L.

1995-09-12T23:59:59.000Z

464

Small Wind Turbine Testing and Applications Development  

Science Conference Proceedings (OSTI)

Small wind turbines offer a promising alternative for many remote electrical uses where there is a good wind resource. The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory helps further the role that small turbines can play in supplying remote power needs. The NWTC tests and develops new applications for small turbines. The NWTC also develops components used in conjunction with wind turbines for various applications. This paper describes wind energy research at the NWTC for applications including battery charging stations, water desalination/purification, and health clinics. Development of data acquisition systems and tests on small turbines are also described.

Corbus, D.; Baring-Gould, I.; Drouilhet, S.; Gevorgian, V.; Jimenez, T.; Newcomb, C.; Flowers, L.

1999-09-14T23:59:59.000Z

465

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network (OSTI)

that the average turbine’s rotor swept area has increasedthe average turbine hub height and rotor diameter also4. Average Turbine Capacity, Hub Height, and Rotor Diameter

Bolinger, Mark

2013-01-01T23:59:59.000Z

466

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

IOUT *MEBP *STC(QAAN. R )-STEAM TURBINE CALC. ~ETFQMIN~5 ST~KJ/S) 1JC. /(GROSS STEAM TURBINE POWER PRODUCTION) STEA~ GENprogram then prints the steam turbine results. All flows in

Dayan, J.

2011-01-01T23:59:59.000Z

467

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

468

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

469

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

470

Gas turbine intake air quality  

SciTech Connect

This report presents the results of preliminary research intended to evaluate the causes and effects of compressor fouling on pipeline gas turbines. A literature search and field-experience survey of pipeline operators provides the basis for the conclusions and recommendations.

Lawson, C.C.

1988-01-01T23:59:59.000Z

471

Gas Turbine Procurement: 1987 Workshop  

Science Conference Proceedings (OSTI)

By properly specifying a gas turbine unit, a utility buyer can avoid engine system configurations that could contribute to forced outages, long downtimes, and less than satisfactory starting reliability. A 1987 EPRI workshop identified factors that can assist utilities in specifying these systems to obtain high reliability, availability, and maintainability.

1988-03-23T23:59:59.000Z

472

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1990-01-01T23:59:59.000Z

473

Wind and solar powered turbine  

SciTech Connect

A power generating station having a generator driven by solar heat assisted ambient wind is disclosed. A first plurality of radially extending air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the first plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine which also derives additional motive power from the air mass exhausted by the radial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind driven power generating system operates in electrical cogeneration mode with a fuel powered prime mover. The system is particularly adapted to satisfy the power requirements of a relatively small community located in a geographic area having favorable climatic conditions for wind and solar powered power generation.

Wells, I.D.; Holmes, M.; Kohn, J.L.

1984-02-28T23:59:59.000Z