Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Pumped-Storage Hydro-Turbine Bidding Strategies in a Competitive Electricity Market  

Science Conference Proceedings (OSTI)

This paper develops optimal pumped-storage unit bidding strategies in a competitive electricity market. Starting from a weekly forecasted market clearing price curve, an algorithm to maximize the profit of a pumped-storage unit considering reserve bids is developed. A comparison between the optimal bidding strategy and a fixed-schedule weekly generating and pumping strategy is provided.

Lu, Ning; Chow, Joe H.; Desrochers, Alan A.

2004-05-31T23:59:59.000Z

2

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

3

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

4

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

5

Microhydropower Turbines, Pumps, and Waterwheels  

Energy.gov (U.S. Department of Energy (DOE))

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity.

6

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

7

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity....

8

pumped storage | OpenEI  

Open Energy Info (EERE)

pumped storage pumped storage Dataset Summary Description These two datasets include energy statistics for the European Union (EU). The statistics are available from the European Commission. The data includes detailed information about: production, net imports, gross inland consumption, and electricity generation for the EU as a whole, as well as the individual member countries, for the period between 1990 and 2007. Source European Commission Date Released Unknown Date Updated Unknown Keywords annual energy consumption biomass coal crude oil Electricity Generation EU gas geothermal Hydro pumped storage PV renewable energy generating capacity wind Data application/vnd.ms-excel icon EU Energy Figures 2010 (Excel file, multiple tabs) (xls, 2 MiB) application/vnd.ms-excel icon EU Electricity Generation from Renewables (xls, 190.5 KiB)

9

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

10

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

11

Subsea Pumped Hydro Storage -A Technology Assessment.  

E-Print Network (OSTI)

??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Falk, Johan

2013-01-01T23:59:59.000Z

12

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor DO NOT 16 0 REMOVE 16 Small recuperated gas turbine engine, design rated at 13 hp and 27% efficiency of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

13

Hydrogen Storage in Wind Turbine Towers  

DOE Green Energy (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

14

Closed cycle steam turbine system with liquid vortex pump  

SciTech Connect

A closed cycle steam generating system is described comprising a steam boiler, and a steam turbine includes a vacuum pump of the liquid vortex type for condensing the exhaust steam from the turbine, a feedwater pump being employed for returning the condensate to the boiler. The tank of the vortex pump is maintained filled with water and the pressure in the tank is regulated automatically to maintain a predetermined value thereof.

Brown, K.D.

1976-08-10T23:59:59.000Z

15

Nuclear Maintenance Applications Center: Feed Pump Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Steam Turbines and Auxiliaries Program 65 and the Nuclear Maintenance Application Center have developed a series of maintenance guides to assist plant personnel with the performance of various maintenance tasks associated with a wide variety of plant components. The objective of this project was to publish a maintenance guide for the feed pump turbines that included an ...

2012-09-25T23:59:59.000Z

16

Pumped-Storage Planning and Evaluation Guide  

Science Conference Proceedings (OSTI)

Utilities now have an easy-to-use evaluation and costing methodology that allows users to better estimate pumped-storage potential. This guide will enable utilities to accurately screen potential sites to determine which candidates deserve more-detailed studies.

1989-12-15T23:59:59.000Z

17

Feedwater Pump Turbine Controls and Oil System Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to personnel involved in the mechanical hydraulic controls (MHCs) of the feedwater pump turbine (FWPT), its associated components, and inherent oil system, including good maintenance practices, condition monitoring, predictive and preventive maintenance techniques, probable failure modes, and troubleshooting guidance. The guide was developed to provide maintenance and troubleshooting information as well as a basic background in mechanical hydraulic controls.

2001-12-20T23:59:59.000Z

18

Vertical pump turbine oil environmental evaluation  

DOE Green Energy (OSTI)

In Oregon low-temperature geothermal injection well construction, siting and receiving formations requires approval by the Water Resources Department (OWRD). In addition, the Oregon Department of Environmental Quality (ODEQ) has regulations concerning injection. Conversations with the OWRD and ODEQ representatives indicated they were very concerned about the potential for contamination of the geothermal (and cooler but hydraulically connected) aquifers by oils and grease. Their primary concern was over the practice of putting paraffin, motor oils and other hydrocarbons in downhole heat exchanger (DHE) wells to prevent corrosion. They also expressed considerable concern about the use of oil in production well pumps since the fluids pumped would be injected. Oregon (and Idaho) prohibit the use of oil-lubricated pumps for public water supplies except in certain situations where non-toxic food-grade lubricants are used. Since enclosed-lineshaft oil-lubricated pumps are the mainstay of direct-use pumping equipment, the potential for restricting their use became a concern to the Geo-Heat Center staff. An investigation into alternative pump lubrication schemes and development of rebuttals to potential restrictions was proposed and approved as a contract task. (SM)

Culver, G.

1991-04-01T23:59:59.000Z

19

Optimization of Hydroelectric Pumped Storage: An Extension of Optimal Switching  

E-Print Network (OSTI)

commodities such as oil or natural gas. The storage of electricity requires storing the means to produce of this model in which additions and changes must be made to move from natural gas to pumped storage electricity), and change of parameters to change from a model for natural gas to that of pumped storage. The variables

Moore, Kristen

20

Hydrogen Storage in Wind Turbine Towers: Design Considerations; Preprint  

DOE Green Energy (OSTI)

The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research and experimentation, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are technically feasible. We discovered that hydrogen towers have a''crossover pressure'' at which their critical mode of failure crosses over from fatigue to bursting. The crossover pressure for many turbine towers is between 10 and 15 atm. The cost of hydrogen storage per unit of storage capacity is lowest near the crossover pressure. Above the crossover pressure, however, storage costs rise quickly.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Control system for the turbomolecular pumping stations and sector valves of the CERN Intersecting Storage Rings  

E-Print Network (OSTI)

Control system for the turbomolecular pumping stations and sector valves of the CERN Intersecting Storage Rings

Gröbner, Oswald

1971-01-01T23:59:59.000Z

22

Adjudication Concerning the Turbomolecular Pumping Stations for the Vacuum System of the Intersecting Storage Rings  

E-Print Network (OSTI)

Adjudication Concerning the Turbomolecular Pumping Stations for the Vacuum System of the Intersecting Storage Rings

1968-01-01T23:59:59.000Z

23

Field performance of cavitation erosion resistant alloy on pumped-storage hydroturbine  

DOE Green Energy (OSTI)

The TVA Raccoon Mountain Plant is a four unit pumped-storage plant located on the Tennessee River, Nickajack Reservoir, in Marion County, Tennessee, six miles (3.7 km) west of Chattanooga, Tennessee. The four units went into commercial operation between January 31, 1978 and August 31, 19179. Each unit has a generating rating of 392 MW at a 1020 ft head (310.9 meters). Each turbine is a reversible Francis type, with vertical shaft, manufactured by Allis-Chalmers (now Voith Hydro, Inc.). The runner diameter is 16 ft 7 inches (5.05 meters). the runner material is ASTM A296-CA6NM.

Karr, O.F.; Brooks, J.B.; March, P.A.; Epps, J.M.

1992-10-01T23:59:59.000Z

24

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

25

Gas turbine engine control using electrically driven fuel metering pumps.  

E-Print Network (OSTI)

??The aim of this thesis, developed in ROLLS ROYCE PLC, has been to investigate the use of an innovative fuel system on aero gas turbine… (more)

BERTOLUCCI, ALESSIO

2008-01-01T23:59:59.000Z

26

Rock bed storage with heat pump. Final report  

SciTech Connect

The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

Remmers, H.E.; Mills, G.L.

1979-05-01T23:59:59.000Z

27

Operation and Maintenance Experiences of Pumped-Storage Plants  

Science Conference Proceedings (OSTI)

Owners, operators, and designers of hydroelectric pumped-storage plants now have access to the combined operation and maintenance (O&M) knowledge of more than 30 operating plants around the world. The lessons learned should maximize the benefits of solutions developed for typical operational problems.

1991-05-13T23:59:59.000Z

28

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

29

Evolutionary tristate PSO for strategic bidding of pumped-storage hydroelectric plant  

Science Conference Proceedings (OSTI)

This paper develops bidding strategy for operating multiunit pumped-storage power plant in a day-ahead electricity market. Based on forecasted hourly market clearing price, the objective is to self-schedule and maximize the expected profit of the pumped-storage ... Keywords: bidding strategy, day-aheadmarket, evolutionary tristate particle swarm optimization (ETPSO), pumped-storage, self-scheduling

P. Kanakasabapathy; K. Shanti Swarup

2010-07-01T23:59:59.000Z

30

Chemical heat pump and chemical energy storage system  

DOE Patents (OSTI)

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

31

Results from Case Studies of Pumped-Storage Plants  

Science Conference Proceedings (OSTI)

Detailed plant performance analyses were conducted using unit and plant performance characteristics and 1-minute plant operational data from 2008, 2009, and 2010 for five pumped-storage plants. These five case studies encompass three markets (MISO, NYISO, and PJM) and one non-market region (Southeast area). Owners for the five plants include three investor-owned utilities, one state power authority, and one federal power corporation. This report describes results from detailed performance analyses ...

2012-09-14T23:59:59.000Z

32

Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint  

DOE Green Energy (OSTI)

The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

2013-05-01T23:59:59.000Z

33

Maximizing Gross Margin of a Pumped Storage Hydroelectric Facility Under Uncertainty in Price and Water Inflow.  

E-Print Network (OSTI)

??The operation of a pumped storage hydroelectric facility is subject to uncertainty. This is especially true in today’s energy markets. Published models to achieve optimal… (more)

Ikudo, Akina

2009-01-01T23:59:59.000Z

34

Plant Support Engineering: Feedwater Pump Turbine Mechanical Hydraulic Controls End-of-Life Report  

Science Conference Proceedings (OSTI)

Mechanical hydraulic controls (MHCs) in nuclear plant feedwater pump turbines (FPTs) are a high contributor to plant capacity derates. The purpose of this study was to evaluate MHCs' degradation over time and life-limiting properties in order to provide guidance about their expected life span and the point at which major refurbishment or replacement should be considered. Insights from this study should provide readers with life-cycle guidance that helps in the management of their facilities' long-term op...

2010-12-13T23:59:59.000Z

35

Aging of turbine drives for safety-related pumps in nuclear power plants  

SciTech Connect

This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented.

Cox, D.F. [Oak Ridge National Lab., TN (United States)

1995-06-01T23:59:59.000Z

36

An evaluation of thermal energy storage options for precooling gas turbine inlet air  

SciTech Connect

Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

1992-12-01T23:59:59.000Z

37

System design and manufacturability of concrete spheres for undersea pumped hydro energy or hydrocarbon storage  

E-Print Network (OSTI)

Offshore wind and energy storage have both gained considerable attention in recent years as more wind turbine capacity is installed, less attractive/economical space remains for onshore wind, and load-leveling issues make ...

Fennell, Gregory E. (Gregory Edmund)

2011-01-01T23:59:59.000Z

38

Modeling of DFIG Wind Turbine and Lithium Ion Energy Storage System  

Science Conference Proceedings (OSTI)

The paper is aimed at describing the dynamic models of DFIG equipped wind turbine and Lithium Ion Energy System. The purpose of the energy storage system is to be coupled to the wind generation system in order to smooth its power output. Depending on ... Keywords: Renewable Generation, Embedded Generation, Wind Power, DFIG, Lithium Ion, Storage

Mattia Marinelli; Andrea Morini; Federico Silvestro

2010-02-01T23:59:59.000Z

39

Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling  

Science Conference Proceedings (OSTI)

This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

Klimas, P.C.; Sladky, J.F. Jr.

1985-01-01T23:59:59.000Z

40

Adjudication Concerning 70 Additional Sputter-Ion Pumps for the Vacuum System of the Intersecting Storage Rings  

E-Print Network (OSTI)

Adjudication Concerning 70 Additional Sputter-Ion Pumps for the Vacuum System of the Intersecting Storage Rings

1968-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants  

SciTech Connect

Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-01-01T23:59:59.000Z

42

Pumped storage provides grid reliability even with net generation ...  

U.S. Energy Information Administration (EIA)

tags: electricity generation capacity hydroelectric storage. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

43

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design; Preprint  

Science Conference Proceedings (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. The most cost-effective hydrogen tower design would use substantially all of its volume for hydrogen storage and be designed at its crossover pressure. An 84-m tall hydrogen tower for a 1.5-MW turbine would cost an additional $84,000 (beyond the cost of the conventional tower) and would store 950 kg of hydrogen. The resulting incremental storage cost of $88/kg is approximately 30% of that for conventional pressure vessels.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

44

Shipping Preparations and Storage of Turbine and Generator Components  

Science Conference Proceedings (OSTI)

Many utilities are replacing major components in their units and are becoming increasingly concerned with shipping as well as long- and short-term storage of these replacement components, which arrive on site for immediate use or as backup in case of emergency. The choice of storage location depends on space availability, site security, environment, tracking and accessibility of stored equipment, original equipment manufacturer (OEM) requirements, and component inspection or maintenance requirements duri...

2010-11-01T23:59:59.000Z

45

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

46

Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander  

DOE Green Energy (OSTI)

A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/ geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectiveness values ranging as high as 9.5 Watt hr/lbm geofluid for the 360/sup 0/F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

Demuth, O.J.

1984-06-01T23:59:59.000Z

47

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network (OSTI)

For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes, operating modes and weather conditions. The results show that 1) for most areas of China, the solar systems with seasonal storage can save energy; 2) for areas with cold winter and hot summer, it is suitable to store heat from summer to winter and store cold energy from winter to summer, but for chilly areas, it is suitable to only store heat from summer to winter; 3) when the ratio of volume of seasonal storage tank to collector areas is 2~3, the system performance is optimal and the payback period is shortest for most areas of north China; and 4) if cooling storage is needed, the seasonal storage coupled with short-term storage may raise the solar fraction largely.

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

48

Analysis of environmental issues related to small-scale hydroelectric development IV: fish mortality resulting from turbine passage  

DOE Green Energy (OSTI)

This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner) has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.

Turbak, S. C.; Reichle, D. R.; Shriner, C. R.

1981-01-01T23:59:59.000Z

49

NREL: Learning - Pumped Hydropower  

NLE Websites -- All DOE Office Websites (Extended Search)

Pumped Hydropower Pumped Hydropower Pumped hydro facilities use off-peak electricity to pump water from a lower reservoir into one at a higher elevation. When the water stored in the upper reservoir is released, it is passed through hydraulic turbines to generate electricity. The off-peak electrical energy used to pump the water up hill can be stored indefinitely as gravitational energy in the upper reservoir. Thus, two reservoirs in combination can be used to store electrical energy for a long period of time, and in large quantities. Utilities generally prefer to operate large coal and nuclear power stations at full power all the time (referred to as "baseload generation"), so in the middle of the night, these plants often produce more power than is needed. Pumped hydro energy storage can be used to smooth out the demand

50

Production test IP-466-A test of the 190 turbine pumps at KE(KW) Rector (Project CGI-844)  

SciTech Connect

The purpose of this test is to provide for adequate testing of the new steam turbine pumps. This will cover the tests required for the acceptance of these new items as per ATP-2588 and for any additional testing required to ensure reactor emergency cooling adequacy and reliability. A further objective is to provide the safety requiring by which the objectives of the ATP-2588 may be accomplished. A steam pump is being installed in each of the 190-K buildings to provide an additional secondary supply of reactor coolant. The basis for this test is presented in ATP-2588. Briefly, it is to authorize the required reactor down time and to assure reactor safety in the performance of the required testing procedures. These tests will develop the necessary and pertinent information concerning the cooling adequacy of this new system. At the same time, information will be obtained concerning the in situ characteristics of the steam turbine pump and the flow to the reactor when one side of the process lines is closed.

Jones, S.S.

1962-02-01T23:59:59.000Z

51

Heat pump water heater and storage tank assembly  

DOE Patents (OSTI)

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

52

Effects of Markets and Operations on the Suboptimization of Pumped Storage and Conventional Hydroelectric Plants  

Science Conference Proceedings (OSTI)

Detailed plant performance analyses were conducted using unit performance data, market data, and plant operational data from 2008, 2009, and 2010 for five pumped storage plants and three conventional hydroelectric plants. These eight case studies encompass three markets (MISO, PJM, and NYISO) and two regions (Southeast area and Western area). Owners for the eight plants include three investor-owned utilities, two state power authorities, and one federal power corporation. This report expands on ...

2013-04-02T23:59:59.000Z

53

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network (OSTI)

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS&GSHP system can serve as cold energy thermal storage at night, produce chilled water in the daytime in summer and provide hot water for heating in winter. This is followed by its schematic and characteristic description. Then the various operation modes of such system according to different operational strategies are demonstrated in sequence. The system, firstly seen in open literature, is energy-saving, environmental-friendly and promising in the field of air-conditioning systems, and will help solve the problems currently existing with the GSHP system and ITES air conditioning system.

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

54

Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to  

E-Print Network (OSTI)

Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures of simulation case studies demonstrate the operation of the system. I. INTRODUCTION enewable energy such as wind and solar energy are clean and available as long as the wind blows or sun shines. Two main disadvantages

Li, Perry Y.

55

An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage  

E-Print Network (OSTI)

The increasing wind power penetration in power systems represents a techno-economic challenge for power producers and system operators. Due to the variability and uncertainty of wind power, system operators require new solutions in order to increase the controllability of wind farm output. On the other hand, producers that include wind farms in their portfolio need to find new ways to boost their profits in electricity markets. This can be done by optimizing the combination of wind farms and storage so as to make larger profits when selling power (trading) and reduce penalties from imbalances in the operation. The present work describes a new integrated approach for analyzing wind-storage solutions that make use of probabilistic forecasts and optimization techniques to aid decision-making on operating such systems. The approach includes a set of three complementary functions suitable for use in current systems. A reallife system is studied, comprising two wind farms and a large hydro station with pumping capacity. Economic profits and better operational features can be obtained from the proposed cooperation between the wind farms and storage. The revenues are function of the type of hydro storage used and the market characteristics and several options are compared in this study. The results show that the use of a storage device can lead to a significant increase in revenue, up to 11 % (2010 data, Iberian market). Also, the

Edgardo D. Castronuovo; Julio Usaola; Ricardo Bessa; Manuel Matos; I. C. Costa; L. Bremermann; Jesus Lugaro; George Kariniotakis; Sophia Antipolis France

2013-01-01T23:59:59.000Z

56

Lower Brule Sioux Tribe Wind-Pump Storage Feasibility Study Project  

DOE Green Energy (OSTI)

The Lower Brule Sioux Tribe is a federally recognized Indian tribe organized pursuant to the 1934 Wheeler-Howard Act (“Indian Reorganization Act”). The Lower Brule Sioux Indian Reservation lies along the west bank of Lake Francis Case and Lake Sharpe, which were created by the Fort Randall and Big Bend dams of the Missouri River pursuant to the Pick Sloan Act. The grid accessible at the Big Bend Dam facility operated by the U.S. Army Corps of Engineers is less than one mile of the wind farm contemplated by the Tribe in this response. The low-head hydroelectric turbines further being studied would be placed below the dam and would be turned by the water released from the dam itself. The riverbed at this place is within the exterior boundaries of the reservation. The low-head turbines in the tailrace would be evaluated to determine if enough renewable energy could be developed to pump water to a reservoir 500 feet above the river.

Shawn A. LaRoche; Tracey LeBeau; Innovation Investments, LLC

2007-04-20T23:59:59.000Z

57

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network (OSTI)

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source scheme in economical, technical, and environmental aspects, it is determined that the scheme of the groundwater source heat pump has better energy efficiency than others. The GHPWTS can take full advantage of the heat source from groundwater and benefit of electricity difference pricing during a day. Its character is a combination of a strength and another strength. It is the lowest cycle cost of all chide and heat source schemes. The GHPWTS has the best economic benefit and runs stably and reliably. Its advantage is clearly compared with other schemes. There is a real value for the project that is similar to the characteristic of this project and the condition of the water source.

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

58

Generation Maintenance Applications Center: Maintenance Guide for Horizontal Split-Casing Closed Cooling Water Pumps in Combined-Cyc le Combustion-Turbine Plants  

Science Conference Proceedings (OSTI)

This report identifies the failure modes and general maintenance requirements for horizontal split-casing closed cooling water pumps used in utility combined-cycle combustion-turbine power plants. Information in this report was provided and reviewed by member utilities. Manufacturers’ information and Electric Power Research Institute (EPRI) database information was used as a basis for the ...

2012-11-21T23:59:59.000Z

59

Analysis of Pump-Turbine S Instability and Reverse Waterhammer Incidents in Hydropower Systems  

DOE Green Energy (OSTI)

Hydraulic systems continually experience dynamic transients or oscillations which threaten the hydroelectric plant from extreme water hammer pressures or resonance. In particular, the minimum pressure variations downstream of the turbine runner during the load rejection or other events may cause dangerous water column separation and subsequent rejoinder. Water column separation can be easily observed from the measurements of site transient tests, and has indeed caused serious historical damages to the machine and water conveyance system. Several technical issues regarding water column separation in draft tubes, including S instability of turbine characteristic curves, numerical instability and uncertainty of computer programs, are discussed here through case studies and available model and site test data. Catastrophic accidents experienced at a Kaplan turbine and in a long tailrace tunnel project, as well as other troubles detected in a more timely fashion, are revisited in order to demonstrate the severity of reverse water hammer. However, as there is no simple design solutions for such complex systems, this paper emphasizes that the design of hydraulic systems is always difficult, difficulties that are compounded when the phenomena in question are non-linear (water hammer), dynamic (involving wave interaction and complex devices of turbines, controls, and electrical systems), and non-monotonic (severity of response is seldom simply connected to severity of load as with vibrations and resonance, and the complexity of transient loads), and thus may lead to high economic and safety challenges and consequences.

Pejovic, Dr. Stanislav [University of Toronto; Zhang, Qin Fen [ORNL; Karney, Professor Byran W. [University of Toronto; Gajic, Prof. Aleksandar [University of Belgrade, Belgrade, Serbia

2011-01-01T23:59:59.000Z

60

Vacuum-Pump Control System Using Programmable Logic Controllers on the TCP/IP Network for the 2.5-GeV Storage Ring  

E-Print Network (OSTI)

Vacuum-Pump Control System Using Programmable Logic Controllers on the TCP/IP Network for the 2.5-GeV Storage Ring

Kanaya, N; Maezawa, H; Factory, P

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network (OSTI)

Based on the status quo that conventional energy sources are more and more reduced and environmental pollution is increasingly serious, this paper presents a new model system of conserving energy and environmental protection, namely, a Solar Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar heat collector is solved by latent heat storage. In order to obtain such system running conditions and effects in different heating periods, an experiment has been carried out during the whole heating period in Harbin, China. The experimental results show that this system is much better for heating in initial and late periods than that in middle periods. The average heating coefficient is 6.13 for heating in initial and late periods and 2.94 for heating in middle periods. At the same time, this paper also predicts system running properties in other regions.

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

62

PUMPS  

DOE Patents (OSTI)

A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

Thornton, J.D.

1959-03-24T23:59:59.000Z

63

The geothermal analog of pumped storage for electrical demand load following  

Science Conference Proceedings (OSTI)

A 6 day cycle Load-Following Experiment, conducted in July 1995 at the Fenton Hill Hot Dry Rock (HDR) test site in New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, rapid increase in thermal power output upon demand. The objective was to study the behavior of the HDR reservoir in a high-production- backpressure (2200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4 hour period each day. In practice, this enhanced production, an increase of 65%, was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial 2200 psi down to 500 psi. The rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode, there would be no increase in the reservoir size of number of wells (the {ital in situ} capital investment) for a significant amount of peaking power production for a few hours each day. Thus, one of the advantages of geothermal load following over utility options such as pumped storage or compressed air storage is that the HDR power plant would be operated during off-peak hours in a baseline mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods. The surface power plant and the geofluid reinjection pumps would need to be sized for the peak rate of thermal energy production, adding somewhat to the overall HDR system capital costs when compared to a simple baseload power plant design.

Brown, D.W.

1996-09-01T23:59:59.000Z

64

Real-time optimization of wind farms and fixed-head pumped-storage hydro-plants  

Science Conference Proceedings (OSTI)

Renewable energies and, in particular, wind power have come to the forefront in the electricity market in recent years. The main drawback of wind power generation, however, is the major difficulty in forecasting its production. For this reason, when ... Keywords: optimal control, pumped storage plant, wind farm

L. Bayón, J. M. Grau, M. M. Ruiz, P. M. Suárez

2013-10-01T23:59:59.000Z

65

Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States  

DOE Green Energy (OSTI)

The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

Chas. T. Main, Inc.

1982-03-01T23:59:59.000Z

66

Kalaupapa, Molokai, Hawaii wind-turbine and battery-storage analysis using the SOLSTOR II computer code  

Science Conference Proceedings (OSTI)

The feasibility of a wind-turbine collector and battery-storage system on the island of Molokai, Hawaii, was investigasted using the SOLSTOR II optimizing computer code. Three system configurations were evaluated: utility-connected, stand-alone with generator backup, and stand-alone without generator backup. The utility-connected version considered both sell-back of energy to the utility and no sell-back. Major analysis conclusions are: the wind regime used in the simulation is extremely good, the annualized specific energy costs for all simulation cases are considerably lower than the current utility electric rate, and moderate battery storage capacity is economically attractive on the island of Mokokai.

Murphy, K.D.

1983-01-01T23:59:59.000Z

67

Development and Implementation of an Expert System for Vibration Monitoring and Diagnoses for Hydroelectric Pumped Storage Units  

Science Conference Proceedings (OSTI)

A reliable expert diagnostic system supports a condition-based approach to maintenance that enables plant management to extend the time between outages and plan specific maintenance efforts. This report describes the two-phase development and implementation of a rule-based expert system for performing vibration monitoring and diagnostics on four hydroelectric pumped storage units of the New York Power Authority (NYPA). Developers estimate that the system could save plants $150,000/yr in forced outage cos...

1998-11-11T23:59:59.000Z

68

The integration of water loop heat pump and building structural thermal storage systems  

DOE Green Energy (OSTI)

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

69

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

70

Application of Adjustable-Speed Machines in Conventional and Pumped-Storage Hydro Projects  

Science Conference Proceedings (OSTI)

Improving turbine efficiency and operation over increased head range can be achieved by adjusting the speed of the turbine generator and motor. Until recently, adjustable-speed control for large-size generators and motors has not been practical for commercial application in hydroelectric plants. Current developments in power electronics, however, have made available robust and reliable high-ampacity thyristor devices along with necessary control systems. This report covers both the constraints of single-...

1996-02-14T23:59:59.000Z

71

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

72

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

73

"1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003 "2. North Anna","Nuclear","Virginia Electric & Power Co",1864 "3. Possum Point","Gas","Virginia Electric & Power Co",1733 "4. Chesterfield","Coal","Virginia Electric & Power Co",1639 "5. Surry","Nuclear","Virginia Electric & Power Co",1638 "6. Yorktown","Coal","Virginia Electric & Power Co",1141 "7. Tenaska Virginia Generating Station","Gas","Tenaska Virginia Partners LP",927 "8. Clover","Coal","Virginia Electric & Power Co",865

74

Optimization of a Savonius rotor vertical-axis wind turbine for use in water pumping systems in rural Honduras  

E-Print Network (OSTI)

The D-lab Honduras team designed and constructed a wind-powered water pump in rural Honduras during IAP 2007. Currently, the system does not work under its own power and water must be pumped by hand. This thesis seeks to ...

Zingman, Aron (Aron Olesen)

2007-01-01T23:59:59.000Z

75

Open-cycle chemical heat pump and energy storage system. Final report of Research Program, June 1982-September 1983  

DOE Green Energy (OSTI)

A liquid desiccant heat pump that can heat, cool, humidify, and dehumidify, as well as heat domestic water, has been designed, developed, and tested over a six-year period. Successful operation of the machine demonstrated that a heating cycle utilizing the heat of sorption of a desiccant solution could be added to a desiccant cooling system, thus creating an open-cycle liquid desiccant heat pump. The liquid system was shown to possess a unique capability: the ability to store energy, not as sensible heat but as chemical potential energy, in an uninsulated storage tank with a volume that is an order of magnitude smaller than the insulated volumes needed for water or rock bed storage systems. The spent absorbent solution was reconcentrated in a roof-top solar-collector/reconcentrator. Additionally, it was shown that a packed-column could also act as the reconcentrator; for this operation, the desiccant solution was heated by flat-plate solar collectors, by off-peak electricity, and by waste heat from a vapor compressor.

Robison, H.I.

1983-10-01T23:59:59.000Z

76

Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump  

E-Print Network (OSTI)

In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling unit of the phase change heat transfer model. It was solved numerically by an enthalpy-based finite difference method and was validated by experimental data. CaCl2•6H2O was used as the PCM in the latent heat storage system of SAGSHP system. In the tank, the PCMs are encapsulated in plastic kegs that are setting on the serpentine coil. The experiments were performed from March 12 to April 10, 2004 in the heating season of the transition period. In order to reflect the effects of the system, two days were chosen to compare the numerical results with experimental data. The inlet and outlet temperature of the water in the PCST, temperature of PCM and storage and emission heat of PCST were measured. The trends of the variation of numerical results and experimental data were in close agreement. Numerical results can reflect the operation mode of the system very well.

Wang, F.; Zheng, M.; Li, Z.; Lei, B.

2006-01-01T23:59:59.000Z

77

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

78

Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades  

DOE Green Energy (OSTI)

The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented.

Zaininger, H.W.; Barnes, P.R. [Zaininger Engineering Co., Inc., San Jose, CA (United States)

1997-03-01T23:59:59.000Z

79

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

pumped hydro, compressed air, and battery energy storage areto other energy storage sys tem s suc h as pumped hydro andenergy would be $50/MJ whereas the cost of the pumped hydro

Hassenzahl, W.

2011-01-01T23:59:59.000Z

80

Application of wind energy to Great Plains irrigation pumping. Final report  

DOE Green Energy (OSTI)

Wind energy systems without energy storage for irrigation in the Great Plains are studied. Major uses of irrigation energy were identified as pumping for surface distribution systems, which could be supplied by variable flow, and pumping for sprinkler systems using constant flow. A computer program was developed to simulate operation of wind-powered irrigation wells. Pumping by wind turbine systems was simulated for 2 variable and 2 constant flow operational modes in which auxiliary motors were used in 3 of the modes. Using the simulation program, the well yields and maximum pumping rates among the 4 modes as a function of drawdown in a typical well are compared.

Hagen, L.J.; Lyles, L.; Skidmore, E.L.

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling of absorption heat pumps: solar applications employing chemical storage and steady-state modeling with a comparison to experiments  

SciTech Connect

This work develops simulation models for absorption heat pumps (AHPs) with the goal of enabling a more analytical approach to their study and design. A continuous, liquid absorbent AHP with chemical storage is modeled using mass and energy balances and assuming mass transfer equilibrium. This model is used with the TRNSYS program to simulate the performance of an AHP in a residential solar-driven heating and cooling system. The steady-state and cyclic testing of a prototype gas-fired ammonia-water AHP in an environmental chamber is described; measurements include temperatures, pressures, absorbent concentrations, flow rates and heat flows. The coefficient of performance and heating capacity depend most strongly on ambient temperature; varying the load water temperature and flow rate has lesser effects. The performance of the unit is sensitive to refrigerant charge, with the optimum charge varying with ambient temperature. This AHP shows a significant performance degradation in cyclic operation. A modular, steady-state simulation program for absorption heat pumps in developed and validated with experimental data. The model utilizes an analysis of the refrigerant and absorbent inventory to set the system pressures.

McLinden, M.O.

1984-01-01T23:59:59.000Z

82

Gas turbine noise control  

Science Conference Proceedings (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

83

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

to electricity. Pumped-hydroelectric storage and batteryis pumped between the heat exchangers and the storage unit.

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

84

Radial-radial single rotor turbine  

SciTech Connect

A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

Platts, David A. (Los Alamos, NM)

2006-05-16T23:59:59.000Z

85

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network (OSTI)

heat available at night) Gas Turbine Work Table 3.2. StreamTurbine (small turbine) Gas Turbine Parasitic Power BFW PumpHours) Generator Terminals Gas Turbine Parasitic Power BFW

Dayan, J.

2011-01-01T23:59:59.000Z

86

Initial findings: The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

1989-01-01T23:59:59.000Z

87

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

88

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

89

Pumped Hydro | Open Energy Information  

Open Energy Info (EERE)

search Introduction caption:Pumped Storage diagram at TVA's Racoon mountain Pumped Hydro is an energy storage technique where water is used as a medium in order to store...

90

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

Marseille, T.J.; Schliesing, J.S.

1990-09-01T23:59:59.000Z

91

Hermetic turbine generator  

DOE Patents (OSTI)

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

92

Industrial gas turbines with subatmospheric expansion  

SciTech Connect

A modification is proposed to the basic Brayton cycle, by coupling the gas turbine with a jet pump. This allows subatmospheric pressure to exist at the exit of the turbine, a bigger turbine ratio and, hence, a higher efficiency. The jet pump operates with steam, produced from pressurized water heated by the exhaust gasses of the gas turbine. A simple configuration of the coupling is studied in detail.

Georgiou, D.P. (Patras Univ. (Greece))

1988-01-01T23:59:59.000Z

93

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

94

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

ground water was pumped into the storage tank from the well,be withdrawn from storage, HTW is pumped from the hot well,storage well. However, both wells are capable of being pumped and

Authors, Various

2011-01-01T23:59:59.000Z

95

Solar-powered saline sorbent-solution heat pump/storage system. [Coastal Energy Laboratory-Chemical Heat Pump (CEL-CHEAP)  

SciTech Connect

Coastal Energy Laboratory Chemical Heat Pump (CEL-CHEAP) is a redesigned open-cycle liquid desiccant air conditioner. Heat is discharged to shallow-well water by dehumidification-humidification for cooling and extracted by humidification-dehumidification for heating. Direct solar radiation concentrates the desiccant. For continuous operation, a small uninsulated tank stores concentrated solution. 6 refs.

Robison, H.; Houston, S.

1981-01-01T23:59:59.000Z

96

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

97

Laboratory Equipment - Vacuubrand PC101 Vacuum Pump  

Science Conference Proceedings (OSTI)

Vacuubrand PC101 Vacuum Pump. ... pumping speed: 1.7/2.0 m 3 -h -1; Ultimate ... outlet: 2 bar; Permitted ambient temperature storage/operation: -10°C ...

2012-07-11T23:59:59.000Z

98

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. Available for thumbnail of Feynman Center (505) 665-9090 Email Radial-Radial Single Rotor Turbine A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power. U.S. Patent No.: 7,044,718 (DOE S-100,626) Patent Application Filing Date: July 8, 2003 Patent Issue Date: May 16, 2006 Licensing Status: Available for Express Licensing (?). View terms and a sample license agreement.

99

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

conversion: pumped hydroelectric storage; (3) internalpumped hydroelectric systems account for 99% of a worldwide storage

Wang, Zuoqian

2013-01-01T23:59:59.000Z

100

220-MW compressed air storage  

Science Conference Proceedings (OSTI)

SOYLAND Power Cooperative, Inc., a Decatur, Illinois based co-op, could get reasonably priced baseload power from neighboring utilities, had a plant of its own planned for the near future as well as a share in another, but peaking power, generated by oil and gas, to meet surges in demand, was very costly. The co-op's solution, first in the U.S., is a 220-megawatt compressed air energy storage system (CAES), which the electric utility industry is watching with great interest. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal or nuclear power plants runs a combination motor-generator in motor mode which, in turn, operates a compressor. The compressed air is cooled and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet (about 610 m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

102

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

103

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

104

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps - Existing R&D and pilot programs - CAES - Controllable pumping - Off shore (energy island, etc) - Gravity systems - Thermal storage Confidential 3 Report to DOE ...

105

2012 Storage Report: Progress and Prospects - EAC Recommendations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Worldwide ...20 Figure 6: Energy Storage Capacity (MW), Excluding Traditional Pumped Hydro, Worldwide ....21 Figure...

106

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

Science Conference Proceedings (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

107

Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1. Executive summary. Final report  

DOE Green Energy (OSTI)

Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.

Not Available

1981-05-01T23:59:59.000Z

108

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

109

Sulfuric acid/water chemical heat pump/chemical energy storage. Final report: Phases 1 and 2, October 1979 through September 1980; Phases 3 and 4, October 1980 through January 1982  

DOE Green Energy (OSTI)

The sulfuric acid/water chemical heat pump/chemical energy storage (CHP/CES) concept was expanded to include previously unexplored applications, the most notable of which is the industrial chemical heat pump. A requirements analysis was completed which showed the CHP/CES application having the greatest near-term-commercialization potential in the form of a temperature amplification system. Another configuration, the HVAC system with or without diurnal storage was selected for further study. A verification test unit (VTU) was designed and is capable of demonstrating operation as an ICHP as well as an HVAC system. The VTU was fabricated and tested with a nominal power rating of 150,000 Btu/hr. Testing of the unit was directed at evaluating operational performance in the industrial waste heat upgrade mode. (LEW)

Not Available

1982-04-01T23:59:59.000Z

110

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

111

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

112

Analysis of advanced compressed air energy storage concepts. [Adiabatic concept  

DOE Green Energy (OSTI)

An analysis is presented of a class of Advanced Compressed Air Energy Storage (CAES) concepts, which are designed to minimize or eliminate the dependence on oil for firing the turbines. The analysis is based on a ''Hybrid'' CAES system that incorporates thermal storage and varying turbine inlet conditions. The extreme case of the hybrid is the adiabatic CAES concept where the sole source of energy to the cycle is the electrical power input to the compressors. The thermodynamic characteristics of these cycles are studied parametrically. In addition, the economics of the hybrid cycle, including the adiabatic cycle, are studied parametrically for the case where thermal storage in an aquifer is used. The results of the analysis conclude that the adiabatic CAES concept is technically feasible and that the storage efficiency would be comparable to or better than pumped hydro. However, the economic analysis concludes that heat storage in an aquifer is of questionable economic value since a recuperator can accomplish much the same effects at lower cost. The adiabatic concept using heat storage in an aquifer does not appear economic for foreseeable conditions.

Kreid, D.

1977-10-01T23:59:59.000Z

113

Method for Surge Recovery in Fuel Cell Turbine Hybrids Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

of upset sensing and bypass flows. As examples, the auxiliary energy source may be a solar power concentrator or a thermal energy storage device. Power generation gas turbines...

114

Definition: Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity.[1][2] View on Wikipedia Wikipedia Definition A wind turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy in a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a wind turbine or wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Similarly, it may be referred to as a wind charger when used for charging batteries. The result of over a millennium of windmill development and modern engineering,

115

Mathematical modeling of mixer pump performance for agitation of radioactive slurries in one-million-gallon underground storage tanks at Hanford  

SciTech Connect

The objective of this work is to analyze the Hanford Waste Vitrification Project (HWVP) feed preparation tank mixing pump agitation design. This was accomplished by (1) reviewing mixing pump characteristics, (2) performing computer modeling of jet mixing and particulate material transport, (3) evaluating the propensity of the tank and mixing pump design to maintain particulate material in the tank in a uniformly mixed state, and (4) identifying important design parameters required to ensure optimum homogeneity and solids content during batch transfers.

Bamberger, J.A.; Eyler, L.L.; Dodge, R.E.

1993-04-01T23:59:59.000Z

116

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

117

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network (OSTI)

ideas for energy storage, including pumped hydro, compressedNatural Gas Storage Combustion turbine Pumped hydro Wave,

Yang, Christopher

2011-01-01T23:59:59.000Z

118

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

ideas for energy storage, including pumped hydro, compressedNatural Gas Storage Combustion turbine Pumped hydro Wave,

2011-01-01T23:59:59.000Z

119

Dealloyed Nanoporous Metals for Energy Storage  

Science Conference Proceedings (OSTI)

Dealloyed Nanoporous Metals for Energy Storage · Design of Light Weight Structure for Wind Turbine Tower by Using Nano-Materials · Development of Highly ...

120

Design of high-efficiency turbomachinery and gas turbines  

SciTech Connect

The present treatment of pump, compressor, and turbine turbomachinery emphasizes thermodynamics, design methods, and the use that can be made of relatively simple rules for the choosing of cycle types, vector diagrams, blading types, heat exchanger configurations, etc. Gas dynamics are treated to the virtual exclusion of mechanical design considerations, although a brief historical account of the family of turbomachine systems notes gradual structural as well as thermodynamic and gas dynamic refinements. The complete systems described and analyzed include aircraft, marine, and electrical power generation gas turbines, steam turbines, and hydraulic pumps and turbines. Both axial and centrifugal flow turbomachine types are considered. 112 references.

Wilson, D.G.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PUMP CONSTRUCTION  

DOE Patents (OSTI)

A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

Strickland, G.; Horn, F.L.; White, H.T.

1960-09-27T23:59:59.000Z

122

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

123

Solar-powered turbocompressor heat pump system  

DOE Patents (OSTI)

The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

1982-08-12T23:59:59.000Z

124

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. Converse: Seasonal Energy Storage in a Renewable Energy S  

E-Print Network (OSTI)

The large-scale generation of electrical wind energy is planned in many countries, but the intermittent nature of its supply, and variations in load profile indicate a strong requirement for energy storage to deliver the energy when needed. Whilst pumped hydro storage, batteries and fuel cells have some advantages, only compressed air energy storage (“CAES”) has the storage capacity of pumped hydro, but with lower cost and less geographic restrictions. Existing diabatic CAES plant lose heat energy from the cycle during compression, and which must be re-generated before the compressed air is expanded in a modified gas turbine. Adiabatic CAES, on the other hand, uses a separate thermal energy store during the compression part of the cycle. During the generation part of the cycle the thermal energy store is used to reheat the air, which is then expanded through a sliding pressure air turbine. This storage technology offers significant improvements in cycle efficiency and, as no fuel is used, it generates no CO2. This paper describes the work of 19 partners within the “AA-CAES ” Project (Advanced Adiabatic – Compressed Air Energy

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

125

Microsoft PowerPoint - Keith Presentation.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

July 02 July 02 Pumped Storage Capacity Pumped Storage Capacity 320 MW 320 MW Transformer Transformer Intake Intake Gate Gate Generator Generator Turbine Turbine Draft Draft...

126

ELECTROMAGNETIC PUMP  

DOE Patents (OSTI)

This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

Pulley, O.O.

1954-08-17T23:59:59.000Z

127

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

128

Thermal storage studies for solar heating and cooling: applications using chemical heat pumps. Final report, September 15, 1979-April 15, 1980  

DOE Green Energy (OSTI)

TRNSYS-compatible subroutines for the simulation of chemical heat pumps have been written, and simulations (including heating, cooling, and domestic hot water) have been performed for Washington, DC and Ft. Worth, Texas. Direct weekly comparisons of the H/sub 2/SO/sub 4//H/sub 2/O and CaCl/sub 2//CH/sub 3/OH cycles have been carried out. Projected performance of the NH/sub 4/NO/sub 3//NH/sub 3/ cycle has also been investigated, and found to be essentially identical to H/sub 2/SO/sub 4//H/sub 2/O. In all cases simulated, the solar collector is a fixed evacuated tube system, which is necessary because chemical heat pumps operate at higher solar collector temperatures (> 100/sup 0/C) than conventional solar systems. With standard residential loads, the chemical heat pumps performed surprisingly well. In the Ft. Worth climate, less than 45 m/sup 2/ of collectors were required to meet over 90% of the heating and cooling loads. In Washington, DC, the area required to meet the cooling load was smaller (as little as 20 m/sup 2/, depending on window shading), but was sufficient to meet only 50 to 60% of the heating load. However, gas-fired backup via the heat pump was quite effective in reducing fossil fuel consumption: the thermal COPs in the heating mode were in the range 1.6 to 1.7. Since chemical heat pumps are designed to reject heat at relatively high temperatures, they were also effective in providing domestic hot water, supplying ca. 70% of the DHW in summer, ca. 50% in winter, and nearly 100% in spring and fall.

Offenhartz, P O.D.

1981-04-01T23:59:59.000Z

129

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

130

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

131

Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

132

Absorption Heat Pump Water Heater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

133

Carbon-Containing Nanocomposite Materials for Energy Storage  

Science Conference Proceedings (OSTI)

The energy storage characteristics of supercapacitors and Li-ion batteries ... Design of Light Weight Structure for Wind Turbine Tower by Using Nano-

134

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

135

Single Rotor Turbine  

DOE Patents (OSTI)

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

136

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

137

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

138

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

2002-01-01T23:59:59.000Z

139

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

140

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

142

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

143

Anti-polluting power plant using compressors and gas turbines  

SciTech Connect

An electric power generating plant includes at least two compressors having matched operating characteristics, alternators and turbines and boilers having combustion chambers connected to the turbines. The compressors, alternators and turbines are operatively interconnected such that during no power demand periods the compressors are driven in a series arrangement by the alternators, functioning as electric motors, to store a supply of pressurized air in an air storage tank, and during normal and peak power demand periods the turbines, supplied by the combustion chambers of the boilers, drive the compressors, functioning in parallel relationship, which feed respective ones of the boilers with enriched air and a gas recycled after expansion by one of the turbines. During the normal and peak power demand periods pressurized air previously stored in the air storage tank by the compressors is fed to the combustion chamber of one of the boilers.

Rigollot, G.A.

1977-09-20T23:59:59.000Z

144

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

145

Water Requirements for Future Energy production in California  

E-Print Network (OSTI)

Coal Combined Cycle Gas Turbine Geothermal '"''"'o L.L.OIConventional Cycle Combined Gas Turbine Hydro Hydro Hydrogeothermal pumped storage, gas turbines in this facilities

Sathaye, J.A.

2011-01-01T23:59:59.000Z

146

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

147

Open cycle - OTEC turbine design  

Science Conference Proceedings (OSTI)

The design of a low-pressure, open cycle ocean thermal energy conversion system (OTEC) is described. Near-surface ocean water at 80 F is allowed to expand in a one-half psi evaporator for passage through a turbine cold water (40 F), pumped upward from a 3,000 ft depth, is used to recondense the steam. Plans for a 2.5-3 MWe prototype plant, as a proof-of-principle project for a 100 MWe plant, include seawater pumps driven off the generator shaft, potable water as a by-product of the condensor, ease of access for O and M, and an integrated, gear-driven deaerator system with reinjection into the warm seawater discharge. An inlet flow of 3,000,000 cu ft/sec, a single stage vertical turbine with 40 ft fiber reinforced composite blades, 200 rpm operation on a 65 ft diameter disk, and an overall efficiency of 3% are features of the 100 MWe plant. A flowfield analysis, a velocity triangle analysis, and a structural dynamics analysis are outlined, along with materials applications and manufacturing process considerations in blade design. The 3MWe OTEC will be one-sixth the size of a 100MWe OTEC.

Coleman, W.H. (Westinghouse Electric Corp., Lester, PA); Rogers, J.D. (TM Development, Inc., Chester, PA); Thompson, D.F. (Delaware University, Newark, DE)

1981-01-01T23:59:59.000Z

148

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

149

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network (OSTI)

In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air. The most common method of air source heat pump frost removal is reverse-cycle defrost. During the defrosting operation, the heat pump runs in the cooling mode. The defrost process is accomplished by reversing the normal heating mode. In this paper, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little effect on the room temperature.

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

150

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...

151

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

152

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

153

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

154

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

155

Airfoil treatments for vertical axis wind turbines  

SciTech Connect

Sandia National Laboratories (SNL) has taken three airfoil related approaches to decreasing the cost of energy of vertical axis wind turbine (VAWT) systems; airfoil sections designed specifically for VAWTs, vortex generators (VGs), and ''pumped spoiling.'' SNL's blade element airfoil section design effort has led to three promising natural laminar flow (NLF) sections. One section is presently being run on the SNL 17-m turbine. Increases in peak efficiency and more desirable dynamic stall regulation characteristics have been observed. Vane-type VGs were fitted on one DOE/Alcoa 100 kW VAWT. With approximately 12% of span having VGs, annual energy production increased by 5%. Pumped spoiling utilizes the centrifugal pumping capabilities of hollow blades. With the addition of small perforations in the surface of the blades and valves controlled by windspeed at the ends of each blade, lift spoiling jets may be generated inducing premature stall and permitting lower capacity, lower cost drivetrain components. SNL has demonstrated this concept on its 5-m turbine and has wind tunnel tested perforation geometries on one NLF section.

Klimas, P.C.

1985-01-01T23:59:59.000Z

156

A new emergency lubricating-oil system for steam turbine generators: Final report  

Science Conference Proceedings (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

157

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

158

Wind Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

This guideline provides component-level information regarding the maintenance of major components associated with a wind turbine. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of wind turbine facilities.

2012-06-29T23:59:59.000Z

159

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

160

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Turbine Overspeed Trip Modernization  

Science Conference Proceedings (OSTI)

This report provides guidance for power plant engineers contemplating modernization of their main turbine overspeed trip systems. When a large power plant turbine suddenly loses its output shaft loading due to a generator or power grid problem, the steam flow driving the turbine must be cut off very quickly to prevent an overspeed event. The overspeed trip system protects personnel and plant systems by preventing missiles that can result when turbines disintegrate at higher than normal rotational speeds....

2006-12-04T23:59:59.000Z

162

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

163

The wind turbine  

Science Conference Proceedings (OSTI)

In this paper we present the modeling of a wing turbine, using the Euler Lagrange method and circuits theory. We get the mathematical equation (modeling) that describes the wind turbine and we simulate it using the mathlab program. Keywords: modeling, simulation, wind turbine

José De Jesús Rubio Avila; Andrés Ferreira Ramírez; Genaro Deloera Flores; Martín Salazar Pereyra; Fernando Baruch Santillanes Posada

2008-07-01T23:59:59.000Z

164

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

165

NETL: Turbines - Oxy-Fuel Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

166

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

167

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

168

Turbine Imaging Technology Assessment  

DOE Green Energy (OSTI)

The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

Moursund, Russell A.; Carlson, Thomas J.

2004-12-31T23:59:59.000Z

169

Pump8  

NLE Websites -- All DOE Office Websites (Extended Search)

Preferred Upstream Management Practices Preferred Upstream Management Practices Rewriting the Meaning of "Standard Business Practices" PUMP U.S. Department of Energy * National Energy Technology Laboratory TECHNOLOGY TRANSFER TO THE USER * Regional Production Obstacles: Identification of specific regional obstacles to oil production, and the preferred management practices to overcome the problems. Demonstrate drilling, field opera- tions technology, reservoir man- agement approaches, computer tools, or better ways to comply with environmental regulations in a case study. * Research Groups or Councils: Use established groups or councils in a region to formulate the "best practices" appropriate to that region. The goal is to develop a self- sustaining system to identify pro- duction constraints and solve them

170

Geothermal turbine installation  

SciTech Connect

A geothermal turbine intallation in which high-pressure steam is separated from geothermal steam, which is a mixture of steam and water, with the high pressure steam connected to a high pressure turbine. Low pressure steam produced by flashing the hot water component of the geothermal steam is introduced to a low pressure turbine which is constructed and operates independently of the high pressure turbine. The discharge steam from the high pressure turbine is introduced to a steam condenser operating at a low vacuum while discharge steam from the low pressure turbine is introduced into a steam condenser operating at a high vacuum. The cooling water system of the high and low pressure condensers are connected in series with one another. A maximum power increase is obtained if the flow rates of the high and low pressure steams at the extraction ports of the high and low pressure turbines are made substantially equal to one another.

Nishioka, R.

1983-01-04T23:59:59.000Z

171

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

172

Stream-injected free-turbine-type gas turbine  

SciTech Connect

This patent describes an improvement in a free turbine type gas turbine. The turbine comprises: compressor means; a core turbine mechanically coupled with the compressor means to power it; a power turbine which is independent from the core turbine; and a combustion chamber for providing a heated working fluid; means for adding steam to the working fluid; means for providing a single flow path for the working fluid, first through the core turbine and then through the power turbine. The improvement comprises: means for preventing mismatch between the core turbine and the compressor due to the addition of steam comprising coupling a variable output load to the compressor.

Cheng, D.Y.

1990-02-13T23:59:59.000Z

173

MHK Technologies/Water Air Pump WAP | Open Energy Information  

Open Energy Info (EERE)

Pump WAP Pump WAP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Air Pump WAP.jpg Technology Profile Primary Organization Shamil Ayntrazi Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Water Air Pump WAP uses a partially submerged funnel shaped air pump to compress air collect it in a piping network and feed it to an air turbine Mooring Configuration Gravity base installed at the sea bed Technology Dimensions Device Testing Date Submitted 11:50.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Water_Air_Pump_WAP&oldid=681697"

174

Obstacles and Opportunity: Turbine Motorization in Refineries Today  

E-Print Network (OSTI)

Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned in the refineries. This paper discusses the key aspects that should be considered in evaluating the feasibility of motorization projects. Based on the literature review and a refinery survey conducted by the authors, the key factors include the critical level of the related equipment, the potential energy savings and capital cost, the steam and power balance in the related area, and the reliability in the refinery's power supply. Based on the authors' experience, the utilities' energy efficiency incentive programs in California also influence the decision-making process for turbine motorization projects. Therefore, this paper includes a description of the utilities' guidelines for fuel substitution projects. In particular, the utilities' three-prong requirements on net source-BTU energy savings, cost effectiveness, and avoidance of adverse impacts to the environment are discussed. Two real life case studies are presented to demonstrate how the above criteria should be applied for determining if a motorization opportunity is economically viable. A discussion on suggested features is also included for prescreening turbine motorization project candidates for better energy and environment economics such as venting of exhaust steam from a back pressure turbine and oversized design of the existing turbine and pump.

Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

2012-01-01T23:59:59.000Z

175

Grid Services from Hydropower and Pumped Storage  

Science Conference Proceedings (OSTI)

This Technical Update provides a summary of progress for the first year of a two-year collaborative research project to determine the value of hydropower to the electric transmission grid. This project utilizes, enhances, and expands tools to apply and value hydropower assets in the changing electric grid. The project employs several industry analyses and modeling tools at the unit level, the plant level, the system level, and the regional/national level, for quantifying and maximizing the benefits provi...

2010-12-31T23:59:59.000Z

176

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

177

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

178

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

179

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Science Conference Proceedings (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

180

A compressed-air energy storage (CAES) unit in the U. S  

Science Conference Proceedings (OSTI)

Soyland Power Cooperative, Inc., a Decatur, Illinois-based co-op, could get reasonably priced baseload power from neighboring utilities' coal and nuclear plants, and even had one coal plant of its own planned for the near future, as well as a share in a nuclear plant; but peaking power, generated by costly oil and gas to instantly meet sudden surges in demand, was another story. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power, while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal-fired or nuclear power plants runs a combination motor-generator in a motor mode, which in turn operates a compressor. Air is compressed, cooled, and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet ( about610m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

182

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

183

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

184

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

185

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

186

Characterization of Pump Flow at the Grand Coulee Pumping Station for Fish Passage, 2004  

DOE Green Energy (OSTI)

This report describes a study conducted by PNNL for the Bonneville Power Administration to characterized the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL used the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish who are pulled through the pumps and turbines at Grand Coulee Dam's pump generation station and transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the pump generating plant's new 9-bladed turbines was also calculated using Monte Carlo simulations. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The highest pressure experienced by the Sensor Fish was estimated at 157 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of kokanne would be carried through the pump without being struck and most likely without injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish would be expected to arrive in Banks Lake without injury.

Carlson, Thomas J.; Duncan, Joanne P.; Johnson, Robert L.

2005-03-31T23:59:59.000Z

187

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

188

LMFBR with booster pump in pumping loop  

DOE Patents (OSTI)

A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

Rubinstein, H.J.

1975-10-14T23:59:59.000Z

189

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

190

Ten years with turbine metering  

SciTech Connect

The operation and performance experience in using 110 turbine meters to monitor the gas flow in turbines used on natural gas pipelines are discussed. Information is included on turbine meter selection, installation, calibration, performance testing, failures, and maintenance. (LCL)

Judd, H.C.

1980-01-01T23:59:59.000Z

191

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

192

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration… (more)

Flesland, Synnøve Mangerud

2010-01-01T23:59:59.000Z

193

Economical Condensing Turbines?  

E-Print Network (OSTI)

Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: Letdown turbines produce power based upon steam requirements and not based upon power requirements, and if all the steam letdown does not have a use, letdown turbines can become a very expensive way of producing electric power. • Condensing turbines have the ability to handle rapid swings in electrical load. Unfortunately, they can only condense a small percentage of the steam, usually less than 14%. Therefore only a small percent of the heat of condensation is available for their use. Also equipment must be used to condense the remaining steam below atmospheric pressure. • Extraction/condensing turbines both extract steam at a useful temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from drawing electrical power from the grid. The method for analyzing the cost of the condensing steam produced power is exactly the same in all cases. This paper will attempt to provide a frame work for preliminary economic analysis on electric power generation for condensing steam turbines.

Dean, J. E.

1997-04-01T23:59:59.000Z

194

Rampressor Turbine Design  

DOE Green Energy (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

195

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Syngas Particulate Deposition and Erosion at the Leading Edge of a Turbine Blade with Film Cooling Virginia Tech Danesh Tafti Project Dates: 812007 - 9302010 Area of...

196

Bulk Energy Storage Impact and Value Analysis  

Science Conference Proceedings (OSTI)

This paper is intended for planners, R&D managers, and potential investors who manage or interpret results from value and impact analysis of energy storage. Due to performance improvements and cost reductions of battery technologies and the expectation that energy storage may help to manage potential operational challenges of incorporating variable, renewable energy resources, energy storage systems are under renewed investigation as a future electric system resource. Pumped hydro storage ...

2012-12-31T23:59:59.000Z

197

Economics of compressed air energy storage employing thermal energy storage  

DOE Green Energy (OSTI)

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

198

Economics of compressed air energy storage employing thermal energy storage  

SciTech Connect

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

199

`Heat pumps in Smart Grids' IEA Annex 42  

E-Print Network (OSTI)

;Global renewable power generation 42% Average annual growth in Solar PV 27% Average annual growth for heat pumps Source: IEA-ETP 2012 #12;All flexibility sources will be needed Dispatchable power plants Energy storage facilities Interconnection with adjacent markets Biomassfired power plant Pumped hydro

Oak Ridge National Laboratory

200

Real time wind turbine simulator.  

E-Print Network (OSTI)

??A novel dynamic real-time wind turbine simulator (WTS) is developed in this thesis, which is capable of reproducing dynamic behavior of real wind turbine. The… (more)

Gong, Bing

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Turbine Projects - Efficiency Improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvemenet Turbine Projects Efficiency Improvemenet Advanced Hot Section Materials and Coatings Test Rig DataFact Sheets System Study for Improved Gas Turbine...

202

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest ...

203

Match Pumps to System Requirements  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency matching pumps to system requirements

2005-10-01T23:59:59.000Z

204

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

205

Development of a more fish-tolerant turbine runner, advanced hydropower turbine project  

DOE Green Energy (OSTI)

Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs.

Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Woburn, MA (United States)

1997-02-01T23:59:59.000Z

206

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Natural-Draft Dry-Cooling Tower • Power-Generation SubsystemSubsystem Costs Cost a, b, Dry-Cooling Tower Costs c, II.Steam Wet-Cooling Tower Costs Turbine~Generator STORAGE UNIT

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

207

Single rotor turbine engine  

SciTech Connect

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

208

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

209

Turbine disc sealing assembly  

SciTech Connect

A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

Diakunchak, Ihor S.

2013-03-05T23:59:59.000Z

210

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

211

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

212

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

213

Ceramic Cerami Turbine Nozzle  

SciTech Connect

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

214

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

215

Gas turbine operating and maintenance experience in Saudi Arabia  

SciTech Connect

Operation and maintenance of the gas turbines in Saudi Arabia, utilized to drive crude oil shipping pumps and process gas compressors, are discussed. Operation on wet, sour gas is taken into account, emphasizing the hot corrosion problem and the approaches taken to solve it. Intake air filtration is examined, indicating that as a result of an in depth study it was decided to retrofit the turbines with a three stage air filtration system. The methods for applying corrosion resistant coatings to the blades are considered, as are the overhaul logistics and the repair procedures.

Anderson, A.W.

1979-03-01T23:59:59.000Z

216

Inlet Air Chillers for Gas Turbine Capacity Enhancement  

Science Conference Proceedings (OSTI)

This report provides information and analysis to help power generation engineers assess the cost-effectiveness of using inlet air chillers to increase the net output capacity of combustion turbine and combined cycle generating units. It also provides an analysis of integrating the storage of chilled water or ice with the inlet air cooling system as a means of energy storage. This report provides new and updated information and analysis, building on information from previous Electric Power Research ...

2012-12-01T23:59:59.000Z

217

Operation of a third generation wind turbine  

SciTech Connect

A modern wind turbine was installed on May 26, 1982, at the USDA Conservation and Production Research Laboratory, Bushland, Texas. This wind machine was used to provide electrical energy for irrigation pumping and other agricultural loads. The wind turbine purchased for this research is an Enertech Model 44, manufactured by Enertech Corporation, Norwich, Vermont. The horizontal-axis wind turbine has a 13.4 m diameter, three-bladed, fixed-pitch rotor on a 24.4-m tower. The blades are laminated epoxy-wood, and are attached to a steel hub. A 25-kW induction generator provides 240 V, 60 Hz, single-phase electrical power. The wind turbine operated 64 percent of the time, while being available to operate over 94 percent of the time. The unit had a net energy production of over 80,000 kWh in an average windspeed of 5.9 m/s at a height of 10 m in a 16-month period. The blade pitch was originally offset two degrees from design to maintain power production within the limitations of the gearbox, generator, and brakes. A maximum output of 23.2 kW averaged over a 15-second period indicated that with a new brake, the system was capable of handling more power. After a new brake was installed, the blade pitch was changed to one degree from design. The maximum power output measured after the pitch change was 29.3 kW. Modified blade tip brakes were installed on the wind turbine on July 7, 1983. These tip brakes increased power production at lower windspeeds while reducing power at higher windspeeds.

Vosper, F.C.; Clark, R.N.

1983-12-01T23:59:59.000Z

218

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

219

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine internals in situ by foaming an appropriate cleaning solution and injecting it through the turbine, dissolving the deposits and removing them from the system. Because disassembly of the turbine is not required, foam cleaning is a much faster and more cost-effective method of removing deposits. In recent years, HydroChem has removed copper deposits from over 130 Westinghouse and General Electric turbines nationwide using patented equipment.

Foster, C.; Curtis, G.; Horvath, J. W.

2000-04-01T23:59:59.000Z

220

Alternative backing up pump for turbomolecular pumps  

DOE Patents (OSTI)

As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

Myneni, Ganapati Rao (Yorktown, VA)

2003-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

222

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

223

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

1997-07-08T23:59:59.000Z

224

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

225

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

1997-07-08T23:59:59.000Z

226

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

227

Design and evaluation of small water turbines. Final report  

DOE Green Energy (OSTI)

An evaluation was made of the design and hydromechanical performance characteristics for three basic turbine types: axial flow (Jonval), inward radial flow (Francis) and crossflow (Banki). A single commercially available turbine representative of each type and within the appropriate power range (<5hp) was obtained for evaluation. Specific turbine selections were based on price, availability and suitability for operation at heads of 50 feet or less and flows under 2 cubic feet per second. In general, the peak operating efficiencies of each unit tended to be lower than anticipated, falling in the range of 40 to 50%. With sufficient flow, however, significant useful power outputs up to 3 hp were obtained. While the radial flow turbine (a centrifugal pump operated as a turbine) had the lowest initial unit cost, the axial and cross flow designs exhibited more stable operation, particularly under transient loadings. The crossflow turbine had the added advantage that it was essentially self-cleaning. With further developmental effort and appropriate design modifications it should be possible to bring each of these microhydro designs to their full performance potential.

Marquis, J.A.

1983-02-17T23:59:59.000Z

228

Wind Turbine Acoustic Noise A white paper  

E-Print Network (OSTI)

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

229

Air ejector augmented compressed air energy storage system  

DOE Patents (OSTI)

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

230

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

231

Modular Electromechanical Batteries for Cost-Effective Bulk Storage of Electrical Energy  

or wind power systems, or for "spinning reserve" for the utility network. At present virtually the only type of system that can meet these demands is of the "pumped storage" type, where water is pumped up into ...

232

Renewable Energy for Water Pumping Applications In Rural Villages; Period of Performance: April 1, 2001--September 1, 2001  

DOE Green Energy (OSTI)

This report introduces conventional and renewable energy sources for water pumping applications in rural villages by reviewing the technologies and illustrating typical applications. As energy sources for water pumping, the report discusses diesel/gasoline/kerosene engines, grid power supplies, traditional windmills, electrical wind turbines, and PV.

Argaw, N.; Foster, R.; Ellis, A.

2003-07-01T23:59:59.000Z

233

NETL: Turbines Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

234

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

235

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

236

Micro Turbine Generator Program  

Science Conference Proceedings (OSTI)

A number of micro turbines generators have recently been announced as currently commercially available for sale to customers, such as end users, utilities, and energy service providers. Manufacturers and others are reporting certain performance capabilities ...

Stephanie L. Hamilton

2000-01-01T23:59:59.000Z

237

NETL: Turbines - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

- Catalytic Combustion PDF-855KB 41892 - Praxair Final Report - Low NOx Fuel Flexible Gas Turbine PDF-214KB 42176 - GT 2006 Annual Report PDF-504KB 42495 - UTEP H2 Kinetics...

238

Turbines in the sky  

SciTech Connect

Gas turbines are being investigated as power sources for the proposed Star Wars weapons flatforms. The gas turbine engine offers the best opportunity for exploiting the high-temperature potential of both nuclear and chemical combustion. The use of mature gas turbine technology and existing materials would result in highly reliable PCUs capable of meeting SDI's requirements. However, operation under the temperature limits imposed by existing materials would result in a prohibitively heavy system. Cooled blades would somewhat increase temperature capability; however the turbine's mass, though reduced, would still be unacceptably large. The greatest improvements would result from the ability to operate at temperatures of up to 2000 K, pressures up to 14 MPa, and stress up to 690 MPa.

Boyle, R.V.; Riple, J.C.

1987-07-01T23:59:59.000Z

239

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for ‘green’ energy 1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

240

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for ‘green’ energy1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30T23:59:59.000Z

242

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

Norton, P.F.; Shaffer, J.E.

1996-01-30T23:59:59.000Z

243

SPACE HANDBOOK TURBINES  

SciTech Connect

Turbine specific weight vs. power plant output was investigated for rubidium, potassium, and sodium at several inlet temperatures to obtain order of magnitude performance and weight of possible nuclear power plant systems. (W.L.H.)

Grimaldi, J.

1960-08-29T23:59:59.000Z

244

Geothermal pump down-hole energy regeneration system  

DOE Patents (OSTI)

Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

Matthews, Hugh B. (Boylston, MA)

1982-01-01T23:59:59.000Z

245

DOE Hydrogen Analysis Repository: Emissions Analysis of Electricity Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Analysis of Electricity Storage with Hydrogen Emissions Analysis of Electricity Storage with Hydrogen Project Summary Full Title: Emissions Analysis of Electricity Storage with Hydrogen Project ID: 269 Principal Investigator: Amgad Elgowainy Brief Description: Argonne National Laboratory examined the potential fuel cycle energy and emissions benefits of integrating hydrogen storage with renewable power generation. ANL also examined the fuel cycle energy use and emissions associated with alternative energy storage systems, including pumped hydro storage (PHS), compressed air energy storage (CAES), and vanadium-redox batteries (VRB). Keywords: Hydrogen; Emissions; Greenhouse gases (GHG); Energy storage; Life cycle analysis Performer Principal Investigator: Amgad Elgowainy Organization: Argonne National Laboratory (ANL)

246

Pumping Fluid Condensation in Oil Diffusion Pumps  

Science Conference Proceedings (OSTI)

Condensation conditions of the motive fluid in an oil diffusion pump are considered with particular attention to the backstreaming problem. The backstreaming rate is correlated with the temperature of the “cold caps” surrounding the pump nozzle and it is demonstrated that an upper temperature limit exists near 200?°F where such devices cease to function effectively. The effect of “oleophobic” surfaces on cold caps and baffles is discussed. Conditions existing at the inlet of diffusion pumps and in baffles do not warrant attempts to introduce dropwise condensation. The condensation coefficient of pumping vapor at the temperature of the water cooled wall and with the flow rates used at the top nozzle appears to be very close to unity. The usefulness of creep barriers with modern pumping fluids and trap designs is judged to be questionable.

M. H. Hablanian

1972-01-01T23:59:59.000Z

247

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

248

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

249

Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report  

DOE Green Energy (OSTI)

The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Cambridge, MA (United States)

1997-01-01T23:59:59.000Z

250

Centrifugal exhauster driven by steam turbine achieves 55% energy savings  

SciTech Connect

A steam turbine/centrifugal exhauster system is being used in a felt dewatering operation in a Michigan pulp and papermill at a hp energy savings of 55%. The system operates at 170 bhp, replacing 375 hp used for conventional liquid ring vacuum pumps. The steam turbine utilizes 450 psig steam into the turbine with a 50 psig back pressure on the discharge side. The mill has also installed an additional felt dewatering box that was never employed before the exhauster system was installed. Since operation first began, the mill reports equal or improved dewatering compared to the previous liquid ring system. The hot air discharge is utilized to heat the machine room wet end area, replacing some space heater requirements.

Bonady, F.M.

1984-05-01T23:59:59.000Z

251

www.eia.gov  

U.S. Energy Information Administration (EIA)

Report fuel consumed by plants with organic-fueled steam turbine capacity UNDER 10 MW, combustion turbines, IC engines, and pumped storage hydroelectric units.

252

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

253

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

254

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. June 26, 2013 Radial-Radial Single Rotor Turbine A rotor for use in...

255

Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating  

E-Print Network (OSTI)

of generator power. In the second step, Super-capacitor (SC) Energy Storage System (ESS) is added to compensate, supercapacitor. NOMENCLATURE ESS Energy storage system MCT Marine current turbine MPPT Maximum power point tracking PMSG Permanent-magnet synchronous generator SoC State of charge SC Supercapacitor , , Magnitude

Brest, Université de

256

Liquid metal electric pump  

DOE Patents (OSTI)

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

257

Turbine inner shroud and turbine assembly containing such inner shroud  

DOE Patents (OSTI)

A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Corman, Gregory Scot (Ballston Lake, NY); Dean, Anthony John (Scotia, NY); DiMascio, Paul Stephen (Clifton Park, NY); Mirdamadi, Massoud (Niskayuna, NY)

2001-01-01T23:59:59.000Z

258

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

259

Ceramic stationary gas turbine  

DOE Green Energy (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

260

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ceramics for ATS industrial turbines  

DOE Green Energy (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

262

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

263

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

264

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

265

Cavitation Erosion of Francis Turbines  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Presentation ...

266

Design, construction and testing of an ocean renewable energy storage scaled prototype  

E-Print Network (OSTI)

The concept for a new form of pumped storage hydro is being developed within the Precision Engineering Research Group at MIT: the Ocean Renewable Energy Storage (ORES) project. Large, hollow concrete spheres are created, ...

Meredith, James D. C. (James Douglas Charles)

2012-01-01T23:59:59.000Z

267

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

268

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

269

Wind turbine spoiler  

DOE Patents (OSTI)

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

270

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

271

Gas turbine sealing apparatus  

DOE Patents (OSTI)

A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

2013-02-19T23:59:59.000Z

272

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

273

Applications: Wind turbine structural health  

E-Print Network (OSTI)

of turbine system management. The data obtained from this multi-scale sensing capability will be fullyCapability Applications: Wind turbine structural health monitoring Individual turbine maintenance for active control in the field Limit damage propagation and maintenance costs Maximize return

274

Applications of cogeneration with thermal energy storage technologies  

DOE Green Energy (OSTI)

The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

Somasundaram, S.; Katipamula, S.; Williams, H.R.

1995-03-01T23:59:59.000Z

275

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

276

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

277

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

278

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

279

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

280

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

that the average turbine’s rotor swept area has increasedthe average turbine hub height and rotor diameter also6. Average Turbine Capacity, Hub Height, and Rotor Diameter

Bolinger, Mark

2012-01-01T23:59:59.000Z

282

Electrokinetic pumps and actuators  

DOE Green Energy (OSTI)

Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

Phillip M. Paul

2000-03-01T23:59:59.000Z

283

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

284

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

285

Detection of pump degradation  

SciTech Connect

This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

1995-08-01T23:59:59.000Z

286

Minimize pump downtime  

Science Conference Proceedings (OSTI)

In refineries and petrochemical plants, centrifugal pumps usually lead the list of equipment that is most susceptible to failure. Using guidelines, maintenance mechanics can improve troubleshooting methods when investigating pump bedplates, underlying concrete foundations and grouting problems. Too often, mechanics may improperly diagnose a misalignment--caused by grouting problems--as an unbalance or a bearing-wearing problem when troubleshooting pump failure. Result: bearing, shaft and seal failures occur from a flawed maintenance procedure. Identifying mounting-surface problems can improve pump performance and decrease unit downtime.

Myers, R.D. [ITW Escoweld Systems, Kingwood, TX (United States)

1995-06-01T23:59:59.000Z

287

Calibration of turbine meters  

Science Conference Proceedings (OSTI)

... rotor meter with its casing removed and a single rotor meter with casing and a magnetic pick-off ... The motor?driven piston works like a syringe pump. ...

2012-08-14T23:59:59.000Z

288

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of ...

289

NETL: Turbine Projects - Cost Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

290

Turbine vane structure  

DOE Patents (OSTI)

A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

Irwin, John A. (Greenwood, IN)

1980-08-19T23:59:59.000Z

291

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-12-31T23:59:59.000Z

292

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-01-01T23:59:59.000Z

293

Temperature stratified turbine compressors  

SciTech Connect

A method and apparatus for improving the efficiency of a compressor of a gas turbine engine is disclosed. The inlet gas entering the compressor is stratified into two portions of different temperatures. The higher temperature gas is introduced adjacent the outer tipe of the compressor blades to reduce the relative Mach number of the flow at the area.

Earnest, E.R.; Passinos, B.

1979-01-09T23:59:59.000Z

294

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

295

Battery Voltage Stability Effects on Small Wind Turbine Energy Capture: Preprint  

DOE Green Energy (OSTI)

Previous papers on small wind turbines have shown that the ratio of battery capacity to wind capacity (known as battery-wind capacity ratio) for small wind systems with battery storage has an important effect on wind turbine energy output. Data analysis from pilot project performance monitoring has revealed shortcomings in wind turbine energy output up to 75% of expected due to the effect of a''weak'' battery grid. This paper presents an analysis of empirical test results of small wind battery systems, showing the relationships among wind turbine charging rate, battery capacity, battery internal resistance, and the change in battery voltage. By understanding these relationships, small wind systems can be designed so as to minimize''dumped'' or unused energy from small wind turbines.

Corbus, D.; Newcomb, C.; Baring-Gould, E. I.; Friedly, S.

2002-05-01T23:59:59.000Z

296

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

Drumheller, Douglas S. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

297

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Electric utilities are interested energy storage solutions for renewable integration and transmission and distribution (TD) grid support that require systems of 10's of MWs in scale and energy durations of longer than 4 hours. Compressed air energy storage and pumped hydro systems are currently the lowest capital cost (/ kW-h) bulk storage options for energy durations longer than 10 hour; however, these storage facilities have geological and siting restrictions and require long permitting and deployment ...

2010-12-16T23:59:59.000Z

298

Self-sustaining nuclear pumped laser-fusion reactor experiment  

DOE Green Energy (OSTI)

The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100. (MHR)

Boody, F.P.; Choi, C.K.; Miley, G.H.

1977-01-01T23:59:59.000Z

299

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

300

Grid Strategy 2011: Energy Storage Monetization  

Science Conference Proceedings (OSTI)

Energy storage is the only grid asset with the ability to act both as a load and a generation source by first storing energy for a limited duration and then releasing it. It is a flexible grid asset capable of providing multiple grid benefits. However, aside from large pumped hydro storage plants, very little energy storage has been deployed on the grid. Due to the high cost of energy storage, aggregation of multiple benefits is generally required to justify the investment. Due to the limited duration of...

2011-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hybrid Power System with a Controlled Energy Storage: Preprint  

DOE Green Energy (OSTI)

We investigated a small isolated hybrid power system that used two types of power generation; wind turbine and diesel generation. The interaction of diesel generation, the wind turbine, and the local load is complicated because both the load and the wind turbine fluctuate during the day. These fluctuations create imbalances in power distribution (energy sources are not equal to energy sinks) that can affect the frequency and the voltage in the power system. The addition of energy storage will help balance the distribution of power in the power network. For this paper, we studied the interaction among hybrid power system components and the relative size of the components. We also show how the contribution of wind energy affects the entire power system and distribution and the role of energy storage under the transient conditions caused by load changes and wind turbine start ups.

Muljadi, E.; Bialasiewicz, J. T.

2003-11-01T23:59:59.000Z

302

Turbine blade tip gap reduction system  

DOE Patents (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

303

NEUTRONIC REACTOR FUEL PUMP  

DOE Patents (OSTI)

A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

Cobb, W.G.

1959-06-01T23:59:59.000Z

304

Detection of pump degradation  

Science Conference Proceedings (OSTI)

There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

Casada, D.

1994-12-31T23:59:59.000Z

305

SMART POWER TURBINE  

SciTech Connect

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

306

NORMETEX PUMP ALTERNATIVES STUDY  

SciTech Connect

A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying resistances to ionizing radiation - aromatic polymers such as polyimide Vespel (TM) and the elastomer EPDM (ethylene propylene diene monomer) have been found to be more resistant to degradation in tritium than other polymers. This report presents information to help select replacement pumps for Normetex pumps in tritium systems. Several pumps being considered as Normetex replacement pumps are discussed.

Clark, Elliot A.

2013-04-25T23:59:59.000Z

307

Wind turbine tower for storing hydrogen and energy  

DOE Patents (OSTI)

A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

Fingersh, Lee Jay (Westminster, CO)

2008-12-30T23:59:59.000Z

308

Granby Pumping Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

309

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

310

Off peak ice storage generation  

DOE Green Energy (OSTI)

Due to the high costs associated with peak demand charges imposed by most electrical companies today, various means of shifting the peak HVAC load have been identified by the industry. This paper discusses the results of a study based upon a building site located in the high desert of the southwestern United States that evaluated ice storage as a mechanism of operating cost reductions. The discussion addresses both the seasonal and the annual cost and energy impacts of an ice storage system when used in place of an air-to-air heat pump system.

Davis, R.E.; Cerbo, F.J.

1985-01-01T23:59:59.000Z

311

APS storage ring vacuum system  

SciTech Connect

The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

1990-01-01T23:59:59.000Z

312

Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand.  

E-Print Network (OSTI)

??Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows… (more)

Kear, Gareth

2011-01-01T23:59:59.000Z

313

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

314

Heat pumps | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Heat pumps Jump to: navigation, search TODO: Add description List of Heat pumps Incentives Retrieved from "http:en.openei.orgw...

315

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

316

Turbine seal assembly  

SciTech Connect

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

317

Gas turbine sealing apparatus  

SciTech Connect

A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

Marra, John Joseph; Wessell, Brian J.; Liang, George

2013-03-05T23:59:59.000Z

318

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

319

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

320

Gas turbines for the future  

SciTech Connect

Utility gas turbine technology has been advancing fairly rapidly, one reason being that it shares in the benefits of the research and development for aviation gas turbines. In general, turbine progress is characterized by large, incremental advances in performance. At intervals of approx. 15 yr, new-generation turbines are introduced, refined, and eventually installed in relatively large numbers. A new generation of turbines is being readied for the market that will have power ratings into the 130- to 150-MW range (simple cycle), significantly higher than the 70 to 100 MW now in service. When the new turbines are installed in combined-cycle plants, the efficiency levels are expected to rise from the present value of approx. 42% higher heating value to approx. 46%.

Cohn, A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Snubber assembly for turbine blades  

DOE Patents (OSTI)

A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

Marra, John J

2013-09-03T23:59:59.000Z

322

Gas turbine premixing systems  

SciTech Connect

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

323

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

324

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

325

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

326

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

327

Technical Assessment Guide (TAG) -- Power Generation and Storage Technology Options: 2010 Topics  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG )151Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in the power generation and energy storage infrastructure. The 2010 TAG has been significantly enhanced to reflect current market conditions and technology trends, with cost and performance updates for pulverized coal (PC), large combustion turbine (CT) and combustion turbine combined-cycle (CTCC), nuclear, solar thermal (ST), photovoltaic (PV), b...

2010-12-21T23:59:59.000Z

328

Pressure charged airlift pump  

DOE Patents (OSTI)

A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

Campbell, Gene K. (Las Vegas, NV)

1983-01-01T23:59:59.000Z

329

Tornado type wind turbines  

DOE Patents (OSTI)

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

330

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

through a Tesla turbine microchannel . . . . . . . . . . .1.2 History of the Tesla Turbine 1.3 BackgroundCFD) Solution of Flow Through a Tesla Turbine 4.1 Summary of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

331

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network (OSTI)

of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

Boone, Donald H.

2013-01-01T23:59:59.000Z

332

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name Howden Wind Turbines Ltd Place United Kingdom Sector Wind energy Product Howden was a manufacturer of wind turbines in the...

333

NREL: Wind Research - Advanced Research Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control...

334

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

camera. Bottom: tested turbine rotor housing diameter isfound in Figure 1.1. The turbine rotor consists of severalpower was reached. The turbine rotor and nozzle can be seen

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

335

RENEWABLE LIQUID GETTERING PUMP  

DOE Patents (OSTI)

A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

Batzer, T.H.

1962-08-21T23:59:59.000Z

336

NETL Publications: 2012 University Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory Presentation PDF-7.41MB South Coast AQMD's Gas Turbine Experience-Regulations and Operations Mohsen Nazemi, Deputy Executive Officer,...

337

Engines, turbines and compressors directory  

SciTech Connect

This book is a directory of engines, turbines and compressors. It adds and deletes compressor engines in use by the gas industry.

1989-01-01T23:59:59.000Z

338

Baseline Gas Turbine Development Program. Eleventh quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. NASA completed initial heat balance testing of a baseline engine. An additional 450 hours were run on ceramic regenerators and seals. Seal wear rates are very good, and the elastomeric mounting system was satisfactory. An engine/control oil supply system based on the power steering pump is successfully operating in baseline vehicles. The design of the upgraded engine power turbine nozzle actuator was finalized, and layouts of the inlet guide vane actuator are in process. A lock-up torque converter was installed in the free rotor vehicle. Baseline engine and vehicle testing of water injection and variable inlet guide vanes was completed. A thermal analysis of the gas generator is in process. A steady-state, full power analysis was made. A three-dimensional stress analysis of the compressor cover was made. The power turbine nozzle actuating system layout was completed. The analytical studies of the power turbine rotor bearings were completed. MTI completed the design of the gas generator rotor simulation fixture and is starting to build it. Optimized reduction gears were successfully tested in a baseline engine.

Schmidt, F.W.; Wagner, C.E.

1975-07-31T23:59:59.000Z

339

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

340

Development of distributed ion pumps for g-2 beam vacuum system  

Science Conference Proceedings (OSTI)

Distributed ion pumps (DIPs) will be used for the beam vacuum system of the g-2 muon storage ring. The magnetic field intensity and alignment angle at the DIP locations are not uniform. The pumping behavior of several different ion pump elements under this non-uniform magnetic field has been studied. The results are compared with the theoretical predictions. Based on these results, the optimum design of the g-2 DIPs has been developed.

Hseuh, H.C.; Mapes, M.; Snydstrup, L.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of distributed ion pumps for g-2 beam vacuum system  

Science Conference Proceedings (OSTI)

Distributed ion pumps (DIPs) will be used for the beam vacuum system of the g-2 muon storage ring. The magnetic field intensity and alignment angle at the DIP locations are not uniform. The pumping behavior of several different ion pump elements under this non-uniform magnetic field has been studied. The results are compared with the theoretical predictions. Based on these results, the optimum design of the g-2 DIPs has been developed.

Hseuh, H.C.; Mapes, M.; Snydstrup, L.

1993-01-01T23:59:59.000Z

342

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

343

Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998  

DOE Green Energy (OSTI)

The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

Gorlov, A.

1998-08-01T23:59:59.000Z

344

Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage  

Science Conference Proceedings (OSTI)

HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

None

2011-12-01T23:59:59.000Z

345

GE Upgrades Top Selling Advanced Gas Turbine  

Science Conference Proceedings (OSTI)

Oct 30, 2009 ... According to GE, a typical power plant operating two new 7FA gas turbines with a single steam turbine in combined cycle configuration would ...

346

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Westwind Wind Turbines Jump to: navigation, search Name Westwind Wind Turbines Place Northern Ireland, United Kingdom Zip BT29 4TF Sector Wind energy Product Northern Ireland based...

347

Baldrige Award Recipients--Solar Turbines (1998)  

Science Conference Proceedings (OSTI)

... Incorporated With customers in 86 countries, Solar Turbines Incorporated is the world's largest supplier of mid-range industrial gas turbine systems. ...

2012-11-30T23:59:59.000Z

348

GAS METERING PUMP  

DOE Patents (OSTI)

A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

George, C.M.

1957-12-31T23:59:59.000Z

349

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in...

350

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

351

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

352

Direct nuclear pumped laser  

DOE Patents (OSTI)

There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

1978-01-01T23:59:59.000Z

353

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

354

Energy Efficiency Supporting Policy and Heat Pumping Technology in Japan  

E-Print Network (OSTI)

(U.S. dollars) is calculated with Japan = 1. #12;2-1. Eco Cute : example of countermeasure for energy feature Counter flow Heat exchanger Heat pump unit Storage tank Ref: TEPCO Website Ref: HPTCJ HP Space in Residential sector (FY2009) e.g. Gas stove e.g. Air- conditioner e.g. Domestic water heater e.g. lighting PC

Oak Ridge National Laboratory

355

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

356

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

357

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

358

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

359

Energy storage criteria handbook. Final report mar 81-jun 82  

SciTech Connect

The purpose of this handbook is to provide information and criteria necessary for the selection and sizing of energy storage technologies for use at U.S. Naval facilities. The handbook gives Naval base personnel procedures and information to select the most viable energy storage options to provide the space conditioning (heating and cooling) and domestic hot water needs of their facility. The handbook may also be used by contractors, installers, designers, engineers, architects, and manufacturers who intend to enter the energy storage business. The handbook is organized into three major sections: a general section, a technical section, and an example section. While a technical background is assumed for the latter two sections, the general section is simply written and can serve as an introduction to the field of energy storage. The technical section examines the following energy storage technologies: sensible heat storage, latent heat storage, cold storage, thermochemical storage, mechanical storage, pumped hydro storage, and electrochemical storage. The example section is limited to thermal storage and includes examples for: water tank storage, rockbed storage, latent heat storage, and cold water storage.

Hull, J.R.; Cole, R.L.; Hull, A.B.

1982-10-01T23:59:59.000Z

360

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps  

SciTech Connect

This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ``Mixer Pump Test Specification for Project W-151`` and Statement of Work 8K520-EMN-95-004 ``Mixer Pump Performance Demonstration at MASF`` in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work.

Berglin, B.G.

1998-01-29T23:59:59.000Z

362

Aero Turbine | Open Energy Information  

Open Energy Info (EERE)

Aero Turbine Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine Energy Company Location Riverside County CA Coordinates 33.7437°, -115.9925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7437,"lon":-115.9925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Gas turbines face new challenges  

SciTech Connect

Gas turbines continue to increase the electric power generation market in both the peaking and the intermediate load categories. With the increase in unit size and operating efficiencies. capital costs per kilowatt are reduced. Clean fuels---gas, light oil, or alcohol-type fuel--are needed for the gas turbines. The most efficient method of power generation is now attained from gas turbines, but the shortage of clean fuels looms. Manufacturers are anticipating the availability of clean fuels and continue working on the development of high- pressure, high-temperature turbines. In the near-term, increased efficiency is sought by making use of the turbine exhaust heat. involving combined or regenerative cycles. (MCW)

Papamarcos, J.

1973-12-01T23:59:59.000Z

364

Wind turbine data acquisition and analysis system  

DOE Green Energy (OSTI)

Under Department of Energy (DOE) sponsorship, Sandia Laboratories has implemented a program to develop vertical-axis wind turbine (VAWT) systems. One aspect of this program has been the development of an instrumented test site adjacent to Sandia Laboratories' Technical Area I on Kirtland Air Force Base. Three VAWTs are now in operation on this test site. This paper describes the data acquisition and analyses system developed to meet the needs of the VAWT test site. The system employs a 16-bit work-length minicomputer as the major element in a stand-alone configuration. A variety of peripheral devices perform the required data acquisition functions and provide for data display and analysis. Included is a disk-based software operating system that supports a mass storage-file system, high-level language, and auxiliary software procedures.

Stiefeld, B.

1978-07-01T23:59:59.000Z

365

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

366

Pumping performance of a new type of hybrid molecular pump  

Science Conference Proceedings (OSTI)

A new type of hybrid molecular pump of high performance and reliability has been developed. The pump’s rotational speed is 18?000 rpm. The pump is constructed with eleven stages of a turbomolecular pump and a drum multigroove drum molecular pump in which the clearance between rotor and stationary part is 0.35 mm; the rotor’s deformation forms a cuneiform channel of the proper working clearance to ensure the pump’s performance and working reliability. The pump can operate within the pressure range of 5×102–10?6 Pa for a oil?free vacuum with the maximum speed of 400 l/s. The maximum compression ratio for H2 is over 4000. It can be widely used in vacuum processes

Dechun Ba; Naiheng Yang; Xiaodong Wang; Shijin Pang; Yu Zhu; Xiaozhen Wang

1992-01-01T23:59:59.000Z

367

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Volkovich, Roie

2010-01-01T23:59:59.000Z

368

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Roie Volkovich; Uri Peskin

2010-12-01T23:59:59.000Z

369

Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines  

Science Conference Proceedings (OSTI)

The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).

Jean-Claude Ossyra

2012-10-25T23:59:59.000Z

370

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

Mechanical compression heat pumping is not new in industrial applications. In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical foundation for heat pumps and present the mechanical and thermal requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel demand paths. The case history will examine the system flexibility and the economic advantages realized in a barley malting process.

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

1986-06-01T23:59:59.000Z

371

Yale ME Turbine Test cell instructions Background  

E-Print Network (OSTI)

Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

Haller, Gary L.

372

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network (OSTI)

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

373

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

374

Advanced Coating Development for Gas Turbine Components  

Science Conference Proceedings (OSTI)

Sacrificial, oxidation-resistant coatings on turbine blades in high-firing temperature gas turbines are wearing out at an unacceptably rapid rate, resulting in excessive downtime and repair costs for turbine operators. This report summarizes the results of an exploratory development project that assessed the feasibility of decelerating the degradation rate of an MCrAlY coating on several turbine blade alloys.

2000-08-01T23:59:59.000Z

375

Coatings for gas turbines; Specialized coatings boost, maintain turbine efficiency  

SciTech Connect

Airlines have been coating their jet engines for the past 30 years, thereby avoiding corrosion, erosion and wear. More recently, operators of mechanical-drive gas turbines have come to realize the value of coatings as a way to keep down costs. This paper describes specialized coatings technology which has evolved for gas turbines. Coatings have been designed for specific areas and even specific components within the turbine. Because operators must often request these coatings when buying new equipment or at overhaul, a basic understanding of the technology is presented.

1988-10-01T23:59:59.000Z

376

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

377

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

378

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

379

An Experimental Examination of a Progressing Cavity Pump Operating at Very High Gas Volume Fractions  

E-Print Network (OSTI)

The progressing cavity pump is a type of positive displacement pump that is capable of moving nearly any fluid. This type of pump transports fluids in a series of discrete cavities formed by the helical geometries of its rigid rotor and elastomeric stator. With appropriate materials for the rotor and stator, this pump can move combinations of liquids, suspended solids, and gasses equally well. Because of its versatility, the progressing cavity pump is widely used in the oil industry to transport mixtures of oil, water, and sediment; this investigation was prompted by a desire to extend the use of progressing cavity pumps to wet gas pumping applications. One of the progressing cavity pump's limitations is that the friction between the rotor and stator can generate enough heat to damage the rotor if the pump is not lubricated and cooled by the process fluid. Conventional wisdom dictates that this type of pump will overheat if it pumps only gas, with no liquid in the process fluid. If a progressing cavity pump is used to boost the output from a wet gas well, it could potentially be damaged if the well's output is too dry for an extended period of time. This project seeks to determine how a progressing cavity pump behaves when operating at gas volume fractions between 0.90 and 0.98. A progressing cavity pump manufactured by seepex, model no. BN 130-12, is tested at half and full speed using air-water mixtures with gas volume fractions of 0.90, 0.92, 0.94, 0.96, and 0.98. The pump's inlet and outlet conditions are controlled to produce suction pressures of 15, 30, and 45 psi and outlet pressures 0, 30, 60, 90, 120, and 150 psi higher than the inlet pressure. A series of thermocouples, pressure transducers, and turbine flow meters measures the pump's inlet and outlet conditions, the flow rates of water and air entering the pump, and pressures and temperatures at four positions within the pump's stator. Over all test conditions, the maximum recorded temperature of the pump stator did not exceed the maximum safe rubber temperature specified by the manufacturer. The pump’s flow rate is independent of both the fluid's gas volume fraction and the pressure difference across the pump, but it increases slightly with the pump's suction pressure. The pump's mechanical load, however, is dependent only on the pressure difference across the pump and increases linearly with that parameter. Pressure measurements within the stator demonstrated that the leakage between the pump's cavities increases with the fluids gas volume fraction, indicating that liquid inside the pump improves its sealing capability. However, those same measurements failed to detect any appreciable leakage between the two pressure taps nearest the pump's inlet. This last observation suggests that the pump could be shortened by as much as 25 percent without losing any performance in the range of tested conditions; shortening the pump should increase its efficiency by decreasing its frictional mechanical load.

Glier, Michael W.

2011-05-01T23:59:59.000Z

380

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

382

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

383

Operation features of a longitudinal-capacitive-discharge-pumped CuBr laser  

Science Conference Proceedings (OSTI)

The frequency and energy characteristics of a capacitive-discharge-pumped CuBr laser are investigated. Processes proceeding in the discharge circuit of lasers pumped in this way, in particular, pumped without an external storage capacitor are analysed. It is shown that, depending on the pumping circuit, laser levels are excited either during the charge current flow or during the discharge of electrode capacitances. The differences in the influence of the active HBr addition on the characteristics of the discharge and lasing compared to the case of a usual repetitively pulsed high-current discharge with internal electrodes are established. (lasers)

Gubarev, F A; Shiyanov, D V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation); Evtushenko, Gennadii S [Tomsk Polytechnical University, Tomsk (Russian Federation); Sukhanov, V B

2010-01-31T23:59:59.000Z

384

Impact study on the use of biomass-derived fuels in gas turbines for power generation  

DOE Green Energy (OSTI)

This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

Moses, C.A.; Bernstein, H. [Southwest Research Inst., San Antonio, TX (United States)

1994-01-01T23:59:59.000Z

385

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

386

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1983-08-16T23:59:59.000Z

387

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

388

Technical Assessment Guide (TAG) - Power Generation and Storage Technology Options  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG)Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in power generation and energy storage infrastructure. The 2009 TAG has been significantly enhanced. The following topics are among those that are new or enhanced: several options on CO2 capture controls and costs for existing retrofits and for new Pulverized Coal and Combustion Turbine Combined Cycle plants; several options on hybrid and dry cooling f...

2009-12-11T23:59:59.000Z

389

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

390

Turbine Blade Shape Favorable for Fish Survival  

Science Conference Proceedings (OSTI)

Various mechanisms associated with turbine design and operation injure fish passing through hydro turbines. Pilot-scale tests with various fish species and sizes showed that most turbine passage injury and mortality are caused by blade strike. Leading edge blade strike is particularly important for turbines with numerous blades. Very little information and data are available on the mechanics of fish struck by turbine blades and the resulting injury and mortality rates. Determining what leading edge blade...

2008-05-29T23:59:59.000Z

391

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

392

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

393

Development of a low swirl injector concept for gas turbines  

E-Print Network (OSTI)

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

394

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .Wind Turbine . . . . . . . . . . . . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

395

Gamesa Wind Turbines Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Pvt Ltd Jump to: navigation, search Name Gamesa Wind Turbines Pvt. Ltd. Place Chennai, Tamil Nadu, India Sector Wind energy Product Chennai-based wind turbine...

396

Experimental Study of Stability Limits for Slender Wind Turbine Blades.  

E-Print Network (OSTI)

??There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine… (more)

Ladge, Shruti

2012-01-01T23:59:59.000Z

397

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

398

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

2.2.1 Turbine Description . . . . . . . . . . . . . . . . .112 4.2 Description of Turbine . . . . . . . . . . . . . . .3.2.1 Description of Test Wind Turbine . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

399

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network (OSTI)

-storage materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed airCOMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique, USA ABSTRACT In this work, a low-cost, low-volume, low-maintenance, small-scale compressed-air energy

Deymier, Pierre

400

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pumped oil feed systems for rotary vacuum pumps  

Science Conference Proceedings (OSTI)

Pumped oil feed systems developed by the authors and their colleagues provide positive lubrication under all inlet pressure conditions

H. Wycliffe; B. D. Power

1981-01-01T23:59:59.000Z

402

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

403

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

404

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

405

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

406

Multiple piece turbine blade  

Science Conference Proceedings (OSTI)

A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

Kimmel, Keith D (Jupiter, FL)

2012-05-29T23:59:59.000Z

407

Wind turbine rotor aileron  

DOE Patents (OSTI)

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

408

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

409

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

410

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

411

Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)  

SciTech Connect

This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

2011-03-20T23:59:59.000Z

412

Indexes of pumps for oil field pumping units  

Science Conference Proceedings (OSTI)

As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

Ibragimov, E.S.

1995-07-01T23:59:59.000Z

413

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

414

Shrouded inducer pump  

DOE Patents (OSTI)

An improvement in a pump is described including a shrouded inducer, the improvement comprising first and second sealing means which cooperate with a first vortex cell and a series of secondary vortex cells to remove any tangential velocity components from the recirculation flow. 3 figs.

Meng, S.Y.

1989-08-08T23:59:59.000Z

415

Linear induction pump  

DOE Patents (OSTI)

Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

Meisner, John W. (Newbury Park, CA); Moore, Robert M. (Canoga Park, CA); Bienvenue, Louis L. (Chatsworth, CA)

1985-03-19T23:59:59.000Z

416

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

417

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Turbine Oil Lube Notes Compilation  

Science Conference Proceedings (OSTI)

This report is a special compilation of the EPRI Nuclear Maintenance Applications Center's (NMAC's) "Lube Notes" articles (extracted from "Lube Notes Compilation, 1989-2001 (Report Number 1006848)) that relate specifically to the topic of turbine oils.

2002-11-25T23:59:59.000Z

419

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

420

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SURVEY OF SODIUM PUMP TECHNOLOGY  

SciTech Connect

A review is presented of the current status of sodium pump development as related to nuclear power applications. A description is given of the design features and performance characteristics of the more important types of sodium and sodium-- potassium alloy (NaK) pumps. Some requirements for sodium pumps for future large liquid metal reactor systems are presented with some preliminary consideration of the potential of various pump types to meet these requirements. (auth)

Nixon, D.R.

1963-06-01T23:59:59.000Z

422

Rim seal for turbine wheel  

SciTech Connect

A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

423

Onshore Wind Turbines Life Extension  

Science Conference Proceedings (OSTI)

Wind turbines are currently type-certified for nominal 20-year design lives, but many wind industry stakeholders are considering the possibility of extending the operating lives of their projects by 5, 10, or 15 years. Life extension—the operation of an asset beyond the nominal design life—is just one option to maximize the financial return of these expensive assets. Other options include repowering, upgrading, or uprating a turbine.In order to make informed decisions ...

2012-10-01T23:59:59.000Z

424

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

425

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

426

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

427

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

428

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

429

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

430

Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3[2].docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Images-Front cover: 20MW Beacon Power flywheel storage facility; Ameren's 440MW pumped-hydro storage at Taum Sauk, Missouri. Back cover: 8MW SCE / A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary............................................................................................................. 1 1.0 Introduction to the OE Storage Program ...................................................................... 5 1.1. The Grid Energy Storage Value Proposition ..................................................................................... 5 1.2. Grid Energy Storage at DOE .............................................................................................................

431

Economic and technical feasibility study of compressed air storage  

DOE Green Energy (OSTI)

The results of a study of the economic and technical feasibility of compressed air energy storage (CAES) are presented. The study, which concentrated primarily on the application of underground air storage with combustion turbines, consisted of two phases. In the first phase a general assessment of the technical alternatives, economic characteristics and the institutional constraints associated with underground storage of compressed air for utility peaking application was carried out. The goal of this assessment was to identify potential barrier problems and to define the incentive for the implementation of compressed air storage. In the second phase, the general conclusions of the assessment were tested by carrying out the conceptual design of a CAES plant at two specific sites, and a program of further work indicated by the assessment study was formulated. The conceptual design of a CAES plant employing storage in an aquifer and that of a plant employing storage in a conventionally excavated cavern employing a water leg to maintain constant pressure are shown. Recommendations for further work, as well as directions of future turbo-machinery development, are made. It is concluded that compressed air storage is technically feasible for off-peak energy storage, and, depending on site conditions, CAES plants may be favored over simple cycle turbine plants to meet peak demands. (LCL)

Not Available

1976-03-01T23:59:59.000Z

432

Reduce Pumping Costs through Optimum Pipe Sizing  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency by reducing pumping costs through optimum pipe sizing.

2005-10-01T23:59:59.000Z

433

Select an Energy-Efficient Centrifugal Pump  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency by selecting an energy-efficient centrifugal pump.

2005-10-01T23:59:59.000Z

434

SHINE VACUUM PUMP TEST VERIFICATION  

Science Conference Proceedings (OSTI)

Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ?Normetex replacement?) pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ?booster? pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ?booster? pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ?booster pump? is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of ? inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.

Morgan, G.; Peters, B.

2013-09-30T23:59:59.000Z

435

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

436

Gas turbine engine braking and method  

SciTech Connect

A method is described of decelerating a ground vehicle driven by a gas turbine engine having a gas generator section and a free turbine output power section driven by a gas flow from the gas generator section, comprising the steps of: altering the incidence of gas flow from the gas generator section onto the free turbine section whereby said gas flow opposes rotation of the free turbine section; increasing gas generator section speed; and subsequent to said altering and increasing steps, selectively mechanically interconnecting said gas generator and free turbine sections whereby the rotational inertia of the gas generator section tends to decelerate the free turbine section.

Mattson, G.; Woodhouse, G.

1980-07-01T23:59:59.000Z

437

Residential gas heat pump assessment: A market-based approach  

SciTech Connect

There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

Hughes, P.J.

1995-09-01T23:59:59.000Z

438

Pump Systems Optimization: Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Pump Systems Optimization: Energy Efficiency and Bottom-Line Savings Host this one-day course to help participants learn how to identify and reduce hidden operation and energy costs. Participants will: * Identify energy savings * Increase profitability * Increase reliability * Earn seven PDH credits Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while earning seven professional development hour (PDH) credits from the Hydraulic Institute. Topics covered include:* * Why Efficient Pump Systems Are Important

439

Dual valve well pump installation  

SciTech Connect

A reciprocating electric motor-pump assembly for lifting well fluid on downstroke of the motor pump assembly, the pump including a barrel below the motor having dual combined inlet and outlet valve means at the lower end thereof, the pump piston moving in the barrel having annular grooves therearound to prevent differential pressure sticking, the electric cable supplying the electric motor being tubular to vent the pump and prevent vacuum or gas lock, there being a packer about the valve barrel separating the outlet valve means thereabove from the inlet valve means therebelow and a packer above the motor about a production tubing including an upper standing valve.

Holm, D. R.

1985-10-22T23:59:59.000Z

440

Save by absorption heat pumping  

SciTech Connect

The author compares absorption heat pumping (AHP) to mechanical vapor compressor (MVC) heat pumping. The moving part of the AHP is a pump easy to maintain and inexpensive to spare. The mechanical component of the MVC is a vapor compressor which requires more maintenance and is cost-prohibitive to spare. Also, in the MVC system, a purified product stream is heat pumped in an open compressor, thus risking product contamination. In the AHP system, the cold and hot utilities are heat pumped. Therefore, product integrity with an AHP system is well protected as in a conventional fractionation column.

Davidson, W.F.; Campagne, W.V.L.

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Research on the Applicability of Solar Energy-Ground Source Heat Pump in Different Regions of China  

Science Conference Proceedings (OSTI)

The development potential of solar energy resource, cLimatic characteristics and soil temperature conditions are various in different areas of China, which brings some difficulties in the promotion and appLication of solar energy-ground source heat pump ... Keywords: Solar energy-ground source heat pump (GSHP), Solar radiation, Sharacteristics of soil thermal storage, Geographic features

Dongyi Zhou; Chu-ping Shi; Wen-hua Yuan

2011-08-01T23:59:59.000Z

442

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

443

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

444

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

445

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

446

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's Advanced Research...

447

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

448

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

449

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

450

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

451

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

452

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

453

Hydride heat pump  

DOE Patents (OSTI)

Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

Cottingham, James G. (Center Moriches, NY)

1977-01-01T23:59:59.000Z

454

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

455

Advanced Turbine Systems program  

SciTech Connect

Allison draws the following preliminary conclusions from this preliminary design effort: (1) All cycles investigated require a high temperature turbine capability to be developed under ATS. (2) The HAT and intercooled chemical recuperation cycles compete in only a narrow sector of the industrial engine market. This is the result of the complexity and water usage of the HAT cycle and the limitation of the chemical recuperation cycle to applications where natural gas is readily available. (3) From a cycle point of view, the ICR and chemical recuperation cycles are similar. Both optimize at fairly low compressor pressure ratios ({approximately}15) because both want high temperature in the exhaust to optimize the recuperation process. Excess steam production with the chemical recuperation process makes it somewhat doubtful that the two recuperation processes are interchangeable from a hardware point of view. Allison intends to perform a global optimization on this cycle during Phase 2 of ATS. (4). There appears to be no substitute for the simple cycle with steam generation in the cogen-steam market since steam is, by definition, a valuable product of the cycle.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1993-11-01T23:59:59.000Z

456

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01T23:59:59.000Z

457

Aerothermodynamics of low pressure steam turbines and condensers  

SciTech Connect

This book presents papers on steam turbines and steam condensers. Topics considered include the design of modern low pressure steam turbines, throughflow design methods, three-dimensional flow calculations, the calculation of wet steam stages, aerodynamic development of turbine blades, turbine performance measurement, turbine exhaust system design, and condensers for large turbines.

Moore, M.J.; Sieverding, C.H.

1987-01-01T23:59:59.000Z

458

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report  

DOE Green Energy (OSTI)

This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

Not Available

1978-01-01T23:59:59.000Z

459

Battery energy storage systems life cycle costs case studies  

SciTech Connect

This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

1998-08-01T23:59:59.000Z

460

Life cycle assessment of a pumped storage power plant.  

E-Print Network (OSTI)

?? Wind and solar power plants are gaining increasing attention due to low green house gas emissions associated with electricity generation. The installed capacity of… (more)

Torres, Octavio

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network (OSTI)

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

462

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

463

A Dynamic Wind Turbine Simulator of the Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

To study dynamic performances of wind turbine generator system (WTGS), and to determine the control structures in laboratory. The dynamic torque generated by wind turbine (WT) must be simulated. In there paper, a dynamic wind turbine emulator (WTE) is ... Keywords: dynamic wind turbine emulation, wind shear, tower shadow, torque compensation

Lei Lu; Zhen Xie; Xing Zhang; Shuying Yang; Renxian Cao

2012-01-01T23:59:59.000Z

464

Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

Not Available

2011-05-01T23:59:59.000Z

465

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

466

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

467

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

468

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

469

Development and demonstration of a wood-fired gas turbine system  

DOE Green Energy (OSTI)

The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

Smith, V.; Selzer, B.; Sethi, V.

1993-08-01T23:59:59.000Z

470

Reliability Assessment of North American Steam Turbines  

Science Conference Proceedings (OSTI)

This survey provides statistics related to the reliability and maintenance of fossil-fueled steam turbines in the continental United States. The analysis focuses primarily on active turbines larger than 200 MW.

2002-04-24T23:59:59.000Z

471

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

472

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

473

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

474

Investigation of flow characteristics of gas turbines  

SciTech Connect

Measurements carried out in the process of assimilation of gas turbine (GT) plants of 16 different types in starting and working conditions to estimate the operational conditions and characteristics of the main elements (in particular of the turbines) have created a basis for generaliztion of flow characteristics of different turbines and for extending them to a wider range of operational conditions. The studies showed that: flow characteristics of the investigated turbines, independently of the number of stages and the degree of reaction, are described by the elliptic flowrate equation; throughput of similar turbines, i.e., of turbines formed of stages with high reaction, which have low design degrees of expansion, can be determined with satisfactory accuracy by the unique function of the degree of expansion; and in operating the gas turbine plants considerable changes in throughput of the turbines are possible.

Ol' khovskii, G.G.; Ol' khovskaya, N.I.

1978-01-01T23:59:59.000Z

475

Gas Turbine World performance specs 1984  

SciTech Connect

The following topics are discussed: working insights into the performance specifications; performance and design characteristics of electric power plants, mechanical drive gas turbines, and marine propulsion gas turbines; and performance calculations.

1984-03-01T23:59:59.000Z

476

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

477

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

478

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

479

Environmental Coatings For Gas Turbine Engine Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Environmental Coatings For Gas Turbine Engine Applications. Author(s), Ming Fu, Roger Wustman, Jeffrey Williams, Douglas Konitzer.

480

Aircraft Gas Turbine Blade and Vane Repair  

Science Conference Proceedings (OSTI)

Gas turbine blades experience dimensional .... platinum applied in separate gas phase or electroplating ..... surfaces are natural consequences of fluoride.

Note: This page contains sample records for the topic "turbine pumped storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.