Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Single rotor turbine engine  

DOE Patents [OSTI]

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

2

Radial-Radial Single Rotor Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. Available for thumbnail of Feynman Center (505) 665-9090 Email Radial-Radial Single Rotor Turbine A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power. U.S. Patent No.: 7,044,718 (DOE S-100,626) Patent Application Filing Date: July 8, 2003 Patent Issue Date: May 16, 2006 Licensing Status: Available for Express Licensing (?). View terms and a sample license agreement.

3

SMART Wind Turbine Rotor: Design and Field Test | Department...  

Energy Savers [EERE]

Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

4

SMART Wind Turbine Rotor: Design and Field Test  

Broader source: Energy.gov [DOE]

Design and field test results from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics.

5

SMART Wind Turbine Rotor: Data Analysis and Conclusions  

Broader source: Energy.gov [DOE]

Data analysis and conclusions from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics.

6

TIP DESENSITIZATION OF AN AXIAL TURBINE ROTOR  

E-Print Network [OSTI]

flow causes total pressure loss and significantly reduces turbine stage efficiency. Tip leakage relatedCC-63 TIP DESENSITIZATION OF AN AXIAL TURBINE ROTOR USING PARTIAL SQUEALER RIMS Debashis Dey1 of full and partial-length squealer rims in a turbine stage. Full and partial-length squealer rims

Camci, Cengiz

7

Turbine bearings and rotor dynamics workshop: proceedings  

SciTech Connect (OSTI)

An EPRI workshop to address turbine bearing reliability improvement and rotor dynamics was co-hosted by Detroit Edison in Dearborn, Michigan on September 8-10, 1982. The 136 attendees represented a broad spectrum of US utilities, equipment manufacturers, and consultants, as well as representatives from England, Japan, and Switzerland. These proceedings contain the text of the formal presentations as well as summaries of the working group sessions which were devoted to topics of particular interest to the workshop participants. Formal presentations were organized under the following general session titles: utility experience and advancements in turbine bearing and lubrication systems; recent advancements in turbine bearing and lubrication systems; utility experience and advancements in turbine-generator rotor dynamics; and recent advancements in turbine-generator rotor dynamics. In addition to the technical presentations, working group sessions were held on selected topics relevant to turbine bearing reliability improvement and rotor dynamics. These groups provided a forum for engineers to exchange ideas and information in a less formal environment. The discussions provided attendees with an opportunity to discuss key issues in more detail and address subjects not covered in the formal presentations. The subjects of these working groups were: rotor dynamic analysis and problem solving; vibration signature analysis and field balancing; oil contamination monitoring and control; and operation and maintenance practices. Individual papers have been entered individually into EDB and ERA.

Brown, R.G.; Quilliam, J.F. (eds.)

1985-06-01T23:59:59.000Z

8

US tokamak starts up  

Science Journals Connector (OSTI)

... 's Plasma Physics Laboratory have successfully started up the first of a new generation of tokamak fusion devices. The $314 million ... fusion devices. The $314 million Tokamak Fusion Test Reactor (TFTR) is expected to attain scientific break-even - the point ...

Stephen Budiansky

1983-01-13T23:59:59.000Z

9

Offshore Series Wind Turbine Variable Hub heights & rotor diameters  

E-Print Network [OSTI]

3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

Firestone, Jeremy

10

Adaptor assembly for coupling turbine blades to rotor disks  

DOE Patents [OSTI]

An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

Garcia-Crespo, Andres Jose; Delvaux, John McConnell

2014-09-23T23:59:59.000Z

11

DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES  

E-Print Network [OSTI]

DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES burdens of wind turbines. To detect damage of rotor blades, several research projects focus on an acoustic, rotor blade, wind turbine INTRODUCTION There are several publications of non destructive damage

Boyer, Edmond

12

LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING SYSTEMS  

E-Print Network [OSTI]

LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING to simulated vibrations of a rotating rotor. KEYWORDS : wind turbine blade, rotor anisotropy, Floquet analysis, OMA INTRODUCTION Blades of modern wind turbines are complex high-tech structures, and their cost

Paris-Sud XI, Université de

13

Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms  

Science Journals Connector (OSTI)

Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages.

Özlem Ceyhan; Francesco Grasso

2014-01-01T23:59:59.000Z

14

Investigation of rotor blade roughness effects on turbine performance  

SciTech Connect (OSTI)

The cold air test program was completed on the SSME (Space Shuttle Main Engine) HPFTP (High-Pressure Fuel Turbopump) turbine with production nozzle vane rings and polished coated rotor blades with a smooth surface finish of 30[mu]in. (0.76 [mu]m) rms (root mean square). The smooth blades were polished by an abrasive flow machining process. The test results were compared with the air test results from production rough-coated rotor blades with a surface finish of up to 400 [mu]in. (10.16 [mu]m) rms. Turbine efficiency was higher for the smooth blades over the entire range tested. Efficiency increased 2.1 percentage points at the SSME 104 percent RPL (Rated Power Level) conditions. This efficiency improvement could reduce the SSME HPFTP turbine inlet temperature by 57 R (32K), increasing turbine durability. The turbine flow parameter increased and the midspan outlet swirl angle became more axial with the smooth rotor blades.

Boynton, J.L.; Tabibzadeh, R. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Hudson, S.T. (NASA-Marshall Space Flight Center, Huntsville, AL (United States))

1993-07-01T23:59:59.000Z

15

Rotor Support Technology Developments for Long Life Closed Brayton Cycle Turbines  

Science Journals Connector (OSTI)

Power conversion systems based upon the Closed Brayton Cycle (CBC) turbine are under consideration for space power generation applications. Using this approach inert gas heated with a nuclear reactor or other means is used to drive a turbine?generator in a recirculating flow path. As a closed system contamination of the working fluid for instance with bearing lubricating oil cannot be tolerated. To prevent this possibility compliant surface gas film bearings are employed that use the working fluid as their lubricant. Foil gas bearings are in widespread use in turbocompressors and microturbines in aeronatuics and terrestrial applications. To successfully implement them for space power CBC systems research is underway at NASA’s Glenn Research Center to assess foil bearing start?up torque requirements bearing thermal management and the effects of high ambient pressures in inert gases on performance. This paper introduces foil gas bearing rotor support technologies and provides an update on bearing performance testing and evaluations being conducted to integrate foil bearings in future CBC turbine systems.

Christopher DellaCorte; Kevin C. Radil; Robert J. Bruckner; Steven W. Bauman; Bernadette J. Puleo; Samuel A. Howard

2006-01-01T23:59:59.000Z

16

ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement  

E-Print Network [OSTI]

1 ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement Emmett investigations on wave rotor applications for gas turbines have been published, among them conceptual, analytical in the gas turbine industry. The results and conclusions are derived from a wide- range multi

Müller, Norbert

17

Cooling system for a bearing of a turbine rotor  

DOE Patents [OSTI]

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

18

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

SciTech Connect (OSTI)

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

19

Modeling of residual service life of gas turbine rotors for minimizing replacement costs  

Science Journals Connector (OSTI)

One of the most catastrophic failures observed in gas turbine powered electrical powerplants is the fracture of the turbine rotor. A simplified model consisting of 3 macro-elements is suggested to model the dynamical behavior of the shaft with a propagating ... Keywords: crack propagation, gas-turbine, modeling, power-plant, replacement costs

Eusebia Zouridaki; Vasilios Spitas; Christos Spitas

2007-01-01T23:59:59.000Z

20

Soft computing based optimum parameter design of PID controller in rotor speed control of wind turbines  

Science Journals Connector (OSTI)

Sensitivity and robustness is the primary issue while designing the controller for large non-linear systems such as offshore wind turbines. The main goal of this study is a novel soft computing based approach in controlling the rotor speed of wind turbine. ... Keywords: bacteria foraging optimization algorithm, optimization, particle swarm optimization, proportional-integral-derivative controller, wind turbines

R. Manikandan; Nilanjan Saha

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Toughness of Cr-Mo-V steels for steam-turbine rotors  

SciTech Connect (OSTI)

Cr-Mo-V steels are used extensively as the rotor material in the High Pressure and Intermediate Pressure Sections of modern steam turbines. The toughness of these rotors has a major influence on the reliability and efficiency of the turbine and the overall economy of operation and maintenance of the plant. The metallurgical factors affecting the toughness of the rotors and the methods to improve the toughness are now understood better than ever before. This paper will present a broad overview of the materials and design aspects of the toughness of Cr-Mo-V rotors with emphasis on the salient results of recent research programs aimed at improving their toughness.

Viswanathan, R.; Jaffee, R.I.

1982-04-01T23:59:59.000Z

22

Tuning thermal mismatch between turbine rotor parts with a thermal medium  

DOE Patents [OSTI]

In a turbine rotor, an aft shaft wheel and the final-stage wheel of the rotor are coupled together, including by a rabbeted joint. During shutdown and startup of the turbine, a thermal mismatch between the aft shaft wheel and final-stage wheel is avoided by respectively heating and cooling the aft shaft wheel to maintain the thermal mismatch within acceptable limits, thereby avoiding opening of the rabbeted joint and the potential for unbalancing the rotor and rotor vibration. The thermal medium may be supplied by piping in the aft bearing cavity into the cavity between the forward closure plate and the aft shaft wheel.

Schmidt, Mark Christopher (Niskayuna, NY)

2001-01-01T23:59:59.000Z

23

Assessment of research needs for wind turbine rotor materials technology  

SciTech Connect (OSTI)

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

24

RIS0-M-2432 SIMPLIFIED LAWS OF SIMIALRITY FOR WIND TURBINE ROTORS  

E-Print Network [OSTI]

comments are presented on comparison of stall-and pitch-regu- lated wind turbines and on two speed Shape factor (Weibull) Rotational speed Power Rotor radius Wind speed Rotor tip speed Tip speed ratio V is the wind speed at hub height, j> is the air density, #12;0 . 5 u ·p C

25

Using a collision model to design safer wind turbine rotors for birds  

SciTech Connect (OSTI)

A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today`s rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model.

Tucker, V.A. [Duke Univ., Durham, NC (United States). Dept. of Zoology

1996-11-01T23:59:59.000Z

26

The axial gas-dynamic forces acting on the rotor of a small gas-turbine engine  

Science Journals Connector (OSTI)

The exact determination is discussed of the axial gas-dynamic forces acting on the rotor of a gas-turbine engine (GTE), which influence reliability....

S. S. Evgen’ev; R. R. Zalyaev

2007-03-01T23:59:59.000Z

27

The Physics of Tokamak Start-up  

SciTech Connect (OSTI)

Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

D. Mueller

2012-11-13T23:59:59.000Z

28

The physics of tokamak start-up  

SciTech Connect (OSTI)

Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

Mueller, D. [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, New Jersey 08543 (United States)

2013-05-15T23:59:59.000Z

29

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindPACT Turbine Rotor WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah Subcontract Report NREL/SR-500-32495 Revised April 2006 WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah NREL Technical Monitor: A. Laxson Prepared under Subcontract No. YAT-0-30213-01 Subcontract Report NREL/SR-500-32495 Revised April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

30

VOL. 6, NO. 5, SEPT.-OCT. 1990 J. PROPULSION 621 Stator/Rotor Interaction in a Transonic Turbine  

E-Print Network [OSTI]

on the rotor blade, reflects upstream, and then reflects again off the stator blade Presented as Paper 88 and shows the large unsteadiness in the lift on the rotor blade. Basic NumericalMethod The flowfiVOL. 6, NO. 5, SEPT.-OCT. 1990 J. PROPULSION 621 Stator/Rotor Interaction in a Transonic Turbine

Giles, Mike

31

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)  

SciTech Connect (OSTI)

Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

2012-01-01T23:59:59.000Z

32

Axial thermal medium delivery tubes and retention plates for a gas turbine rotor  

DOE Patents [OSTI]

In a multi-stage turbine rotor, tubes are disposed in openings adjacent the rotor rim for flowing a thermal medium to rotor buckets and returning spent thermal medium. The tubes have axially spaced lands of predetermined wall thickness with thin-walled tube sections between the lands and of increasing thickness from the forward to the aft ends of the tubes. A pair of retention plates are carried on the aft end face of the aft wheel and straddle the tube and engage against a shoulder on the tube to preclude displacement of the tube in an aft direction.

Mashey, Thomas Charles (Coxsackie, NY)

2002-01-01T23:59:59.000Z

33

Wisconsin Start-up Taps into Wind Supply Chain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Start-up Taps into Wind Supply Chain Start-up Taps into Wind Supply Chain Wisconsin Start-up Taps into Wind Supply Chain August 10, 2010 - 2:00pm Addthis Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Renewegy received $525,000 Recovery Act loan to start wind turbine business Business hired 16 people and projects at least three more by end of

34

Design trade-off study between efficiency and rotor forcing attenuation in a transonic turbine stage  

Science Journals Connector (OSTI)

Abstract A multi-objective optimisation procedure was applied to the 3D design of a transonic turbine vane row, considering efficiency and stator outlet pressure distortion, which is directly related to the forcing induced in the rotor. The characteristic features that define different individuals along the Pareto Front were described, analysing the differences between high efficiency airfoils and low interaction. Pressure distortion was assessed by means of a model that requires only of the computation the steady flow field in the domain of the stator. The reduction of aerodynamic rotor forcing was validated via unsteady multistage aerodynamic computations carried out with NUMECA FINE TM / Turbo . A well known loss prediction method was used to perform total loss decomposition to quantify the influence on efficiency of reducing rotor forcing. Results show that when striving for efficiency, the rotor was affected by few, but intense shocks. On the other hand, when the objective was the minimisation of distortion, multiple shocks appeared.

Ricardo Puente; Guillermo Paniagua; Tom Verstraete

2014-01-01T23:59:59.000Z

35

SMART Wind Turbine Rotor: Data Analysis and Conclusions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system HP high-pressure (the nominally upwind surface of a HAWT blade) IMU inertial measurement unit inboard toward the root end of a wind turbine blade LE leading edge of wind...

36

Vibration based damage detection of rotor blades in a gas turbine engine  

Science Journals Connector (OSTI)

Abstract This paper describes the problems concerning turbine rotor blade vibration that seriously impact the structural integrity of a developmental aero gas turbine. Experimental determination of vibration characteristics of rotor blades in an engine is very important from fatigue failure considerations. The blades under investigation are fabricated from nickel base super alloy through directionally solidified investment casting process. The blade surfaces are coated with platinum aluminide for oxidation protection. A three dimensional finite element modal analysis on a bladed disk was performed to know the likely blade resonances for a particular design in the speed range of operation. Experiments were conducted to assess vibration characteristics of bladed disk rotor during engine tests. Rotor blade vibrations were measured using non-intrusive stress measurement system, an indirect method of blade vibration measurement utilizing blade tip timing technique. Abnormalities observed in the vibration characteristics of the blade tip timing data measured during engine tests were used to detect the blade damage. Upon disassembly of the engine and subsequent fluorescent penetrant inspection, it was observed that three blades of the rotor assembly were identified to have damaged. These are the blades that exhibited vibration abnormalities as a result of large resonant vibration response while engine tests. Further, fractographic analysis performed on the blades revealed the mechanism of blade failures as fatigue related. The root cause of blade failure is established to be high cycle fatigue from the engine run data history although the blades were put into service for just 6 h of engine operation.

S. Madhavan; Rajeev Jain; C. Sujatha; A.S. Sekhar

2014-01-01T23:59:59.000Z

37

Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations  

SciTech Connect (OSTI)

The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin [Siemens Corporation, Corporate Technology, 755 College Rd. E., Princeton NJ 08540 (United States); Rasselkorde, El Mahjoub; Abbasi, Waheed A. [Siemens Energy Inc., 841 Old Frankstown Road, Pittsburgh PA 15239 (United States)

2014-02-18T23:59:59.000Z

38

Abstract--This paper proposes a methodology to decide the optimal matching between the size of the rotor of a wind turbine  

E-Print Network [OSTI]

of the rotor of a wind turbine and the rated power of a permanent magnet synchronous machine. This is made of the wind turbine, the gearbox's transformation ratio, the battery voltage and the wind speed probability's rated power and the wind turbine's rotor size. The system studied in this paper consists of 220 (V)/50

Paris-Sud XI, Université de

39

Application of SAFER-PC program to determine turbine rotor boresonic inspection intervals  

SciTech Connect (OSTI)

Public Service Company of Colorado (PSCC) used EPRI`s SAFER-PC Program to evaluate their HP/IP, LP, and generator rotors from Cherokee Station Unit 3, to determine appropriate boresonic re-inspection intervals. The program uses fracture mechanics to calculate critical crack sizes, which could lead to catastrophic failure of the rotors. Conservative stress and fracture mechanics analyses showed negligible fatigue crack growth of assumed bore surface cracks would occur over the proposed inspection interval of eighteen years. The evaluation assumed consistent operational start-up procedures for the inspection interval. If the unit experiences more severe operational procedures, the analysis may not be applicable, with smaller critical crack sizes and accelerated crack growth rates expected. The SAFER-PC analysis resulted in an extension of the previously recommended reinspection interval by eight years. By eliminating just this one inspection, PSCC achieved savings in the range of $100,000. Further savings are anticipated by utilizing the SAFER-PC Program to evaluate these and other PSCC rotors in the future.

Sachse, D.G.; Hellner, R.L.; Dupont, E.J. [Public Service Co., Denver, CO (United States)

1996-12-31T23:59:59.000Z

40

Rotor current transient analysis of DFIG-based wind turbines during symmetrical voltage faults  

Science Journals Connector (OSTI)

Abstract The impact of grid voltage fault on doubly fed induction generators (DFIGs), especially rotor currents, has received much attention. So, in this paper, the rotor currents of based-DFIG wind turbines are considered in a generalized way, which can be widely used to analyze the cases under different levels of voltage symmetrical faults. A direct method based on space vector is proposed to obtain an accurate expression of rotor currents as a function of time for symmetrical voltage faults in the power system. The presented theoretical analysis is simple and easy to understand and especially highlights the accuracy of the expression. Finally, the comparable simulations evaluate this analysis and show that the expression of the rotor currents is sufficient to calculate the maximum fault current, DC and AC components, and especially helps to understand the causes of the problem and as a result, contributes to adapt reasonable approaches to enhance the fault ride through (FRT) capability of DFIG wind turbines during a voltage fault.

Yu Ling; Xu Cai; Ningbo Wang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...  

National Nuclear Security Administration (NNSA)

Releases NNSA Authorizes Start-Up of Highly Enriched Uranium ... NNSA Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 applicationmsword icon R-10-01...

42

Berkeley Lab Technology Spawns Successful Start-up Companies | Department  

Broader source: Energy.gov (indexed) [DOE]

Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies October 25, 2010 - 10:58am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? Three start-up companies using Berkeley-developed technology have either had highly successful launches or closed major deals in the last several months. Ed. Note cross posted from Berkeley Lab News Center, written by Julie Chao. What do a smart window company, a microbial analysis start-up and waste-heat recovery start-up have in common? They're all located in the San Francisco Bay Area and they're all based on technology developed at Lawrence Berkeley National Laboratory. What's more, these three start-up companies have either had highly

43

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; March 27, 2000 to December 31, 2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29439 1 * NREL/SR-500-29439 Kevin Smith Global Energy Concepts LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2001 * NREL/SR-500-29439 WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 Kevin Smith Global Energy Concepts LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

44

Control strategies of doubly fed induction generator-based wind turbine system with new rotor current protection topology  

Science Journals Connector (OSTI)

A protection scheme of a doubly fed induction generator (DFIG) based wind turbine system during faults is crowbar activation. With this protection the rotor side converter (RSC) is temporarily disconnected and its vector control over the stator active and reactive power is lost leading to poor power quality at the point of common coupling (PCC). This paper presents a new protection scheme for transient rotor current to improve the performance of DFIG during grid disturbance. The new scheme consisting of a crowbar and series circuit is connected between the rotor windings and RSC to enhance the low voltage ride-through capability of DFIG. The proposed scheme successfully limits the transient rotor current and dc-link voltage and a disconnection of RSC from the rotor windings is avoided during fault. Additionally RSC and grid-side converter controllers are modified to improve the voltage at PCC. Simulations on matlab/Simulink verify the effectiveness of the proposed scheme.

Jackson John Justo; Kyoung-Soo Ro

2012-01-01T23:59:59.000Z

45

Multi-piece wind turbine rotor blades and wind turbines incorporating same  

DOE Patents [OSTI]

A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

Moroz; Emilian Mieczyslaw (San Diego, CA) [San Diego, CA

2008-06-03T23:59:59.000Z

46

Sandia National Laboratories: reducing start-up risks for solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

start-up risks for solar thermal generation Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy...

47

Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same  

DOE Patents [OSTI]

A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

Wetzel, Kyle Kristopher

2014-06-24T23:59:59.000Z

48

Adaptive rotor current control for wind-turbine driven DFIG using resonant controllers in a rotor rotating reference frame  

Science Journals Connector (OSTI)

This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P...? slip+ and ? slip?..., respectively. As a...

Jia-bing Hu; Yi-kang He; Hong-sheng Wang

2008-02-01T23:59:59.000Z

49

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

50

Measured and predicted rotor performance for the SERI advanced wind turbine blades  

SciTech Connect (OSTI)

Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.

Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

1992-02-01T23:59:59.000Z

51

St. Gobain Innovation Competition for Start-Ups  

Broader source: Energy.gov [DOE]

The Saint-Gobain NOVA Innovation Competition rewards start-ups offering the most innovative solutions in the field of habitat, sustainable products, advanced materials, renewable energy sources and high-efficiency building solutions.

52

Virtual start-up of plants using formal methods  

Science Journals Connector (OSTI)

Control software of a manufacturing system is usually designed separated from the real plant or its simulation. Undesired behavior can occur after transferring software to the controller. At best, errors are recognized when starting-up, but there can ...

Sebastian Preuß;   e; Christian Gerber; Hans-Michael Hanisch

2011-02-01T23:59:59.000Z

53

WindPACT Turbine Design Scaling Studies Technical Area 1ÂŒComposite Blades for 80- to 120-Meter Rotor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

54

Photovoltaic module start-up for the International Space Station  

SciTech Connect (OSTI)

The International Space Station (ISS) US On-Orbit Segment Electric Power System (EPS) uses four photovoltaic modules (PVMs). Each PVM consists of solar array wings (SAW) for converting solar flux to electric power, nickel-hydrogen batteries for electric energy storage, electronic boxes for electric voltage control and power switching, and a thermal control system (TCS) for maintaining selected PVM components within their normal operating temperature ranges. Each PVM consists of two independent power channels, which are started sequentially. The start-up consists of deploying the SAW and photovoltaic radiator (PVR), initialization and check out of all hardware, thermally conditioning batteries, and charging batteries. After start-up, each PVM power channel is able to generate, store, and distribute electric power to ISS loads. Electric power to support start-up of the first PVM is provided by the NSTS via two auxiliary power converter units (APCUs), one per channel. During sunlit periods, the SAW provides power for the battery heaters (for thermal conditioning, as needed) and battery charging. During eclipse periods, the APCU maintains the channel in a standby mode. After start-up is complete, the APCU is disconnected and the PVM operates independently. The process used to start-up the first PVM on the ISS is described in this paper. Procedures used to bring dormant batteries to their normal operating temperature range and then to charge them to 100% state of charge (SOC) are also described. Total time required to complete start-up and the APCU power required during start-up are computed and compared to the requirements.

Hajela, G.P.; Hague, L.M. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Div.

1996-12-31T23:59:59.000Z

55

Search Technology Internet Start-Ups Business Computing Companies  

E-Print Network [OSTI]

#12;Search Technology Internet Start-Ups Business Computing Companies Inside Technology Bits Blog engineer at Google, uses statistical analysis of data to help improve the company's search engine » Cellphones, Cameras, Computers and more Personal Tech » Advertise on NYTimes.com Search All NYTimes

Oyet, Alwell

56

A Study of the Causes of the Service Fracture of Turbine Rotor Blade of Compressor Station Gas-Turbine Unit  

Science Journals Connector (OSTI)

On the basis of structural and fractographic the analysis of the fractured surface of working turbine blade of GTK-10-2 gas-turbine unit of compressor station it is established...

A. Ya. Krasovs’kyi; O. E. Gopkalo; I. O. Makovets’ka; O. O. Yanko

2013-07-01T23:59:59.000Z

57

Green Start-Ups: Opportunities, Technology, and Financing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Start-Ups: Opportunities, Technology, and Financing Green Start-Ups: Opportunities, Technology, and Financing Speaker(s): Stephen Lin Date: December 19, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dale Sartor Please join us for a brown bag lunch to hear about a new green technology and new ways of doing business in Asia, the US and in between. A foreign-invented power efficiency technology will be described and demonstrated. Entrepreneurial plans for its deployment in the US will be described including a pilot with the San Francisco Giants. Besides giving the Giants 5% savings with no upfront cost, the entrepreneurial team hopes to develop a proof-of-concept test case where Securitized Energy Savings (SESs) are created for green and social investors. A brief introduction on carbon credits and Voluntary Emission Reduction credits (VERs) will be

58

Dynamic optimization of a plate reactor start-up  

E-Print Network [OSTI]

Dynamic optimization of a plate reactor start-up Staffan Haugwitz, Per Hagander and John Bagterp Jørgensen Lund-Lyngby-�lborg-dagen 061101 Staffan Haugwitz et al Control of a plate reactor #12;Process configurations : 2 inj. / 1 cool zone T T T T T T T T T T Reactor outletReactant A Reactant B Cooling water uB1 u

59

Removing the Influence of Rotor Harmonics for Improved Monitoring of Offshore Wind Turbines  

Science Journals Connector (OSTI)

The ability to identify the dynamic properties of offshore wind turbines allows validating and updating numerical tools, which ... of the machine. However, modal identification of turbines in operating conditions...

S. Manzato; C. Devriendt; W. Weijtjens…

2014-01-01T23:59:59.000Z

60

Long Pulse EBW Start-up Experiments in MAST  

E-Print Network [OSTI]

The non-solenoid start-up technique reported here relies on a double mode conversion for electron Bernstein wave (EBW) excitation. It consists of the mode conversion of the ordinary mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance and experiences a subsequent X to EBW mode conversion near the upper hybrid resonance. Finally the excited EBW mode is totally absorbed at the Doppler shifted electron cyclotron resonance. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [V. Shevchenko et al, Nuclear Fusion 50, 022004 (2010)]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results ...

Shevchenko, V F; Caughman, J B; Diem, S; Mailloux, J; Brien, M R O; Peng, M; Saveliev, A N; Takase, Y; Tanaka, H; Taylor, G

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NREL: News - Helping Cleantech Start-ups Understand Social Media  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

713 713 Helping Cleantech Start-ups Understand Social Media May 13, 2013 The Colorado Center for Renewable Energy Economic Development (CREED) at the Energy Department's National Renewable Energy Laboratory (NREL) in collaboration with the Colorado Cleantech Industry Association (CCIA) invites cleantech entrepreneurs to attend the next event in its Entrepreneur Series. The May 15 class, "Social Media and Strategic Messaging," will help cleantech entrepreneurs learn how to craft language about their companies that can be used in pitches and news releases, and on websites. CREED's Entrepreneur Series provides support for companies trying to get off the ground. The Entrepreneur Series builds a community among cleantech participants so they can draw on one another for expertise, support and

62

Sandia National Laboratories: National Rotor Testbed Functional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Definition of the National Rotor Testbed: An Aeroelastically Relevant Research-Scale Wind Turbine Rotor." Approximately 60 researchers from various institutions and countries...

63

Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants  

SciTech Connect (OSTI)

The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions. The nickel based Alloy 282 is selected for this project because it is one of the leading candidate materials for the high temperature/pressure section of an A-USC steam turbine. The methods developed in the project are expected to be applicable to other metal alloys in similar steam/oxidation environments. The major developments are: ? failure mechanism and microstructural characterization ? atomistic and first principles modeling of crack tip oxygen embrittlement ? modeling of gamma prime microstructures and mesoscale microstructure-defect interactions ? microstructure and damage-based creep prediction ? multi-scale crack growth modeling considering oxidation, viscoplasticity and fatigue The technology developed in this project is expected to enable more accurate prediction of long service life of advanced alloys for A-USC power plants, and provide faster and more effective materials design, development, and implementation than current state-of-the-art computational and experimental methods. This document is a final technical report for the project, covering efforts conducted from January 2011 to January 2014.

Shen, Chen

2014-01-20T23:59:59.000Z

64

An analysis of the sliding pressure start-up of SCWR  

SciTech Connect (OSTI)

In this paper, the preliminary sliding pressure start-up system and scheme of supercritical water-cooled reactor in CGNPC (CGN-SCWR) were proposed. Thermal-hydraulic behavior in start-up procedures was analyzed in detail by employing advanced reactor subchannel analysis software ATHAS. The maximum cladding temperature (MCT for short) and core power of fuel assembly during the whole start-up process were investigated comparatively. The results show that the recommended start-up scheme meets the design requirements from the perspective of thermal-hydraulic. (authors)

Wang, F.; Yang, J.; Li, H.; Zhang, Y.; Zhang, J. [China Nuclear Power Technology Research Inst. CNPRI, China Guangdong Nuclear Power Corporation CGNPC, Shenzhen (China); Shan, J.; Gou, J.; Zhang, B.; Chen, C. [Xian Jiaotong Univ. XJTU, Xian (China)

2012-07-01T23:59:59.000Z

65

FLTC Sponsored Research and Development Project Wins NEH Digital Humanities Start-up Grant!  

E-Print Network [OSTI]

FLTC Sponsored Research and Development Project Wins NEH Digital Humanities Start-up Grant! A six technology has been awarded a National Endowment for the Humanities (NEH) Digital Humanities Start-up Grant (German) 6. Krysta Ryzewski, Department of Anthropology (Anthropology) The official list of 2014 NEH Grant

Cinabro, David

66

Colorado Start-Up Awarded First 'America's Next Top Energy Innovator'  

Broader source: Energy.gov (indexed) [DOE]

Start-Up Awarded First 'America's Next Top Energy Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement May 20, 2011 - 5:42pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs While visiting the National Renewable Energy Laboratory in Golden, Colorado, today, Vice President Biden announced that the Colorado-based start-up company U.S. e-Chromic LLC has signed the first agreement in the "America's Next Top Energy Innovator" challenge. The challenge, which started on May 2, allows start-up companies to apply for the Department of Energy's many thousand unlicensed patents for reduced cost and paperwork. Part of the Obama Administration's Startup America

67

R&D investment of start-up firms: does founders’ human capital matter?  

Science Journals Connector (OSTI)

This article examines whether founders’ human capital affects not only actual investment but also required investment in research and development (R&D), using the original data of Japanese start-up firms. The est...

Yuji Honjo; Masatoshi Kato; Hiroyuki Okamuro

2014-02-01T23:59:59.000Z

68

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......Fast Start-up of a Combined-Cycle Power Plant: a Simulation Study with Modelica. In: Proceedings 5th International Modelica Conference (2006) 3-10. Modelica Association eds. [4] Zimmerman HJ . Fuzzy set theory (1991) Kluwer Academic......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

69

Start-up of a thermophilic upflow anaerobic sludge bed (UASB) reactor with mesophilic granular sludge  

Science Journals Connector (OSTI)

Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at ... 55 and 64° C, using mesophilic granular sludge as inoculum and fatty acid mixtures as ... temperature optima for aceto...

Jules B. van Lier; Katja C. F. Grolle…

1992-04-01T23:59:59.000Z

70

University of Minnesota Start-up Guide Office for Technology Commercialization (OTC) -Venture Center  

E-Print Network [OSTI]

IN THE TECHNOLOGY COMMERCIALIZATION PROCESS .......................................... 3 1. OTC's IntellectualUniversity of Minnesota Start-up Guide Office for Technology Commercialization (OTC) - Venture................................................................................................................. 1 TECHNOLOGY COMMERCIALIZATION AT THE UNIVERSITY OF MINNESOTA ..................... 2 STEPS

Amin, S. Massoud

71

Fuzzy Optimization of Start-Up Operations for Combined Cycle Power Plants  

Science Journals Connector (OSTI)

In this paper we present a study on the application of fuzzy sets for the start-up optimisation of a combined cycle power plant. We fuzzyfy the output process variables and then we properly combine the resulting ...

Ilaria Bertini; Alessandro Pannicelli…

2010-01-01T23:59:59.000Z

72

Magnetic bearings for automatic control system of electromagnetic suspension of rotors of turbo-group gas-turbine thermal stations  

Science Journals Connector (OSTI)

A brief overview of suspensions is given. The type of suspension for rotors of turbogenerators is chosen. An automatic control system is developed for an electromagnetic suspension of the radial and axial magn...

I. V. Zotov; V. G. Lisienko

2010-03-01T23:59:59.000Z

73

Reliability of steam-turbine rotors. Task 1. Lifetime prediction analysis system. Final report. [Using STRAP and SAFER computer codes and boresonic data  

SciTech Connect (OSTI)

Task 1 of RP 502, Reliability of Steam Turbine Rotors, resulted in the development of a computerized lifetime prediction analysis system (STRAP) for the automatic evaluation of rotor integrity based upon the results of a boresonic examination of near-bore defects. Concurrently an advanced boresonic examination system (TREES), designed to acquire data automatically for lifetime analysis, was developed and delivered to the maintenance shop of a major utility. This system and a semi-automated, state-of-the-art system (BUCS) were evaluated on two retired rotors as part of the Task 2 effort. A modified nonproprietary version of STRAP, called SAFER, is now available for rotor lifetime prediction analysis. STRAP and SAFER share a common fracture analysis postprocessor for rapid evaluation of either conventional boresonic amplitude data or TREES cell data. The final version of this postprocessor contains general stress intensity correlations for elliptical cracks in a radial stress gradient and provision for elastic-plastic instability of the ligament between an imbedded crack and the bore surface. Both linear elastic and ligament rupture models were developed for rapid analysis of linkup within three-dimensional clusters of defects. Bore stress-rupture criteria are included, but a creep-fatigue crack growth data base is not available. Physical and mechanical properties of air-melt 1CrMoV forgings are built into the program; however, only bounding values of fracture toughness versus temperature are available. Owing to the lack of data regarding the probability of flaw detection for the boresonic systems and of quantitative verification of the flaw linkup analysis, automatic evlauation of boresonic results is not recommended, and the lifetime prediction system is currently restricted to conservative, deterministic analysis of specified flaw geometries.

Nair, P.K.; Pennick, H.G.; Peters, J.E.; Wells, C.H.

1982-12-01T23:59:59.000Z

74

Start-up capabilities of photovoltaic module for the International Space Station  

SciTech Connect (OSTI)

The International Space Station (ISS) uses four photovoltaic modules (PVMs) to supply electric power for the US On-Orbit Segment (USOS). The ISS is assembled on orbit over a period of about 5 years and over 40 stages. PVMs are launched and integrated with the ISS at different times during the ISS assembly. During early stages, the electric power is provided by the integrated truss segment (ITS) P6; subsequently, ITS P4, S4, and S6 are launched. PVMs are launched into space in the National Space Transportation System (NSTS) cargo bay. Each PVM consists of two independent power channels. The NSTS docks with the ISS, the PVM is removed from the cargo bay and installed on the ISS. At this stage the PVM is in stowed configuration and its batteries are in fully discharged state. The start-up consists of initialization and checkout of all hardware, deployment of SAW and photovoltaic radiator (PVR), thermal conditioning batteries, and charging batteries; not necessarily in the same order for all PVMs. PVMs are designed to be capable of on-orbit start-up, within a specified time period, when external power is applied to a specified electrical interface. This paper describes the essential steps required for PVM start-up and how these operations are performed for various PVMs. The integrated operations scenarios (IOS) prepared by the NASA, Johnson Space Center, details specific procedures and timelines for start-up of each PVM. The paper describes how dormant batteries are brought to their normal operating temperature range and then charged to 100% state of charge (SOC). Total time required to complete start-up is computed and compared to the IOS timelines. External power required during start-up is computed and compared to the requirements and/or available power on ISS. Also described is how these start-up procedures can be adopted for restart of PVMs when required.

Hajela, G.; Hague, L. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.

1997-12-31T23:59:59.000Z

75

Contact and Stress Anisotropies in Start-Up Flow of Colloidal Suspensions |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact and Stress Anisotropies in Start-Up Flow of Colloidal Suspensions Contact and Stress Anisotropies in Start-Up Flow of Colloidal Suspensions Submitted by Anonymous on November 3, 2011 - 12:52 Authors: Martys, N.S., Lootens, D., George, W., and H Spatiotemporal correlations in start-up flows of attractive colloids are explored by numerical simulations as a function of their volume fraction and shear rate. The suspension is first allowed to flocculate during a time tw, then the stress necessary to induce its flow is computed. We find that, at low volume fractions, the stress is a universal function of the strain. On the contrary, at high volume fractions, this scaling behavior is no longer observed and a supplementary stress becomes necessary to induce flow. To better understand the physical origin of the supplementary stress,

76

America's Best Student Start-Up Companies Pitch for Your Vote | Department  

Broader source: Energy.gov (indexed) [DOE]

Best Student Start-Up Companies Pitch for Your Vote Best Student Start-Up Companies Pitch for Your Vote America's Best Student Start-Up Companies Pitch for Your Vote May 24, 2012 - 9:03am Addthis After pitching their business plan to panels of judges at the regional semifinal and final, six teams advanced to the national competition for a chance at the cash grand prize. | Energy Department file graphic. After pitching their business plan to panels of judges at the regional semifinal and final, six teams advanced to the national competition for a chance at the cash grand prize. | Energy Department file graphic. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs How can I participate? You can select your favorite. UPDATE: Voting closed June 12 at 2 p.m. EDT. NuMat Technologies from

77

Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START UP OR  

Broader source: Energy.gov (indexed) [DOE]

DOE O 425.1D, VERIFICATION OF READINESS TO START UP DOE O 425.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES "The familiar level of this module is divided into three sections. In the first section we will discuss the purpose of DOE O 425.1D and the requirements for 1) determining the level of readiness review (RR), 2) determining the startup authorization authority (SAA), and 3) the startup notification report. In the second section we will discuss 1) the requirements applicable to DOE ORRs and DOE RAs, and 2) the core requirements. In the third section we will discuss the 1) requirements for DOE field element and headquarters line management oversight of the startup or restart process, 2) requirements for the records management program, and

78

Top Student Team Wins $180,000 Toward Clean Energy Start Up | Department of  

Broader source: Energy.gov (indexed) [DOE]

Student Team Wins $180,000 Toward Clean Energy Start Up Student Team Wins $180,000 Toward Clean Energy Start Up Top Student Team Wins $180,000 Toward Clean Energy Start Up June 15, 2012 - 2:57pm Addthis Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs The winners were: Grand prize: NuMat Technologies from Northwestern University Second place: SolidEnergy Systems from Massachusetts Institute of Technology People's Choice: Navillum Nanotechnologies from University of Utah NuMat Technologies beat out five other finalists Wednesday to become the grand prize winner of the National Clean Energy Business Plan Competition, taking home $180,000 in prizes, which includes seed money for their company and additional prizes from sponsors including technical, design and legal assistance. SolidEnergy Systems came in second place, and Navillum

79

An approach to reduce start-up opacity on a coal-fired cycling unit  

SciTech Connect (OSTI)

Motivated by the need to prevent stack emission discharges even during start-up, an operations program was initiated to reduce opacity on a coal-fired cycling unit. The measurement basis is a numeric comparison of annual start-ups and yearly totals for reportable opacity six-minute averages. The unit of interest has been in commercial operation since 1978 and has experienced more than 1600 cycles of operation. The 46 gross megawatt fossil fuel unit has shown a rising capacity factor as cycling frequency has increased during the past years. This paper examines the effectiveness of the opacity reduction program and the experiences and methods required to achieve the results. 1986 reference data showed 122 reportable opacity occurrences for 145 unite start-ups. Combined 1988-89 records tabulated to 48 reportable opacity occurrences for 303 cycling operations.

Costello, P.A. (Illinois Power Co., Havana Power Station, Havana, IL (US))

1990-01-01T23:59:59.000Z

80

Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.  

SciTech Connect (OSTI)

Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

Myrent, Noah J. [Purdue Center for Systems Integrity, Lafayette, IN; Kusnick, Joshua F. [Purdue Center for Systems Integrity, Lafayette, IN; Barrett, Natalie C. [Purdue Center for Systems Integrity, Lafayette, IN; Adams, Douglas E. [Purdue Center for Systems Integrity, Lafayette, IN; Griffith, Daniel Todd

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - aero-elasticity rotor aerodynamics Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: HVDC 12;Rotor aero-elastics and structural dynamics 12;Aerodynamics for wind turbines Flow over... and components Rotor aero-elastics and structural dynamics Grid...

82

Turbines  

Science Journals Connector (OSTI)

... with his torical notes and some explanations of the principles involved in the working of turbines. This is fol lowed by three chapters on water-wheels, ... . This is fol lowed by three chapters on water-wheels, turbine pumps, and water ...

1922-02-09T23:59:59.000Z

83

First LNG from North field overcomes feed, start-up problems  

SciTech Connect (OSTI)

Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

Redha, A.; Rahman, A.; Al-Thani, N.H. [Qatar Liquefied Gas Co., Doha (Qatar); Ishikura, Masayuki; Kikkawa, Yoshitsugi [Chiyoda Corp., Yokohama (Japan)

1998-08-24T23:59:59.000Z

84

Start-up Optimization of a Combined Cycle Power Plant A. Linda, E. Sllberga,  

E-Print Network [OSTI]

bModelon AB, Lund, Sweden cSiemens AG, Energy Sector, Erlangen, Germany Abstract In the electricity are simpler than typical high- fidelity simulation models. Two different models used for optimization in four to opti- mize are explored. Results are encouraging and show that energy production during start-up can

85

Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch Distillation Column  

E-Print Network [OSTI]

Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch DistillationVersity of Science and Technology, Trondheim, Norway Multivessel batch distillation is a promising alternative to conventional batch distillation. Earlier studies proved the feasibility of temperature control in a closed

Skogestad, Sigurd

86

1 Copyright 2014 by ASME MODELING AND SIMULATION OF THE START-UP OPERATION OF A  

E-Print Network [OSTI]

) are developed and validated. The GT is a power plant gas turbine (General Electric PG 9351FA) located in Italy

Sainudiin, Raazesh

87

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......megawatts. Industrial turbines produce high-quality...recovered to improve the efficiency of power generation...steam and drive a steam turbine in a combined-cycle...either gas or steam turbine alone because it performs...generation by their high efficiency and possibility to operate......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

88

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......Energy, New technologies and sustainable Economic development Agency...Detection in Gas Turbines using Fuzzy...fusion for gas turbine power plants...Research Development Center Technical...Energy, New technologies and sustainable Economic development Agency...combination of a gas turbine and a steam......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

89

The concept of new-generation steam turbines for the coal power engineering of Russia. Part 2. Substantiating the long-term strength of the steam turbine’s high-temperature rotors  

Science Journals Connector (OSTI)

The possibility of constructing a K-660-30 two-cylinder steam turbine for ultrasupercritical steam conditions with reheating, the ... is substantiated. It is shown that this turbine can be constructed using the a...

A. G. Kostyuk; V. G. Gribin; A. D. Trukhnii

2011-01-01T23:59:59.000Z

90

Optimizing the start-up operations of combined cycle power plants using soft computing methods  

Science Journals Connector (OSTI)

......keeping the life-time consumption of the more critically...1200 s) the rotor engine velocity of the gas...1170029416] Y2 Fuel consumption (Kg) [53000230330...minimize time minimize fuel consumption maximize energy production......

Ilaria Bertini; Matteo De Felice; Alessandro Pannicelli; Stefano Pizzuti

2012-08-01T23:59:59.000Z

91

Iowa Start-up May Be "America's Next Top Energy Innovator" |  

Broader source: Energy.gov (indexed) [DOE]

May Be "America's Next Top Energy Innovator" May Be "America's Next Top Energy Innovator" Iowa Start-up May Be "America's Next Top Energy Innovator" August 4, 2011 - 1:09pm Addthis Company Licenses Technology from Ames Laboratory to Produce Titanium Powder for Use in Military, Biomedical and Aerospace Components Washington, DC -- U.S. Secretary of Energy Steven Chu today announced that an Iowa based start-up company has been selected to participate in the Department of Energy's "America's Next Top Energy Innovator" challenge. Iowa Powder Atomization Technologies (IPAT) has signed a technology license agreement to use technologies developed by Ames Laboratory to produce fine titanium powder that can be used to improve military, biomedical and aerospace components, and can possibly be used in

92

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

93

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

94

Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system  

SciTech Connect (OSTI)

The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

1989-11-11T23:59:59.000Z

95

Fast start-up of a diesel fuel processor for PEM fuel cells  

Science Journals Connector (OSTI)

Abstract Fuel cell systems based on liquid fuels are particularly suitable for auxiliary power generation due to the high energy density of the fuel and its easy storage. Together with industrial partners, Oel-Waerme-Institut is developing a 3 kWel PEM fuel cell system based on diesel steam reforming to be applied as an APU for caravans and yachts. The start-up time of a fuel cell APU is of crucial importance since a buffer battery has to supply electric power until the system is ready to take over. Therefore, the start-up time directly affects the battery capacity and consequently the system size, weight, and cost. In the presented work a novel start-up strategy for the steam reforming fuel processor is introduced. The new approach includes the reactive heating of WGS reactors by using reformate from oxidative steam reforming (OSR) instead of the sequential heating of the fuel processor. The start-up procedure is demonstrated on a 10 kW steam reformer and a parameter study is carried out. Subsequently, the new procedure is tested on the complete fuel processor. Here, the OSR operation starts after 15:20 min and provides reformate for reactive heating of the WGS reactors. Steam reforming operation can be started after 23:40 min, which is 9 min earlier than applying sequential heating of the fuel processor. Until SR operation, the total energy consumption sums up to up to 5.9 MJ fuel and 13 Ah (12 V) electric energy.

Marius Maximini; Philip Engelhardt; Martin Brenner; Frank Beckmann; Oliver Moritz

2014-01-01T23:59:59.000Z

96

Robbins project - start-up and commercial operation at a leading-edge recycling, waste-to-energy plant  

SciTech Connect (OSTI)

On January 22, 1997, the Robbins Resource Recovery Facility began commercial operation in Robbins, Illinois, a suburb of Chicago, after a very successful start-up program. The first installation of its kind in the United States, the Robbins facility converts municipal solid waste (MSW) into refuse-derived fuel (RDF) that is fired in two circulating fluidized-bed boilers. Steam from the boilers powers a turbine generator that can produce enough electricity to service more than 50,000 homes. The Robbins facility processes a minimum of 1600 tons of MSW per day. Some 75 percent of the MSW is converted into RDF. In addition to compostable material, the balance yields reusable aluminum, ferrous materials, and glass. Even ash produced by the circulating fluidized-bed (CFB) boilers can be used to manufacture cement. The Robbins facility is operated by Foster Wheeler Illinois, Inc., a member of the Foster Wheeler Power Systems Group. The plant was engineered by Foster Wheeler USA Corporation and built by Foster Wheeler Constructors, Inc. Foster Wheeler Energy International, Inc. provided the circulating fluidized-bed boilers.

NONE

1997-12-31T23:59:59.000Z

97

Thermal expansion normalization for large steam turbines in service  

SciTech Connect (OSTI)

Some large steam turbines encounter some problems with their thermal expansion. This shows itself in the broken (leap-like) movement of the bearing pedestals while the turbine is being heated or cooled in the course of transients. This also results in distortion of the casings, torsion of the foundation frame crossbars, increased vibration, damage of the bearings and couplings, etc. The thermal expansion freedom problems hamper the turbine`s start-ups since the relative rotor expansions attain their limits. The main causes why the turbine loses the thermal expansion freedom are the increased friction on the sliding surfaces between the bearing pedestals and foundation frame, increased transversal load on the turbine from the steam-lines connected to the cylinders, poor transition of the axial thrust between the cylinders, and insufficient rigidity of the foundation crossbars. Under consideration are a set of diagnostic, design, and technological measures to reveal the specific causes of the problems and to eliminate them. Among the most widespread and effective countermeasures are the placing of special fluoroplastometallic bands under the bearing pedestals and electrochemical facing of the keys` surfaces, adjustment of the support-and-suspension system and tightening of the foundation frame.

Avrutsky, G.D.; Savenkova, I.A.; Don, E.A.; Lyudomirsky, B.N.; Berezin, M.G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation)

1999-11-01T23:59:59.000Z

98

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

99

Pressure–heat release measurements during start-up conditions in a pulse combustor  

Science Journals Connector (OSTI)

An experimental study focusing on the temporal evolution of the global OH heat release (q?) and dynamic pressure (p?) from ignition to limit cycle conditions in an aerovalved pulse combustor has been carried out. The motivation of the work was to investigate how the thermo-acoustic relationships evolve, as very little is understood regarding how pressure and heat release couplings develop prior to establishing limit cycle conditions. The start-up experiments demonstrated that the total start-up sequences occurred within 100 ms and can be subdivided into three regimes: (i) ignition and decay; (ii) instability growth; and (iii) onset of limit cycle operation. The main results showed that upon ignition the high amplitude impulse pressure wave corresponded to the natural frequency of the pulse combustor at ambient gas temperature and was verified by an acoustic model. The pressure field over the growth period exhibited two main trends, either steady amplitude growth or a short delay interval followed by steady amplitude growth to limit cycle conditions. Overall, no reproducibility in frequency or phase during the growth period was observed pointing to the influence of strong non-linear interactions. When operating under limit cycle conditions, the heat release and pressure oscillations were in phase, possessed high levels of coherence, and exhibited narrow band frequency response at the operating frequency and several harmonics.

J.R. Dawson; V.M. Rodriguez-Martinez; A.J. Beale; T. O’Doherty

2005-01-01T23:59:59.000Z

100

Iowa Start-up Taps Ames Laboratory Technology in Challenge | Department of  

Broader source: Energy.gov (indexed) [DOE]

Taps Ames Laboratory Technology in Challenge Taps Ames Laboratory Technology in Challenge Iowa Start-up Taps Ames Laboratory Technology in Challenge August 10, 2011 - 2:21pm Addthis Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

102

Start-up and control method and apparatus for resonant free piston Stirling engine  

SciTech Connect (OSTI)

A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

Walsh, Michael M. (Schenectady, NY)

1984-01-01T23:59:59.000Z

103

Start-up and control method and apparatus for resonant free piston Stirling engine  

SciTech Connect (OSTI)

A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine. 3 figs.

Walsh, M.M.

1984-03-06T23:59:59.000Z

104

How Does a Wind Turbine Work?  

Broader source: Energy.gov [DOE]

Wind turbines operate on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which...

105

How Does a Wind Turbine Work?  

Broader source: Energy.gov [DOE]

Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

106

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

107

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

108

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

109

Start-up fuel and power flattening of sodium-cooled candle core  

SciTech Connect (OSTI)

The hard neutron spectrum and unique power shape of CANDLE enable its distinctive performances such as achieving high burnup more than 30% and exempting necessity of both enrichment and reprocessing. On the other hand, they also cause several challenging problems. One is how the initial fuel can be prepared to start up the first CANDLE reactor because the equilibrium fuel composition that enables stable CANDLE burning is complex both in axial and radial directions. Another prominent problem is high radial power peaking factor that worsens averaged burnup, namely resource utilization factor in once-through mode and shorten the life time of structure materials. The purposes of this study are to solve these two problems. Several ideas for core configurations and startup fuel using single enrichment uranium and iron as a substitute of fission products are studied. As a result, it is found that low enriched uranium is applicable to ignite the core but all concepts examined here exceeded heat limits. Adjustment in enrichment and height of active and burnt zone is opened for future work. Sodium duct assemblies and thorium fuel assemblies loaded in the center region are studied as measures to reduce radial power peaking factor. Replacing 37 fuels by thorium fuel assemblies in the zeroth to third row provides well-balanced performance with flattened radial power distribution. The CANDLE core loaded with natural uranium in the outer and thorium in the center region achieved 35.6% of averaged burnup and 7.0 years of cladding life time owing to mitigated local fast neutron irradiation at the center. Using thorium with natural or depleted uranium in CANDLE reactor is also beneficial to diversifying fission resource and extending available term of fission energy without expansion of needs for enrichment and reprocessing.

Takaki, Naoyuki; Sagawa, Yu; Umino, Akitake [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, Hiroshi [University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

110

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

111

Aeroelastic simulation of wind turbine blades  

Science Journals Connector (OSTI)

The aim of this chapter is to compute dynamic stresses acting on wind turbine blades. These stresses are essential in predicting fatigue of the rotor.

Z.L. Mahri; M.S. Rouabah; Z. Said

2009-01-01T23:59:59.000Z

112

Simulation and modeling of flow field around a horizontal axis wind turbine (HAWT) using RANS method.  

E-Print Network [OSTI]

??The principal objective of the proposed CFD analysis is to investigate the flow field around a horizontal axis wind turbine rotor and calculate the turbine's… (more)

Sargsyan, Armen.

2010-01-01T23:59:59.000Z

113

Turbomachine rotor with improved cooling  

DOE Patents [OSTI]

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

114

Turbomachine rotor with improved cooling  

DOE Patents [OSTI]

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

115

DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)  

SciTech Connect (OSTI)

This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

Battelle

2000-06-30T23:59:59.000Z

116

Composite turbine bucket assembly  

DOE Patents [OSTI]

A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

Liotta, Gary Charles; Garcia-Crespo, Andres

2014-05-20T23:59:59.000Z

117

An approximate solution for the start-up flow of a power-law fluid in a tube  

Science Journals Connector (OSTI)

A theoretical solution of the unsteady-state momentum equation for the start-up flow of a power-law fluid in circular tubes is presented. The solution is obtained with an approximate technique which has previously proved to be useful in solving other transport problems involving nonlinear partial differential equations and explicit asymptotic expressions for the velocity profiles and flow-rates as functions of time are given. The accuracy of the method is checked by comparing the results with the existing exact analytical solution of Gromekha—Szymanski which applies for the Newtonian case and the results are believed to be good approximations for moderate and large values of time. An interesting aspect of the results is the effect of the flow behaviour index and the imposed pressure gradient on the start-up time.

J. Sestak; M.E. Charles

1968-01-01T23:59:59.000Z

118

Evaluation of active flow control applied to wind turbine blade section  

Science Journals Connector (OSTI)

A feasibility study for implementing active flow control (AFC) methods to improve the performance of wind turbines was performed. The experimental effort investigated the impact of zero-mass-flux (ZMF) piezofluidic actuators attempting to controlboundary layer separation from thick airfoils that are suitable for wind turbine rotor blades. It was demonstrated that the ZMF actuators can replace passive vortexgenerators that are commonly used for boundary layer separation delay without the inherent drag penalty that the passive devices impose. It has been shown that ZMF fluidic actuators are suitable for flow control in wind turbine application due to the fact that they are adjustable for wider Reynolds number range while vortexgenerators are tuned to perform well in one design point. It was demonstrated that AFC can effectively double the maximum lift of this airfoil at low Reynolds numbers. A possible application is a significant reduction of the turbine start-up velocity. It was also found that even for a contaminated blade AFC is capable to delay the stall and decrease the drag using low energy expenditure therefore restoring and even surpassing the clean airfoil performance. The effectiveness of the AFC method was examined using a newly defined aerodynamic figure of merit. Various scaling options for collapsing the effect of the excitation magnitude on the lift alternation due to the activation of zero-mass-flux periodic excitation for boundary layer separation control are proposed and examined using experimental data.

O. Stalnov; A. Kribus; A. Seifert

2010-01-01T23:59:59.000Z

119

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

SciTech Connect (OSTI)

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

120

Wind Turbine Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind Turbine Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

122

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

123

Tokamak start-up with electron-cyclotron heating This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Tokamak start-up with electron-cyclotron heating This article has been downloaded from IOPscience September 1979 Final manuscript received 6 August 1981) TOKAMAK START-UP WITH ELECTRON- CYCLOTRON HEATING D is reduced by about a factor of two by the use of a modest amount of electron cyclotron resonance heating

Sprott, Julien Clinton

124

Plasma Current Start-up Experiment using Waves in the Lower Hybrid Frequency Range in TST-2  

SciTech Connect (OSTI)

Noninductive plasma current (I{sub p}) start-up experiments using RF power in the lower hybrid frequency range are being conducted on the TST-2 spherical tokamak. The lower hybrid wave (LHW) has demonstrated efficient current drive in conventional tokamaks. However, in spherical tokamak (ST) plasmas with very high dielectric constants (;{epsilon}{approx}{omega}{sub pe}{sup 2}/{Omega}{sub e}{sup 2}>>1), accessibility of the LHW to the plasma core is severely limited. Our approach is to keep the plasma density low (such that {epsilon}{approx}1) during I{sub p} ramp-up. Once I{sub p} reaches a level sufficiently high for neutral beam current drive, plasma can be densified and transformed into an advanced tokamak plasma dominated by the self-driven bootstrap current. Initial plasma start-up experiments were performed on TST-2 using a combline antenna which excites a traveling fast wave. After formation of toroidal flux surfaces, RF power and vertical field were ramped up to increase I{sub p}. Up to 12 kA of Ip has been obtained by this method. Soft X-ray measurements indicate that the electron temperature increases as I{sub p} increases, and hard X-ray spectroscopy indicates that energetic electrons build up as I{sub p} is ramped up.

Takase, Y.; Wakatsuki, T.; Ejiri, A.; Kakuda, H.; Ambo, T.; Hanashima, K.; Hiratsuka, J.; Nagashima, Y.; Sakamoto, T.; Shino, R.; Sonehara, M.; Watanabe, O.; Yamaguchi, T. [University of Tokyo, Kashiwanoha 5-1-5, Kashiwa277-8561 Japan (Japan); Moeller, C. P. [General Atomics, San Diego, CA 92186 (United States); Kasahara, H.; Kumazawa, R.; Saito, K.; Seki, T.; Shimpo, F. [National Institute for Fusion Science, Toki 509-5292 Japan (Japan)

2011-12-23T23:59:59.000Z

125

NANOVISNEED Start up and  

E-Print Network [OSTI]

nanotechnology core capability to become a high-growth orthopedic company. It is commercializing a full portfolio technically advanced nanotechnology enhanced implants in development today. The world-class scientists to cell and bacterial function on nanomaterials. The Purdue College of Veterinary Medicine provides

Ginzel, Matthew

126

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

127

DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...  

Energy Savers [EERE]

Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

128

Characterization of turbine rim seal flow and its sealing effectiveness  

E-Print Network [OSTI]

In a gas turbine engine, ingestion of hot gas from the flowpath into the gaps between the turbine rotor and stator can lead to elevated metal temperatures and a deterioration of component life. To prevent ingestion, bleed ...

Catalfamo, Peter T

2013-01-01T23:59:59.000Z

129

Separators for flywheel rotors  

DOE Patents [OSTI]

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

Bender, D.A.; Kuklo, T.C.

1998-07-07T23:59:59.000Z

130

Separators for flywheel rotors  

DOE Patents [OSTI]

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

1998-01-01T23:59:59.000Z

131

R&D Subsidy and Self-Financed R&D: The Case of Japanese High-Technology Start-Ups  

Science Journals Connector (OSTI)

This paper examines whether public R&D subsidies constitute a substitute or complement for private-financed R&D. The empirical analysis is based on a panel data of 223 Japanese high-technology start-ups. ... hypo...

Tadahisa Koga

2005-01-01T23:59:59.000Z

132

Electromagnetic torque analysis of a DFIG for wind turbines  

Science Journals Connector (OSTI)

Electromagnetic torque of doubly fed induction generator (DFIG) is a consequence of the rotor and stator supply. The stator voltage has a fixed amount and frequency. The rotor voltage of the DFIG as a part of a wind turbine has a variable amount and ... Keywords: DFIG, electromagnetic torque, renewable energy, wind turbine

Jurica Smajo; Dinko Vukadinovic

2008-05-01T23:59:59.000Z

133

Impact of IrRu Oxygen Evolution Reaction Catalysts on Pt Nanostructured Thin Films under Start-Up/Shutdown Cycling  

SciTech Connect (OSTI)

Electron microscopy and X-ray photoelectron spectroscopy (XPS) methods have been utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 g/cm2 and submitted to 5,000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy were used to observe the impact of the OER catalysts on Pt dissolution and migration through the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.

Cullen, David A [ORNL; More, Karren Leslie [ORNL; Atanasoska, Liliana [3M, Industrial Mineral Products Division; Atanasoski, Radoslav [3M, Industrial Mineral Products Division

2014-01-01T23:59:59.000Z

134

Experimental response of a rotor supported on Rayleigh step gas bearings  

E-Print Network [OSTI]

contact during start-up and shutdown. Quick lifting of the rotor in the air bearings reduces the wear and damage of solid surfaces for long durability of the bearings under cyclic start/stop operation. 6 Sastri et al. [27] study the tribological...

Zhu, Xuehua

2004-11-15T23:59:59.000Z

135

Non-contact gas turbine blade vibration monitoring using internal pressure and casing response measurements.  

E-Print Network [OSTI]

??This thesis addresses the non-contact measurement of rotor blade vibrations in gas turbines. Specifically, use is made of internal casing wall pressure, and external casing… (more)

Forbes, Gareth Llewellyn

2010-01-01T23:59:59.000Z

136

Permanent Magnet Generators (PMG) for Wind Turbines and Micro Hydro Turbines  

Science Journals Connector (OSTI)

There are essential differences in the design of systems for water/air flow kinetic energy conversion into mechanical energy. First of all, speeds of rotation of the turbine rotors are different: the speed of tho...

Ion Bostan; Adrian Gheorghe; Valeriu Dulgheru; Ion Sobor…

2013-01-01T23:59:59.000Z

137

Operational behavior of a double-fed permanent magnet generator for wind turbines  

E-Print Network [OSTI]

Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

Reddy, Sivananda Kumjula

2005-01-01T23:59:59.000Z

138

Low frequency noise from MW wind turbines --mechanisms of generation  

E-Print Network [OSTI]

Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy 3.6MW turbine 12 3.2 Noise as function of wind speed 12 3.3 Noise as function of rotor

139

Multiple piece turbine airfoil  

DOE Patents [OSTI]

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

140

Lightning protection system for a wind turbine  

DOE Patents [OSTI]

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

UPWIND, Aerodynamics and aero-elasticity Rotor aerodynamics in atmospheric shear flow  

E-Print Network [OSTI]

UPWIND, Aerodynamics and aero-elasticity Rotor aerodynamics in atmospheric shear flow Niels N codes for wind turbines utilize aerodynamics based on BEM methods, see [1, 2]. For modern large scale

142

An efficient algorithm for blade loss simulations applied to a high-order rotor dynamics problem  

E-Print Network [OSTI]

In this thesis, a novel approach is presented for blade loss simulation of an aircraft gas turbine rotor mounted on rolling element bearings with squeeze film dampers, seal rub and enclosed in a flexible housing. The modal truncation augmentation...

Parthasarathy, Nikhil Kaushik

2004-09-30T23:59:59.000Z

143

Review of the Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, June 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pantex Site Office's Compliance with Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1 1.0 Purpose .................................................................................................................................................. 1 2.0 Introduction ........................................................................................................................................... 1 3.0 Assessment Methodologies and Approach ........................................................................................... 1

144

Review of the Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, June 2012  

Broader source: Energy.gov (indexed) [DOE]

Pantex Site Office's Compliance with Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1 1.0 Purpose .................................................................................................................................................. 1 2.0 Introduction ........................................................................................................................................... 1 3.0 Assessment Methodologies and Approach ........................................................................................... 1

145

Methods and apparatus for cooling wind turbine generators  

DOE Patents [OSTI]

A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

2008-10-28T23:59:59.000Z

146

R and D for improved efficiency small steam turbines. Phase II. Second quarterly technical report  

SciTech Connect (OSTI)

The detailed design of a radial inflow steam turbine (RIT) comprised of two radial inflow turbine stages driving a common bull gear/output shaft designed for rated speeds of 70,000 rpm and 52,500 rpm, respectively, is described. Details are presented on: aerodynamic design; high speed rotors; high speed rotor bearings; high speed rotor sealing; gearing; output shaft; static structure; and predicted performance. (MCW)

Not Available

1981-03-01T23:59:59.000Z

147

Deutsche Rotor und Turm Service GmbH Co KG DRTS | Open Energy Information  

Open Energy Info (EERE)

Rotor und Turm Service GmbH Co KG DRTS Rotor und Turm Service GmbH Co KG DRTS Jump to: navigation, search Name Deutsche Rotor und Turm Service GmbH & Co KG (DRTS) Place Bremen, Germany Zip 28239 Sector Wind energy Product Service company for wind turbine blades and towers. References Deutsche Rotor und Turm Service GmbH & Co KG (DRTS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Deutsche Rotor und Turm Service GmbH & Co KG (DRTS) is a company located in Bremen, Germany . References ↑ "Deutsche Rotor und Turm Service GmbH & Co KG (DRTS)" Retrieved from "http://en.openei.org/w/index.php?title=Deutsche_Rotor_und_Turm_Service_GmbH_Co_KG_DRTS&oldid=344202" Categories:

148

SUPERVISORY ADAPTIVE BALANCING OF RIGID ROTORS DURING ACCELERATION  

E-Print Network [OSTI]

machining spindles, industrial turbomachinery, and aircraft gas turbine engines, are very commonly used strategy is proposed to coordinate the parameter estimation and the balancer control action. Simulation acceleration transient time will be developed based on a rigid rotor model. The actuator used in this research

Zhou, Shiyu

149

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network [OSTI]

horizontal axis wind power plant with rated power 750 KW. The plant has a three bladed rotor and an automatic is shown in Figure 1 demand Drive train Generator Rotor Wind speed Power demand Grid Power Controller PitchEstimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner

150

Aerodynamik des Rotors  

Science Journals Connector (OSTI)

Der Rotor steht am Anfang der Wirkungskette einer Windkraftanlage. Seine aerodynamischen und dynamischen Eigenschaften sind deshalb in mehrfacher Hinsicht prägend für das gesamte System. Die Fähigkeit des Roto...

Dipl.-Ing. Erich Hau

2003-01-01T23:59:59.000Z

151

Aerodynamik des Rotors  

Science Journals Connector (OSTI)

Der Rotor steht am Anfang der Wirkungskette einer Windkraftanlage. Seine aerodynamischen und dynamischen Eigenschaften sind deshalb in mehrfacher Hinsicht prägend für das gesamte System. Die Fähigkeit des Roto...

2008-01-01T23:59:59.000Z

152

Reference Model 2: %22Rev 0%22 Rotor Design.  

SciTech Connect (OSTI)

The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel

2011-12-01T23:59:59.000Z

153

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

154

Guidelines for maintaining steam turbine lubrication systems. Final report  

SciTech Connect (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

Lamping, G.A.; Cuellar, J.P. Jr.; Silvus, H.S.; Barsun, H.F.

1986-07-01T23:59:59.000Z

155

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

156

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines  

E-Print Network [OSTI]

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines Frank Scheurich of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid of the aerodynamics of a vertical- axis wind turbine that consists of three curved rotor blades that are twisted

McCalley, James D.

157

American Institute of Aeronautics and Astronautics A Framework for the Reliability Analysis of Wind Turbines  

E-Print Network [OSTI]

of Wind Turbines against Windstorms and Non-Standard Inflow Definitions Lance Manuel1 Dept. of Civil typical wind turbine systems are yet to be characterized in ways that drive aeroelastic loads and design., but the coherence structure and turbulence kinetics at the spatial scale of wind turbine rotors are not as well

Manuel, Lance

158

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space  

E-Print Network [OSTI]

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space Bert Sweetman Texas A offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures wind turbines in deep water, where environmental forcing could subject the rotor to meaningful angular

Sweetman, Bert

159

Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating  

E-Print Network [OSTI]

Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating Swell d-axis and q-axis inductances g, g Grid inductance and resistance Pole pair number R Turbine blade-axis and q-axis voltages Turbine and generator power difference , g Rotor position, grid voltage angle

Boyer, Edmond

160

Turbine seal assembly  

DOE Patents [OSTI]

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

162

Multiple piece turbine airfoil  

SciTech Connect (OSTI)

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

163

Low pressure cooling seal system for a gas turbine engine  

DOE Patents [OSTI]

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

164

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

165

Hi-Q Rotor - Low Wind Speed Technology  

SciTech Connect (OSTI)

The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the public sector's growing energy demands.

Todd E. Mills; Judy Tatum

2010-01-11T23:59:59.000Z

166

The Cascaded Humidified Advanced Turbine (CHAT)  

SciTech Connect (OSTI)

This paper introduces the Cascaded Humidified Advanced Turbine (CHAT) plant, a gas turbine based power generation plant utilizing intercooling, reheat, and humidification. It is based upon the integration of an existing heavy duty gas turbine with an additional shaft comprising industrial compressors and high pressure expander. CHAT capitalizes on the latest proven gas turbine technology, which, combined with a sophisticated thermal cycle configuration, results in substantial improvement in gas turbine efficiency, compared to a simple cycle, while still maintaining typical advantages and merits of a combustion turbine plant. Built with a commercial combustion turbine and available industrial compressors and expanders, the CHAT plant does not require extensive product development and testing. As a result, the CHAT power plant can be offered with specific capital costs up to 20 percent lower than the combined cycle plant, and with competing efficiency. Compared to a combined cycle plant, the CHAT plant offers lower emissions (due to air humidification) and other significant operating advantages with regard to start-up time and costs, better efficiency at part load, lower power degradation at higher ambient temperatures, and simpler operations and maintenance due to elimination of the complexities and costs associated with steam production. The CHAT plant also integrates very effectively with coal gasification and particularly well with the water quench design. This feature has been discussed in previous publications.

Nakhamkin, M.; Swensen, E.C. [Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States); Wilson, J.M.; Gaul, G. [Westinghouse Electric Corp., Orlando, FL (United States); Polsky, M. [Polsky Energy Corp., Northbrook, IL (United States)

1996-07-01T23:59:59.000Z

167

Earth Turbines Inc | Open Energy Information  

Open Energy Info (EERE)

Turbines Inc Turbines Inc Jump to: navigation, search Name Earth Turbines Inc Place Hinesburg, Vermont Zip 5461 Sector Wind energy Product Start-up company developing small-scale wind technology for the residential and commercial market. Coordinates 44.335002°, -73.109687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.335002,"lon":-73.109687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine  

E-Print Network [OSTI]

turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second...

Suryanarayanan, Arun

2010-07-14T23:59:59.000Z

169

Dynamic Characterization of a Free-Free Wind Turbine Blade Assembly  

Science Journals Connector (OSTI)

Accurate prediction of full-field dynamic stress–strain of rotating structures is needed (e.g. wind turbines or helicopter rotors) during operation for condition based monitoring and damage prognosis. In order...

Javad Baqersad; Christopher Niezrecki…

2013-01-01T23:59:59.000Z

170

On Impedance Spectroscopy Contribution to Failure Diagnosis in Wind Turbine Generators  

E-Print Network [OSTI]

-fed induction generator, failure diagnosis, impedance spectroscopy. Nomenclature WT = Wind Turbine; DFIG rotor end- rings and harmonic degrading. In particular, DFIG-based WT failure diagnosis seems to become

Boyer, Edmond

171

Development of High-Capacity Desalination Plant Driven by Offshore Wind Turbine  

Science Journals Connector (OSTI)

This paper presents a development of the desalination plant based on the concept of the Wind Energy Marine Unit (WEMU) which is the high-capacity offshore wind turbine with the floating rotor. The great potential...

Valery V. Cheboxarov; Victor V. Cheboxarov

2009-01-01T23:59:59.000Z

172

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

173

MHK Technologies/The Davis Hydro Turbine | Open Energy Information  

Open Energy Info (EERE)

Hydro Turbine Hydro Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Davis Hydro Turbine.jpg Technology Profile Primary Organization Blue Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Blue Energy Ocean Turbine acts as a highly efficient underwater vertical axis windmill Four fixed hydrofoil blades of the turbine are connected to a rotor that drives an integrated gearbox and electrical generator assembly The turbine is mounted in a durable concrete marine caisson that anchors the unit to the ocean floor and the structure directs flow through the turbine further concentrating the resource supporting the coupler gearbox and generator above the rotor These sit above the surface of the water and are readily accessible for maintenance and repair The hydrofoil blades employ a hydrodynamic lift principal that causes the turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is unidirectional on both the ebb and flow of the tide

174

Dynamic validated model of a DFIG wind turbine  

Science Journals Connector (OSTI)

This paper presents the development and qualitative validation of a doubly-fed induction generator (DFIG) wind turbine model that is represented in terms of behaviour equations of each of the subsystems, mainly the turbine rotor, the drive train, the induction generator, the power converters and associated control systems and a protection system. Simulation results obtained from the models are compared to the field measurement data in a qualitative manner due to rotor wake and lack of ability of a single anemometer for adequate measurement of wind speed acting on the large surface of the rotor. It is concluded that the model is reasonably accurate and can hence be used for representing wind turbines in power system dynamics simulations.

Md. Ayaz Chowdhury; Nasser Hosseinzadeh; Weixiang Shen

2014-01-01T23:59:59.000Z

175

MHK Technologies/Open Centre Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group Limited Project(s) where this technology is utilized *MHK Projects/OpenHydro Alderney Channel Islands UK *MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Open-Centre Turbine is designed to be deployed directly on the seabed. The Open-Centre Turbine is a horizontal axis turbine with a direct-drive, permanent magnetic generator that has a slow-moving rotor and lubricant-free operation, which decreases maintenance and minimizes risk to marine life.

176

NREL: Wind Research - Mariah Power's Windspire Wind Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mariah Power's Windspire Wind Turbine Testing and Results Mariah Power's Windspire Wind Turbine Testing and Results A video of Mariah Power's Windspire wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Mariah Power's Windspire Giromill small wind turbine at the National Wind Technology Center (NWTC) through January 14, 2009 when NREL terminated its testing. Read a chronology of events and letter from Mariah Power to NREL. The Windspire is a 1.2-kilowatt (kW) vertical-axis small wind turbine. The turbine tower is 9.1 meters tall, and its rotor area is 1.2 by 6.1 meters. The turbine has a permanent-magnet generator with a single-phase output at 120 volts AC. Testing Summary Testing was terminated January 14, 2009. Published test reports include

177

Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings  

SciTech Connect (OSTI)

Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5-MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

2012-01-01T23:59:59.000Z

178

Active Flow Control on Bidirectional Rotors for Tidal MHK Applications  

SciTech Connect (OSTI)

A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn family also had higher c{sub p,min} than equivalently thick ellipses, indicating less susceptibility to cavitation. Microtabs applied on yy foils demonstrated improved energy capture. A series of variable speed and constant speed rotors were developed with the yyb07cn family of hydrofoils. The constant speed yyb07cn rotor (yy-B02-Rcs,opt) captured 0.45% more energy than the equivalent rotor with ellipses (e-B02-Rcs,opt). With microtabs deployed (yy?t-B02-Rcs,opt), the energy capture increase over the rotor with ellipses was 1.05%. Note, however, that microtabs must be applied judiciously to bidirectional foils. On the 18% thick ellipse, performance decreased with the addition of microtabs. Details of hydrofoil performance, microtab sizing and positioning, rotor configurations, and revenue impacts are presented herein.

Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

2013-08-22T23:59:59.000Z

179

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

180

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX M. Im, X. Den& II. C. Ovshinsky,R. Crucetand S.R Ovshimky  

E-Print Network [OSTI]

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX PLANT M. Im, X. Den& II. C assembled in sovlux plant using these solar cell material have demonstrated an initial efficiency of 9. roofiop modules. Lightweight, flexible rooftop modules with initial efficiency up to 9.3% were producedat

Deng, Xunming

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Polygonal shaft hole rotor  

DOE Patents [OSTI]

A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.

Hussey, John H. (St. Louis, MO); Rose, John Scott (Alton, IL); Meystrik, Jeffrey J. (Webster Groves, MO); White, Kent Lee (Maryland Heights, MO)

2001-01-23T23:59:59.000Z

182

Development and Validation of an Aeroelastic Model of a Small Furling Wind Turbine: Preprint  

SciTech Connect (OSTI)

Small wind turbines often use some form of furling (yawing and/or tilting out of the wind) to protect against excessive power generation and rotor speeds in high winds.The verification study demonstrated the correct implementation of FAST's furling dynamics. During validation, the model tends to predict mean rotor speeds higher than measured in spite of the fact that the mean furl motion and rotor thrust are predicted quite accurately. This work has culminated with an enhanced version of FAST that should prove to be a valuable asset to designers of small wind turbines.

Jonkman, J. M.; Hansen, A. C.

2004-12-01T23:59:59.000Z

183

Reduction of teeter angle excursions for a two-bladed downwind rotor using cyclic pitch control  

E-Print Network [OSTI]

Reduction of teeter angle excursions for a two-bladed downwind rotor using cyclic pitch control methods are based on cyclic pitch through the pitch servo system. The first method is based on a PI of the pitch regulated 5MW reference turbine used in the IEA Annex 23 benchmark. KEYWORDS: TWO-BLADED WIND

184

Homopolar motor with dual rotors  

DOE Patents [OSTI]

A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

Hsu, J.S.

1998-12-01T23:59:59.000Z

185

Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines  

Science Journals Connector (OSTI)

Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor or other heat source to electrical power using a closed?loop cycle. The operating fluid in the closed?loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed and the effects of very high ambient pressure start?up torque and misalignment have been observed and are reported here.

Samuel A. Howard; Robert J. Bruckner; Christopher DellaCorte; Kevin C. Radil

2007-01-01T23:59:59.000Z

186

Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives  

Science Journals Connector (OSTI)

This paper presents an efficient design tool for the estimation of the transient electromagnetic peak torque and transient rotor over-voltages of wind turbines (WT) doubly-fed induction generators (DFIG) during severe fault conditions on the grid side. ... Keywords: Dynamical constraint, Integrated design, Non-linear optimization, Wind turbine

Davide Aguglia; Philippe Viarouge; René Wamkeue; Jérôme Cros

2010-10-01T23:59:59.000Z

187

Steam Turbines  

Science Journals Connector (OSTI)

... chapters take up the design of nozzles and blades, and descriptions of commercial types of turbines. The treatment of low-pressure, mixed pressure, bleeder, and marine ... . The treatment of low-pressure, mixed pressure, bleeder, and marine turbines occupies separate chapters. Of these, the section dealing with the marine ...

1917-09-20T23:59:59.000Z

188

Magnus air turbine system  

DOE Patents [OSTI]

A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.

Hanson, Thomas F. (24204 Heritage La., Newhall, CA 91321)

1982-01-01T23:59:59.000Z

189

Characterization of noise from an isolated intermediate-sized wind turbine  

Science Journals Connector (OSTI)

Community-based wind power companies provide subscriptions to individual homeowners and businesses for power generated by a locally installed turbine. Typically such turbines are of an intermediate size such as the Vestas V20 120-kW turbines operated by the Cascade Community Wind Company in several locations within Washington state. This model turbine has a tower height of 80 feet with a rotor diameter of 60 ft. Each turbine is installed individually on leased land with no other turbines nearby. Noise measurements of a turbine located in Thorp WA were obtained in a variety of weather conditions. On several occasions with low to moderate wind speeds the turbine was stopped enabling the calculation of noise due to the turbine only. Results will be presented showing spectral content and sound pressure level contours for a range of wind speeds.

2014-01-01T23:59:59.000Z

190

Sandia National Laboratories: National Rotor Testbed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Rotor Testbed (NRT) includes research to quantify the degree to which the blade design load distribution influences the rotor near- and mid-wake velocity deficits and...

191

Some problems of steam turbine lifetime assessment and extension  

SciTech Connect (OSTI)

The problems of lifetime assessment and extension in reference to power equipment (including high-temperature rotors and casings of power steam turbines) and theoretical and normative grounds for these procedures, as well as some specific measures to prolong the turbine service time and diagnose the turbine components` conditions in the operation process, were covered in many published works, including the authors` ones. The present paper is to consider in more details some aspects of these problems that have not been sufficiently considered in known publications. In particular, it seems important to dwell on experimental verification of some mathematical models for calculating temperatures, stresses, and strains in the turbine casings on the basis of direct measurements at turbines in service. Another item to be discussed ia an approach to choosing the system of interrelated criteria and safety factors referring to the upper admissible values of stresses, strains, cycles, and accumulated damage, as well as crack resistance, as applied to an adopted conception of the limiting states for the rotors and casings with taking into consideration their loads and resulted stress-strain states. In this connection, it is important to arrange and use properly the continuous monitoring of temperatures, stresses, and accumulated metal damage to assess the residual lifetime of the rotors and casings more accurately. Certain design, technology, and repair measures are briefly described. They have successfully been employed at fossil power plants of the former Soviet Union to raise the steam turbine reliability and durability.

Berlyand, V.; Pozhidaev, A.; Glyadya, A. [Kharkov Central Designers Bureau (Ukraine); Plotkin, E.; Avrutsky, G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation); Leyzerovich, A. [Actinium Corp., Mountain View, CA (United States)

1999-11-01T23:59:59.000Z

192

NREL: Wind Research - Gaia-Wind's 11 Kilowatt Wind Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results A video of Gaia-Wind's 11-kW wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Gaia-Wind's 11-kilowatt (kW) small wind turbine at the National Wind Technology Center (NWTC). Gaia-Wind's turbine is a three-phase induction generator that operates at 480 volts. The turbine's downwind rotor has a 13-meter diameter, and its tower is 18 meters tall. The two-bladed, oversized rotor is designed for low to moderate wind speeds. Testing Summary The summary of the tests is below with the final reports. Cumulative Energy Production 6/11/2008: 210; 6/13/2008: 528; 6/16/2008: 716; 6/18/2008: 731; 6/19/2008:

193

NREL: Wind Research - Abundant Renewable Energy's ARE 442 Wind Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Get the Adobe Flash Player to see this video. A video of Abundant Renewable Energy's ARE 442 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Abundant Renewable Energy's ARE 442 turbine at the National Wind Technology Center (NWTC). The ARE 442 is a 10-kilowatt (kW), three-bladed, horizontal-axis upwind small wind turbine. It has a hub height of 30.9 meters and a rotor diameter of 7.2 meters. The turbine has a single-phase permanent-magnet generator that operates at variable voltages up to 410 volts AC. Testing Summary The summary of the tests is below with the final reports.

194

MHK Technologies/Blue Motion Energy marine turbine | Open Energy  

Open Energy Info (EERE)

Motion Energy marine turbine Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile Primary Organization Blue Motion Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Description The Blue Motion Energy marine turbine however uses a patented system of seawalls A placed radial around the vertically mounted rotor B this way it is possible to funnel the current and significantly increase the flow velocity independent of the direction of the current Technology Dimensions Device Testing Date Submitted 59:30.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Blue_Motion_Energy_marine_turbine&oldid=681547

195

NREL: Wind Research - SWIFT Wind Turbine Testing and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SWIFT Wind Turbine Testing and Results SWIFT Wind Turbine Testing and Results The SWIFT wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing the SWIFT small wind turbine at the National Wind Technology Center (NWTC). The competitive grant was awarded to Cascade Engineering. The SWIFT is a 1-kilowatt (kW), five-bladed with outer ring, horizontal-axis upwind small wind turbine. The turbine's rotor diameter is 2 meters, and its hub height is 13.72 meters. The SWIFT uses a single-phase permanent-magnet generator rated at 1 kW grid connected through an inverter at 240 volts AC. Testing Summary Supporting data and explanations for data provided in this table will be provided in the final reports. Data presented are preliminary and subject

196

Influence of wind characteristics on turbine performance Ioannis Antoniou (1)  

E-Print Network [OSTI]

(2) , Peder Enevoldsen (2) , Leo Thesbjerg (3) (1): Wind Energy Department, Risø of measuring the power curve is by using the wind speed at hub height. The assumption behind this is that the wind speed is representative of the wind over the whole turbine rotor. While this assumption

197

Turbine Inflow Characterization at the National Wind Technology Center  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

198

Chapter 9 - Hydraulic Turbines  

Science Journals Connector (OSTI)

This chapter covers the following topics: Features of hydraulic turbines; Early history and development; Efficiency of various types of turbine; Size of the various turbine types; The Pelton wheel turbine and controlling its speed; Energy losses; Reaction turbines; The Francis and the Kaplan turbines; Calculation of performance; Effect of size on the performance of hydraulic turbines; Cavitation and its avoidance; Calculation of the various specific speeds of turbines; The Wells turbine- Design and performance variables; Tidal power turbines- The SeaGen tidal turbine and its operational principles.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

199

Application of Damage Detection Techniques Using Wind Turbine Modal Data  

SciTech Connect (OSTI)

As any structure ages, its structural characteristics will also change. The goal of this work was to determine if modal response data fkom a wind turbine could be used in the detection of damage. The input stimuli to the wind turbine were from traditional modal hammer input and natural wind excitation. The structural response data was acquired using accelerometers mounted on the rotor of a parked and undamaged horizontal-axis wind turbine. The bolts at the root of one of the three blades were then loosened to simulate a damaged blade. The structural response data of the rotor was again recorded. The undamaged and damage-simulated datasets were compared using existing darnage detection algorithms. Also, a novel algorithm for combining the results of different damage detection algorithms was utilized in the assessment of the data. This paper summarizes the code development and discusses some preliminary damage detection results.

Gross, E.; Rumsey, M.; Simmermacher, T.; Zadoks, R.I.

1998-12-17T23:59:59.000Z

200

MHK Technologies/Wells Turbine for OWC | Open Energy Information  

Open Energy Info (EERE)

Turbine for OWC Turbine for OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wells Turbine for OWC.png Technology Profile Primary Organization Voith Hydro Wavegen Limited Project(s) where this technology is utilized *MHK Projects/Siadar Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description From Brochure Wells turbine is a fixed pitch machine with only one direction of rotation Therefore the rotor is symeteric with respect to the rotation plane Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

202

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

203

Comparison between the measured and calculated reactivity in measuring the effectiveness of the emergency protection at the stage of physical start-up of unit no. 3 at the Kalinin nuclear power plant  

SciTech Connect (OSTI)

This paper presents comparisons between the effectiveness of the emergency protection under both stationary and nonstationary formulations calculated with the use of the RADUGA-7.5 package and experimental data obtained in measuring the 'weight' of the emergency protection in the process of physical start-up of the VVER-1000 reactor of unit no. 3 of the Kalinin NPP. On the basis of the results obtained, recommendations are given on comparing the measured and calculated reactivity and parameters determined by using its value.

Kavun, O. Yu.; Popykin, A. I.; Shevchenko, R. A., E-mail: rshevchenko@secnrs.ru; Shevchenko, S. A. [Scientific and Engineering Center for Nuclear and Radiation Safety (Russian Federation)

2012-12-15T23:59:59.000Z

204

Steam turbine path evaluation during maintenance  

SciTech Connect (OSTI)

The deterioration of a turbine (Steam & Gas) flow path affects the efficiency of the turbine. The most critical factors which affect the efficiency of turbines are: wearing out of the trailing edges of the blades by solid particle erosion, deposits, material loss due to corrosion (also sand blast) which increases the flow area, increases in blade surface roughness, etc. Wearing out of the seals caused by shaft vibrations or rapid start-up leads to significant leakage losses. Some of these effects can be estimated with some precision during operation of the turbine, but an exact evaluation can be carried out during a maintenance applying a special fluid flow analysis program. Such a program has been developed and then adapted to achieve this goal. During maintenance the complete geometry of the steam path is measured (blades lengths, widths, angles, clearances, etc.) in the condition encountered before any corrections. Then the similar measurement is undertaken after, for example, clearance corrections, blade replacements, cleaning of the blades, etc. Using the program first of all the design data is calculated. Then the actual data is fed into the program and compared to the design data. Thus the effect of the blade surface roughness, increased seal clearances, flow area increase, solid particle damage to the trailing edge and so on for each particular stage is calculated. The effect is expressed in [kW] as a deviation from the design points. This data can be helpful during online evaluation of the turbine performance. This evaluation helps the management of the plant in undertaking the correct decision concerning the date of the next major maintenance and replacement part procurement. Many turbines in the Mexican utility have been evaluated in such a manner. Some examples are presented.

Kubiak, J.; Angel, F. del; Carnero, A.; Campos, A. [Instituto de Investigaciones Electricas, Temixo, Morelos (Mexico)] [and others

1996-07-01T23:59:59.000Z

205

SMART Wind Turbine Rotor: Data Analysis and Conclusions  

Broader source: Energy.gov [DOE]

This report documents the data post-processing and analysis performed to date on the field test data.

206

Comparative investigation of unsteady flow interactions in endwall regions of shrouded and unshrouded turbines  

Science Journals Connector (OSTI)

Abstract The flow in turbomachinery is inherently unsteady, and the endwall losses are major sources of lost efficiency in turbine cascades. Therefore, the investigation of unsteady endwall flow interactions and the consideration of the effects into turbine design are valuable to improve the turbine performance. Comparative investigation into the physical mechanisms of unsteady endwall flow interactions of 1.5-stage shrouded and unshrouded turbines are performed by using a three-dimensional Navier–Stokes viscous solver. Emphasis is placed on how unsteady stator–rotor interactions affect turbine endwall secondary flows, and the feasibility of incorporating the unsteady endwall flow effects in turbine design is also discussed. The results show that unsteady interactions between upstream wake, tip leakage vortex/mixing zone and downstream passage vortex are the main factor affecting turbine endwall secondary flows. Unsteady interactions can reduce the radial vorticity of turbine endwall secondary flows, and the effects of these interactions on the streamwise vorticity of endwall secondary flows depend on upstream wake characteristics. The properly controlled unsteady interactions can reduce the size and intensity of endwall secondary flows, and thus improve the turbine performance. Because of the difference of turbine tip architectures, the periodic fluctuations of the flow in the shrouded turbine have smaller amplitude than those in the unshrouded turbine, and the shrouded turbine is of better unsteady performance than the unshrouded turbine.

Jie Gao; Qun Zheng

2014-01-01T23:59:59.000Z

207

Design of Rotor-side Controller Using Adaptive Time-frequency Method for DFIG Bearing Fault Detection  

Science Journals Connector (OSTI)

To ensure the reliable operation and power quality of wind power systems, the fault-tolerant control for DFIG is studied in this paper. Based on measured motor currents data, an adaptive statistical time-frequency method is then used to detect the fault ... Keywords: Doubly-fed induction generator, monitoring, wind turbine, rotor side inverter

Suratsavadee K. Korkua

2013-07-01T23:59:59.000Z

208

Start-up Unveils Flexible Supercomputing Approach  

Science Journals Connector (OSTI)

Topics include a new flexible, easily programmable supercomputer; an API that helps developers build applications for multicore chips; a private wireless-spectrum marketplace; and an intelligent pill that comes with its own microprocessor. Keywords: supercomputer, Convey Computer, FPGA, Multicore Association, Multicore Communications Application Programming Interface, MCAPI, Spectrum Bridge, wireless spectrum, Philips Research, iPill

Linda Dailey Paulson

2009-01-01T23:59:59.000Z

209

Biotechnology: The start-up engine  

Science Journals Connector (OSTI)

... and investors were baulking at the long timelines and high failure rates involved in getting biotechnology products to the market. People laughed, says Starr, when he and Third Rock' ... clinical testing. But the pharmaceutical industry was tightening internal research budgets and looking to small biotechnology firms for new medicines. ...

Heidi Ledford

2013-09-25T23:59:59.000Z

210

Starting Up Microbial Enhanced Oil Recovery  

Science Journals Connector (OSTI)

This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of the...

Michael Siegert; Jana Sitte; Alexander Galushko; Martin Krüger

2014-01-01T23:59:59.000Z

211

The Physics of Tokamak Start-Up  

Office of Scientific and Technical Information (OSTI)

C. Neumeyer, M. Ono, E. Perry, R. Ramakrishnan, R. Raman, Y. Ren, S. Sabbagh, M. Smith, V. Soukhanovskii, T. Stevenson, R. Strykowsky, D. Stutman, G. Taylor, P. Titus, K....

212

MHK Technologies/THOR Ocean Current Turbine | Open Energy Information  

Open Energy Info (EERE)

THOR Ocean Current Turbine THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary Organization THOR Turner Hunt Ocean Renewable LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The THOR ocean current turbine ROCT is a tethered fully submersible hydrokinetic device with a single horizontal axis rotor that operates at constant speed by varying the depth of operation using a patented power feedback control technology Rotor diameters can reach 60 meters for a 2 0MW class turbine and operations can be conducted as deep as 250 meters Arrays of THOR s ROCTs can be located in outer continental shelf areas 15 to 100 miles offshore in well established ocean currents such as the Gulf Stream or the Kuroshio and deliver electrical power to onshore load centers via submarine transmission line

213

Chapter 4 - Axial-Flow Turbines: Mean-Line Analysis and Design  

Science Journals Connector (OSTI)

This chapter begins with a historical perspective on the development of the modern axial turbine, which is now a highly advanced technology that is critical for aircraft propulsion and power generation. The basic analysis of axial turbines is covered, including velocity triangles and the principle mean-line relationships. The derivation of turbine efficiency from loss coefficients is presented as well as a detailed discussion of the various loss sources that lead to efficiency reduction. The main calculations used in the initial design of a multistage turbine are then detailed along with worked examples and comparisons between designs with low and high levels of reaction. Turbine efficiency correlations are also explored for different design styles. In the final sections, the centrifugal stresses in turbine rotor blades and the effects of turbine blade cooling are considered.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

214

Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint  

SciTech Connect (OSTI)

Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5 MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

2011-12-01T23:59:59.000Z

215

Geometric Modularity in the Thermal Modeling of Solar Steam Turbines  

Science Journals Connector (OSTI)

Abstract To optimize the start-up schedules of steam turbines operating in concentrating solar power plants, accurate predictions of the temperatures within the turbine are required. In previous work by the authors, thermal models of steam turbines have been developed and validated for parabolic trough solar power plant applications. Building on these results, there is an interest to increase the adaptability of the models with respect to different turbine geometries due to the growing trend of having larger steam turbines in parabolic trough and solar tower power plants. In this work, a modular geometric approach has been developed and compared against both the previous modeling approach and 96 h of measured data from an operational parabolic trough power plant. Results show a large degree of agreement with respect to the measured data in spite of the different detail levels. The new model allows for simple and fast prediction of the thermal behavior of different steam turbine sizes and geometries, which is expected to be of significant importance for future concentrating solar power plants.

M. Topel; J. Spelling; M. Jöcker; B. Laumert

2014-01-01T23:59:59.000Z

216

A novel rotor position estimation approach for an 8/6 solid rotor switched reluctance motor  

Science Journals Connector (OSTI)

Switched reluctance motor (SRM) is becoming popular due to its simple construction, low manufacturing cost, ruggedness and fault-tolerant capability. In conventional switched reluctance motor (SRM), rotor is laminated. But in solid rotor switched reluctance ... Keywords: Artificial neural network, Rotor position estimation, Solid rotor switched reluctance motor, Two-phase excitation

L. Jessi Sahaya Shanthi; R. Arumugam; Y. K. Taly

2012-04-01T23:59:59.000Z

217

Probabilistic analysis of meanline compressor rotor performance  

E-Print Network [OSTI]

This thesis addresses variability in aerodynamic performance of a compressor rotor due to geometric variation. The performance of the rotor is computed using a meanline model that includes the effect of tip clearance ...

Fitzgerald, Nathan Andrew, 1980-

2004-01-01T23:59:59.000Z

218

Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations  

Science Journals Connector (OSTI)

Abstract This paper aims to assess the Darrieus vertical axis wind turbine (VAWT) configurations, including the drawbacks of each variation that hindered the development into large scale rotor. A comprehensive timeline is given as a lineage chart. The variations are assessed on the performance, components and operational reliability. In addition, current development and future prospects of Darrieus VAWT are presented. The Darrieus VAWT patented in France in 1925 and in the US in 1931 had two configurations: (i) curved blades and (ii) straight blades configurations. Curved blades configuration (egg-beater or phi-rotor) has evolved from the conventional guy-wires support into fixed-on-tower and cantilevered versions. Straight blades configuration used to have variable-geometry (Musgrove-rotor), variable-pitch (Giromill), Diamond, Delta and V/Y rotor variations. They were stopped due to low economical value, i.e. high specific cost of energy (COE). Musgrove-rotor has evolved into fixed-pitch straight-bladed H-rotor (referred as H-rotor in this paper for simplicity). H-rotor, in turn, has evolved into several variations: Articulating, Tilted and Helical H-rotors.

Willy Tjiu; Tjukup Marnoto; Sohif Mat; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

2015-01-01T23:59:59.000Z

219

Horizontal-axis wind-system rotor performance model comparison: a compendium  

SciTech Connect (OSTI)

This compendium consists of four reports, the purpose of which is to evaluate performance prediction methods for horizontal-axis wind turbines. The reports were prepared by four separate contractors. Oregon State University, AeroVironment, Inc., Aerospace Systems, Inc., and United Technologies Research Center (UTRC). Three of the four contractors used a blade-element/momentum analysis, while the fourth (UTRC) utilized a lifting line/prescribed wake analysis. These contractors were to apply their prediction methods to two rotors, that of the Enertech 1500 and that of the 1/3-scale UTRC 8 kW turbines. Results from the four prediction methods are compared with actual test data gathered via Controlled Velocity Testing (CVT), carried out by the Rocky Flats Wind Energy Research Center, operated by Rockwell International for the US Department of Energy. The conclusions of the four reports are reviewed in an introduction prepared by Rockwell International. For the Enertech 1500, rotor performance predictions closely agreed with CVT data. Yet, because of the lack of high tip speed ratio data, verification of the Glauert momentum theory was not possible. Predictions regarding the UTRC 1/3 scale 8 kW rotor did not agree well with test results. The reasons cited for the discrepancies center on inadequate airfoil section data and the varying blade pitch angles of the unique UTRC flexbeam rotor.

Not Available

1983-02-01T23:59:59.000Z

220

Advanced wind turbine with lift cancelling aileron for shutdown  

DOE Patents [OSTI]

An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

222

Small wind turbine emulator with armature controlled separately excited DC motor via analogue electronic circuit  

Science Journals Connector (OSTI)

In this paper, a small wind turbine emulator (WTE) using separately excited DC motor is modelled, designed, simulated, implemented and tested. A 1 HP separately excited DC motor is used to emulate the characteristics of the rotor of small wind turbine. The DC motor is driven by a thyristor bridge with closed-loop cascaded PI controller for armature control. A separately excited DC generator with a variable resistive load is directly coupled to the DC motor. A small cheap analogue electronic circuit, with less interfacing, is used to generate a specific reference wind turbine speed based on the wind turbine rotor characteristics and the mechanical wind power available. Simulation and experimental results are compared to proof the validity and accuracy of the WTE.

A. Mahdy; S.M. El-Hakim; Hanafy Hassan Hanafy

2012-01-01T23:59:59.000Z

223

Chapter 1 - Gas Turbines: An Introduction and Applications  

Science Journals Connector (OSTI)

Abstract The gas turbine is the most versatile item of turbomachinery today. It can be used in several different modes in critical industries such as power generation, oil and gas, process plants, aviation, as well domestic and smaller related industries. A gas turbine essentially brings together air that it compresses in its compressor module, and fuel, which are then ignited. Resulting gases are expanded through a turbine. That turbine’s shaft continues to rotate and drive the compressor, which is on the same shaft, and operation continues. A separate starter unit is used to provide the first rotor motion until the turbine’s rotation is up to design speed and can keep the entire unit running. The compressor module, combustor module, and turbine module connected by one or more shafts are collectively called the gas generator. The first half of this chapter looks at some typical examples of land, air, and sea use. The second half of this chapter deals in more detail with different applications and their subdivisions. “The farther backwards you can look, the farther forward you are likely to see.” —Winston Churchill

Claire Soares

2015-01-01T23:59:59.000Z

224

MHK Technologies/Ocean Current Linear Turbine | Open Energy Information  

Open Energy Info (EERE)

Linear Turbine Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary Organization Ocean Energy Company LLC Technology Type Click here Seabed mooring system Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Endless cable loop with parachutes spliced to cable which moored in an ocean current pulls the cable through rotors which in turn power conventional electricity generators See US Patent 3 887 817 Additional patent pending Technology Dimensions Device Testing Date Submitted 30:08.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Ocean_Current_Linear_Turbine&oldid=681618"

225

Amplitude modulation of wind turbine noise  

E-Print Network [OSTI]

Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

226

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

227

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

228

Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)  

SciTech Connect (OSTI)

Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

2014-02-01T23:59:59.000Z

229

Gas turbine power plant with supersonic shock compression ramps  

DOE Patents [OSTI]

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

230

Wind turbine tower for storing hydrogen and energy  

DOE Patents [OSTI]

A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

Fingersh, Lee Jay (Westminster, CO)

2008-12-30T23:59:59.000Z

231

Turbine airfoil fabricated from tapered extrusions  

DOE Patents [OSTI]

An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

Marra, John J

2013-07-16T23:59:59.000Z

232

Chapter 8 - Radial-Flow Gas Turbines  

Science Journals Connector (OSTI)

The various types of radial-flow gas turbine are described. A Mollier diagram with the changes in enthalpy of the component parts is shown for the turbine. Loss coefficients are defined and numerous calculation methods are outlined. The calculation of the all-important total-to-static efficiency is made and discussed. Some discussion of the losses in the inlet scroll and nozzle blades with an important expression for their calculation is given. The criterion for the minimum number of blades is explained. The design of the rotor exit is considered and some details of the effects of vane solidity are calculated. Details of the optimum design using the concept of specific speed are included. A brief discussion of the clearance and windage losses is given. Numerous examples and problems are included.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

233

CFD-based design load analysis of 5MW offshore wind turbine  

Science Journals Connector (OSTI)

The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM respectively ). In CFD method the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

T. T. Tran; G. J. Ryu; Y. H. Kim; D. H. Kim

2012-01-01T23:59:59.000Z

234

Wind Turbines for Marine Propulsion  

Science Journals Connector (OSTI)

ABSTRACT The design and construction of an horizontal axis wind turbine drive for a small yacht is described. This system has been designed to test the performance of this novel type of propulsion for use in commercial shipping, the fisheries industry and for the recreational market. The use of wind turbines to harness the power available from the wind for propulsion purposes offers a number of distinct advantages over other wind propulsion systems. Propulsion is achieved in all directions of travel relative to the wind. Complete control of the system can be arranged from a remote control position such as the ships bridge. This control can be achieved with a small crew because of the opportunities for applying powered and automated control systems. The way in which each of these features is achieved, together with details of the rotor, shafting and gear-train arrangements are described here. An indication is given of the theoretical performance of the yacht under this form of propulsion.

N. Bose; R.C. McGregor

1984-01-01T23:59:59.000Z

235

Steam turbine materials and corrosion  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

236

Tax Credit for Manufacturers of Small Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Program Info Start Date 01/01/03 State Oklahoma Program Type Industry Recruitment/Support Rebate Amount Based on square footage of rotor swept area: 25.00/ft^2 for 2005 through 2012 Provider Oklahoma Tax Commission '''''Note: After a 2 year moratorium on all state tax credits, this credit may be claimed for tax year 2012 and subsequent tax years, for small wind turbines manufactured on or after July 1, 2012.''''' Oklahoma offers an income tax credit to the manufacturers of small wind turbines for tax years 2003 through 2012. Oklahoma manufacturers of wind turbines with a rated capacity of between 1 kilowatt (kW) and 50 kW are

237

NREL: Wind Research - Entegrity Wind Systems's EW50 Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Entegrity Wind Systems's EW50 Turbine Testing and Results Entegrity Wind Systems's EW50 Turbine Testing and Results Entegrity Wind Systems' EW50 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Entegrity Wind Systems' EW50 turbine at the National Wind Technology Center (NWTC). The EW50 is a 50-kilowatt (kW), three-bladed, horizontal-axis downwind small wind turbine. The turbine's rotor diameter is 15 meters, and its hub height is 30.5 meters. It has a three-phase induction generator that operates at 480 volts AC. Testing Summary The summary of the tests is listed below, along with the final reports. Cumulative Energy Production 3/11/2009: 17; 3/12/2009: 17; 3/13/2009: 17; 3/14/2009: 17; 3/15/2009: 17;

238

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect (OSTI)

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

239

Globally competitive variable-speed wind turbines  

SciTech Connect (OSTI)

This paper focuses on the design issues which must be addressed if variable-speed wind turbines are to compete in the global marketplace. The paper examines how component-specific design decisions must be made on a system level if an optimized system is to be the result. The relationships among the blades, the generator and the utility interface are considered in detail, using the conceptual design of a 12 kW variable-speed wind turbine (the AOC 8/12) as a running example. The turbine is based on a direct-drive variable-reluctance generator (VRG), a single- or three-phase utility interface as appropriate, and a three-bladed rotor with fixed pitch. A preliminary turbine specification is provided, along with candidate power-speed curves and annual energy output. This paper documents the continuing development and commercialization of this technology which is being taken from the proof-of-concept stage and is now headed for field testing.

Torrey, D.A. [Rensselaer Polytechnic Institute, Troy, NY (United States); Childs, S.E.; Johnson, B.; Carter, J. [Atlantic Orient Corp., Norwich, VT (United States)

1995-12-31T23:59:59.000Z

240

Robust STATCOM control for the stabilisation of fixed-speed wind turbines during low voltages  

E-Print Network [OSTI]

and rotor- speed instability and more so if the wind turbine is connected to a weak grid. To prevent is still being produced by squirrel-cage induction generators (SCIGs) which are directly connected to the grid and operate at an almost fixed-speed [3]. They are advantageous as wind generators for their low

Pota, Himanshu Roy

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

242

9 - Materials and coatings developments for gas turbine systems and components  

Science Journals Connector (OSTI)

Abstract: The efficiency increase of advanced gas turbines (GTs) is often accompanied with increased thermal, mechanical and environmental loading of turbine, combustor and rotor materials. The development of alloys suitable for such applications has been described with regard to metallurgical rationales and manufacturing processes. Combustor and turbine hot parts materials are developed to manage thermo-mechanical loading. To control thermal and environmental loading, thermal barrier coating and oxidation/corrosion resistant coating have been used. The lifetime prediction based on laboratory tests has been validated by engine experience evaluation of coated parts. Failure mechanisms as well as optimised manufacturing have been discussed in detail to indicate future needs.

M. Konter; H-P. Bossmann

2013-01-01T23:59:59.000Z

243

FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03  

SciTech Connect (OSTI)

This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

2011-12-29T23:59:59.000Z

244

Acoustic emission monitoring of steam turbines. Final report  

SciTech Connect (OSTI)

Experience over several years with on-line monitoring of steam turbines, supported by relevant laboratory studies, has led to a clearer understanding of the conditions under which acoustic emission (AE) due to turbine shaft cracking can be detected. To overcome problems associated with the noisy environment, efforts have been directed at improving the AE signal discrimination capabilities of the monitoring electronics. These efforts have been guided by extensive measurements of the amplitude, frequency and time dependence of normal turbine noises in a variety of operating conditions. Similar measurements have been made in the laboratory to determine the characteristics of AE due to crack growth in rotor steels with several loading conditions and temperatures. Along with determinations of the attenuation and wave propagation characteristics of simulated AE in the rotor shafts, these measurements have permitted estimates of the detectability of AE due to crack growth under various conditions, should it occur. An essential part of the proposed monitoring will be determining the source locations and characteristics of ''normal'' operating noise and developing time histories of these sources so that when ''abnormal'' crack growth AE occurs, it will be recognized. The time histories of the ''normal'' operating noises may also reveal other potentially damaging conditions such as lubricating oil contamination, bearing wear, out-of-balance condition, loose turbine disks, blade cracking or rubbing and impingement of exfoliation particles or water droplets, each of which is known or expected to have a characteristic acoustic signature. 17 refs., 23 figs., 8 tabs.

Randall, R.L.; Hong, C.; Graham, L.J.

1986-02-01T23:59:59.000Z

245

Sandia National Laboratories: The Influence of Rotor Blade Design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Rotor Testbed (NRT) includes research to quantify the degree to which the blade design load distribution influences the rotor near- and mid-wake velocity deficits and...

246

Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder  

SciTech Connect (OSTI)

Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

Muth, T. R.; Mayer, R. (Queen City Forging)

2012-05-04T23:59:59.000Z

247

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

248

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

249

Blind Test 2 calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds  

Science Journals Connector (OSTI)

Abstract In this paper we report on the results of the Blind Test 2 workshop, organized by Norcowe and Nowitech in Trondheim, Norway in October 2012. This workshop was arranged in order to find out how well wind turbine simulation models perform when applied to two turbines operating in line. Modelers with a suitable code were given boundary conditions of a wind tunnel test performed in the large wind tunnel facility at the Department of Energy and Process Engineering, at NTNU Trondheim, where two almost identical model turbines with a diameter of about 0.9?m had been tested under various operating conditions. A detailed geometry specification of the models could be downloaded and the modelers were invited to submit the calculation without knowing the experimental results in advance. Nine different contributions from eight institutions were received, representing a wide range of simulation models, such as a LES coupled with an actuator line rotor model, RANS using an actuator disc, U-RANS models applied to fully resolved turbine model geometries, as well as a vortex panel method. The comparison showed a larger than expected scatter on the performance calculation of the upstream turbine (±20%), and an even higher uncertainty for the downstream turbine, especially at operating conditions close to the runaway point. The modelers were requested to document the wake development downstream of the second turbine, the development behind the first turbine had been the challenge for a previous blind test (see Krogstad and Eriksen [17]). Mean flow calculations reported at X = 1D downstream of the second turbine showed that the models which fully resolved boundary layers on the rotor surface performed best. Including the tower and the hub in the simulation improved the accuracy of the predictions and is essential in capturing the important asymmetries that develop in the wake. These turbine details strongly influence the development near the center of the wake, but are often omitted in simulations in order to incorporate simplifying symmetry conditions in the calculations. Further from the rotor, at X = 4D, the LES simulations coupled to actuator line rotor models performed well and were able to capture the main features of the mean and turbulent flows, while RANS models using actuator disc models showed limitations especially in predicting correctly the turbulent kinetic energy.

Fabio Pierella; Per-Åge Krogstad; Lars Sætran

2014-01-01T23:59:59.000Z

250

Removable inner turbine shell with bucket tip clearance control  

DOE Patents [OSTI]

A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.

Sexton, Brendan F. (Clifton Park, NY); Knuijt, Hans M. (Niskayuna, NY); Eldrid, Sacheverel Q. (Saratoga Springs, NY); Myers, Albert (Amsterdam, NY); Coneybeer, Kyle E. (Schenectady, NY); Johnson, David Martin (Ballston Lake, NY); Kellock, Iain R. (Clifton Park, NY)

2000-01-01T23:59:59.000Z

251

Understanding Trends in Wind Turbine Prices Over the Past Decade  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Trends in Wind Turbine Prices Over the Past Decade Understanding Trends in Wind Turbine Prices Over the Past Decade Title Understanding Trends in Wind Turbine Prices Over the Past Decade Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Bolinger, Mark, and Ryan H. Wiser Pagination 46 Date Published 10/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Berkeley Lab has gathered price data on 81 U.S. wind turbine transactions totaling 23,850 MW announced from 1997 through early 2011. Figure ES-1 depicts these reported wind turbine transaction prices (along with the associated trend line), broken out by the size of the transaction (in MW). Figure ES-1 also presents average (global) turbine prices reported by Vestas for the years 2005 through 2010, as well as a range of reported pricing (among various turbine manufacturers) for transactions signed in 2010 and so far in 2011 (with 2011 prices generally lower than 2010 prices). After hitting a low of roughly $750/kW from 2000 to 2002, average wind turbine prices doubled through 2008, rising to an average of roughly $1,500/kW. Wind turbine prices have since declined substantially, with price quotes for transactions executed in 2010 and to date in 2011 ranging from $900-$1,400/kW depending on the manufacturer and turbine model. For example, turbines designed for lower wind speed sites - deploying higher hub heights and larger rotor diameters for a given nameplate capacity - are priced at the higher end of this range. These quotes suggest price declines of as much as 33% or more since late 2008, with an average decline closer to perhaps 20% for orders announced in 2010 (as opposed to in 2011, which has seen further price declines). These two substantial and opposing wind turbine price trends over the past decade - and particularly the doubling in prices in the 2002-2008 period - run counter to the smooth, gradually declining technology cost trajectories that are often assumed by energy analysts modeling the diffusion of new technologies, including wind power. Understanding and explaining this notable discrepancy between theory and historical reality is the primary motivation for this work. Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues).

252

Virtual dynamic balancing method without trial weights for multi-rotor series shafting based on finite element model analysis  

Science Journals Connector (OSTI)

The traditional influence coefficient dynamic balancing method for multi-rotor series shafting such as turbine-generator sets gas turbines compressor trains and others usually needs to startup many times using trial weights along the rotor. Based on finite element model analysis for the multi-rotor series shafting a virtual dynamic balancing methodology which only needs to collect data of vibration response at operating speed without trial weights is developed in this paper. According to shafting structure and operating parameters the dynamic finite element model was built by using rotor dynamics theory and finite element simulation technology. The shafting dynamic characteristics and weighted influence coefficient matrix can be gotten by exciting virtual unbalance force on the balance place correspondingly. The effectiveness and flexibility of the proposed method have been illustrated by solving a shafting dynamic balancing example with no trial weights requirements. It is believed that the new methods developed in this work will help in reducing the time and cost of the equipment manufacturer or field dynamic balancing procedures.

2014-01-01T23:59:59.000Z

253

Substantially parallel flux uncluttered rotor machines  

DOE Patents [OSTI]

A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

Hsu, John S.

2012-12-11T23:59:59.000Z

254

NREL: Wind Research - Viryd Technologies' CS8 Turbine Testing and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viryd Technologies' CS8 Turbine Testing and Results Viryd Technologies' CS8 Turbine Testing and Results Viryd Technologies CS8 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing Viryd Technologies' CS8 small wind turbine at the National Wind Technology Center (NWTC). The CS8 is an upwind, horizontal-axis, three-bladed, stall controlled turbine rated at 8 kilowatts (kW). It has an 8.5-meter rotor diameter and is mounted on a guyed tilt-up lattice tower with a hub height of 24.9 meters. The CS8 uses a single-phase, grid-connected, induction generator that operates at 240 volts AC. Testing Summary Supporting data and explanations for data included in this table are provided in the final reports.

255

Turbine set with a generator feeding a network of constant frequency  

SciTech Connect (OSTI)

In a turbine set with an axial flow which is traversed by water and which is coupled to a generator feeding a network of constant frequency, the flow turbine is a propeller turbine with nonadjustable blades. The stator winding of the generator is connected to the network by means of a frequency-controllable converter, in particular a direct converter. The speed of rotation of the turbine set is controllable continuously according to the power to be delivered. In the case of an asynchronous design of the generator, it is advisable to provide the stator with a waterproof jacket on the inside and to flange it into the turbine tube, since the rotor with its cage winding is swept by water.

Spirk, F.

1983-01-11T23:59:59.000Z

256

Operation of a third generation wind turbine  

SciTech Connect (OSTI)

A modern wind turbine was installed on May 26, 1982, at the USDA Conservation and Production Research Laboratory, Bushland, Texas. This wind machine was used to provide electrical energy for irrigation pumping and other agricultural loads. The wind turbine purchased for this research is an Enertech Model 44, manufactured by Enertech Corporation, Norwich, Vermont. The horizontal-axis wind turbine has a 13.4 m diameter, three-bladed, fixed-pitch rotor on a 24.4-m tower. The blades are laminated epoxy-wood, and are attached to a steel hub. A 25-kW induction generator provides 240 V, 60 Hz, single-phase electrical power. The wind turbine operated 64 percent of the time, while being available to operate over 94 percent of the time. The unit had a net energy production of over 80,000 kWh in an average windspeed of 5.9 m/s at a height of 10 m in a 16-month period. The blade pitch was originally offset two degrees from design to maintain power production within the limitations of the gearbox, generator, and brakes. A maximum output of 23.2 kW averaged over a 15-second period indicated that with a new brake, the system was capable of handling more power. After a new brake was installed, the blade pitch was changed to one degree from design. The maximum power output measured after the pitch change was 29.3 kW. Modified blade tip brakes were installed on the wind turbine on July 7, 1983. These tip brakes increased power production at lower windspeeds while reducing power at higher windspeeds.

Vosper, F.C.; Clark, R.N.

1983-12-01T23:59:59.000Z

257

Wind Turbines Benefit Crops  

SciTech Connect (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2010-01-01T23:59:59.000Z

258

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

259

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

260

Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)  

SciTech Connect (OSTI)

Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Arabelle: The most powerful steam turbine in the world  

SciTech Connect (OSTI)

On the 30th of August 1996 at the CHOOZ power station in the Ardennes, the first 1,500 MW turbine was started up under nuclear steam and connected to the grid. It will reach full power in the spring of 1997, followed shortly afterwards by a second identical machine. This turbine, known as ARABELLE, is currently the most powerful in the world, with a single line rotating at 1,500 rpm. It has been entirely designed, manufactured and installed by the teams of GEC ALSTHOM, within the framework of the Electricite de France N4 PWR program. It represents a new type of nuclear turbine, the fruit of much research and development work which started in the 1980s. It benefits from GEC ALSTHOM's considerable experience in the field of nuclear turbines: 143 machines with a total power output of 100,000 MW and more than ten million hours of operation. It should be remembered that the first 1,000 MW unit for a PWR plant was connected at Fessenheim in 1977, and since then the different EDF plants have been equipped with 58 GEC ALSTHOM turbines, ranging from 1,000 MW to 1,350 MW, this providing the company with a vast amount of information. The process which led to a new design for ARABELLE was based on: Feedback of service experience from previous machines; this provides precious learning material with a view to improving the performance of operating equipment. Research and development work resulting in significant technical advances which could then be integrated into the design of a new generation of turbines. Taking account of the major concerns of the customer-user: Electricite de France (EDF): Improved reliability and operating availability, increased efficiency, reduced investment and maintenance costs.

Lamarque, F.; Deloroix, V.

1998-07-01T23:59:59.000Z

262

Sliding vane geometry turbines  

SciTech Connect (OSTI)

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30T23:59:59.000Z

263

Wind Turbine Competition Introduction  

E-Print Network [OSTI]

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

264

NETL: Turbines - Oxy-Fuel Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

265

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

can significantly increase turbine efficiency. Exploratorymodel indicate that turbine efficiencies exceeding 75% canand experimental turbine efficiencies. The CFD solutions of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

266

Acoustic modulation effect of rotating stator/rotor interaction noise  

E-Print Network [OSTI]

order, B(k) is the number of rotor blades, (k) is the angular velocity of the rotor, (l) is the angular on the rotor blades and on the fixed parts. According to the Ffowcs-Williams and Hawk- ings analogy comes from the periodic forces on the rotor blades and the forces on the other static parts of the fan

Boyer, Edmond

267

Safety Warnings Quad Rotors (Quad-Pilot 2 F.3)  

E-Print Network [OSTI]

Safety Warnings Quad Rotors (Quad-Pilot 2 F.3) The quad rotor "quad-pilot 2 F.3" is a complicated accidents from taking place. Operation of the quad rotor should be performed in a safe and responsible not accept any liability for damage and consequent damage arising from the use of the quad rotors, as we have

Langendoen, Koen

268

Steam-turbine generatorson-line monitoring and availability  

SciTech Connect (OSTI)

Dislocations following the 1973 energy crisis plus the current financial plight of utilities have forced the American power industry to consider availability a primary variable in the design and operation of a power plant. For meeting expected customer demands, raising the availability of existing plants may temporarily offset the need for a new plant. Also, the financial reward for raising availability produces immediate results (e.g., a 1 percent improvement in availability of a 500 MW plant is worth $1 million a year). Average availability of U.S. power plants is currently around 65 percent. The industry believes that 80 percent is achievable. Improvement of operating availability is based on generic problem identification and solution, reducing the frequency of periodic inspections, and minimizing the time to perform required maintenance. Increased stocking of spare parts is a valuable tool for increasing availability. Also, some turbine manufacturers are designing their low-pressure turbines to allow rotor interchangeability. The purchase price of a completely bladed low-pressure rotor by a utility is recovered by reducing maintenance downtime expense and raising unit availability. Interchangeable high-pressure rotors can provide similar availability improvement benefits. Another concept to improve availability includes the use of on-line monitoring and diagnostics. Rapid advances in electronics and microcomputers over the past decade have led to techniques for on-line analyses that were not considered possible a few years ago.

Bannister, R.L.; Bellows, J.C.; Osborne, R.L.

1983-07-01T23:59:59.000Z

269

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

270

Interlayer toughening of fiber composite flywheel rotors  

SciTech Connect (OSTI)

An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

1998-01-01T23:59:59.000Z

271

A carbon nanotube bearing and Stodola rotor  

E-Print Network [OSTI]

A nano-scale rotor supported on a cantilevered multi-wall carbon nanotube (MWNT) shaft (Stodola configuration) is proposed. The nanotube is also expected to function as the bearing, since individual walls of a MWNT are not ...

Cook, Eugene Hightower

2008-01-01T23:59:59.000Z

272

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

273

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

274

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

275

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

276

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

277

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

278

Economical Condensing Turbines?  

E-Print Network [OSTI]

an engineer decide when to conduct an in depth study of the economics either in the company or outside utilizing professional engineers who are experts in this type of project. Condensing steam turbines may not be economical when the fuel is purchased...Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown...

Dean, J. E.

279

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

280

Operating wind turbines in strong wind conditions by using feedforward-feedback control  

Science Journals Connector (OSTI)

Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

Ju Feng; Wen Zhong Sheng

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sandia National Laboratories: functional rotor scaling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

282

User`s Guide for the NREL Teetering Rotor Analysis Program (STRAP)  

SciTech Connect (OSTI)

The following report gives the reader an overview of instructions on the proper use of the National Renewable Energy Laboratory (formerly the Solar Energy Research Institute, or SERI) teetering Rotor Analysis Program (STRAP version 2.20). STRAP is a derivative of the Force and Loads Analysis program (FLAP). It is intended as a tool for prediction of rotor and blade loads and response for only two-bladed teetering hub wind turbines. The effects of delta-3, undersling, hub mass, and wind turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed teetering hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user`s guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

Wright, A.D.

1992-08-01T23:59:59.000Z

283

19 - Sensing solutions for assessing and monitoring wind turbines  

Science Journals Connector (OSTI)

Abstract: This chapter focuses on structural health monitoring (SHM) for wind turbines. Repair and downtime costs can potentially be reduced with the continuous monitoring of structure and environment. Available SHM approaches for rotor blades and support structure are presented extensively, with a special focus on the sensor technology and the methods used. Important monitoring methods, such as modal-based methods, acoustic emission, and ultrasound wave propagation are presented. For monitoring of support structures, different foundation concepts are introduced with specific neuralgic spots. Subsequently, some of the global and local SHM approaches, as well as case studies are presented.

R. Rolfes; S. Tsiapoki; M.W. Häckell

2014-01-01T23:59:59.000Z

284

An experimental and computational study of transonic three-dimensional flow in a turbine cascade  

SciTech Connect (OSTI)

Detailed experimental measurements of the flow in a cascade of turbine rotor blades with a nonplanar end wall are reported. The cascade geometry was chosen to model as closely as possible that of a H.P. gas turbine rotor blade. The blade section is designed for supersonic flow with an exit Mach number of 1.15 and the experiments covered a range of exit Mach numbers from 0.7-1.2. Significant three-dimensional effects were observed and the origin of these is discussed. The measurements are compared with data for the same blade section in a two-dimensional cascade and also with the predictions of two different fully three-dimensional inviscid flow calculation methods. It is found that both these calculations predict the major threedimensional effects on the flow correctly.

Camus, J.J.; Denton, J.D.; Scrivener, C.T.J.; Soulis, J.V.

1984-04-01T23:59:59.000Z

285

Turbine repair at Nesjavellir geothermal power plant: An Icelandic case study  

Science Journals Connector (OSTI)

Abstract During a quadrennial inspection of a 30 MW Mitsubishi steam turbine at Nesjavellir geothermal power plant, corrosion products were found on the last set of labyrinth packing in the gland seal system which resulted in erosion corrosion of the turbine rotor. The rotor had worn by approximately 8 mm. Because of the tight timeframe of the overhaul, it was decided to repair this failure on site using the experience of the staff and domestic industry. Labyrinth seals were built by a domestic machine shop, decreasing cost and shutdown time dramatically. This article describes the occurring failure and how it was repaired within days with cooperation between the energy company and domestic industry. It further discusses probable causes for such failure and how it may be prevented. The article describes in essence how valuable it can prove to build maintenance knowledge domestically in the geothermal sector.

R.S. Atlason; A. Gunnarsson; R. Unnthorsson

2015-01-01T23:59:59.000Z

286

Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan  

Science Journals Connector (OSTI)

Wave tank testing of scaled models is standard practice during the development of floating wind turbine platforms for the validation of the dynamics of conceptual designs. Reliable recreation of the dynamics of a full scale floating wind turbine by a scaled model in a basin requires the precise scaling of the masses and inertias and also the relevant forces and its frequencies acting on the system. The scaling of floating wind turbines based on the Froude number is customary for basin experiments. This method preserves the hydrodynamic similitude, but the resulting Reynolds number is much lower than in full scale. The aerodynamic loads on the rotor are therefore out of scale. Several approaches have been taken to deal with this issue, like using a tuned drag disk or redesigning the scaled rotor. This paper describes the implementation of an alternative method based on the use of a ducted fan located at the model tower top in the place of the rotor. The fan can introduce a variable force that represents the total wind thrust by the rotor. A system controls this force by varying the rpm, and a computer simulation of the full scale rotor provides the desired thrust to be introduced by the fan. This simulation considers the wind turbine control, gusts, turbulent wind, etc. The simulation is performed in synchronicity with the test and it is fed in real time by the displacements and velocities of the platform captured by the acquisition system. Thus, the simulation considers the displacements of the rotor within the wind field and the calculated thrust models the effect of the aerodynamic damping. The system is not able currently to match the effect of gyroscopic momentum. The method has been applied during a test campaign of a semisubmersible platform with full catenary mooring lines for a 6MW wind turbine in scale 1/40 at Ecole Centrale de Nantes. Several tests including pitch free decay under constant wind and combined wave and wind cases have been performed. Data from the experiments are compared with aero-servo-hydro-elastic computations with good agreement showing the validity of the method for the representation of the scaled aerodynamics. The new method for the aerodynamic thrust scaling in basin tests is very promising considering its performance, versatility and lower cost in comparison with other methods.

José Azcona; Faisal Bouchotrouch; Marta González; Joseba Garciandía; Xabier Munduate; Felix Kelberlau; Tor A Nygaard

2014-01-01T23:59:59.000Z

287

Wind turbine generators having wind assisted cooling systems and cooling methods  

DOE Patents [OSTI]

A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

2008-09-23T23:59:59.000Z

288

Turbines and turbulence  

Science Journals Connector (OSTI)

... Will wind turbines wreck the environment? Last month, the South China Morning Post published a news story ... dismissive official quoted probably has a point. There is no solid scientific evidence that wind turbines can trigger major changes in rainfall. And given Nature's conversations with atmospheric modellers ...

2010-12-22T23:59:59.000Z

289

Modern Gas Turbines  

Science Journals Connector (OSTI)

... THE published information on gas turbines is both voluminous and widely dispersed, a considerable part of the technical literature of ... hands of students whose imagination has been fired by the rapid development of the gas turbine, and whose knowledge of thermodynamics may not be sufficient to detect such errors. There ...

E. G. STERLAND

1948-06-12T23:59:59.000Z

290

Shipbuilding: Cunard Turbines Examined  

Science Journals Connector (OSTI)

... judge. It will be a great achievement if he can devise an assessment of the turbine troubles to satisfy all three parties. The Minister of Technology, Mr Anthony Wedgwood Benn ... Arnold to examine reports from all three companies on the faults which arose in the turbines during the recent trials of the QE2, and to assess the remedial measures that ...

1969-02-15T23:59:59.000Z

291

Technological Advances in Hydraulic Drive Trains for Wind Turbines  

Science Journals Connector (OSTI)

The reliability of frequency converters is a major concern for wind turbines. ChapDrive AS has built and tested a hydraulic drive train for variable speed wind turbines which includes a synchronous generator that is connected to the grid without the use of a frequency converter. The hydraulic drive train consists of a hydraulic pump, a variable displacement hydraulic motor, and a synchronous generator, which enables rotor speed control while maintaining synchronous speed of the generator. It has been proven that the hydraulic drive train and the ChapDrive Control system are able to absorb fluctuations in the wind speed and maintain a constant power output without the use of frequency converters. The hydraulic drive train and the ChapDrive Control system has been modeled analytically and compared to measurements, demonstrating a good agreement between simulations and measurements.

K.E.Thomsen; O.G. Dahlhaug; M.O.K. Niss; S.K. Haugset

2012-01-01T23:59:59.000Z

292

Ceramic Cerami Turbine Nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

293

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

294

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

295

Wind turbine aerodynamics: analysis and design  

Science Journals Connector (OSTI)

In this paper, the classical work on wind turbine is reviewed, starting from the ground work of Rankine and Froude, then revisiting the minimum energy condition of Betz, and applying modern computing techniques to build codes, based on the vortex model of Goldstein that are both fast and reliable. Such numerical simulations can be used to help analyse and design modern wind turbines in regimes where the flow is attached. Much of the work has been developed under the impulsion of General Electric whose support is gratefully acknowledged. The vortex model has reached a mature state which includes capabilities to model unsteady flows due to yaw, tower interference and earth boundary layer as well as flows past rotors with advanced blade tips that have sweep and/or winglets. When separation occurs on the blades, a higher fidelity model is presented, called the hybrid method, which consists in coupling a Navier-Stokes solver with the vortex model, the Navier-Stokes code solving the near blade flow whereas the vortex model convects the circulation to the far field without dissipation and allows for accurate representation of the induced velocities. Further development of the vortex model includes its coupling with a blade structural model to perform aeroelasticity studies.

Jean-Jacques Chattot

2011-01-01T23:59:59.000Z

296

Home24, start-up base Berlin, est devenue en moins de 3 ans le leader de la vente en ligne de meubles et d'accessoires de maison en Allemagne (www.home24.de). Fonde dbut 2010, Home24 travaille en partenariat avec  

E-Print Network [OSTI]

Home24, start-up basée à Berlin, est devenue en moins de 3 ans le leader de la vente en ligne de meubles et d'accessoires de maison en Allemagne (www.home24.de). Fondée début 2010, Home24 travaille en 2012, Home24 est également présent en France, aux Pays-Bas et en Autriche. Dans le cadre de son

Halazonetis, Thanos

297

Ris-R-1400(EN) Dynamic wind turbine models in power  

E-Print Network [OSTI]

.2.1.1 Squirrel cage induction generator (SCIG) 9 2.2.1.2 Doubly-fed induction generator (DFIG) 12 2.2.2 Power of a variable speed wind turbine with DFIG 54 4.4 Doubly-fed induction generator control 57 4.4.1 System reference frames 57 Risø-R-1400(EN) 3 #12;4.4.2 Control configuration of DFIG in DIgSILENT 58 4.4.3 Rotor

298

Accelerator dynamics of a fractional kicked rotor  

E-Print Network [OSTI]

It is shown that the Weyl fractional derivative can quantize an open system. A fractional kicked rotor is studied in the framework of the fractional Schrodinger equation. The system is described by the non-Hermitian Hamiltonian by virtue of the Weyl fractional derivative. Violation of space symmetry leads to acceleration of the orbital momentum. Quantum localization saturates this acceleration, such that the average value of the orbital momentum can be a direct current and the system behaves like a ratchet. The classical counterpart is a nonlinear kicked rotor with absorbing boundary conditions.

A. Iomin

2006-09-14T23:59:59.000Z

299

INTRODUCTION 1.1 Aerodynamics of Rotors in Forward Flight  

E-Print Network [OSTI]

1 CHAPTER I INTRODUCTION 1.1 Aerodynamics of Rotors in Forward Flight The prediction of rotor blade aerodynamic loads, especially in forward flight, requires accurate and efficient modeling of several distinct to the nonlinear interaction between the rotor aerodynamics, trim, aeroelasticity and blade dynamics. As stated

300

Texas Fluid Dynamics Meeting, 2013 STABILITY OF ROTOR WAKES.  

E-Print Network [OSTI]

et al.(2000) [1] did eigenvalue stability analysis on multi-bladed helicopter rotor wakes and found, of multi-bladed helicopter rotor wake. Despite various analytical, numerical and flow visualiza- tion-scale four- bladed helicopter rotor in hover [6,7], revealed some impor- tant observations. Investigations

Tinney, Charles E.

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling of a rotor speed transient response with radial rubbing  

E-Print Network [OSTI]

by an accidental blade­off imbalance. In order to assess the angular deceleration of the rotor due to rubbingModeling of a rotor speed transient response with radial rubbing Sébastien Roques1 Institut deGill Univer- sity, 817 Sherbrooke St West, Montreal, Quebec H3A 2K6, Canada Abstract A rotor­stator model

Boyer, Edmond

302

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

303

Design guidelines for H-Darrieus wind turbines: Optimization of the annual energy yield  

Science Journals Connector (OSTI)

Abstract H-Darrieus wind turbines are gaining popularity in the wind energy market, particularly as they are thought to represent a suitable solution even in unconventional installation areas. To promote the diffusion of this technology, industrial manufacturers are continuously proposing new and appealing exterior solutions, coupled with tempting rated-power offers. The actual operating conditions of a rotor over a year can be, however, very different from the nominal one and strictly dependent on the features of the installation site. Based on these considerations, a turbine optimization oriented to maximize the annual energy yield, instead of the maximum power, is thought to represent a more interesting solution. With this goal in mind, 21,600 test cases of H-Darrieus rotors were compared on the basis of their energy-yield capabilities for different annual wind distributions in terms of average speed. The wind distributions were combined with the predicted performance maps of the rotors obtained with a specifically developed numerical code based on a Blade Element Momentum (BEM) approach. The influence on turbine performance of the cut-in speed was accounted for, as well as the limitations due to structural loads (i.e. maximum rotational speed and maximum wind velocity). The analysis, carried out in terms of dimensionless parameters, highlighted the aerodynamic configurations able to ensure the largest annual energy yield for each wind distribution and set of aerodynamic constraints.

Alessandro Bianchini; Giovanni Ferrara; Lorenzo Ferrari

2015-01-01T23:59:59.000Z

304

Cooled snubber structure for turbine blades  

DOE Patents [OSTI]

A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

2014-04-01T23:59:59.000Z

305

Evaluation of wind turbine noise levels and impact studies  

Science Journals Connector (OSTI)

Measured A?weighted sound levels at 125?ft distance for individual wind turbines with 20? to 120?kW power ratings are typically in the range 65–75 dB at moderate to high power output conditions (20–30?mph wind speeds). Tonelike sounds in the 300? to 1000?Hz frequency range often are clearly audible. Cyclical fluctuations of 10 dB in low?frequency noise levels are propagated by some downwind?type turbines. The random aerodynamic rotor noisesounds like a roar the gear box noisesounds like a whine and the low?frequency noise fluctuations sound like “thump?thump” or “whoosh?whoosh.” All of these wind turbinenoises are propagated from existing wind farms to residential areas and are judged intrusive and annoying. Measurements and predictions of wind turbinenoise submitted with applications for wind farm development have often contained errors which understated the noise levels by 3–10 dB. These errors were due to noisemeasurements at minimal wind speeds and turbine power and faulty modeling procedures. Simple analytical expressions have been developed which quickly and accurately predict the noise levels for large turbine arrays.

Samuel R. Lane

1986-01-01T23:59:59.000Z

306

Acoustic condition monitoring of wind turbines: Tip faults  

Science Journals Connector (OSTI)

As a significant and growing source of the world’s energy wind turbine reliability is becoming a major concern. At least two fault detection techniques for condition monitoring of wind turbine blades have been reported in early literature i.e. acoustic emissions and optical strain sensors. These require off-site measurement. The work presented here offers an alternative non-contact fault detection method based on the noise emission from the turbine during operation. An investigation has been carried out on a micro wind turbine under laboratory conditions. 4 severity levels for a fault have been planted in the form of added weight at the tip of one blade to simulate inhomogeneous debris or ice build up. Acoustic data is obtained at a single microphone placed in front of the rotor. Two prediction methods have been developed and tested on real data: one based on a single feature - rotational frequency spectral magnitude; and another based on a fuzzy logic interference using two inputs - spectral peak and rotational peak variation with time. Results show that the single spectral peak feature can be used to determine fault severity in ranges. The implementation of the fuzzy logic using a further input feature is shown to significantly improve the detection accuracy.

Daniel J. Comboni; Bruno Fazenda

2012-01-01T23:59:59.000Z

307

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

SciTech Connect (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

308

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

SciTech Connect (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

309

Aviation turbine fuels, 1980  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1980 are presented in this report. The samples represented are typical 1980 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 98 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5 and commercial type Jet A.

Shelton, E.M.

1981-03-01T23:59:59.000Z

310

Aviation turbine fuels, 1982  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

311

Aviation turbine fuels, 1979  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1979 are presented in this report. The samples represented are typical 1979 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 93 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1980-05-01T23:59:59.000Z

312

Aviation turbine fuels, 1981  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1981 are presented in this report. The samples represented are typical 1981 production and were analyzed in the laboratories of 15 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 95 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1982-04-01T23:59:59.000Z

313

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

314

Voith High Efficiency HM Rotor Energy Data, A Repulper Rotor Design Case Study  

E-Print Network [OSTI]

A recently completed demonstration project, funded partly by the Wisconsin Focus on Energy program and Wisconsin Public Service Corporation, shows the effectiveness of an energy efficient repulper rotor design compared with that of a conventional...

Aue, J.; Fineran, B.

2005-01-01T23:59:59.000Z

315

Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow  

Science Journals Connector (OSTI)

Measurements have been made in the wake of a model wind turbine in both a neutral and a stable atmospheric boundary layer, in the EnFlo stratified-flow wind tunnel, between 0.5 and 10 rotor diameters from the ...

Philip E. Hancock; Frauke Pascheke

2014-04-01T23:59:59.000Z

316

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

317

Category:Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine Jump to: navigation, search Pages in category "Wind turbine" This category contains only the following page. W Wind turbine Retrieved from "http:en.openei.orgw...

318

Wind turbine trailing-edge aerodynamic brake design  

SciTech Connect (OSTI)

This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

Quandt, G.

1996-01-01T23:59:59.000Z

319

Advanced wind turbine with lift-destroying aileron for shutdown  

DOE Patents [OSTI]

An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18T23:59:59.000Z

320

Detailed study of DFIG-based wind turbines to overcome the most severe grid faults  

Science Journals Connector (OSTI)

Abstract This paper studies the effects of voltage sags caused by faults on doubly-fed induction generators to overcome grid faults. A wide range of sag duration and depth values is considered. It is observed that sag duration influence is periodical. Sag effects depend on duration and depth and on the fault-clearing process as well. Two approaches of the model are compared: the most accurate approach, discrete sag, considers that the fault is cleared in the successive natural fault-current zeros of affected phases, leading to a voltage recovery in several steps; the least accurate approach, abrupt sag, considers that the fault is cleared instantaneously in all affected phases, leading to a one-step voltage recovery. Comparison between both sag models reveals that the fault-clearing process smoothes sag effects. The study assumes that the rotor-side converter can keep constant the transformed rotor current in the synchronous reference frame, thus providing insights into wind turbine fault ride-through capability. The voltage limit of the rotor-side converter is considered to show the situations where the rotor current can be controlled. Finally, a table and a 3D figure summarizing the effects of the most severe grid faults on the rotor-side converter to overcome the most severe faults are provided.

Alejandro Rolán; Joaquín Pedra; Felipe Córcoles

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model  

Science Journals Connector (OSTI)

Recently an actuator disk parameterization was implemented in the Weather Research and Forecasting (WRF) Model for large eddy simulation (LES) of wind turbine wakes. To thoroughly verify this model simulations of various types of turbines and atmospheric conditions must be evaluated against corresponding experimental data. In this work numerical simulations are compared to nacelle-based scanning lidar measurements taken in stable atmospheric conditions during a field campaign conducted at a wind farm in the western United States. Using several wake characteristics—such as the velocity deficit centerline location and wake width—as metrics for model verification the simulations show good agreement with the observations. Notable results include a high average velocity deficit decreasing from 73% at a downwind distance x of 1.2 rotor diameters (D) to 25% at x?=?6.6D resulting from a low average wind speed and therefore high average turbine thrust coefficient. Moreover the wake width expands from 1.4D at x?=?1.2D to 2.3D at x?=?6.6D. Finally new features—namely rotor tilt and drag from the nacelle and tower—are added to the existing actuator disk model in WRF-LES. Compared to the rotor the effect of the tower and nacelle on the flow is relatively small but nevertheless important for an accurate representation of the entire turbine. Adding rotor tilt to the model causes the vertical location of the wake center to shift upward. Continued advancement of the actuator disk model in WRF-LES will help lead to optimized turbine siting and controls at wind farms.

Matthew L. Aitken; Branko Kosovi?; Jeffrey D. Mirocha; Julie K. Lundquist

2014-01-01T23:59:59.000Z

322

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

323

NETL: Turbines Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

324

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

325

Gas Turbine Emissions  

E-Print Network [OSTI]

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

Frederick, J. D.

326

Scale Models & Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

327

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

328

Utilization of rotor kinetic energy storage for hybrid vehicles  

DOE Patents [OSTI]

A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

Hsu, John S. (Oak Ridge, TN)

2011-05-03T23:59:59.000Z

329

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

330

Hydrogen Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

331

Distributed Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distributed Wind Turbines Distributed Wind Turbines Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to...

332

Hydraulic Turbines: Types and Operational Aspects  

Science Journals Connector (OSTI)

The turbine is considered to be the heart of ... , the proper selection and operation of the turbine is very important.

Prof. Dr.-Ing Hermann-Josef Wagner…

2011-01-01T23:59:59.000Z

333

Efficient steam turbines produced by the “Ural Turbine Plant” company  

Science Journals Connector (OSTI)

Design features and efficiency of some steam turbines produced at present by a plant formed as a result of division of the “Turbine Motor Plant” Company into several enterprises are...

G. D. Barinberg; A. E. Valamin

334

Bottom steam turbines of the Ural Turbine Works  

Science Journals Connector (OSTI)

Basic design features, thermal schemes, and economic indicators of some bottom turbines that have been developed, as well as ... that have partially been manufactured at the Ural Turbine Works, are presented.

G. D. Barinberg; A. E. Valamin; Yu. A. Sakhnin

2008-08-01T23:59:59.000Z

335

Aerodynamic performance and characteristic of vortex structures for Darrieus wind turbine. II. The relationship between vortex structure and aerodynamic performance  

Science Journals Connector (OSTI)

In this paper transient computational fluid dynamics (CFD) simulations of a straight-bladed Darrieus type vertical axis wind turbine were performed by means of an in-house CFD code. The Spalart-Allmaras turbulence model was implemented in the numerical code for the turbulence. Particular emphasis was placed on effect of interaction between vortices and blades on the aerodynamic performance of the simulated turbine at different tip speed and solidity ratios. The obtained results suggested that vortices were shed from previous blade passages and the close encounter of a rotor blade with these vortices can have a considerable impact on power coefficient of the simulated turbine during operation at different tip speed ratios. As a result possible reasons for the changes in the behavior of this type of turbine due to the variation of tip speed ratio and solidity were proposed.

2014-01-01T23:59:59.000Z

336

Combined gas turbine-Rankine turbine power plant  

SciTech Connect (OSTI)

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

337

Dynamical Localization in Kicked Quantum Rotors  

E-Print Network [OSTI]

The periodically $\\delta$-kicked quantum linear rotor is known to experience non-classical bounded energy growth due to quantum dynamical localization in angular momentum space. We study the effect of random deviations of the kick period in simulations and experiments. This breaks the energy and angular momentum localization and increases the rotational alignment, which is the analog of the onset of Anderson localization in 1-D chains.

Kamalov, Andrei; Bucksbaum, Philip H

2015-01-01T23:59:59.000Z

338

Turbine tip clearance loss mechanisms  

E-Print Network [OSTI]

Three-dimensional numerical simulations (RANS and URANS) were used to assess the impact of two specific design features, and of aspects of the actual turbine environment, on turbine blade tip loss. The calculations were ...

Mazur, Steven (Steven Andrew)

2013-01-01T23:59:59.000Z

339

Ceramics for ATS industrial turbines  

SciTech Connect (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

340

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint  

SciTech Connect (OSTI)

This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

2014-12-01T23:59:59.000Z

342

Steady-state analysis of a conceptual offshore wind turbine driven electricity and thermocline energy extraction plant  

Science Journals Connector (OSTI)

Abstract A system for using offshore wind energy to generate electricity and simultaneously extract thermal energy is proposed. This concept is based on an offshore wind turbine driven hydraulic pump supplying deep seawater under high pressure to a land based plant consisting of a hydroelectric power generation unit and heat exchanger. A steady-state system model is developed using empirical formulae. The mathematical model comprises the fundamental system sub-models that are categorised as the rotor, hydraulic pump, pipeline, hydroelectric turbine and heat exchanger. A means for modelling the seawater temperature field across a two-dimensional bathymetry is also discussed. These mathematical models are integrated into a computational tool and a brief parametric static analysis is undertaken. The results illustrate the effect of pipeline diameter, rotational speed of the grid connected hydroelectric turbine, and the turbine distance from shore on the overall performance of the system. Through adequate parameter selection, the total rate of energy output for such a system, consisting of both electricity and thermal energy, is shown to increase by as much as 84%, when compared to a conventional wind turbine having an identical rotor diameter but which supplies only electrical energy.

Daniel Buhagiar; Tonio Sant

2014-01-01T23:59:59.000Z

343

A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks  

Science Journals Connector (OSTI)

The present paper deals with the investigation of the flow distribution in the ocean current power park in order to optimize the arrangement of the turbine generators in the sea and the lake sides. To produce more reliable results, the detailed geometry of the ocean current generators is included in the computational domain with frozen rotor method to consider rotating effect. The numerical results show the details of flow distribution in the ocean current power park and propose the appropriate arrangement of the turbine generators for the efficient operation, which is essential for possible maximum power generation.

Seung Ho Lee; Sang Hyuk Lee; Kyungsoo Jang; Jungeun Lee; Nahmkeon Hur

2010-01-01T23:59:59.000Z

344

Low voltage ride-through capability improvement of DFIG-based wind turbines under unbalanced voltage dips  

Science Journals Connector (OSTI)

Abstract This paper proposes a competent and effective scheme to enhance the ride-through capability of DFIG-based wind turbines under unbalanced voltage dip conditions. The proposed method is realized through joint use of the rotor-side converter control and a three-phase stator damping resistor (SDR) placed in series with the stator windings. By means of an asymmetrical SDR idea, during the unbalanced voltage dip the SDR resistors are activated only in phase(s) experiencing low voltage. Then, the rotor current is controlled such that no unbalance voltage appears on the stator voltage. The proposed ride-through approach limits the peak values of the rotor inrush current, electromagnetic torque and DFIG transient response at the times of occurrence and clearing the fault. It also suppresses fluctuation of the electromagnetic torque and DFIG transient response appeared during unbalanced voltage dips due to negative sequence component.

Mohsen Rahimi; Mostafa Parniani

2014-01-01T23:59:59.000Z

345

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

346

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

347

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

348

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

349

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

350

Turbine-generator replacement study  

SciTech Connect (OSTI)

This paper describes an engineering study for the replacement of a nominal 70 Mw turbine-generator in a multi-unit utility cogeneration station. The existing plant is briefly described, alternatives considered are discussed, and the conclusions reached are presented. Key topics are the turbine steam cycle evaluation and the turbine pedestal analysis.

Miller, E.F.; Stuhrke, S.P., Shah, A.A. (Burns and Roe Enterprises, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

351

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

2010-04-16T23:59:59.000Z

352

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13, cancels DOE O 425.1D.

2010-04-16T23:59:59.000Z

353

Start-Up Meeting Mudrock Systems Research Laboratory  

E-Print Network [OSTI]

in the New Albany Shale: Gale 11:50 AM LUNCH 12:50 PM Preliminary data on the Pearsall (Lower Cretaceous Introduction to Bureau Mudrocks Research: Tinker 8:15 AM Models and concepts of shale basin development: Ruppel 8:40 AM Controlling parameters of gas shale development: Wang 9:05 AM Defining gas shale exploration

Texas at Austin, University of

354

Solar electric power plant due to start up  

Science Journals Connector (OSTI)

In early April of this year, Solar One, a central receiver pilot plant designed to show that solar energy can be harnessed by utilities to produce electricity on a commercial scale, will begin producing power. ... With a rated maximum power output to the utility grid of 10.8 MW, Solar One is the world's largest solarpowered electrical generating facility. ...

RUDY M. BAUM

1982-03-15T23:59:59.000Z

355

Improving the Start-up Performance of the TFRC Protocol  

Science Journals Connector (OSTI)

......T ] separately. The pseudo code is FIGURE 5. The distribution...bandwidth by using the pseudo code above, where pkt_size is the...by imple- menting it in the NS2 [12] network simulator. Obviously...use the traffic generator in NS2 to generate VBR traffic. The......

Wei Sun; Tao Wen; Quan Guo

2013-11-01T23:59:59.000Z

356

Summer Start-Up Scholarship Programme Presentations, 5 February 2014  

E-Print Network [OSTI]

through to a new type of personal drone. It has been a great privilege to be able to mentor these students a watershed, the first of its kind in New Zealand. We plan to build on this and vigorously continue our as they embark on their own journey of discovery towards creating a new venture. Dr Rachel Wright Manager, UC

Hickman, Mark

357

Disc rotors with permanent magnets for brushless dc motor  

SciTech Connect (OSTI)

This patent describes a brushless dc permanent magnet motor for driving an autonomous underwater vehicle. It comprises first and second substantially flat, generally cylindrical stators disposed in side by side relation; a first substantially flat, generally cylindrical rotor; a first shaft connected to the first rotor and a second, concentric shaft connected to the second rotor; and means for providing rotation of the first and second shafts in opposite directions.

Hawsey, R.A.; Bailery, J.M.

1992-05-26T23:59:59.000Z

358

Rotor for processing liquids using movable capillary tubes  

DOE Patents [OSTI]

A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described. 5 figs.

Johnson, W.F.; Burtis, C.A.; Walker, W.A.

1987-07-17T23:59:59.000Z

359

Ceramic gas turbine shroud  

DOE Patents [OSTI]

An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

Shi, Jun; Green, Kevin E.

2014-07-22T23:59:59.000Z

360

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

362

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents [OSTI]

An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

Deteresa, Steven J. (Livermore, CA); Groves, Scott E. (Brentwood, CA)

1998-06-02T23:59:59.000Z

363

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents [OSTI]

An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

Deteresa, S.J.; Groves, S.E.

1998-06-02T23:59:59.000Z

364

R and D for improved efficiency small steam turbines, Phase II. Report No. 1380-3. First quarterly technical report  

SciTech Connect (OSTI)

Progress made in the second phase of a two-phase research, design and prototype development program is presented. Phase II consists of the detailed design of the prototype radial inflow steam turbine configuration selected during the first phase and subsequent fabrication and testing. At this time, the detailed aerodynamic design of the stage flowpath has been completed except for the crossover piping from the first stage exhaust to the second stage inlet. In addition, mechanical design effort has resulted in a definition of a rotor system. The aerodynamic design included the optimization of the overall flowpath geometry of the stages specified in the initial phase of the program. The detailed aerodynamic designs of the rotor blades, nozzle vanes, scroll and diffuser were based on the optimized geometry. The final blading selected for the stage is a radial design with 26 blades, 13 of which are splitters. Sixteen nozzle vanes have been specified. The mechanical design of the rotor system to date has included the specification of the rotor wheels and shafts with their polygon connection, and the design of the thrust and journal bearings and the gearing. In addition, various shaft sealing arrangements have been evaluated, subject to the constraints indicated by initial rotordynamic analyses. Indications are that a reasonably effective labyrinth seal is not precluded by shaft length limitations. As this type of seal has been long accepted by steam turbine users, its use in the prototype is most likely. Proven components have been specified wherever possible, i.e., redesign/development could not be justified. The rotor system has been designed for at least 100,000 hours life with the most severe operating conditions and loads. The system cannot be considered complete, however, until dynamic response of the rotors for all possible operating conditions is shown to be within acceptable limits.

Not Available

1980-09-01T23:59:59.000Z

365

NETL: Turbine Projects - Cost Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

366

Small gas turbine technology  

Science Journals Connector (OSTI)

Small Gas Turbine Technology: Small gas turbine, in the power range up to 500 kW, requires a recuperated thermodynamic cycle to achieve an electrical efficiency of about 30%. This efficiency is the optimum, which is possible for a cycle pressure ratio of about 4–1. The cycle airflow is function of the power requirement. To increase the efficiency, in view to reduce the CO2 emission, it is mandatory to develop a more efficient thermodynamic cycle. Different thermodynamic cycles were examined and the final choice was made for an Intercooled, Recuperated cycle. The advantage of this cycle, for the same final electrical efficiency of about 35%, is the smaller cycle airflow, which is the most dimensional parameter for the important components as the heat exchanger recuperator and the combustion chamber. In parallel with the thermodynamic cycle it is necessary to develop the High Speed Alternator technology, integrated on the same shaft that the gas turbine rotating components, to achieve the constant efficiency at part loads, from 50% up to 100%, by the capacity to adjust the engine speed at the required load. To satisfy the stringent requirement in pollutant emissions of \\{NOx\\} and CO, the catalytic combustion system is the most efficient and this advance technology has to be proven. The major constraints for the small gas turbine technology development are the production cost and the maintenance cost of the unit. In the power range of 0–500 kW the gas turbine technology is in competition with small reciprocating engines, which are produced in large quantity for automotive industry, at a very low production cost.

Andre Romier

2004-01-01T23:59:59.000Z

367

Steam turbine-generator outage interval extension  

SciTech Connect (OSTI)

In the industry`s growing competitive climate, utilities are seeking ways to tap the economic benefits to be derived from maximizing intervals between major turbine-generator (T-G) inspections and overhauls--while ensuring protection of these assets. EPRI and others have developed a substantial body of technology which addresses many of the condition assessment issues that underlie T-G inspection and overhaul decisions. Examples include remaining life determination of critical components such as rotors and blades. While the initial focus of this technology had previously been to support T-G run-repair-replace decision making, this technology can also serve as a basis for run-inspect decisions. This paper describes EPRI`s initiative to develop and implement a T-G Health Management System. By providing key status reports reflecting the on-line health of critical components, in terms of life consumption, performance degradation and probability of failure, this system will provide a means to justify extending T-G operations between inspections and overhauls.

McCloskey, T.H. [Electric Power Research Institute, Palo Alto, CA (United States); Pollard, M. [Carolina Power & Light Company, Raleigh, NC (United States); Dewey, R.; Roemer, M. [Stress Technology Inc., Rochester, NY (United States)

1996-07-01T23:59:59.000Z

368

8 - Radial-Inflow Turbines  

Science Journals Connector (OSTI)

Publisher Summary The inward-flow radial turbine covers tremendous ranges of power, rates of mass flow, and rotational speeds from very large Francis turbines used in hydroelectric power generation and developing hundreds of megawatts down to tiny closed cycle gas turbines for space power generation of a few kilowatts. The widespread adoption of variable geometry turbines for diesel engine turbochargers has been the major factor in increasing the commercial use of this technology. Variable area is commonly, but not exclusively, achieved by pivoting the nozzle vanes about an axis disposed in the span-wise direction. The most common radial-inflow turbine applications are turbochargers for internal combustion engines, natural gas, diesel, and gasoline powered units. The advantage of a turbocharger is that it compresses the air, thus letting the engine squeeze more air into a cylinder, and more air means that more fuel can be added. Applications of turbo expanders in the chemical industry abound in the petrochemical and chemical industries. Turbo expanders using radial-inflow turbines have a much higher ruggedness than turbo expanders using axial-flow turbines. The radial-inflow turbine for gas turbine application is basically a centrifugal compressor with reversed flow and opposite rotation. The performance of the radial-inflow turbine is being investigated with increased interest by the transportation and chemical industries. In the petrochemical industry, it is used in expander designs, gas liquefaction expanders and other cryogenic systems. The radial-inflow turbine’s greatest advantage is that the work produced by a single stage is equivalent to that of two or more stages in an axial turbine. Its cost is also much lower than that of a single- or multi-stage axial-flow turbine. The configurations and designs of the two types of radial-inflow turbine (cantilever and mixed-flow) are described. The thermodynamic and aerodynamic principles governing a radial-inflow turbine are summarized. The design and performance of a radial-inflow turbine are discussed. The potential problems (erosion; exducer blade vibration; noise) and types of losses in a radial-inflow turbine are described. Applications of radial-inflow turbines (e.g. turbochargers) are discussed.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

369

Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial...  

Broader source: Energy.gov (indexed) [DOE]

Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program...

370

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

371

Vibration Control of Multi-Mode Rotor-Bearing Systems  

Science Journals Connector (OSTI)

8 March 1983 research-article Vibration Control of Multi-Mode Rotor-Bearing...least-squares method to minimize the vibration of any general rotor-bearing system...to implement the open-loop adaptive vibration control strategies outlined in the paper...

1983-01-01T23:59:59.000Z

372

Turbine blade tip gap reduction system  

SciTech Connect (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

373

Maximum power point tracking of permanent magnet wind turbines equipped with direct matrix converter  

Science Journals Connector (OSTI)

This paper presents a novel control method for Maximum Power Point Tracking of wind turbines (WTs) equipped with a Permanent Magnet Synchronous Generator (PMSG) and a Direct Matrix Converter (DMC). The method calculates the optimum wind turbine speed and maximizes the extracted power from wind turbine. This is done by Hill Climb Search method which is simple and does not need to know the generator parameters and no need to solve the complicated differential equations of generator. WT rotor speed is compared with its optimal value and then DMC controls WT until its rotor speed reaches its optimum value. Under this situation maximum power is extracted from WT and is injected to the grid with unity power factor. It is implemented by controlling the phase and the amplitude of the DMC output voltage by Venturini switching method. Simulations are done on a 2?MW PMSG WT in MATLAB/SIMULINK to obtain the results the wind speed was varied both using the Van Der Hoven method and changing the wind step. The obtained results verify the accuracy and simplicity of proposed method.

2014-01-01T23:59:59.000Z

374

Development of a free vortex wake method code for offshore floating wind turbines  

Science Journals Connector (OSTI)

Offshore floating wind turbines (OFWTs) present unique aerodynamic analysis challenges. Motion–derived velocity perturbations in the wake necessitate higher–fidelity aerodynamic analysis methods than the ubiquitous momentum balance techniques currently in use. A more physically–sound approach is to model the wake generated by a wind turbine rotor as a freely convecting lattice, using the resultant inflow to estimate rotor loads, as it done with a free vortex wake method (FVM). The FVM code Wake Induced Dynamics Simulator (WInDS) was developed at the University of Massachusetts at Amherst to predict the aerodynamic loading and wake evolution of an OFWT to a higher degree of accuracy than is possible via momentum balance methods. A series of validation cases were conducted to provide some basis for applying \\{WInDS\\} to floating wind turbine cases, for which no aerodynamic experimental data is currently available. The results from these tests show that \\{WInDS\\} is able to accurately predict the aerodynamically–derived loads and wake structures generated by various fixed and rotary–wing cases, and may therefore be applied to more complex cases, like OFWTs, with a degree of confidence.

T. Sebastian; M.A. Lackner

2012-01-01T23:59:59.000Z

375

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

376

Disc rotors with permanent magnets for brushless DC motor  

SciTech Connect (OSTI)

A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

Hawsey, Robert A. (Oak Ridge, TN); Bailey, J. Milton (Knoxville, TN)

1992-01-01T23:59:59.000Z

377

Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas  

SciTech Connect (OSTI)

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

1994-07-01T23:59:59.000Z

378

Sandia National Laboratories: turbine-to-turbine interaction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

379

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

380

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Turbine cooling waxy oil  

SciTech Connect (OSTI)

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

382

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

383

Anticipatory control of turbine generators  

E-Print Network [OSTI]

of Turbine Generators. (Nay 1971) Freddie Laurel Nessec, B. S. E. E, , Texas Tech University; Directed by: Professor J. S . Denison An investigation is made of the use of predicted loads in controlling turbine generators. A perturbation model of a turbine... generator is presented along with typical parameter values. A study is made of the effects of applying control action before a load change occurs. Two predictive control schemes are investi- gated using a load cycle which incorporates both ramp and step...

Messec, Freddie Laurel

1971-01-01T23:59:59.000Z

384

NREL: Wind Research - Advanced Research Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control schemes...

385

Computational Aerodynamics and Aeroacoustics for Wind Turbines  

E-Print Network [OSTI]

Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

386

Large eddy simulation applications in gas turbines  

Science Journals Connector (OSTI)

...exhaust plume development. The application...modelling in the gas turbine combustor...modelling strategies for the complex...flows in the gas turbine, as surveyed...of typical gas turbine parts necessitates...made in the development and application...

2009-01-01T23:59:59.000Z

387

Motion of floating wind turbines.  

E-Print Network [OSTI]

?? Motion of floating wind turbines has been studied. A literature study on different concepts and what tools are available for simulating them is presented.… (more)

Linde, Børge

2010-01-01T23:59:59.000Z

388

The military aircraft gas turbine  

Science Journals Connector (OSTI)

The development of the gas turbine for use in military aircraft is discussed. The advancing fields of component technology and engine testing are also outlined

R.M. Denning; R.J. Lane

1983-01-01T23:59:59.000Z

389

Aerodynamic Analysis of wind turbine.  

E-Print Network [OSTI]

??The thesis investigates the application of vortex theory for analyzing the aerodynamic loads on wind turbine blades. Based on this method, a graphical user friendly… (more)

Zarmehri, Ayyoob

2012-01-01T23:59:59.000Z

390

Wind turbine sound prediction - the consequence of getting it wrong  

Science Journals Connector (OSTI)

The application to permit a wind turbine power development usually involves submission of a prediction for the sound level that will occur at residences schools places of worship and elsewhere people gather for restorative rest. This paper uses the example of a wind power development and follows iterations taken to finalize the sound level prediction. The paper provides quantitative information collected since the start up of the wind power development on measured sound levels and octave band distribution; and qualitative observations on the special characteristics of the sound. Actual observations are compared to the predictions. More importantly the paper reviews the consequences self-reported in qualitative interviews by citizens living with the changed environment after four years of operation of the wind power development. Reported impacts included difficulty sleeping loss of jobs and changes to social relationships caregiving pursuit of hobbies leisure learning and overall health. Changes in measured health outcomes are identified. Both the quantitative and qualitative findings justify revision of the permitting process.

William Palmer

2013-01-01T23:59:59.000Z

391

Effect of Forced Excitation on Wind Turbine with Dynamic Analysis in Deep Offshore Wind in Addition to Japanese Status of Offshore Projects  

Science Journals Connector (OSTI)

In this paper, we tried to estimate the effect of control method on floating offshore wind turbine. The experiment in the water basin revealed that traditional blade pitch control can amplify the platform pitch oscillation of floating wind turbine. In order to understand the physical phenomenon, we used aeroelastic simulation using GH Bladed. Turbine model is based on the turbine used in wind tunnel test. To simulate the pitching motion of floating platform, we used onshore wind turbine model with inflow with oscillating wind speed that simulates relative wind speed change from wind turbine's fore-aft pitching motion. Two types of control method are used; fixed pitch variable speed control which represents before rated state of large wind turbines and variable pitch variable speed control which represents over rated state of large wind turbines. Comparing the relation between wind speed change and rotor thrust force change of two control methods, we made it clear that traditional blade pitch control method make thrust force change almost the inverse of wind speed increase and decrease. From thrust force inverse to wind speed change, tower pitching motion can be amplified. That is, blade pitch control can induce negative damping on tower pitching motion. As a conclusion pitch control can increase larger blade load although pitch control aims to reduce the blade load.

Mitsumasa Iino; Toshiki Chujo; Makoto Iida; Chuichi Arakawa

2012-01-01T23:59:59.000Z

392

Department of Computer Engineering Spring 2010 Boeing Wind Tunnel Rotor Flight Simulator  

E-Print Network [OSTI]

PENNSTATE Department of Computer Engineering Spring 2010 Boeing Wind Tunnel Rotor Flight Simulator the construction of a wind tunnel rotor flight simulator. The program should allow the pilot to change the rotor and comfortable simulator with the following parts: A rotor controller, a wind tunnel controller, a graphical

Demirel, Melik C.

393

AIAA-982909 Characterization of the Near Wake of a Helicopter Rotor*  

E-Print Network [OSTI]

of Technology. Abstract Vortex characteristics in the near wake of a 2-bladed teetering rotor in steady forward to be repeatable to within 1° of rotor revolution. Velocity was measured in the planes intersected by the rotor-blade blade side of the rotor. The axial velocity in all cases is wake-like, being directed towards the blade

394

RESULTS AND DISCUSSION -Part I UH60A Rotor in High Speed Forward Flight  

E-Print Network [OSTI]

rotor for a number of hover and forward flight conditions. This rotor is a four-bladed configuration.2: Geometric Twist Distribution for the UH-60A Rotor In the experiment, the blades were trimmed to eliminate the one-per-rev flapping. The rotor blade sectional twist including elastic deformation is available

395

On modelling of grouped reliability data for wind turbines  

Science Journals Connector (OSTI)

......Special Issue Maintenance Modelling...data for wind turbines F. P. A...generation by wind turbines (WTs) has...turbines or maintenance activities...generation by wind turbines (WTs) has...turbines or maintenance activities......

F. P. A. Coolen; F. Spinato; D. Venkat

2010-10-01T23:59:59.000Z

396

Developing Biological Specifications for Fish Friendly Turbines...  

Broader source: Energy.gov (indexed) [DOE]

Developing Biological Specifications for Fish Friendly Turbines Developing Biological Specifications for Fish Friendly Turbines This factsheet explains studies conducted in a...

397

Brilliant Wind Turbine | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries The conventional wisdom around wind is that the...

398

Turbine Electric Power Inc | Open Energy Information  

Open Energy Info (EERE)

Turbine Electric Power Inc Sector: Vehicles Product: US-based, holder of the 'exclusive worldwide rights' to install, sell, market and distribute a new 'high tech' micro turbine...

399

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

400

Addressing Wind Turbine Tribological Challenges with Surface...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addressing Wind Turbine Tribological Challenges with Surface Engineering Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Addressing...

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Research on a novel Rotor Structure Switched Reluctance Motor  

Science Journals Connector (OSTI)

The paper proposes a novel switched reluctance motor with improved rotor structure, in which the segment core is embedded in aluminum rotor block in order to increase the mechanical strength and easy manufacturing as well as to improve the performance characteristics and reduce the vibration and acoustic noise. The effect of design parameters on the average torque is investigated using the finite element method. Comparison with conventional VR type SRM and segment type SRM without conductive metal construction rotor show the proposed novel SRM has advantages in the torque performances and the vibration and noise characteristics. The performance is also investigated by experiment.

Lingquan Zeng; Haiwei Yu

2012-01-01T23:59:59.000Z

402

The 5-megawatt power plant with 126 metre rotor diameter  

E-Print Network [OSTI]

The 5-megawatt power plant with 126 metre rotor diameter #12;Design data Rated power 5,000kW Cut-in speed 3.5m/s Rated wind speed 13.0m/s Cut-out speed 25.0m/s onshore 30.0m/s offshore Wind zone up to DIBt 3 Type class up to IEC Ib / GL offshore type class I Rotor Diameter 126.0m Rotor area 12,469m2

Firestone, Jeremy

403

Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint  

SciTech Connect (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

Wright, A.; Fleming, P.

2010-12-01T23:59:59.000Z

404

Recent Advances in Turbines1  

Science Journals Connector (OSTI)

... ON two previous occasions I have addressed this institution on the steam turbine. At the time of the first lecture, in 1900, the ... . At the time of the first lecture, in 1900, the turbine may be described as having been in the “advanced experimental stage.”Six years later ...

1911-04-20T23:59:59.000Z

405

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

inclination angle was about 1°. The spinner anemometer measurements were correlated with wind speed and windOptimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy

406

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

407

Observed acoustic and aeroelastic spectral responses of a MOD-2 turbine blade to turbulence excitation  

SciTech Connect (OSTI)

Early results from a recent experiment designed to directly evaluate the aeroacoustic/elastic spectral responses of a MOD-2 turbine blade to turbulence-induced unsteady blade loads are discussed. The experimental procedure consisted of flying a hot-film anemometer from a tethered balloon in the turbine in-flow and simultaneously measuring the fluctuating airload and aeroelastic response at two blade span stations (65% and 87% spans) using surface-mounted, subminiature pressure transducers and standard strain gage instrumentation. The radiated acoustic pressure field was measured with a triad of very-low-frequency microphones placed at ground level, 1.5 rotor diameters upwind of the disk. Initial transfer function estimates for acoustic radiation, blade normal forces, flapwise acceleration/displacement, and chord/flapwise moments are presented.

Kelley, N.D.; McKenna, H.E.; Jacobs, E.W.

1984-06-01T23:59:59.000Z

408

A concept of power generator using wind turbine, hydrodynamic retarder, and organic Rankine cycle drive  

Science Journals Connector (OSTI)

This paper describes a concept of electric power generating system that uses a wind turbine to generate kinetic energy which converts heat through a hydrodynamic retarder. The heat so generated is utilized to drive an organic Rankine cycle that converts thermal energy into electricity power for continuous and undisrupted supply during the year. A hydrodynamic retarder converts kinetic energy into heat through hot fluid by directing the flow of the fluid into the hydrodynamic retarder in a manner that resists rotation of blades of the wind turbine. The hot fluid circulating in the hydrodynamic retarder is a thermal heat source for vapor regeneration of organic heat exchange fluid mixture(s) used in the Rankine cycle. The expansion of the organic heat exchange fluid gets converted into rotation of the generator rotor.

Samuel Sami

2013-01-01T23:59:59.000Z

409

Aero Turbine | Open Energy Information  

Open Energy Info (EERE)

Aero Turbine Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine Energy Company Location Riverside County CA Coordinates 33.7437°, -115.9925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7437,"lon":-115.9925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Rotational Correlation Function of Spherical Rotors and Neutron Scattering  

Science Journals Connector (OSTI)

......Function of Spherical Rotors and Neutron Scattering Juichiro Hama Tuto Nakamura...Correlation Effect on the Slow Neutron Scattering by Polyatomic Molecules with...A. , Kowalska A. Thermal Neutron Scattering-Egelstaff P. A., ed......

Juichiro Hama; Tuto Nakamura

1971-12-01T23:59:59.000Z

411

Lean implementation across value stream in main rotor blade area  

E-Print Network [OSTI]

The primary goal for this project was to help expand the existing capability of Sikorsky's main rotor blade business from raw material (titanium) through final assembly. The project helped to facilitate the ongoing lean ...

Phoenix, Casey J. (Casey John)

2007-01-01T23:59:59.000Z

412

Motor Using High Temperature Superconductor as a Rotor  

Science Journals Connector (OSTI)

It is found that a high temperature superconductor rotates in the rotating magnetic field at ... authors and a small motor is made using high temperature superconductor as a rotor. This motor rotates at...

Makoto Takenaka; Masaharu Minami; Kazuo Morimoto

1994-01-01T23:59:59.000Z

413

Optimization of cylindrical composite flywheel rotors for energy storage  

Science Journals Connector (OSTI)

We hope that our efforts will contribute towards the design of flywheel rotors that have higher energy densities and ... that this can contribute to a future electricity grid that can accommodate renewable energy...

Petrus J. Janse van Rensburg…

2013-01-01T23:59:59.000Z

414

Installing Small Wind Turbines Seminar and Workshop  

E-Print Network [OSTI]

Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

415

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

416

5th International Meeting Wind Turbine Noise  

E-Print Network [OSTI]

1 5th International Meeting on Wind Turbine Noise Denver 28 ­ 30 August 2013 Wind Turbine Noise Broadband noise generated aerodynamically is the dominant noise source for a modern wind turbine(Brooks et, clean energy. While profiting from wind energy, the noise produced by a modern wind turbine becomes

Paris-Sud XI, Université de

417

NREL: Wind Research - Small Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

418

NREL: Wind Research - Midsize Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

419

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

420

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Turbine efficiency test on a large hydraulic turbine unit  

Science Journals Connector (OSTI)

The flow rate measurements are the most difficult part of efficiency tests on prototype hydraulic turbines. Among the numerous flow rate measurement methods ... the Winter Kennedy method is preferred for measurin...

ZongGuo Yan; LingJiu Zhou; ZhengWei Wang

2012-08-01T23:59:59.000Z

422

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

423

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

424

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

425

Sprayed skin turbine component  

DOE Patents [OSTI]

Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

Allen, David B

2013-06-04T23:59:59.000Z

426

Transportation of a 451 ton generator stator and a 234 ton generator rotor from Hartsville, TN, to Los Alamos, NM  

SciTech Connect (OSTI)

A 1430 MVA steam turbine generator was acquired from a cancelled nuclear power plant in Tennessee to be used as the pulsed power and energy storage unit for the Confinement Physics Research Facility being built at Los Alamos, NM. The transportation from Hartsville, near Nashville, TN, to Los Alamos, NM, of the two largest single pieces of the generator, a 451 t stator and a 234 t rotor presented a special challenge. Details of the move, by barge from Hartsville to Catoosa, near Tulsa, OK, by rail from Catoosa to Lamy, near Santa Fe, NM, and by road from Lamy to Los Alamos are described. The greatest difficulty of the successful move was the crossing of the Rio Grande river on an existing reinforced concrete bridge. The two-lane wide road transporters for the stator and rotor were fitted with outriggers to provide a four-lane wide vehicle, thus spreading the load over the entire bridge width and meeting acceptable load distribution and bridge safety factors. 2 refs., 6 figs.

Boenig, H.J.; Rogers, J.D.; McLelland, G.R.; Pelts, C.T. (Los Alamos National Lab., NM (USA); McLelland Engineering, Dallas, TX (USA); Reliance Crane and Rigging, Inc., Phoenix, AZ (USA))

1989-01-01T23:59:59.000Z

427

Steam turbines of the Ural Turbine Works for advanced projects of combined-cycle plants  

Science Journals Connector (OSTI)

We describe the design features, basic thermal circuits, and efficiency of steam turbines developed on the basis of serially produced steam turbines of Ural Turbine Works and used as part of combined-cycle plants...

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev

2009-09-01T23:59:59.000Z

428

Development of a low swirl injector concept for gas turbines  

E-Print Network [OSTI]

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

429

Turbine Aeration Physical Modeling and Software Design | Department...  

Broader source: Energy.gov (indexed) [DOE]

Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design...

430

Impulse Turbine Efficiency Calculation Methods with Organic Rankine Cycle.  

E-Print Network [OSTI]

?? A turbine was investigated by various methods of calculating its efficiency. The project was based on an existing impulse turbine, a one-stage turbine set… (more)

Dahlqvist, Johan

2012-01-01T23:59:59.000Z

431

Turbine-Fact-Sheets | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-High Temperature Thermal Barrier Coatings HiFunda, LLC Hydrogen Turbines SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines Florida Turbine Technologies...

432

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

a steel 1-MW wind turbine tower. ” Engineering Structures,testing of a steel wind turbine tower. ” Proceedings of theanalysis of steel wind turbine towers in the canadian

Prowell, I.

2011-01-01T23:59:59.000Z

433

Current Challenges in Wind Turbine Tribology | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Challenges in Wind Turbine Tribology Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Tribological Challenges in Wind Turbine...

434

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

for floating turbines [4]. ..15 Figure 3.1: Floating turbine degrees of freedom [the motion of a 5 MW floating turbine subjected to ocean

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

435

Effect of a straight teeth-on-rotor labyrinth seal on rotordynamics  

E-Print Network [OSTI]

of the stiffness and STATOR AIR FLOW ROTOR STATOR Teeth-on-Stator Seal Teeth-on-Rotor Seal Figure 2. Two Types of Labyrinth Seal Configurations Figure 3. Teeth-on-Rotor Labyrinth Seal Figure 4. Teeth-on-Rotor Labyrinth Seals Installed on Rotor damping... of the test rig is shown in Figure 6. Sea 2 Eddy Probes al 90 (Plane 1) Rotor 0 0 0 0 0 0 0 0 0 0 2 Eddy Probes at 90' (Plans 3) Anti-swirl Vane ? Flywheel 0-Rings 0-Ring 3 Compressed Air Cannon)iona 120' Apart Labyrinth Seal Area Seal...

Zierer, Joseph John

2012-06-07T23:59:59.000Z

436

Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine  

SciTech Connect (OSTI)

This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraint on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.

Dykes, K.; Resor, B.; Platt, A.; Guo, Y.; Ning, A.; King, R.; Parsons, T.; Petch, D.; Veers, P.

2014-10-01T23:59:59.000Z

437

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

How Do Wind Turbines Work?  

Broader source: Energy.gov [DOE]

Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.

439

DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES  

SciTech Connect (OSTI)

Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-04-17T23:59:59.000Z

440

Vertical axis wind turbine acoustics  

E-Print Network [OSTI]

Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

Pearson, Charlie

2014-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rim seal for turbine wheel  

DOE Patents [OSTI]

A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

442

1 - Introduction to gas turbines  

Science Journals Connector (OSTI)

Abstract: This chapter provides an overview of the importance of gas turbines for the power generation and oil and gas sector and – in less detail – the aviation sector. Worldwide trends in power generation and electricity conversion processes and the role of gas turbines to minimise CO2 emissions are addressed. Gas turbines are essential and crucial to reduce emissions both in aviation and in power production. Technologies for improving gas turbine and system efficiency, through higher turbine inlet temperatures, improved materials, cooling methods and thermal barrier coatings are described. New thermodynamic approaches, including intercooling, water and steam injection and hybrid cycles are addressed. Major issues are also fuel and operational flexibility, reliability and availability, cost reduction and power density, especially for the offshore sector. Market trends have been sketched. In the coming decades, gas turbines will be one of the major technologies for CO2 emission reductions in the power generation, aviation, oil and gas exploration and transport sectors. This prognosis is based on their high current efficiency and further efficiency improvement potential, both for simple cycle as for combined-cycle applications.

A.J.A. Mom

2013-01-01T23:59:59.000Z

443

Development of an Offshore Direct-Drive Wind Turbine Model by Using a Flexible Multibody Simulation (Poster)  

SciTech Connect (OSTI)

Modern wind turbines are complex, highly-coupled systems. The dynamic interaction between various components is especially pronounced for multi-megawatt wind turbines. As a result, design process is generally split in several phases. First step consists of creating a global aero-elastic model that includes essential dynamics of structural components using the minimum-possible number of degrees of freedom (d.o.f.). The most important simplifications concern drivetrain and rotor-nacelle assembly (RNA). This approach has been shown valid for several wind turbine configurations. Nevertheless, with increasing size of wind turbines, any simplified design approach must be validated. The present work deals with the comparison and validation of the two modeling approaches for directdrive offshore wind turbines. ARNA/drivetrain model idealized as collection of lumped masses and springs is compared to a detailed Finite Element Method (FEM) based model. The comparison between models focuses on dynamic loads concerning drivetrain system. The comparison is performed in several operational conditions in order to explore the range of validity of the simplified model. Finally, the paper proposes a numerical-based workflow to assess the validity of simplified models of RNA/drivetrain in an aero-elastic global WT model.

Bergua, R.; Jove, J.; Campbell, J.; Guo, Y.; Van Dam, J.

2014-05-01T23:59:59.000Z

444

Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow  

E-Print Network [OSTI]

The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

2013-01-01T23:59:59.000Z

445

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

446

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

447

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

include some offshore wind turbines. That said, the factoffshore wind still accounts for a relatively small portion of Vestas’ turbine

Bolinger, Mark

2012-01-01T23:59:59.000Z

448

Imbalance response of a rigid rotor supported on end sealed integral squeeze film dampers  

E-Print Network [OSTI]

-up*' the bearings and produce large oibits at the midspan of the flexible rotor San Andres and Lubell (1997) perform experiments in a three-disk rigid rotor supported on conventional open ended SFDs, and report damping force coefiicients estimated from..., rendering nearly uniform damping coefficients for rotor orbit motions up to 50'/o of the clearance. The tests show the absence of any rotor jump phenomena. San Andrds and Lubell stress the importance of an adequate identification of the structural damping...

De Santiago Duran, Oscar Cesar

2012-06-07T23:59:59.000Z

449

Physical bases for the design of highly efficient rotors in centrifugal pumps  

Science Journals Connector (OSTI)

1. Existing notions concerning optimum (less than 40°) angles of blade inclination in the rotors of centrifugal ...

P. R. Khlopenkov

1979-07-01T23:59:59.000Z

450

Phase modulated rotor angle encoder for switched reluctance motor drive  

E-Print Network [OSTI]

sensor. In an inexpensive systein, the rotor position sensor comprises of a magnetized ring along with Hall etfect sensors or opto-interrupters with slotted clisk. An optical sensor has a, light emitting diode which acts as a light transmitter, enid a... sensor. In an inexpensive systein, the rotor position sensor comprises of a magnetized ring along with Hall etfect sensors or opto-interrupters with slotted clisk. An optical sensor has a, light emitting diode which acts as a light transmitter, enid a...

Mahajan, Shailendra

2012-06-07T23:59:59.000Z

451

Vibration analysis of rotor systems using reduced subsystem models  

E-Print Network [OSTI]

the relative motion between the rotor and housing. A detailed analysis of this hydrodynamic coupling force is given in Ref. 1B to 20. Aerodynamic cross-coupling forces are developed when the fluid flows through blades causing a back-flow phenomenon...] is the diagonal matrix of assumed modal damping ratios. In case there are only the coupling forces (FC) at the connecting points to the rotor, the 3l transposed modal matrix [ASS] in equation (44) can 1T further be reduced to sub-matrices corresponding...

Fan, Uei-Jiun

1985-01-01T23:59:59.000Z

452

Geometry and Structural Properties for the Controls Advanced Research Turbine (CART) from Model Tuning: August 25, 2003--November 30, 2003  

SciTech Connect (OSTI)

The Controls Advanced Research Turbine (CART) is a modified Westinghouse WWG-0600 machine rated at 600 kW. It is located at the National Wind Technology Center (NWTC) in Boulder, Colorado, and has been installed to test new control schemes for power and load regulation. In its original configuration, the WWG-0600 uses a synchronous generator, fluid coupling, and hydraulic collective pitch actuation. However, the CART is fitted with an induction generator, rigid coupling, and individual electromechanical pitch actuators. The rotor runs upwind of the tower and consists of two blades and a teetering hub. In order to design advanced control schemes for the CART, representative computational models are essential.

Stol, K. A.

2004-09-01T23:59:59.000Z

453

Modelling and control of a variable speed wind turbine driving doubly fed induction generator using three-level PWM converter  

Science Journals Connector (OSTI)

The aim of this researcher is to develop a complete wind central model driven doubly fed induction generator (DFIG) which feeds an AC power grid. For that, two-pulse width modulated (PWM) voltage converters are connected back to back between the rotor terminals of DFIG and the utility grid via a common DC link, in there, our contribution will appear in the utilisation of three levels voltage inverters in order to ameliorate the energy quality. The simulation was carried out on a 2 MW wind-turbine driven DFIG system and the developed unified model validity and the proposed control strategies feasibility are all confirmed by the simulated results.

Fairouz Kendouli; Khoudir Abed; Khalil Nabti; Hocine Benalla

2012-01-01T23:59:59.000Z

454

American Institute of Aeronautics Astronautics DEVELOPMENT OF UNSTEADINESS IN A ROTOR WAKE  

E-Print Network [OSTI]

- speed forward flight (or cross-wind), where the wake is swept behind the rotor, the effect of ground1 American Institute of Aeronautics Astronautics DEVELOPMENT OF UNSTEADINESS IN A ROTOR WAKE Georgia Institute of Technology Atlanta, GA 30332-0150 ABSTRACT The flow field around the rotor in ground

455

BASIC CONTROL FOR FOUR ROTOR AUTONOMOUS AERIAL AGENT JONATHAN MCLEAN, CONNECTICUT COLLEGE, USA,  

E-Print Network [OSTI]

more difficult to control, requiring minute adjustments to individual rotor blades, as well as tailBASIC CONTROL FOR FOUR ROTOR AUTONOMOUS AERIAL AGENT JONATHAN MCLEAN, CONNECTICUT COLLEGE, USA platform is required. Our four-rotor platform provides researchers with a inexpensive, fully scalable test

Parker, Gary B.

456

Reduction of multi-stage disk models: Application to an industrial rotor  

E-Print Network [OSTI]

of the rotor into sectors. The bladed disks are coupled by intermediate rings which remove the problem that of a small portion, typically a bladed sector. This configuration no longer holds in real rotors due with multi-stage rotors. However, as underlined by Bladh et al.6 , the critical point is the choice

Boyer, Edmond

457

RESULTS AND DISCUSSION Part II AH-1G ROTOR IN LOW SPEED DESCENT FLIGHT  

E-Print Network [OSTI]

, results are presented for a two-bladed AH-1G rotor in a low-speed descent condition. In low speed forward and Acoustics Test (TAAT) was conducted on an AH-1G Cobra. It used highly instrumented rotor blades direction. The inner Navier-Stokes zone includes about 39% of the total grid points. The rotor has

458

Performance of propeller wind turbines  

SciTech Connect (OSTI)

Presented herein is a parametric study of the performance of propeller wind turbines with realistic drag/lift ratios. Calculations were made using the complete Glauert vortex blade element theory in annular streamtube elements with the complete turbine performance being the sum of the elemental results up to a specified tip speed ratio. The objective here is to exhibit a new computational technique which yields performance directly when tangential speed ratio and section aerodynamic characteristics are specified. It was found that for a tip speed ratio of 4, turbines with drag/lift ratios of 0.00 and 0.01 had power coefficients of 0.575 and 0.55, respectively. The off-design performance of the finite drag/lift was far better than that of their zero drag counterparts, except in a + or - 20% region about the design conditions. Tolerance to off-design operation increased with decreasing tip speed ratios so that the annual energy capture for tip speed ratios between 2 and 4 was about 87% of the ideal turbine value. The results are intended to provide a basis for re-evaluation of the power range classes of fixed pitch turbines and design tip speed ratios.

Wortman, A.

1983-11-01T23:59:59.000Z

459

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect (OSTI)

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

460

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network [OSTI]

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science  

SciTech Connect (OSTI)

Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

Not Available

2011-05-01T23:59:59.000Z

462

Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions  

Science Journals Connector (OSTI)

Abstract The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the rotor leading edge suggest that the circumference variation is little (7%) as compared to its variation in time as the pulse progresses. The primary aim of this paper is to investigate the relationship of the turbine speed, as well as the pulsating flow frequency to its performance. It was found that there are no direct instantaneous relationship between the pulsating pressure at the turbine inlet and the turbine efficiency, except when one considers an additional parameter, namely the incidence angle. This paper also intends to investigate the potential loss of information if the performance parameters are simply averaged without considering the instantaneous effects.

M.H. Padzillah; S. Rajoo; R.F. Martinez-Botas

2014-01-01T23:59:59.000Z

463

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

464

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

465

Building the Basic PVC Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

Energy Smart CD- Building PVC Turbine 8 Some Blade Building Tips KidWind model wind turbines are designed for use in science classes, or as a hobby or science fair project....

466

Diffuser Augmented Wind Turbine Analysis Code  

E-Print Network [OSTI]

, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

Carroll, Jonathan

2014-05-31T23:59:59.000Z

467

Golden Turbines LLC | Open Energy Information  

Open Energy Info (EERE)

Axis Logarithmic Spiral Turbine This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleGoldenTurbinesLLC&oldid76910...

468

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

gas turbines for combined heat and power”. In: Ap- plied10.1115/1.4001356. [3] Combined Heat and Power. Tech. rep.of Tesla Turbines for Combined Heat and Power Applications”.

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

469

Consider Steam Turbine Drives for Rotating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

470

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

471

Speaker: Professor Alexander Turbiner, Instituto de Ciencias ...  

E-Print Network [OSTI]

Oct 27, 2009 ... PURDUE UNIVERSITY. Department of Mathematics Colloquium. Speaker: Professor Alexander Turbiner, Instituto de Ciencias Nucleares, ...

1910-91-01T23:59:59.000Z

472

TGM Turbines | Open Energy Information  

Open Energy Info (EERE)

TGM Turbines TGM Turbines Jump to: navigation, search Name TGM Turbines Place Sertaozinho, Sao Paulo, Brazil Zip 14175-000 Sector Biomass Product Brazil based company who constructs and sells boilers for biomass plants. Coordinates -21.14043°, -48.005154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-21.14043,"lon":-48.005154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

474

Prototype bucket foundation for wind turbines  

E-Print Network [OSTI]

Prototype bucket foundation for wind turbines -natural frequency estimation Lars Bo Ibsen Morten bucket foundation for wind turbines -natural frequency estimation by Lars Bo Ibsen Morten Liingaard foundation for wind turbines--natural frequency estimation" is divided into four numbered sections

475

Aircraft Gas Turbine Materials and Processes  

Science Journals Connector (OSTI)

...extend the life of a gas turbine air-foil...withstood higher turbine inlet tem-peratures...invented for the gas-pressure...from over. Remaining to be formu-lated...in rupture life. In addition...fabrication of gas turbine components...

B. H. Kear; E. R. Thompson

1980-05-23T23:59:59.000Z

476

Computational Analysis of Shrouded Wind Turbine Configurations  

E-Print Network [OSTI]

Computational Analysis of Shrouded Wind Turbine Configurations Aniket C. Aranake Vinod K. Lakshminarayan Karthik Duraisamy Computational analysis of diuser-augmented turbines is performed using high-dimensional simulations of shrouded wind turbines are performed for selected shroud geometries. The results are compared

Alonso, Juan J.

477

Wind Turbine Blockset in Matlab/Simulink  

E-Print Network [OSTI]

Wind Turbine Blockset in Matlab/Simulink General Overview and Description of the Models Florin Iov, Anca Daniela Hansen, Poul Sørensen, Frede Blaabjerg Aalborg University March 2004 #12;22 Wind Turbine to model, optimize and design wind turbines" and it has been used as a general developer tool for other

478

Magnetic induction of low-carbon steel for generator rotors  

Science Journals Connector (OSTI)

Steels containing 0.11–0.17% C and 4.5–4.6% Ni have higher magnetic induction than steels 25KhN3MFA and 35KhN3MFA which at present are used for generator rotors.

O. V. Filimonova; I. A. Borisov; A. M. Shkatova…

1989-06-01T23:59:59.000Z

479

Single Molecular Rotor at the Nanoscale Christian Joachim1  

E-Print Network [OSTI]

�schlikon, Switzerland E-mail: gim@zurich.ibm.com The design of a monomolecular engine such as a rotating motor ®rst requires the preparation of a semi-classical rotating motion of the rotor part of the engine. We show versions of machines in our daily life, using the same working principles such as, for instance, a steam

Gimzewski, James

480

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine rotor start-up" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation  

SciTech Connect (OSTI)

The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

2011-09-15T23:59:59.000Z

482

Performance of twist-coupled blades on variable speed rotors  

SciTech Connect (OSTI)

The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software is also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.

Lobitz, D.W.; Veers, P.S.; Laino, D.J.

1999-12-07T23:59:59.000Z

483

The value of steam turbine upgrades  

SciTech Connect (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

484

DOE and Sandia National Laboratories Develop National Rotor Testbed...  

Energy Savers [EERE]

The SWiFT facility, which was commissioned this July, is unique in that it utilizes wind turbines that are large enough to represent the physics relevant to utility-scale machines,...

485

Methods for measuring turbine efficiency  

SciTech Connect (OSTI)

This article describes the most common methods used for measuring hydro turbine efficiency. These methods are the acoustic flowmeter method, the Gibson (pressure-time) method, pressure drop across a flow restriction, propeller-driven flowmeters, the volumetric method, Winter-Kennedy taps, and the thermodynamic method. A new computerized variation of the Gibson method is also described.

O'Kelly, F.

1992-04-01T23:59:59.000Z

486

Energy 101: Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

487

Industrial Advanced Turbine Systems Program overview  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

1995-10-01T23:59:59.000Z

488

Aerodynamic interference between two Darrieus wind turbines  

SciTech Connect (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

489

Energy 101: Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

490

Incipient Crack Detection in Composite Wind Turbine Blades  

SciTech Connect (OSTI)

This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

Taylor, Stuart G. [Los Alamos National Laboratory; Choi, Mijin [Chonbuk National University, Korea; Jeong, Hyomi [Chonbuk National University, Korea; Jang, Jae Kyeong [Chonbuk National University, Korea; Park, Gyuhae [Chonnam National University, Korea; Farinholt, Kevin [Commonwealth Center for Advanced Manufacturing, VA; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Lee, Jung-Ryul [Chonbuk National University, Korea

2012-08-28T23:59:59.000Z

491

Pressure balanced drag turbine mass flow meter  

DOE Patents [OSTI]

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, M.W.; Cole, J.H.

1980-04-23T23:59:59.000Z

492

Pressure balanced drag turbine mass flow meter  

DOE Patents [OSTI]

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, Michael W. (Gilbert, AR); Cole, Jack H. (Fayetteville, AR)

1982-01-01T23:59:59.000Z

493

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in todayâ??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

2009-06-30T23:59:59.000Z