Sample records for turbine power plants

  1. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  2. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-27T23:59:59.000Z

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  3. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-19T23:59:59.000Z

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  4. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-05-01T23:59:59.000Z

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  5. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-01T23:59:59.000Z

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  6. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-23T23:59:59.000Z

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  7. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-22T23:59:59.000Z

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  8. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Shezel-Ayagh

    2005-05-01T23:59:59.000Z

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  9. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2008-09-30T23:59:59.000Z

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

  10. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01T23:59:59.000Z

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  11. Turbine Drive Gas Generator for Zero Emission Power Plants

    SciTech Connect (OSTI)

    Doyle, Stephen E.; Anderson, Roger E.

    2001-11-06T23:59:59.000Z

    The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

  12. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30T23:59:59.000Z

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

  13. An automotive transmission for automotive gas turbine power plants

    SciTech Connect (OSTI)

    Polak, J.C.

    1980-01-01T23:59:59.000Z

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  14. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    E-Print Network [OSTI]

    unknown authors

    AbstractThe gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

  15. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2008-10-14T23:59:59.000Z

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  16. Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions

    E-Print Network [OSTI]

    -cycle units include a heat recovery steam generator on the exhaust to recover otherwise wasted energy. Steam from the heat recovery steam generator powers an additional steam turbine, providing extra electric to about 50 percent. In addition, the steam generator of combined-cycle units can be fitted with fuel

  17. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect (OSTI)

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31T23:59:59.000Z

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  18. A new coordinated control strategy for boiler-turbine system of coal-fired power plant

    SciTech Connect (OSTI)

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

    2005-11-01T23:59:59.000Z

    This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

  19. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

    2013-03-01T23:59:59.000Z

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  20. 3rd Int'l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS'03), Makuhari, Japan, 4-5 Dec. 2003. PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP

    E-Print Network [OSTI]

    Frechette, Luc G.

    ), Makuhari, Japan, 4-5 Dec. 2003. 1 PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP Luc G. The microfabricated device consists of a steam turbine that drives an integrated micropump and generator. Two, mechanical, then electrical energy. The concept developed herein consists of a microfabricated steam turbine

  1. POWER-GEN '91 conference papers: Volume 7 (Non-utility power generation) and Volume 8 (New power plants - Gas and liquid fuels/combustion turbines). [Independent Power Production

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This is book 4 of papers presented at the Fourth International Power Generation Exhibition and Conference on December 4-6, 1991. The book contains Volume 7, Non-Utility Power Generation and Volume 8, New Power Plants - Gas and Liquid Fuels/Combustion Turbines. The topics of the papers include PUHCA changes and transmission access, financing and economics of independent power projects, case histories, combustion turbine based technologies, coal gasification, and combined cycle.

  2. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  3. Impact of Advanced Turbine Systems on coal-based power plants

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1993-12-31T23:59:59.000Z

    The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

  4. Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois

    E-Print Network [OSTI]

    Amoo-Otoo, John Kweku

    2006-05-19T23:59:59.000Z

    Competition has been a prime mover in the energy industry and there is the drive to increase performance of steam turbine-driven equipment. Availability of a unit is also critical to the operation of a plant and has also provided the fundamental...

  5. Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Pasupulati, S.; Ellis, A.; Kosterov, D.

    2008-07-01T23:59:59.000Z

    This paper focuses on our effort to develop an equivalent representation of a Wind Power Plant collector system for power system planning studies.

  6. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

    2008-07-15T23:59:59.000Z

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  7. Gas turbine cycles with solid oxide fuel cells. Part 1: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency of the combustion process can be improved if immediate contact of fuel and oxygen is prevent4ed and an oxygen carrier is used. In a previous paper (Harvey et al., 1992), a gas turbine cycle was investigated in which part of the exhaust gases are recycled and used as oxygen-carrying components. For the optimized process, a theoretical thermal efficiency of 66.3% was achieved, based on the lower heating value (LHV) of the methane fuel. One means to further improve the exergetic efficiency of a power cycle is to utilize fuel cell technology. Solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. In this paper, the authors will therefore consider SOFC technology. In view of their high operating temperatures and the incomplete nature of the fuel oxidation process, fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. In this paper, the authors will show how monolithic SOFC (MSOFC) technology may be integrated into the previously described gas turbine cycle using recycled exhaust gases as oxygen carriers. An optimized cycle configuration will be presented based upon a detailed cycle analysis performance using Aspen Plus[trademark] process simulation software and a MSOFC fuel cell simulator developed by Argonne National Labs. The optimized cycle achieves a theoretical thermal efficiency of 77.7%, based on the LHV of the fuel.

  8. SMART POWER TURBINE

    SciTech Connect (OSTI)

    Nirm V. Nirmalan

    2003-11-01T23:59:59.000Z

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

  9. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect (OSTI)

    Shen, Chen

    2014-01-20T23:59:59.000Z

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions. The nickel based Alloy 282 is selected for this project because it is one of the leading candidate materials for the high temperature/pressure section of an A-USC steam turbine. The methods developed in the project are expected to be applicable to other metal alloys in similar steam/oxidation environments. The major developments are: ? failure mechanism and microstructural characterization ? atomistic and first principles modeling of crack tip oxygen embrittlement ? modeling of gamma prime microstructures and mesoscale microstructure-defect interactions ? microstructure and damage-based creep prediction ? multi-scale crack growth modeling considering oxidation, viscoplasticity and fatigue The technology developed in this project is expected to enable more accurate prediction of long service life of advanced alloys for A-USC power plants, and provide faster and more effective materials design, development, and implementation than current state-of-the-art computational and experimental methods. This document is a final technical report for the project, covering efforts conducted from January 2011 to January 2014.

  10. Thermionic combustor application to combined gas and steam turbine power plants

    SciTech Connect (OSTI)

    Miskolczy, G.; Wang, C.C.; Lieb, D.P.; Margulies, A.E.; Fusegni, L.J.; Lovell, B.J.

    1981-01-01T23:59:59.000Z

    The engineering and economic feasibility of a thermionic converter topped combustor for a gas turbine is evaluated in this paper. A combined gas and steam turbine system was chosen for this study with nominal outputs of the gas and steam turbines of 70 MW and 30 MW, respectively. 7 refs.

  11. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect (OSTI)

    Annen, K.D.

    1981-08-01T23:59:59.000Z

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  12. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

  13. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13T23:59:59.000Z

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  14. NREL Develops Simulations for Wind Plant Power and Turbine Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    NREL researchers are the first to use a high-performance computing tool for a large-eddy simulation of an entire wind plant.

  15. Topping Turbines: Adding New Life to Older Plants

    E-Print Network [OSTI]

    Cadrecha, M.

    1984-01-01T23:59:59.000Z

    An existing power plant can be repowered at a modest investment cost through a topping turbine installation. Essentially, this consists of replacing the existing old, low pressure boilers with new, high pressure boilers and adding a new, high...

  16. Topping Turbines: Adding New Life to Older Plants

    E-Print Network [OSTI]

    Cadrecha, M.

    1984-01-01T23:59:59.000Z

    An existing power plant can be repowered at a modest investment cost through a topping turbine installation. Essentially, this consists of replacing the existing old, low pressure boilers with new, high pressure boilers and adding a new, high...

  17. A Survey of Power Plant Designs

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    University #12;Combustion Turbine Power Plant Open System The turbine burns either natural gas or oil. Fuel is mixed with compressed air in the combustion chamber and burned. High-pressure combustion gases spin. The Southaven Combined-Cycle Combustion Turbine Plant is located near Desoto County, Mississippi. Running

  18. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01T23:59:59.000Z

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  19. Combined cycle power plant incorporating coal gasification

    DOE Patents [OSTI]

    Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

    1981-01-01T23:59:59.000Z

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  20. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

    1996-07-01T23:59:59.000Z

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  1. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect (OSTI)

    None

    1986-02-12T23:59:59.000Z

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

  3. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30T23:59:59.000Z

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  4. Demonstration of a Variable Phase Turbine Power System for Low...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature...

  5. Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants

    SciTech Connect (OSTI)

    Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-01-01T23:59:59.000Z

    Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

  6. A Wood-Fired Gas Turbine Plant

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

  7. Automating An Industrial Power Plant

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    1987-01-01T23:59:59.000Z

    and electricity requirements of the Component Works as well as all of the heat and a portion of the electricity needed by the adjacent John Deere Foundry. This paper describes the automation of an eXisting industrial power plant and tells how the project...AUTlliATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant...

  8. PowerJet Wind Turbine Project

    SciTech Connect (OSTI)

    Bartlett, Raymond J

    2008-11-30T23:59:59.000Z

    PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energyâ??s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJetâ??s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assemblyâ??including the electronic and mechanical controls designed, manufactured and field tested during the course of this projectâ??proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOEâ??s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

  9. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06T23:59:59.000Z

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

  10. Energy Saving in Ammonia Plant by Using Gas Turbine

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01T23:59:59.000Z

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  11. Energy Saving in Ammonia Plant by Using Gas Turbine

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01T23:59:59.000Z

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  12. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT PRESIDINGMEMBER Member STANLEY VALKOSKY Chief Hearing Adviser GARRET SHEAN Hearing Officer Small Power Plant Exemption to construct and operate large electric power plants, including the authority to exempt proposals under 100 MW

  13. Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua

    E-Print Network [OSTI]

    Peinke, Joachim

    Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Oldenburg 2007 Zur Homepage der Dissertation #12;#12;Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Von der Fakultat f the wind turbine's power per- formance directly from high frequency fluctuating measurements. In particular

  14. Control of Wind Turbines for Power Regulation and

    E-Print Network [OSTI]

    Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

  15. The Guy at the Controls: Labor Quality and Power Plant Efficiency

    E-Print Network [OSTI]

    Bushnell, Jim B; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    steam generation units, fuel accounted for about 75% of power plantsteam combustion and the latter a combustion turbine (CT). While power plants

  16. Automating An Industrial Power Plant

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    AUTlliATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant... for the project was estimated at $860,OOO/year. The upgrading process began with a search for a design/ build contractor that could provide complete turn key capability, beginning with a site survey and ending with operator acceptanoe. The contractor...

  17. Sandia National Laboratories: wind turbines produce rated power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbines produce rated power Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership,...

  18. SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans the state of the art of power predictios for wind and solar power plants.with a time horizon of several market there is a need for a forecast of the power production of wind and solar generators with time

  19. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [USDOE Morgantown Energy Technology Center, WV (United States)

    1995-12-31T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  20. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

    1995-12-31T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately} 25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  1. Severe environment turbine powered steerable motors

    SciTech Connect (OSTI)

    Gaynor, T.M. [Neyrfor-Weir Ltd., Aberdeen (United Kingdom). Dept. of Operations

    1995-12-31T23:59:59.000Z

    Turbine powered downhole motors have advantages for high temperature, high pressure, sour gas or hard formation drilling which stem from turbodrill construction rather than metallurgy, and from their power characteristics. The first part of the paper will discuss this, and compare turbine and Moineau powered motors in this context. The introduction in the last three years of new bearing materials, hydraulic thrust balancing devices and high performance flexible couplings have extended turbodrill performance and reliability margins in severe environment drilling. It is perfecting feasible to build steerable motors capable of drilling for 250 hours in 6-in. hole at 200 degrees Celsius (392 degrees Fahrenheit) in a deviated high pressure well since the individual problems in this ``Well from Hell`` have successfully been overcome. The second part of the paper will illustrate this through field examples.

  2. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  3. Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Mani, G.

    1983-01-01T23:59:59.000Z

    Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations...

  4. Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Mani, G.

    1983-01-01T23:59:59.000Z

    Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations...

  5. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01T23:59:59.000Z

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  6. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  7. The 5-megawatt power plant with 126 metre rotor diameter

    E-Print Network [OSTI]

    Firestone, Jeremy

    The 5-megawatt power plant with 126 metre rotor diameter #12;Design data Rated power 5,000kW Cut and most powerful wind turbines in the world. The 5M sets new standards for the economic viability similar to conventional power plants. This in turn puts high demands on the control and regulation system

  8. Fast Verification of Wind Turbine Power Summary of Project Results

    E-Print Network [OSTI]

    Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

  9. Microstructural Evolution in Power Plant Steels

    E-Print Network [OSTI]

    Cambridge, University of

    energy of the steam is converted to electrical energy by a system of turbines and a generator. Figure 2 temperature as possible. Progress in power-plant alloy design has allowed T1 to be increased from 370 C Steels Pump Cooling water Cooling water Electrical output Condenser Reheat Coal Boiler Superheater Ash HP

  10. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2012-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  11. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01T23:59:59.000Z

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  12. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  13. Gas Turbine Cogeneration Plant for the Dade County Government Center

    E-Print Network [OSTI]

    Michalowski, R. W.; Malloy, M. K.

    1985-01-01T23:59:59.000Z

    GAS TURBINE COGENERATION PLANT FOR THE DADE COUNTY GOVERNMENT CENTER Roger W. Michalowski Michael K. Malloy Thermo Electron Corporation GEC Rolls-Royce Waltham, Massachusetts ABSTRACT A government complex consisting of a number of State... expansion plans, the system will efficiently produce additional electricity when chilled water demands are low. Houston, Texas The cogeneration plant consists of a Rolls-Royce gas turbine-generator set and a waste-heat recovery system which recovers...

  14. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    2001-01-01T23:59:59.000Z

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  15. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  16. advanced turbine power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level. When the power consumption is low e.g. during the night 46 A Silicon-Based Micro Gas Turbine Engine for Power Generation CERN Preprints Summary: This paper reports on our...

  17. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  18. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect (OSTI)

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30T23:59:59.000Z

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  19. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect (OSTI)

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01T23:59:59.000Z

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  20. Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy

    E-Print Network [OSTI]

    Leon, Marco E.

    2007-01-01T23:59:59.000Z

    sensor for measurements of gas turbine exhaust temperature."O, CO 2 , and Temperature in Gas Turbine Exhaust through theview of UCSD power plant gas turbine systems 31

  1. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20T23:59:59.000Z

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  2. Documentation, User Support, and Verification of Wind Turbine and Plant Models

    SciTech Connect (OSTI)

    Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

    2012-09-18T23:59:59.000Z

    As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

  3. A Wood-Fired Gas Turbine Plant

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    1986-01-01T23:59:59.000Z

    This paper covers the research and development of a wood-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T...

  4. New geothermal power plants in Azores and Kenya

    SciTech Connect (OSTI)

    Tahara, M.

    1981-10-01T23:59:59.000Z

    Two geothermal power plants were recently completed. One is 3 MW unit in Azores and another is 15 MW unit in Kenya. Both plants have very simple construction. For Azores, a packaged portable turbine generator is adopted to save the cost and installation term. 15 MW Olkaria plant which is adopted single flash cycle has produced first electricity by the geothermal energy in Africa. This turbine generator has been installed on a steel foundation. Special site conditions have been taken into consideration and both plants are successfully running with certification of the suitable design concept.

  5. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01T23:59:59.000Z

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  6. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  7. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01T23:59:59.000Z

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  8. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global.............................................................................................................. 4 3. Assessment of the Issues and Needs for a New Plant

  9. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  14. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  15. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  17. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  18. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  20. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  1. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  2. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  3. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  4. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  6. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  7. System Definition and Analysis: Power Plant Design and Layout

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

  8. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01T23:59:59.000Z

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  9. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    in sellable power output as a result of improved turbine efficiency. The Lyondell facility is a combined cycle power plant where a gas turbine: heat recovery system supplies steam to the steam turbine. Since this steam is a bypropuct of the gas turbine...steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits...

  10. LIFE Power Plant Fusion Power Associates

    E-Print Network [OSTI]

    LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled dpa) Removes ion threat and mitigates x-ray threat allows simple steel piping No need

  11. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01T23:59:59.000Z

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  12. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23T23:59:59.000Z

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  13. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01T23:59:59.000Z

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  14. Physical Plant Power Plant - 32

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    ) for producing single-node cuttings. Regardless of reapplication stages, nutrient termination on 1 Oct. caused taller plants with more nodes, more leaves, more flowering nodes, more total flowers, and fewer aborted flowers than those being terminated earlier...

  15. Energy harvesting to power sensing hardware onboard wind turbine blade

    SciTech Connect (OSTI)

    Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-10-05T23:59:59.000Z

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  16. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

  17. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  18. Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine

    E-Print Network [OSTI]

    Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine 2013. 09. 11 Korea ORC #12;Cycle simulation Solver : HYSYS Basic simulation design T-S diagram Pump Turbine Evaporator & turbine : iso-entropic process Pump Turbine Evaporator Condenser 4 1 2 3 Geothermal water Deep seawater

  19. PERFORMANCE ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL

    E-Print Network [OSTI]

    Duffy, Ken

    PERFORMANCE ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL D.J.Leith W Power regulation of horizontal-axis grid-connected up-wind constant-speed pitch-regulated wind turbines ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL D.J.Leith W.E.Leithead Department

  20. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr will describe the design of a high temperature solar receiver capable of driving a gas turbine for power conclusions regarding the best way to operate a solar powered gas turbine have been obtained

  1. Ris-R-Report Multi-MW wind turbine power curve

    E-Print Network [OSTI]

    Risø-R-Report Multi-MW wind turbine power curve measurements using remote sensing instruments Wagner, Michael Courtney Title: Multi-MW wind turbine power curve measurements using remote sensing (max. 2000 char.): Power curve measurement for large wind turbines requires taking into account more

  2. Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines

    E-Print Network [OSTI]

    Hu, Weihao

    Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines, China mcheng@seu.edu.cn Abstract-- Grid connected wind turbines are the sources of power fluctuations presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both

  3. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH Quality Assurance Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  4. Method of optimizing performance of Rankine cycle power plants

    DOE Patents [OSTI]

    Pope, William L. (Walnut Creek, CA); Pines, Howard S. (El Cerrito, CA); Doyle, Padraic A. (Oakland, CA); Silvester, Lenard F. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  5. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01T23:59:59.000Z

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  6. Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

  7. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao

    2006-02-06T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  8. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  9. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  10. Hydroelectric Power Plants

    E-Print Network [OSTI]

    Purpose The Purpose

    Contents Purpose ..................... 1-1 1-1 Applicability .................. 1-2 1-1 References .................... 1-3 1-1 Limitations ................... 1-4 1-1 Contents ..................... 1-5 1-1 Design Procedures .............. 1-6 1-1 Other Design Information ......... 1-7 1-2 Deviations .................... 1-8 1-2 General Design Practices .......... 1-9 1-2 Safety Provisions ............... 1-10 1-2 Francis-Type Turbines ............ 2-2 2-1 Francis-Type Pump Turbines ....... 2-3 2-3 Kaplan-Type Turbines ............ 2-4 2-4 Turbine Considerations ........... 3-2 3-1 Handling Provisions ............. 3-3 3-1 Service Systems ................ 3-4 3-1 Considerations ................. 4-2 4-1 Penstock Shutoff Valves at the Valve Requirement ......... 5-2 5-1 Valve Selection ........... 5-3 5-1 Cranes .................. 6-2 6-1 Crane Lifting Accessories .... 6-3 6-6 Hoists .................. 6-4 6-8 Justification .............. 7-2 7-1 Loc

  11. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  12. Increased efficiency of topping cycle PCFB power plants

    SciTech Connect (OSTI)

    Robertson, A.; Domeracki, W.; Horazak, D. [and others

    1996-05-01T23:59:59.000Z

    Pressurized circulating fluidized bed (PCFB) power plants offer the power industry significantly increased efficiencies with reduced costs of electricity and lower emissions. When topping combustion is incorporated in the plant, these advantages are enhanced. In the plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and ceramic barrier filter to remove gas-entrained particulates and a packed bed of emathelite pellets to remove alkali vapors. the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator combustor, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the PCFB and the exhaust gas passes through its own cyclone, ceramic barrier filter, and alkali getter and supports combustion of the fuel gas in the topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the PCFB drives the steam turbine generator that furnishes the balance of electric power delivered by the plant.

  13. Small-scale AFBC-hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.C. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States); Hall, A.W. [Morgantown Energy Technology Center, Morgantown, WV (United States)

    1995-02-01T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the U.S. Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW, plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1450{degrees}F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  14. Development of a PF Fired High Efficiency Power Plant (AD700)

    E-Print Network [OSTI]

    Development of a PF Fired High Efficiency Power Plant (AD700) Rudolph Blum, Sven Kjr and Jrgen and nickel-based superalloys for the hottest sections of boilers, steam lines and turbines. Other targets were development of boiler and turbine designs for the more advanced conditions and finally economic

  15. Turbocharged PFBC Power Plant Technical and Economic Assessments

    E-Print Network [OSTI]

    Leppke, D.

    scale modularization techniques to both a bubbling-bed type PFBC, a circulating-bed type PFBC, and a 250MWe turbine-generator plant. Alternate PFBC designs using field construction techniques and prOViding more space for major maintenance...TURBOCHARGED PFBC POWER PLANT TECHNICAL AND ECONOMIC ASSESSMENTS DELBERT M. LEPPKE Senior Technical Manager Fluor Daniel Chicago, Illinois Fluidized bed combustion (FBC) boilers are receiving considerable attention by the utility...

  16. Impact of DFIG wind turbines on transient stability of power systems a review

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

  17. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    the effluent steam from a conventional power plant. However,Steam Cycle Parameters Total turbine generator output Total auxiliary power Net plantpower plants provide a substantial improvement in thermodynamic efficiency over that possible with conventional steam

  18. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01T23:59:59.000Z

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  19. Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices Summary In this case study, a CHP plant increases its profit%ons with the power grid 4 Power Grid CHP plant Typically mul%ple boilers and turbines

  20. Dual-Fuel Combustion Turbine Provides Reliable Power to U.S. Navy Submarine Base New London in Groton, Connecticut

    SciTech Connect (OSTI)

    Halverson, Mark A.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB)

    2002-01-01T23:59:59.000Z

    In keeping with a long-standing tradition of running Base utilities as a business, the U.S. Navy Submarine Base New London installed a dual-fuel combustion turbine with a heat recovery boiler. The 5-megawatt (MW) gas- and oil-fired combustion turbine sits within the Lower Base area, just off the shores of the Thames River. The U.S. Navy owns, operates, and maintains the combined heat and power (CHP) plant, which provides power to the Navy?s nuclear submarines when they are in port and to the Navy?s training facilities at the Submarine Base. Heat recovered from the turbine is used to produce steam for use in Base housing, medical facilities, and laundries. In FY00, the Navy estimates that it will save over $500,000 per year as a result of the combined heat and power unit.

  1. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01T23:59:59.000Z

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  2. Power optimization of wind turbines with data mining and evolutionary computation

    E-Print Network [OSTI]

    Kusiak, Andrew

    and non-controllable variables of a wind turbine. An evolutionary strategy algorithm is appliedPower optimization of wind turbines with data mining and evolutionary computation Andrew Kusiak July 2009 Accepted 25 August 2009 Available online 17 September 2009 Keywords: Wind turbine Data mining

  3. Optimization of wind turbine energy and power factor with an evolutionary computation algorithm

    E-Print Network [OSTI]

    Kusiak, Andrew

    -controllable variables of a 1.5 MW wind turbine. An evolutionary strategy algorithm solves the data-derived optimization-linear approach to control a variable-speed turbine to maximize power in the presence of generator torque for variable-speed wind turbines. Munteanu et al. [11] applied a linear-quadratic stochastic approach to solve

  4. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

  5. Dynamic behaviour of a DFIG wind turbine subjected to power system faults

    E-Print Network [OSTI]

    Dynamic behaviour of a DFIG wind turbine subjected to power system faults Gabriele Michalke+, Anca, Institute for Electrical Power Systems, Landgraf-Georg-Strae 4, 64283 Darmstadt, Germany * Ris National of the dynamic interaction between variable speed DFIG wind turbines and the power system subjected

  6. 1. Introduction The efficiency of steam turbines can be improved by in-

    E-Print Network [OSTI]

    Cambridge, University of

    1. Introduction The efficiency of steam turbines can be improved by in- creasing the maximum-efficiency power plant. 2. Turbines, Steam, Efficiency and Power Plant A power plant has a steam generator which the operating pressure is below about 22 MPa, in which case the steam is separated and passed on to the turbine

  7. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01T23:59:59.000Z

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  8. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01T23:59:59.000Z

    This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controllers main objective is to track and maintain hybrid operational constraints in the fuel cells cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

  9. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    a boom-bust cycle in wind power plant investment in the U.S.tax credit for wind turbine power plants is an ineffectivewind power and became comfortable with turbine technology and plant

  10. Power Plant Dams (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across...

  11. Ris-R-1400(EN) Dynamic wind turbine models in power

    E-Print Network [OSTI]

    Risø-R-1400(EN) Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D December 2003 #12;#12;Contents Preface 5 1 Introduction 6 2 Wind turbine modelling in DIgSILENT 7 2.1 Power converters 14 2.2.3 Transformer 16 2.3 DSL models of wind turbine in DIgSILENT 18 2.3.1 Initialisation issues

  12. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Advanced Research The American Recovery and Reinvestment Act (ARRA) funds gas turbine technology research and development to improve the efficiency, emissions, and...

  13. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01T23:59:59.000Z

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  14. Fiberglass plastics in power plants

    SciTech Connect (OSTI)

    Kelley, D. [Ashland Performance Materials (United States)

    2007-08-15T23:59:59.000Z

    Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

  15. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  16. State power plant productivity programs

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  17. The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine

    E-Print Network [OSTI]

    Zender, Charles

    The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine: (949) 824-3256 Abstract For the first time, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub height, usable portion of the wind speed distri- bution

  18. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

  19. Solar thermionic power plant (II)

    SciTech Connect (OSTI)

    Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

    1981-01-01T23:59:59.000Z

    It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

  20. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Banta, Larry [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Tucker, David [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Gemmen, Randall [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States)

    2010-08-01T23:59:59.000Z

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controllers main objective is to track and maintain hybrid operational constraints in the fuel cells cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  1. Wood Burning Combined Cycle Power Plant

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01T23:59:59.000Z

    A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas...

  2. Large Parabolic Dish collectors with small gas-turbine, Stirling engine or photovoltaic power conversion systems

    SciTech Connect (OSTI)

    Gehlisch, K.; Heikal, H.; Mobarak, A.; Simon, M.

    1982-08-01T23:59:59.000Z

    A comparison for different solar thermal power plants is presented and demonstrates that the large parabolic dish in association with a gas turbine or a Sterling engine could be a competitive system design in the net power range of 50-1000KW. The important advantages of the Large Parabolic Dish concept compared to the Farm and Tower concept are discussed: concentration ratios up to 5000 and uniform heat flux distribution throughout the day which allow very high receiver temperatures and therefor high receiver efficiency to operate effectively Stirling motors or small gas turbines in the mentioned power range with an overall efficiency of 20 to 30%. The high focal plane concentration leads to the efficient use of ceramic materials for receivers of the next generation, applicable in temperature ranges up to 1,300 /sup 0/C for energy converters. Besides the production of electricity, the system can supply process heat in the temperature range of 100 to 400 /sup 0/C as waste heat from the gas turbo converter and heat at temperature levels from 500 to 900 /sup 0/C (1300 /sup 0/C) directly out of the receiver.

  3. Designing Micro Wind Turbines for Portable Power Generation Francois Hogan

    E-Print Network [OSTI]

    Barthelat, Francois

    to the design of a wind turbine rotor. Number of blades The number of blades does not have a significant impact on the efficiency of a wind turbine. We have chosen a two blade design because of ease of fabrication in order) (2) This two blade micro wind turbine meets the optimal specifications to ensure good efficiency

  4. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  7. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. Power Smoothing and Limitation Control of a PMSG-Based Marine Current Turbine under Swell Waves

    E-Print Network [OSTI]

    Boyer, Edmond

    Power Smoothing and Limitation Control of a PMSG-Based Marine Current Turbine under Swell Waves la puissance maximale (MPPT) nécessiterait d'accélérer ou de décélérer fréquemment la turbine à par une turbine marine associée à un générateur synchrone à aimants permanents (GSAP). Un algorithme

  9. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect (OSTI)

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2013-01-31T23:59:59.000Z

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  10. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect (OSTI)

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2010-12-21T23:59:59.000Z

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  11. Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and Strong Sea the generator power at rated value. In this paper, two power limitation strategies with flux-weakening control by the power limitation and the rotor speed; this method enables to control the generator power at the limited

  12. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  13. Oktober 26. 2009 Prediction of Load and Power Fluctuations from Wind Turbine

    E-Print Network [OSTI]

    for the fluctuating loads on the blade tip: The lift force on a section of a wind turbine's blade is given by the lift from a spinner-based wind lidar : The combined fluctuating lift force term, however, 0 0 2u U v , canOktober 26. 2009 Vers 003 Prediction of Load and Power Fluctuations from Wind Turbine Spinner

  14. Integrated Coal Gasification Power Plant Credit (Kansas)

    Broader source: Energy.gov [DOE]

    Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

  15. Power Plant Research and Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term...

  16. Florida Electrical Power Plant Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    The Power Plant Siting Act (PPSA) is the states centralized process for licensing large power plants. One licensea certification replaces local and state permits. Local governments and state...

  17. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01T23:59:59.000Z

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  18. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYear Jan FebSamenuclear power plants,

  19. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; DeCorso, M.; Howard, G.S.

    1996-04-01T23:59:59.000Z

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  20. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30T23:59:59.000Z

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  1. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    of Brayton (gas turbine) and Rankine (steam turbine) cycles,exhaust to drive a steam turbine, the exhaust vapor iswith conventional steam turbine powered electric generation.

  2. Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C. Our research aims to develop a micro power generation systems based on micro gas turbine engine and a piezoelectric converter, as illustrated in Fig. 1 [6]. The micro gas turbine engine is composed of a centrifugal

  3. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  4. Exploration of Compact Stellarators as Power Plants

    E-Print Network [OSTI]

    California at San Diego, University of

    Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study Farrokh, see: http://aries.ucsd.edu/ #12;Exploration and Optimization of Compact Stellarators as Power Plants in the context of power plant studies, e.g., particle loss Divertor (location, particle and energy distribution

  5. FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical for fusion power plants is given and their economic, safety, and environmental features are explored. Concep- tual design studies predict that fusion power plants will be capital intensive and will be used

  6. Combustion Turbine CHP System for Food Processing Industry -...

    Broader source: Energy.gov (indexed) [DOE]

    power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food Processing Industry More Documents &...

  7. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01T23:59:59.000Z

    Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

  8. LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1

    E-Print Network [OSTI]

    LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1 , H. Bindner1 , I power systems represent a viable solution for rural electrification. One of the most important aspects taken into account for the design of a wind diesel power system is the wind power penetration, which

  9. Acoustic and thermal packaging of small gas turbines for portable power

    E-Print Network [OSTI]

    Tanaka, Shinji, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

  10. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    1994-01-01T23:59:59.000Z

    examines the status, economic outlook, and future directions of combustion turbine technology for industrial and utility power generation. The discussion takes into account the ongoing deregulation and increasing competition that are shaping the electric...

  11. Augmentation of Power Output of Axisymmetric Ducted Wind Turbines by Porous Trailing Edge Disks

    E-Print Network [OSTI]

    widnall, sheila

    2014-06-30T23:59:59.000Z

    This paper presents analytical and experimental results that demonstrated that the power output from a ducted wind turbine can be dramatically increased by the addition of a trailing edge device such as a porous disk. In ...

  12. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01T23:59:59.000Z

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  13. Reliable Gas Turbine Output: Attaining Temperature Independent Performance

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    1992-01-01T23:59:59.000Z

    Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine...

  14. A Portable Expert System for Gas Turbine Maintenance

    E-Print Network [OSTI]

    Quentin, G. H.

    A PORTABLE EXPERT SYSTEM FOR GAS TURBINE MAINTENANCE Or. George H. Quentin Electric Power Research Institute (EPRI) Palo Alto, California ABSTRACT TURBINE CONTROLS GROUND FAULT ADVISOR Combustion turbines for electric power generation..., EPRI has developed The SA.VANT- System. This unique multi-faceted portable unit will apply a broad range of expert systems in the workplace for power plant maintenance, including turbomachinery of all types, but especially for gas turbines. I...

  15. Optimal Scheduling of Industrial Combined Heat and Power Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    -output relationships that are thermodynamically sound, such as the Willans line for steam turbines. Furthermore, we-switching for boilers and supplementary firing for gas turbines, and transitional behavior. Transitional behavior economies such as India and China. Many of the CHP plants are industrial CHP plants that supply steam

  16. Composite turbine blade design options for Claude (open) cycle OTEC power systems

    SciTech Connect (OSTI)

    Penney, T.R.

    1985-11-01T23:59:59.000Z

    Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

  17. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    16.500 KW and Larger. General Electric Company Reprint GER-communication with General Electric Company. Power Genera-New York, (1960). General Electric Company, Steam Turbine-

  18. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 UFeet)nuclear power plants,

  19. A fusion power plant without plasma-material interactions

    SciTech Connect (OSTI)

    Cohen, S.A.

    1997-04-01T23:59:59.000Z

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  20. Upgrade of Multiple Boiler/Turbine Plant to Microprocessor Control- A Case History

    E-Print Network [OSTI]

    Schenk, J. R.; Sommer, A. C.

    -j------ I I UPGRADE OF MULTIPLE BOILER/TURBINE PLANT TO MICROPROCESSOR CONTROL - A CASE HISTORY John R. Schenk Manager, Utilities &Energy Conservation General Electric Company Erie, Pennsylvania and Alan C. SOlllller Bailey Controls... Company ABSTRACT The Utilities Operation of the General Electric - Erie Plant is responsible for providing all energy for the Plant. The primary source is coal, which is used in four boilers to pro duce steam for the generation of electricity...

  1. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21T23:59:59.000Z

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  2. PPPL-3245 -Preprint: April 1997, UC-420 A fusion power plant without plasma-material interactions

    E-Print Network [OSTI]

    -1- PPPL-3245 - Preprint: April 1997, UC-420 A fusion power plant without plasma-material is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating

  3. PPPL3245 Preprint: April 1997, UC420 A fusion power plant without plasmamaterial interactions

    E-Print Network [OSTI]

    1 PPPL3245 Preprint: April 1997, UC420 A fusion power plant without plasmamaterial is described which avoids the deleterious plasmamaterial interactions found in DT fueled tokamaks in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating

  4. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    DOE Patents [OSTI]

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23T23:59:59.000Z

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  5. Dirty kilowatts: America's most polluting power plants

    SciTech Connect (OSTI)

    NONE

    2007-07-15T23:59:59.000Z

    In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

  6. Performance Characteristics of an Electrochemically Powered Turboprop: A Comparison with State of the Art Gas Turbines

    E-Print Network [OSTI]

    Johnson, M. C.; Swan, D. H.

    1993-01-01T23:59:59.000Z

    /fuel cell power system be superior to a state of the art hydrogen/gas turbine power system? The systems are compared on a fuel consumption basis, a cost basis, and a reliability/ maintainability basis. The analysis show that both specific power...

  7. Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems M. J School of S ~ao Carlos, Brazil. Email: ramos@sel.eese.usp.br Abstract--The complexity of power systems, such as wind generators. This changing nature of power systems has considerable effect on its dynamic behaviour

  8. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13T23:59:59.000Z

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  9. A Silicon-Based Micro Gas Turbine Engine for Power Generation

    E-Print Network [OSTI]

    Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

    2007-01-01T23:59:59.000Z

    This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

  10. Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    by the year 2020 [2]. Wind turbines can operate either with a fixed speed or a variable speed. In the case and then as fluctuations in the electrical power on the grid. The variable-speed turbine operation offers several major acoustical [3]. Among variable speed constant-frequency wind turbines, the doubly fed induction generator

  11. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01T23:59:59.000Z

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  12. Minnesota Power Plant Siting Act (Minnesota)

    Broader source: Energy.gov [DOE]

    This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a capacity of 50,000 kW or more. The policy of the...

  13. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01T23:59:59.000Z

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  14. Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this

    E-Print Network [OSTI]

    Kusiak, Andrew

    operating a variable-speed wind turbine with pitch control to maximize power while minimizing the loads prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch1 Abstract--A bi-objective optimization model of power and power changes generated by a wind

  15. STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER...

    Broader source: Energy.gov (indexed) [DOE]

    the global power plant market. All other forms of generating electrical power, such as steam turbine technology, nuclear power, hydroelectric and wind facilities, represent...

  16. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04T23:59:59.000Z

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  17. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase III Report August 2010 DOE...

  18. Organizational learning at nuclear power plants

    E-Print Network [OSTI]

    Carroll, John S.

    1991-01-01T23:59:59.000Z

    The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

  19. Electric Power Reliability in Chemical Plants

    E-Print Network [OSTI]

    Cross, M. B.

    1989-01-01T23:59:59.000Z

    at plants across the country? Has the quality and reliability of utility-generated power deteriorated over the past five or ten years? Or, has the perception of what constitutes reliable power changed with the advent, installation, and increasing usage...

  20. Distributed Low-Complexity Controller for Wind Power Plant in Derated Benjamin Biegel Daria Madjidian Vedrana Spudic Anders Rantzer Jakob Stoustrup

    E-Print Network [OSTI]

    sug- gest that wind turbines are well suited to provide frequency regulating services as the primary at low prices, possibly even negative prices [2]. The difficulties in integrating wind energy the available wind energy and the produced energy. A wind power plant with all turbines running in such delta

  1. TS Power Plant, Eureka County, Nevada

    SciTech Connect (OSTI)

    Peltier, R. [DTE Energy Services (United States)

    2008-10-15T23:59:59.000Z

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  2. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect (OSTI)

    Hays, Lance G

    2014-07-07T23:59:59.000Z

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  3. It is not just a job its a WINDTEST! Wind Energy with Power Plant Properties?WINDTEST

    E-Print Network [OSTI]

    It is not just a job ­ it´s a WINDTEST! Wind Energy with Power Plant Properties?WINDTEST Kaiser-21 Power Quality Measurement ·IEC 61400-123 Wind Farm Power Curve Measure. ·MEASNET Power Quality of a wind turbine test WINDTEST Kaiser-Wilhelm-Koog GmbH 10/25 #12;b) The WF is able to reduce active power

  4. Energy Storage Technologies for Smoothing Power Fluctuations in Marine Current Turbines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy Storage Technologies for Smoothing Power Fluctuations in Marine Current Turbines Zhibin Zhou the marine current generation system more reliable, energy storage systems will play a crucial role. In this paper, the power fluctuation phenomenon is described and the state of art of energy storage technologies

  5. Power Performance Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect (OSTI)

    Roadman, J.; Murphy, M.; van Dam, J.

    2012-12-01T23:59:59.000Z

    This report contains the results of the power performance test that was performed on a Viryd CS8 wind turbine as part of the DOE Independent Testing project. The test is an accredited test to the IEC 61400-12-1 power performance standard.

  6. 1 INTRODUCTION Modern power plants are expected to operate at

    E-Print Network [OSTI]

    Floreano, Dario

    using ADCP M. Mller, G. De Cesare & A. J. Schleiss Laboratory of Hydraulic Constructions (LCH), Ecole of a research project studying the influences of pumping/turbine modes on turbulence, flow fields and suspended and turbine mode. Keywords: Pumped storage hydropower plant, Reservoir sedimentation, Turbulence, Flow

  7. Environmental review of Potomac Electric Power Company's proposed Chalk Point combustion turbine facility

    SciTech Connect (OSTI)

    Mountain, D.; Peters, N.; Rafalko, L.; Roth, C.; Brower, R.

    1990-06-01T23:59:59.000Z

    The Potomac Electric Power Company (PEPCO) has submitted an application to the Maryland Public Service Commission (PSC) for a license to build four combustion turbines on the property of its Chalk Point Generating Station. Environmental impacts of the proposed project are expected to be minimal. The facility will be small relative to the existing Chalk Point station; further, the large size of the overall PEPCO property and the rural character of the vicinity will serve to buffer the effects of the facility. The report discusses PEPCO's requested appropriations for ground water to meet the water needs of the proposed plant, and recommends that limitations lower than those requested by the utility be placed on ground water withdrawals. It is recommended that PEPCO be required to create a 23-acre tree preservation zone, or alternatively undertake the reforestation of 23 acres of currently unforested land in the vicinity of the site. PEPCO should also be required to monitor ambient noise levels at the property boundary after construction of the new units is completed, and to coordinate efforts with Prince George's County to alleviate any traffic congestion that may result from construction activities at the plant site.

  8. UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS

    E-Print Network [OSTI]

    UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS: INFORMING A PROGRAM TO STUDY Landing Power Plant (at center). Image from the U.S. Army Corps of Engineers Digital Visual Library. #12; #12;i Acknowledgments The authors would like to thank many people who assisted with locating

  9. Power Transformer Application for Wind Plant Substations

    SciTech Connect (OSTI)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01T23:59:59.000Z

    Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

  10. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24T23:59:59.000Z

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  11. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01T23:59:59.000Z

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  12. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

    2007-01-30T23:59:59.000Z

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  13. Reduction of Film Coolant in High Pressure Turbines

    E-Print Network [OSTI]

    Wirsum Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen Prof. Dr.-Ing. Ingo RhleReduction of Film Coolant in High Pressure Turbines Bachelor Thesis in Computational Engineering Institute of Propulsion Technology, German Aerospace Center #12;Abstract Gas turbine development has been

  14. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25T23:59:59.000Z

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically produced (i.e., friction forces). This led to larger reductions at downwind turbines and maximum ve

  15. Soft-stall control versus furling control for small wind turbine power regulation

    SciTech Connect (OSTI)

    Muljadi, E.; Forsyth, T.; Butterfield, C.P.

    1998-07-01T23:59:59.000Z

    Many small wind turbines are designed to furl (turn) in high winds to regulate power and provide overspeed protection. Furling control results in poor energy capture at high wind speeds. This paper proposes an alternative control strategy for small wind turbines -- the soft-stall control method. The furling and soft-stall control strategies are compared using steady state analysis and dynamic simulation analysis. The soft-stall method is found to offer several advantages: increased energy production at high wind speeds, energy production which tracks the maximum power coefficient at low to medium wind speeds, reducing furling noise, and reduced thrust.

  16. Soft-Stall Control versus Furling Control for Small Wind Turbine Power Regulation

    SciTech Connect (OSTI)

    Muljadi, E.; Forsyth, T.; Butterfield, C. P.

    1998-07-01T23:59:59.000Z

    Many small wind turbines are designed to furl (turn) in high winds to regulate power and provide overspeed protection. Furling control results in poor energy capture at high wind speeds. This paper proposes an alternative control strategy for small wind turbines -- the soft-stall method. The furling and soft-stall control strategies are compared using steady state analysis and dynamic simulation analysis. The soft-stall method is found to offer several advantages: increased energy production at high wind speeds, energy production which tracks the maximum power coefficient at low to medium wind speeds, reduced furling noise, and reduced thrust.

  17. Simulation of the Visual Effects of Power Plant Plumes1

    E-Print Network [OSTI]

    Standiford, Richard B.

    -fired power plant with six 500 MW coal-fired power plants located at hypothetical sites in southeastern Utah coal-fired power plants are greater than those from oil or natural gas. If we must use more coal, how in a comparison of large and small coal-fired power plants in the West. Using hypothetical power plants

  18. Multifuel fossil fired Power Plant combined with off-shore wind

    E-Print Network [OSTI]

    Straw Wood Oil ESP Desulphurisation plant Air preheater De-NOx plant Heat recovery units Gas turbines #12;Energi E2 Recent powerplants ! AVEDORE UNIT 2 ! 585 MW multifuel unit ! Commissioned 2002 ! NYSTED diagram of the Multifuel Concept Biomass Gas/Coal/ Oil/ Boiler Steam Turbine plant Gas turbine with waste

  19. Nuclear Power Plant Concrete Structures

    SciTech Connect (OSTI)

    Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  20. Electromagnetic compatibility of nuclear power plants

    SciTech Connect (OSTI)

    Cabayan, H.S.

    1983-01-01T23:59:59.000Z

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  1. advanced wind turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in Iran will be studied, in this article, focus is made mostly on computerized simulation of power plant sites for optimized configuration of wind farm turbines by using...

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  3. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01T23:59:59.000Z

    Inc. Experience curves for power plant emission controlfor Coal-Fired Utility Power Plants, U.S. Environmental1/2, 2004 Experience curves for power plant emission control

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

  5. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

  6. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Topping of the Steam-Cycle Power Plant . A COMPARISON OFTOPPING OF THE STEAM-CYCLE POWER PLANT The proposed solarreceiver and a steam-cycle power plant. To transport heat, a

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  8. 1984 power plant performance monitoring workshop: proceedings

    SciTech Connect (OSTI)

    Not Available

    1986-05-01T23:59:59.000Z

    An EPRI workshop on fossil plant performance monitoring and improvement was conducted in Washington, DC, October 23-25, 1984. The main theme of the workshop was the EPRI-PEPCo performance monitoring project (EPRI projects RP1681 and RP2153) highlighted in the opening session. The objective of this project is to develop an advanced instrumentation and monitoring system to improve heat rate, recover lost capacity, optimize system dispatch, and plan maintenance more effectively. Interim results of this project, which can now be used by the utility industry, were emphasized in the presentations including (1) the boiler parametric analysis program for optimizing boiler combustion efficiency and (2) the N2 packing monitor that measures the steam leakage from the high-pressure to the intermediate-pressure turbine. Other EPRI projects, such as RP1711-2 and RP1878-1, were also highlighted. RP1711-2 employs root-cause investigation techniques to trace plant heat-rate degradation problems and recommend cost-effective solutions, while RP1878-1 introduces a nonradioactive tracer technique to monitor turbine efficiency. Twenty-seven papers have been entered individually into EDB and ERA. Section 6 - working group minutes - was not entered by itself. (LTN)

  9. STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Srensen, Ris National Laboratory, P.O.Box 49, DK-4000 Roskilde, Denmark.

    E-Print Network [OSTI]

    Heinemann, Detlev

    STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Sørensen, Risø National and verification of wind turbine power quality. The work has been organised in three major activities. The first farm summation on the power quality of wind turbines with constant rotor speed. The third activity has

  10. Incorporating Both Undesirable Outputs and Uncontrollable Variables into DEA: the Performance of Chinese Coal-Fired Power Plants

    E-Print Network [OSTI]

    Yang, Hongliang; Pollitt, Michael G.

    generated by the steam turbine, and the net heat rate is based on the amount of electricity sent to the grid from a power plant. The difference between these two accounts for the electricity consumed within the power plant itself to run auxiliary... or an exponential function model, is preferable. This model is easy to use and easy to interpret, and is also capable of accommodating both continuous and categorical uncontrollable variables without increasing the number of efficient DMUs. Furthermore, it does...

  11. Support Vector Methods and Use of Hidden Variables for Power Plant Monitoring , Claus Neubauer1

    E-Print Network [OSTI]

    Cataltepe, Zehra

    operation data are available. For gas turbines, early fault detection is typically achieved by analyzing is to detect faults at an early stage and avoid damages to the major components of the plant e.g. gas turbine, steam turbine, generator. In the following, we will concentrate on gas turbines, which are widely used

  12. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect (OSTI)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01T23:59:59.000Z

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  13. AFBC-HAGT, an efficient small scale power plant

    SciTech Connect (OSTI)

    Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Webner, R.L. [Will-Burt Company, Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center

    1997-12-31T23:59:59.000Z

    A team comprised of the Energy and Environmental Research Corporation (EER), the Will-Burt Company, and the Ohio Agricultural Research and Development Center (OARDC) designed installed and tested a pilot scale atmospheric fluidized (bubbling) bed combustion (AFBC) system to heat hot water. Following testing, a commercial prototype unit was installed at Cedar Lane Farms (CLF), near Wooster, Ohio. The unit was started up in January, 1995, and is currently in operation. It provides hot water for greenhouse heating, requiring about two hours per day of operator attention. The development was funded by the Ohio Coal Development Office, the U.S. Department of Energy, and the team members. Based on the success of the prototype operation a commercial size unit was recently designed for hot water heating use. This small scale AFBC system can be designed not only to produce hot water or steam but also to efficiently generate electricity (60 kWe to 3.5 MWe size range). Most small scale fluidized bed systems use in-bed heat transfer tubes to generate saturated steam which can then be superheated and fed to a steam turbine for electrical power generation. This AFBC has no internal heat transfer surfaces. It can be combined with an air heater that is integrated with a recuperated Hot Air Gas Turbine (HAGT), to yield a more efficient power plant than that possible with small steam plants of comparable size that have optimal gross efficiencies of about 12% (29,060 Btu/kWhr). Depending on ambient air temperature, this AFBC-HAGT power cycle can reach efficiencies of 28% without auxiliary diesel fuel oil firing. The system is ideally suited for rural communities that are not tied into an electric power grid. It is low tech, easy to operate, provides approximately double the efficiency of small steam cycle power plants, and can be used in areas where water is scarce. When firing local coal and/or bio-mass it can be very cost effective compared to diesel power generation.

  14. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  15. The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance , J. Chapman1

    E-Print Network [OSTI]

    Manuel, Lance

    The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance A. Swift1 , J data acquisition tower is continuously measuring and recording atmospheric conditions at multiple providing barometric pressure and temperature data. A second data acquisition tower approximately 100m

  16. Minnkota Power Cooperative Wind Turbine (Valley City) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanetMinnesota/WindInformation Turbine

  17. Geothermal Power Plants Meeting Clean Air Standards

    Broader source: Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  18. Alloy Design for a Fusion Power Plant

    E-Print Network [OSTI]

    Kemp, Richard

    Fusion power is generated when hot deuterium and tritium nuclei react, producing alpha particles and 14 MeV neutrons. These neutrons escape the reaction plasma and are absorbed by the surrounding material structure of the plant, transferring...

  19. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01T23:59:59.000Z

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  20. Requirements for Power Plant and Power Line Development (Wisconsin)

    Broader source: Energy.gov [DOE]

    This page describes requirements for obtaining a Certificate of Public Convenience and Necessity (CPCN) or a Certificate of Authority (CA), one of which is required for any new power plant...

  1. Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants

    E-Print Network [OSTI]

    with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed gas plant technologies. The three technologies assessed are the gas turbine (GT) with heat recovery

  2. Dose reduction at nuclear power plants

    SciTech Connect (OSTI)

    Baum, J.W.; Dionne, B.J.

    1983-01-01T23:59:59.000Z

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  3. Progress in estimation of power plant emissions from satellite retrievals

    E-Print Network [OSTI]

    Jacob, Daniel J.

    increase in SO2 emissions from Indian coal-fired power plants during 20052012 2 #12;Zifeng Lu, Progress doubled since 1996 No SO2 emission control in Indian coal-fired power plants The latitude of India captive coal-fired power plants Improved Indian coal-fired power plant database 165 plants, >720 units

  4. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    with conventional steam turbine powered electric generation.used to boil water for steam turbine generation as a secondturbine) and Rankine (steam turbine) cycles, as illustrated

  5. Floating nuclear power plant safety assurance principles

    SciTech Connect (OSTI)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-12-31T23:59:59.000Z

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described.

  6. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

  7. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

  8. atomic power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  9. accelerator power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  10. atomic power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  11. analysis power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probabilistic Seismic Hazard Analysis by Fault consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power simulation. As outcome of...

  12. auxiliary power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  13. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  14. Optimum Heat Power Cycles for Process Industrial Plants

    E-Print Network [OSTI]

    Waterland, A. F.

    1982-01-01T23:59:59.000Z

    Electric power cogeneration is compared with direct mechanical drives emphasizing the technical aspects having the greatest impact on energy economics. Both steam and gas turbine applications are discussed and practical methods of developing...

  15. Optimum Heat Power Cycles for Process Industrial Plants

    E-Print Network [OSTI]

    Waterland, A. F.

    1982-01-01T23:59:59.000Z

    Electric power cogeneration is compared with direct mechanical drives emphasizing the technical aspects having the greatest impact on energy economics. Both steam and gas turbine applications are discussed and practical methods of developing...

  16. DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES

    SciTech Connect (OSTI)

    Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

    2012-01-01T23:59:59.000Z

    The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

  17. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21T23:59:59.000Z

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  18. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

    1998-01-01T23:59:59.000Z

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  19. Gas Turbine Considerations in the Pulp and Paper Industry

    E-Print Network [OSTI]

    Anderson, J. S.; Kovacik, J. M.

    1990-01-01T23:59:59.000Z

    benefits and potentially attractive economics of developing power generation as an integral part of their power plant systems. The large requirements for process steam combined with process by-products and wood wastes make steam turbines a serious...

  20. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  1. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  2. Ris-M-2190 DESCRIPTION OF THE POWER PLANT MODEL BWR-PLASIM OUTLINED

    E-Print Network [OSTI]

    , the turbine connected via the steam line, the feedwater system and three control systems. #12;- 4 - #12;- 5 coolant flow 28 3. THE TURBINE AND FEEDWATER HEATERS 30 3.1. Flow and pressure calculations for the turbine . 33 3.2. Enthalpy and power calculations for the turbine 35 3.3. The reheater model 37 3

  3. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01T23:59:59.000Z

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  4. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  5. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  6. Economical Condensing Turbines?

    E-Print Network [OSTI]

    Dean, J. E.

    1997-01-01T23:59:59.000Z

    Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. Letdown turbines reduce the pressure of the incoming steam to one...

  7. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  8. Multi-objective optimization of solar tower power plants

    E-Print Network [OSTI]

    Ábrahám, Erika

    Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 of the solar tower Pascal Richter · Optimization of solar tower power plants 2/20 #12;Model of solar tower

  9. California Energy Commission Media Office POWER PLANT FACT SHEET

    E-Print Network [OSTI]

    California Energy Commission Media Office POWER PLANT FACT SHEET Updated: 12/4/2012 (Includes: Lodi has licensed or given small power plant exemptions to 78 power plants, totaling 29,156* megawatts (MW). Fifty-four licensed power plants are in operation, producing 17,737 MW. Since Governor Brown took office

  10. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective

    E-Print Network [OSTI]

    Divakaruni, S. M.

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  11. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  12. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective

    E-Print Network [OSTI]

    Divakaruni, S. M.

    1989-01-01T23:59:59.000Z

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  13. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    SciTech Connect (OSTI)

    Humberto E. Garcia; Wen-Chiao Lin; Semyon M. Meerkov; Maruthi T. Ravichandran

    2014-11-01T23:59:59.000Z

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  14. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, Richard A. (Pittsburgh, PA); Yang, Wen-Ching (Export, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01T23:59:59.000Z

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  15. Partial oxidation power plant with reheating and method thereof

    DOE Patents [OSTI]

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10T23:59:59.000Z

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  16. Verification of hourly forecasts of wind turbine power output

    SciTech Connect (OSTI)

    Wegley, H.L.

    1984-08-01T23:59:59.000Z

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  17. Virtual environments for nuclear power plant design

    SciTech Connect (OSTI)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

    1996-03-01T23:59:59.000Z

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  18. SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

  19. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01T23:59:59.000Z

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

  20. Strategies in tower solar power plant optimization

    E-Print Network [OSTI]

    Ramos, A

    2012-01-01T23:59:59.000Z

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  1. Theoretical full power correction factors as related to changes in ambient temperature, pressure and absolute humidity for aircraft turbine engines

    E-Print Network [OSTI]

    Raphael, Michel Antoun

    1969-01-01T23:59:59.000Z

    IN AMBIENT TEMPERATURE, PRESSURF. AND ABSOLUTE HUMIDITY FOR AIRCRAFT TURBINE ENGINES (August 1969) Michael Antoun Raphael B. S. (Mechanical Engineering) Texas A&M University Directed by: Professor Stanley H, Lowy ABSTRACT Power losses in aircraft gas... rated at standard atmospheric conditions (i. e, ambient temperature 69 F 3'Fend atmospheric pressure 29. 92 in. Hg. dry) . Obviously this same turbine will not be exposed to such standard conditions; therefore we have a change in power directly...

  2. Development of model reference adaptive control theory for electric power plant control applications

    SciTech Connect (OSTI)

    Mabius, L.E.

    1982-09-15T23:59:59.000Z

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis. An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.

  3. Variability of wind power near Oklahoma City and implications for siting of wind turbines

    SciTech Connect (OSTI)

    Kessler, E.; Eyster, R.

    1987-09-01T23:59:59.000Z

    Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  7. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  8. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  11. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  12. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  13. Automated DecisionAnalytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated DecisionAnalytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno sis of e#ciency problems for large gas turbines the ultimate goal of applying the system in the daytoday maintenance of gas turbine power plants. A Overview

  14. Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno- sis of efficiency problems for large gas turbines the ultimate goal of applying the system in the day-to-day maintenance of gas- turbine power plants. A Overview

  15. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be done to determine optimal sensor deployment to address these criteria. TC8 Incorporate turbine layouts, make efforts and operational status within wind power plants to have more...

  16. How Gas Turbine Power Plants Work | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy HighlightsCarbon CaptureShade YourHow

  17. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  18. Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis

    E-Print Network [OSTI]

    Silver, Whendee

    working paper "CO2 Regulations and Electricity Prices: Cost Estimates for Coal-Fired Power Plants." We capabilities at new coal-fired power plants. The corresponding break-even values for natural gas plants source of CO2 emissions. For the U.S. alone, coal-fired and natural gas power plants contributed more

  19. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    The spectrum of power from wind turbines. Journal of PowerAWEA 2010. American Wind Energy Association ProjectsErik and Jason Kemper. 2009. Wind Plant Ramping Behavior.

  20. Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays

    E-Print Network [OSTI]

    Dabiri, John O

    2010-01-01T23:59:59.000Z

    Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

  1. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    the Performance of Steam Turbine Generators 16.500 KWbeen developed, turbine performance and steam turbine flowPeriod, hours Steam Turbine Beat Rate, Discharging, !! W

  2. Economical Condensing Turbines?

    E-Print Network [OSTI]

    Dean, J. E.

    Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown... turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: ? Letdown turbines produce power based upon steam requirements and not based upon...

  3. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Zender, Charles

    Click Here for Full Article Estimated global ocean wind power potential from QuikSCAT observations. Zender (2010), Estimated global ocean wind power potential from QuikSCAT observations, accounting, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub

  4. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

    2008-12-16T23:59:59.000Z

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  5. Overview of Chamber and Power Plant Designs for IFE

    E-Print Network [OSTI]

    Overview of Chamber and Power Plant Designs for IFE Wayne Meier Deputy Program Leader Fusion Energy power plant are illustrated here Target Factory and Injector Fusion ChamberDriver Power Conversion Review 1/30/11 4 Tritium Processing #12;There have been >50 IFE chamber design concepts and power plant

  6. Modeling Generator Power Plant Portfolios and Pollution Taxes

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain;Modeling Energy Taxes and Credits: The Genco's Choice Each Genco has a portfolio of power plants Each power plant can have different supply costs and transaction costs Supply costs can reflect capital

  7. Forecast of Regional Power Output of Wind Turbines Hans Georg Beyer, Detlev Heinemann, Harald Mellinghoff, Kai Monnich, Hans-Peter Waldl

    E-Print Network [OSTI]

    Heinemann, Detlev

    Forecast of Regional Power Output of Wind Turbines Hans Georg Beyer, Detlev Heinemann, Harald of wind turbines connected to the public electricity grid will be intro- duced. Using this procedure and Northern Germany. At the moment, the installed capacity of wind turbines is in the order of magnitude

  8. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01T23:59:59.000Z

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  11. Low cost power augmentation by water injection on dual fuel gas turbines

    SciTech Connect (OSTI)

    Statler, W.O.; McReynolds, B.

    1995-12-31T23:59:59.000Z

    It is {open_quotes}common knowledge{close_quotes} that the power output of a combustion turbine (gas turbine) can be increased by as much as ten percent above the {open_quotes}dry{close_quotes} output by injecting water into the combustion zone. This enhancement is particularly useful during periods of high inlet air temperature when the turbine output is lowered due to the reduced air flow of the lower density hot air. The additional mass flow of water will partially offset the reduction of air mass flow. The specific heat of the water vapor (roughly twice that of air) allows increased fuel (and output) at approximately twice the rate of that which would result if the air mass flow were increased by a lower inlet air temperature. It is often a big step from {open_quotes}common knowledge{close_quotes} to actual practice and that step is the subject of this paper. In the summer of 1994 the Lincoln Electric System (L.E.S.), a public utility serving Lincoln, Nebraska ran operational tests on their 1974 G.E. MS-7001B gas turbine with water injection on natural gas fuel. The results proved the {open_quotes}common knowledge{close_quotes} in that the {open_quotes}wet{close_quotes} power was increased by approximately 9% above the {open_quotes}dry{close_quotes} power when the water/fuel mass flow ratio was held to a fairly conservative 1.2/1.0. Further testing, in August of 1995, confirmed these results. Test set for October, 1995, will check the injection system while operating on oil fuel. In this case, the water injection is intended as a NOx reduction measure only with the water/fuel ratio being held to a maximum of 0.5/1.0. The {open_quotes}wet{close_quotes} power is expected to increase by 4%. The utility is also planning tests on a similar system being installed on a Westinghouse model 251 gas turbine.

  12. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01T23:59:59.000Z

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  13. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01T23:59:59.000Z

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  14. Modeling Generator Power Plant Portfolios and Pollution Taxes in

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

  15. Mutnovskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources Jump to:Muskingum County,Mustang,Power Plant

  16. amulti-mw wind turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in Iran will be studied, in this article, focus is made mostly on computerized simulation of power plant sites for optimized configuration of wind farm turbines by using...

  17. Sensitivity analysis for the outages of nuclear power plants

    E-Print Network [OSTI]

    2012-02-17T23:59:59.000Z

    Feb 17, 2012 ... Nuclear power plants must be regularly shut down in order to perform re- ... Thermal power stations, using expensive resources such as coal.

  18. Sandia nuclear-power-plant siting study

    SciTech Connect (OSTI)

    Strip, D.R.; Aldrich, D.C.; Alpert, D.J.; Ostmeyer, R.M.; Sprung, J.L.

    1981-01-01T23:59:59.000Z

    NRC's Siting Analysis Branch requested Sandia National Laboratories to provide technical guidance for establishing (1) numerical criteria for population density and distribution surrounding future nuclear power plant sites and (2) standoff distances from plants for offsite hazards. The first task involved analyses in four areas, each of which could play a role in evaluating the impact of a siting policy. The four areas were risks from possible plant accidents, population distribution characteristics for existing sites, availability of sites, and socioeconomic impacts. The second task had two areas of concern: determination of which classes of offsite hazards are amenable to regulation by fixed standoff distances, and review of available models for the determination of appropriate standoff distances. Results, conclusions, and recommendations of the study are summarized.

  19. Quiz: Know Your Power Plants | Department of Energy

    Office of Environmental Management (EM)

    11:14am Addthis Know Your Power Plants This quiz will test your knowledge of electricity generation in the U.S. Each map shows existing U.S. power plants for a specific fuel...

  20. COMMISSIONDECISION Small Power Plant Exemption (06-SPPE-2)

    E-Print Network [OSTI]

    ............................................................................. 14 Transmission Line Safety & Nuisance...................................................... 15 to review and license proposals to construct and operate large electric power plants, includingCOMMISSIONDECISION Small Power Plant Exemption (06-SPPE-2) Imperial County Order No: 07

  1. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  2. Geothermal Power Plants Minimizing Land Use and Impact

    Broader source: Energy.gov [DOE]

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  3. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  5. Nuclear Power Plant Construction Activity, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-08-13T23:59:59.000Z

    Nuclear Power Plant Construction Activity 1985 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1985. This Report, which is updated annually, was prepared to respond to the numerous requests received by the Energy Information Administration for the data collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction.''

  6. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24T23:59:59.000Z

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  7. Abstract--The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an

    E-Print Network [OSTI]

    Bak, Claus Leth

    Abstract--The offshore wind farm with installed back-to- back power converter in wind turbines is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken are compared with measurement data from the Burbo Bank offshore wind farm. The delimitations of both power

  8. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01T23:59:59.000Z

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  9. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of sites suitable for a solar plant with sulfur oxide TableProcess for a Steam Solar Electric Plant Report No. LBL-Summary of the Proposed Solar Power Plant Design The Impact

  10. Development of air-cooled ceramic nozzles for a power-generating gas turbine

    SciTech Connect (OSTI)

    Tsuchiya, T.; Furuse, Y.; Yoshino, S. [Tokyo Electric Power Co., Yokohama, Kanagawa (Japan). Engineering R and D Center; Chikami, R.; Tsukuda, Y.; Mori, M. [Mitsubishi Heavy Industries, Ltd., Takasago, Hyogo (Japan)

    1996-10-01T23:59:59.000Z

    The development of air-cooled ceramic nozzle vanes for a power-generating gas turbine has been reported. To make up the limited temperature resistance of present ceramic materials, the utilization of a small amount of cooling air has been studied for the first-stage nozzle vanes of a 1,500 C class gas turbine. A series of cascade tests were carried out for the designed air-cooled Si{sub 3}N{sub 4} nozzle vanes under 6 atm and 1,500 C conditions. It was confirmed that the maximum ceramic temperature can be maintained below 1,300 C by a small amount of cooling air. In spite of the increased thermal stresses from local cooling, all Si{sub 3}N{sub 4} nozzle vanes survived the cascade tests, including both steady-state and transients of emergency shutdown. The potential for an air-cooled ceramic nozzle was demonstrated for a 1,500 C class gas turbine application.

  11. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  12. Geothermal Power Plants Meeting Water Quality and Conservation Standards

    Broader source: Energy.gov [DOE]

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  13. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  14. Hybrid Modeling and Control of a Hydroelectric Power Plant

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

  15. Ris9-R-609(EN) Simulation ofa PWR Power Plant

    E-Print Network [OSTI]

    Ris9-R-609(EN) Simulation ofa PWR Power Plant for Process Control and Diagnosis Finn Ravnsbjerg Nielsen Risø National Laboratory, Roskilde, Denmark December 1991 #12;Simulation of a PWR Power Plant *^R a compute simulation of a simplified pressurized nuclear power plant model directed towards process control

  16. THE ARIES-CS COMPACT STELLARATOR FUSION POWER PLANT

    E-Print Network [OSTI]

    Raffray, A. Ren

    THE ARIES-CS COMPACT STELLARATOR FUSION POWER PLANT F. NAJMABADI* and A. R. RAFFRAY Center stellarator power plants, ARIES-CS, has been conducted to explore attrac- tive compact stellarator by earlier stellarator power plant studies had led to cost projections much higher than those of the advanced

  17. Low-NO{sub x} combustion chamber for a power generation gas-turbine unit

    SciTech Connect (OSTI)

    Gutnik, M.N.; Tumanovsky, A.G.; Soudarev, A.V.; Vinogradov, E.D.; Zakharov, Y.I.; Lobanov, D.V.; Akulov, V.A.

    1998-07-01T23:59:59.000Z

    The findings of the experimental studies over major operating characteristics of a full-scale combustion chamber (CC) for a new power generation 25 MW gas turbine unit of the AO ``Turbomotorny Zavod'' (Ekaterinburg) production are presented. A technique of the pre-mixed lean combustion with the excess air coefficient being approximately equal to 1.9--2.2 underlies the low NO{sub x} combustor design. Interrelations between the major combustor characteristics and design and duty parameters in parallel with the optimum algorithm of the combustor loading ensuring the minimum toxic exhausts into atmosphere are also shown in the paper.

  18. Modeling and Control of Co-generation Power Plants: A Hybrid System Approach

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    of turning on/off the gas and steam turbine, the operat- ing constraints (minimum up and down times and produces electric power through the expansion of the gas in the gas turbine; the steam cycle is supplied with the output ex- haust gas from the gas turbine and generates both electricity and steam for the industrial

  19. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS, Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  20. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    FOR CONCENTRATING SOLAR POWER PLANTS, Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submitted

  2. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  3. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

  4. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01T23:59:59.000Z

    2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

  5. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  6. Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating

    E-Print Network [OSTI]

    Boyer, Edmond

    similar principles in wind generation systems can be applied in marine current turbine (MCT) systems due

  7. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22T23:59:59.000Z

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive, immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with NETL supported research teams from Iowa State University Virtual Reality Applications Center (ISU-VRAC) and Carnegie Mellon University (CMU). The VEF is open source, compatible across systems ranging from inexpensive desktop PCs to large-scale, immersive facilities and provides support for heterogeneous distributed computing of plant simulations. The ability to compute plant economics through an interface that coupled the CMU IECM tool to the VEF was demonstrated, and the ability to couple the VEF to Aspen Plus, a commercial flowsheet modeling tool, was demonstrated. Models were interfaced to the framework using VES-Open. Tests were performed for interfacing CAPE-Open-compliant models to the framework. Where available, the developed models and plant simulations have been benchmarked against data from the open literature. The VEF has been installed at NETL. The VEF provides simulation capabilities not available in commercial simulation tools. It provides DOE engineers, scientists, and decision makers with a flexible and extensible simulation system that can be used to reduce the time, technical risk, and cost to develop the next generation of advanced, coal-fired power systems that will have low emissions and high efficiency. Furthermore, the VEF provides a common simulation system that NETL can use to help manage Advanced Power Systems Research projects, including both combustion- and gasification-based technologies.

  8. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  9. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  10. Power Plant Options Report for Thompson Island prepared by the

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Power Plant Options Report for Thompson Island A report prepared by the Renewable Energy Research....................................................................... 7 3. Grid-connected and Autonomous Renewable Power Systems ................................ 9 3.1. Renewable Power Sources .............................................................................. 9 3

  11. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01T23:59:59.000Z

    reduction in NO x emissions from coal-fired power plants tocombustion of coal, emissions from coal-fired power plantsemission control technologies now required on all new coal-fired power

  12. Nuclear power plant performance assessment pertaining to plant aging in France and the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2013-01-01T23:59:59.000Z

    The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

  13. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01T23:59:59.000Z

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  14. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01T23:59:59.000Z

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  15. Geothermal/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell TestingGeothermal/Power Plant <

  16. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIrem Geothermal Power Plant Jump to:

  17. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP JumpTakigami Geothermal Power Plant

  18. Rotokawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan:Rotokawa Geothermal Power Plant Jump to:

  19. Flash Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and WildlifeFlash Steam Power Plant Jump to:

  20. Flash Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and WildlifeFlash Steam Power Plant Jump

  1. Operating experience feedback report: Reliability of safety-related steam turbine-driven standby pumps. Commercial power reactors, Volume 10

    SciTech Connect (OSTI)

    Boardman, J.R.

    1994-10-01T23:59:59.000Z

    This report documents a detailed analysis of failure initiators, causes and design features for steam turbine assemblies (turbines with their related components, such as governors and valves) which are used as drivers for standby pumps in the auxiliary feedwater systems of US commercial pressurized water reactor plants, and in the high pressure coolant injection and reactor core isolation cooling systems of US commercial boiling water reactor plants. These standby pumps provide a redundant source of water to remove reactor core heat as specified in individual plant safety analysis reports. The period of review for this report was from January 1974 through December 1990 for licensee event reports (LERS) and January 1985 through December 1990 for Nuclear Plant Reliability Data System (NPRDS) failure data. This study confirmed the continuing validity of conclusions of earlier studies by the US Nuclear Regulatory Commission and by the US nuclear industry that the most significant factors in failures of turbine-driven standby pumps have been the failures of the turbine-drivers and their controls. Inadequate maintenance and the use of inappropriate vendor technical information were identified as significant factors which caused recurring failures.

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    the Performance of Steam Turbine Generators 16.500 KWPeriod, hours Steam Turbine Beat Rate, Discharging, !! WGeneral Electric Company, Steam Turbine-Generator Products

  3. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    with Brayton-cycle gas turbine topping . , . . , , -Effect of Brayton Cycle. Gas Turbine Topping on the Grossof either Brayton-cycle gas turbines or Rankine-cycle steam

  4. Optimal Endogenous Carbon Taxes Electric Power Supply Chains with Power Plants

    E-Print Network [OSTI]

    Nagurney, Anna

    Optimal Endogenous Carbon Taxes for Electric Power Supply Chains with Power Plants Anna Nagurney for the determination of optimal carbon taxes applied to electric power plants in the con- text of electric power supply portion of such policy inter- ventions directed at the electric power industry. The general framework

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman

    2002-10-15T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman

    2003-01-20T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  7. Valuation of a Spark Spread: an LM6000 Power Plant

    E-Print Network [OSTI]

    Saskatchewan, University of

    report in the form of this academic paper. We have modified the plant- specific results in Section 8 . . . . . . . . . . . . . . . . . . . . . . . 16 5 Monte Carlo Simulations 17 6 Modeling the Operating Characteristics 19 6.1 Plant Operating Modes power plant that can offer peaking capacity, and some baseload power delivery. We consider 4 operating

  8. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01T23:59:59.000Z

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  9. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah (Sarah Omer)

    2010-01-01T23:59:59.000Z

    Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

  10. 1/12/14 World's Smallest "Micro" Wind Turbine Can Charge Your Smartphone & Power Your Home www.offgridworld.com/worlds-smallest-micro-wind-turbine-can-charge-your-smartphone-power-your-home/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    .offgridworld.com/worlds-smallest-micro-wind-turbine-can-charge-your-smartphone-power-your-home/ 1/3 Off Grid World Living Off The Grid Leave a Commentby Off Grid World on January 11, 2014 World's Smallest "Micro smartphone. How cool is this? Imagine the applications for something like this for off grid use. Imagine

  11. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    SciTech Connect (OSTI)

    Rod, Kerry [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States)] [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States); Shelanskey, Steven K. [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States)] [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States); Kristofzski, John [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)] [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)

    2013-07-01T23:59:59.000Z

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)

  12. Electromagnetic Compatibility in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29T23:59:59.000Z

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  13. Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006

    SciTech Connect (OSTI)

    Dauble, Dennis D.

    2006-08-01T23:59:59.000Z

    This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

  14. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01T23:59:59.000Z

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  15. Power control of a wind farm with active stall wind turbines and AC grid connection

    E-Print Network [OSTI]

    turbines and active stall wind farms with HVDC connection are described in [6-7] and [8], respectivelly

  16. Steam Turbine Materials and Corrosion

    SciTech Connect (OSTI)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01T23:59:59.000Z

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  17. Risk-informed incident management for nuclear power plants

    E-Print Network [OSTI]

    Smith, Curtis Lee, 1966-

    2002-01-01T23:59:59.000Z

    Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

  18. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01T23:59:59.000Z

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  19. Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to

    E-Print Network [OSTI]

    Li, Perry Y.

    Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel a challenge. An energy storage system can provide steady and predictable power by storing excess energy

  20. The need for high density energy storage for wind turbine and solar power has proven to be a

    E-Print Network [OSTI]

    Botea, Adi

    1 The need for high density energy storage for wind turbine and solar power has proven applications where under-hood temperatures may exceed the 85 C normal rating, where the Y5V and Y5R capacitors (currently ~0.22 F) is also considerable. The resultant devices are anticipated to be the new generation

  1. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  2. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20T23:59:59.000Z

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  3. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  4. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01T23:59:59.000Z

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  5. Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals

    Broader source: Energy.gov [DOE]

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  6. Submerged Medium Voltage Cable Systems at Nuclear Power Plants...

    Office of Scientific and Technical Information (OSTI)

    Submerged Medium Voltage Cable Systems at Nuclear Power Plants: A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring. Re-direct Destination: In a...

  7. North Brawley Power Plant Placed in Service; Currently Generating...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Author...

  8. Dutch Company Powers Streetlights With Living Plants; Will Your...

    Open Energy Info (EERE)

    Dutch Company Powers Streetlights With Living Plants; Will Your Cell Phone Be Next? Home > Groups > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 16...

  9. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  10. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  11. Construction Underway on First Geothermal Power Plant in New...

    Broader source: Energy.gov (indexed) [DOE]

    Photo of a geothermal power plant. New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial...

  12. advanced power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  13. Sandia National Laboratories: character-izing solar-power-plant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  14. Sandia National Laboratories: simulating solar-power-plant output...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulating solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  15. advanced power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  16. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

  17. Sensitivity analysis for the outages of nuclear power plants

    E-Print Network [OSTI]

    Kengy Barty

    2012-02-17T23:59:59.000Z

    Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

  18. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Janoutput of a solar photovoltaic (PV) plant was presented andsimulating solar photovoltaic (PV) power plant output given

  19. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    the WVM and other power plant simulation methods highlightedpower plant output clear-sky index agrees with the simulationscale power plant in Copper Mountain, NV. The WVM simulation

  20. Vehicle bomb protection for nuclear power plants

    SciTech Connect (OSTI)

    James, J.W.; Veatch, J.D.; Goldman, L.; Massa, R.

    1989-01-01T23:59:59.000Z

    The six-step methodology presented in this paper can be applied to nuclear power reactors to provide protection measures and considerations against vehicle bomb threats. The methodology provides a structured framework for examining the potential vulnerability of a plant to a postulated vehicle bomb and for developing contingency planning strategies for dealing with such a possibility. The six steps are as follows: (1) identify system options available to establish and maintain a safe reactor shutdown; (2) identify buildings or other structures containing critical components and equipment associated with each system option; (3) determine survival envelopes for the system options; (4) review site features to determine vehicle access approach paths and distances as they relate to the survival envelopes; (5) identify measures to limit or thwart vehicle access, and protect and preserve preferred system options; (6) prepare contingency plans and make advance arrangements for implementation of contingency measures for a vehicle bomb attack. Portions of this methodology related to blast effects from vehicle bombs on power reactor components are implemented using BombCAD, a proprietary computer-aided design (CAD)-based blast effects analysis technique.

  1. Can New Nuclear Power Plants be Project Financed?

    E-Print Network [OSTI]

    Taylor, Simon

    This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

  2. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    SciTech Connect (OSTI)

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01T23:59:59.000Z

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  3. Gas Turbine Considerations in the Pulp and Paper Industry

    E-Print Network [OSTI]

    Anderson, J. S.; Kovacik, J. M.

    GAS TURBINE CONSIDERATIONS IN THlI: PULP AND PAPER INDUSTRY J. Steven Anderson, Ph.D. Director-Energy International Paper Company Purchase, NY INTRODUCTION The pulp and paper industry is one of the largest users of energy... as an inte gral part of their power plant systems. The large requirements for process steam combined with process by-products and wood wastes make steam turbines a serious consideration in plant locations where suit able economic conditions are present...

  4. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    SciTech Connect (OSTI)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20T23:59:59.000Z

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  5. Wood Burning Combined Cycle Power Plant

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01T23:59:59.000Z

    . Portland General Electric ~f Portland, Oregon was sponsored to perform the design study with project management provided by F. W. Braun Engineers of Hillsboro, Oregon. rpe Fern Engineering Division of Thomassen U.S. of Bourne, Massachusetts provided... the gas turbin~, process evaluation and control support. Hauge International of Portland, Maine provided tre design input for the ceramic heat exchanger. 782 ESL-IE-84-04-136 Proceedings from the Sixth Annual Industrial Energy Technology Conference...

  6. Generic seismic ruggedness of power plant equipment

    SciTech Connect (OSTI)

    Merz, K.L. (Anco Engineers, Inc., Culver City, CA (United States))

    1991-08-01T23:59:59.000Z

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  7. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect (OSTI)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01T23:59:59.000Z

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  8. Alloy Design for a Fusion Power Plant Richard Kemp

    E-Print Network [OSTI]

    Cambridge, University of

    Alloy Design for a Fusion Power Plant Richard Kemp Gonville and Caius College University, The Hunting Of The Snark #12;Abstract Fusion power is generated when hot deuterium and tritium nuclei react by the surrounding material struc- ture of the plant, transferring the heat of the reaction to an external cooling

  9. Obtaining the right large power transformer for a hydro plant

    SciTech Connect (OSTI)

    Clemen, D.M. [Harza Engineering Company, Chicago, IL (United States)

    1995-07-01T23:59:59.000Z

    Transformer efficiency and reliability are important factors in determining the productivity of a hydroelectric generating plant. A well-supervised testing program can help plant owners and engineers improve the quality of equipment installed at their plant. This paper addresses such a program as applied to the selection of the generator step-up, or main power, transformer at a hydroelectric generating station.

  10. GETRAN: A generic, modularly structured computer code for simulation of dynamic behavior of aero- and power generation gas turbine engines

    SciTech Connect (OSTI)

    Schobeiri, M.T.; Attia, M.; Lippke, C. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering)

    1994-07-01T23:59:59.000Z

    The design concept, the theoretical background essential for the development of the modularly structured simulation code GETRAN, and several critical simulation cases are presented in this paper. The code being developed under contract with NASA Lewis Research Center is capable of simulating the nonlinear dynamic behavior of single- and multispool core engines, turbofan engines, and power generation gas turbine engines under adverse dynamic operating conditions. The modules implemented into GETRAN correspond to components of existing and new-generation aero- and stationary gas turbine engines with arbitrary configuration and arrangement. For precise simulation of turbine and compressor components, row-by-row diabatic and adiabatic calculation procedures are implemented that account for the specific turbine and compressor cascade, blade geometry, and characteristics. The nonlinear, dynamic behavior of the subject engine is calculated solving a number of systems of partial differential equations, which describe the unsteady behavior of each component individually. To identify each differential equation system unambiguously, special attention is paid to the addressing of each component. The code is capable of executing the simulation procedure at four levels, which increase with the degree of complexity of the system and dynamic event. As representative simulations, four different transient cases with single- and multispool thrust and power generation engines were simulated. These transient cases vary from throttling the exit nozzle area, operation with fuel schedule, rotor speed control, to rotating stall and surge.

  11. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering] [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering; Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering] [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1991-12-31T23:59:59.000Z

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  12. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering); Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering)

    1991-01-01T23:59:59.000Z

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  13. Advanced intelligent coordinated control of coal fired power plant based on fuzzy reasoning and auto-tuning

    SciTech Connect (OSTI)

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

    2004-07-01T23:59:59.000Z

    The load following operation of coal-fired boiler-turbine unit in power plants can lead to changes in operating points, and it results in nonlinear variations of the plant variables and parameters. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. PID-type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. Moreover, PID-type controllers can be auto-tuned to achieve a better control performance in the whole operating range and to reject the unmeasurable disturbances. A special subclass of fuzzy inference systems, namely the Gaussian partition system with evenly spaced midpoints, is also proposed to auto-tune the PID controller in the main steam pressure loop based on the error signal and its first difference to overcome uncertainties caused by changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors, etc. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process.

  14. Vital area determination techniques at nuclear power plants

    SciTech Connect (OSTI)

    Pan, P.Y.

    1987-07-01T23:59:59.000Z

    This paper describes the vital area determination programs being conducted at the Los Alamos National Laboratory to support the Nuclear Regulatory Commission (NRC) in evaluating nuclear power plant licensees' compliance with safeguards/security requirements. These projects, the Vital Area Analysis (VAA) Program and the Vital Equipment Determination Techniques Research Study (VEDTRS), are designed to identify a plant's vital areas and to develop protection strategies against adversary threats in nuclear power plants.

  15. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  16. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  17. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  18. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  19. Simulating solar power plant variability : a review of current methods.

    SciTech Connect (OSTI)

    Lave, Matthew; Ellis, Abraham [Sandia National Laboratories, Albuquerque, NM; Stein, Joshua S. [Sandia National Laboratories, Albuquerque, NM

    2013-06-01T23:59:59.000Z

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  20. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  1. COMPOUND H Y B R I D GEOTHERMAL-FOSSIL POWER PLANTS BY Ronald...

    Office of Scientific and Technical Information (OSTI)

    a case might opt to consider hybrid plants of a different generic type such as the gas turbine topping system described elsewhere 6 , in an effort to obtain even higher values...

  2. Voltage/Pitch Control for Maximization and Regulation of Active/Reactive Powers in Wind Turbines with Uncertainties

    E-Print Network [OSTI]

    Guo, Yi; Jiang, John N; Tang, Choon Yik; Ramakumar, Rama G

    2010-01-01T23:59:59.000Z

    This paper addresses the problem of controlling a variable-speed wind turbine with a Doubly Fed Induction Generator (DFIG), modeled as an electromechanically-coupled nonlinear system with rotor voltages and blade pitch angle as its inputs, active and reactive powers as its outputs, and most of the aerodynamic and mechanical parameters as its uncertainties. Using a blend of linear and nonlinear control strategies (including feedback linearization, pole placement, uncertainty estimation, and gradient-based potential function minimization) as well as time-scale separation in the dynamics, we develop a controller that is capable of maximizing the active power in the Maximum Power Tracking (MPT) mode, regulating the active power in the Power Regulation (PR) mode, seamlessly switching between the two modes, and simultaneously adjusting the reactive power to achieve a desired power factor. The controller consists of four cascaded components, uses realistic feedback signals, and operates without knowledge of the C_p-...

  3. Thermoeconomic design optimization of a KRW-based IGCC power plant

    SciTech Connect (OSTI)

    Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. (Tennessee Technological Univ., Cookeville, TN (United States). Center for Electric Power)

    1991-11-01T23:59:59.000Z

    This report discussed the cost and efficiency optimization of an integrated gasification-combined-cycle (IGCC) power plant design and the effects of important design options and parameters. Advanced thermoeconomic techniques were used to evaluate and optimize a given IGCC concept which uses Illinois No. 6 bituminous coal, air-blown KRW coal gasifiers, a hot gas cleanup system, and GE MS7001F gas turbines. Three optimal design concepts are presented and discussed in the report. Two of the concepts are characterized by minimum cost of electricity at two different values of the steam high pressure. The third concept represents the thermodynamic optimum. This study identified several differences between the original design and the design of the optimized cases. Compared with the original concept, significant annual savings are achieved in the cost optimal cases. Comparisons were made between results obtained using both the old and the new performance data for the MS7001F gas turbine. This report discusses the effects of gasification temperature, steam high pressure, coal moisture, and various design options on the overall plant efficiency and cost of electricity. Cost sensitivity studies were conducted and recommendations for future studies were made.

  4. Thermoeconomic design optimization of a KRW-based IGCC power plant. Final report

    SciTech Connect (OSTI)

    Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. [Tennessee Technological Univ., Cookeville, TN (United States). Center for Electric Power

    1991-11-01T23:59:59.000Z

    This report discussed the cost and efficiency optimization of an integrated gasification-combined-cycle (IGCC) power plant design and the effects of important design options and parameters. Advanced thermoeconomic techniques were used to evaluate and optimize a given IGCC concept which uses Illinois No. 6 bituminous coal, air-blown KRW coal gasifiers, a hot gas cleanup system, and GE MS7001F gas turbines. Three optimal design concepts are presented and discussed in the report. Two of the concepts are characterized by minimum cost of electricity at two different values of the steam high pressure. The third concept represents the thermodynamic optimum. This study identified several differences between the original design and the design of the optimized cases. Compared with the original concept, significant annual savings are achieved in the cost optimal cases. Comparisons were made between results obtained using both the old and the new performance data for the MS7001F gas turbine. This report discusses the effects of gasification temperature, steam high pressure, coal moisture, and various design options on the overall plant efficiency and cost of electricity. Cost sensitivity studies were conducted and recommendations for future studies were made.

  5. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  6. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01T23:59:59.000Z

    of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

  7. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Gary Vine

    2010-12-01T23:59:59.000Z

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes Best Technology Available for intake structures that withdraw cooling water that is used to transfer and reject heat from the plants steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  8. Microsoft PowerPoint - 2014 HydroPower - Stockton Turbine Replacement June 2014 [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGELustre File Systemi diSanSh t10

  9. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  10. Electrical power obtained from burning landfill gas into a gas turbine generator: Experience after one year of operation

    SciTech Connect (OSTI)

    Fabbri, R.; Mignani, N.

    1998-07-01T23:59:59.000Z

    A typical example of a ``waste to energy'' concept can be found also in the landfill environment. The biogas derived by fermentation process is usually burnt into gas engines. This choice is usually due to the electric efficiency that is normally higher than gas turbine application and to the size that usually, almost in Italian landfill size, does not allow power higher than 1,000 kW. On the other side gas turbine applications, typically based on generator sets greater than 1,000 kW do not require special biogas pre-treatment; require less maintenance and have an extremely higher reliability. The paper describes an application of a gas turbine generator of 4,800 kW outlining the experiences collected after one year of operation. During this period, the system fulfilled the target of a total operating time greater than 8,000 hours. Description is done of the biogas compression system feeding the turbine and also of the subsystem adopted to reach the above mentioned target reliability.

  11. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect (OSTI)

    McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

    2012-02-01T23:59:59.000Z

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  12. The Sixth Power Plan: Toward a Clean

    E-Print Network [OSTI]

    efficiency is about a third of the cost of building new power plants fueled by natural gas, coal or wind of the cost of building new power plants fueled by natural gas, coal, or wind, and the region has a proven-fired power plants will need to be built to back up the wind turbines. The Council also encourages developing

  13. The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power

  14. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01T23:59:59.000Z

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  15. Case History of Reapplication of a 2500 KW Steam Turbine/Gear Drive Generator

    E-Print Network [OSTI]

    Smith, S.

    1991-01-01T23:59:59.000Z

    that extracts landfill gas and converts it to diesel fuel, naphtha and a high grade of wax. The plant requires a steam turbine generator set to produce electrical power for its base load operation. This paper covers the history of how the turbine, gear...

  16. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01T23:59:59.000Z

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  17. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect (OSTI)

    Liese, E.; Zitney, S.

    2012-01-01T23:59:59.000Z

    The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  18. Electric Power Reliability in Chemical Plants

    E-Print Network [OSTI]

    Cross, M. B.

    The quality and reliability of utility-generated electric power is presently receiving a great deal of attention from the chemical and refining industry. What changes have taken place to make electric power reliability a major topic of discussion...

  19. On Line Power Plant Performance Monitoring

    E-Print Network [OSTI]

    Ahner, D. J.; Priestley, R. R.

    sponsored by the Electric Power Research Institute (EPRI), and the Potomac Electric Power Company (PEPCO). State of the art concepts i? instrumentation, performance calculations and models have been implemented on an advanced Performance Workstation... and ar l being evaluated and demonstrated at PEPCO's Morgantown pI nt. The results of this program and this workstation softw re are being made available to the power industry through EPRI nd Power Technologies, Inc. The software associated...

  20. The Guy at the Controls: Labor Quality and Power Plant Efficiency

    E-Print Network [OSTI]

    Bushnell, Jim B; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    compiles data on power plant operations and characteristicscharacteristics (e.g. power plant unit, state, grid controlBaseCase contains hourly power-plant unit-level information

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  2. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01T23:59:59.000Z

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  3. Wind Power Variability, Its Cost, and Effect on Power Plant Emissions

    E-Print Network [OSTI]

    Wind Power Variability, Its Cost, and Effect on Power Plant Emissions A Dissertation Submitted The recent growth in wind power is transforming the operation of electricity systems by introducing. As a result, system operators are learning in real-time how to incorporate wind power and its variability

  4. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (USA))

    1989-01-01T23:59:59.000Z

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  5. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  6. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtained through this project can directly benefit the U.S. power and utility turbine industry by improving product development that specifically meets DOE advanced turbine program...

  7. analysis increases power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in Iran will be studied, in this article, focus is made mostly on computerized simulation of power plant sites for optimized configuration of wind farm turbines by using...

  8. accurate wind power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in Iran will be studied, in this article, focus is made mostly on computerized simulation of power plant sites for optimized configuration of wind farm turbines by using...

  9. aggregated wind power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in Iran will be studied, in this article, focus is made mostly on computerized simulation of power plant sites for optimized configuration of wind farm turbines by using...

  10. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D. (Environmental Science Division)

    2011-05-09T23:59:59.000Z

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

  11. Power Conversion APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Efficiency for different steam cycles. 17.2 Close cycle gas turbine: The closed cycle gas turbine has. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

  12. Power plant emissions verified remotely at Four Corners sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements can support Clean Air Act regulations LOS ALAMOS, N.M., May 19, 2014-Air pollution and greenhouse gas emissions from two coal-fired power plants in the Four...

  13. Mapping complexity sources in nuclear power plant domains

    E-Print Network [OSTI]

    Sasangohar, Farzan

    Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

  14. Corrosion Investigations at Masned Combined Heat and Power Plant

    E-Print Network [OSTI]

    Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery Company Ole Hede Larsen Elsam ­ Fynsværket Fælleskemikerne February 2001. #12;CORROSION INVESTIGATIONS.................................................................................................. 16 3.1. Measured corrosion attack

  15. Risk Framework for the Next Generation Nuclear Power Plant Construction

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11T23:59:59.000Z

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  16. Risk Framework for the Next Generation Nuclear Power Plant Construction

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11T23:59:59.000Z

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  17. EIS-0377: Big Stone II Power Plant and Transmission Project

    Broader source: Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  18. The Industrial Power Plant Management System - An Engineering Approach

    E-Print Network [OSTI]

    Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

    1979-01-01T23:59:59.000Z

    Based on energy studies in over 70 plants in the forest products industry, experience has shown that, in addition to process improvements, the most important energy conservation measures in mill power departments are: - Load shedding and fuel...

  19. Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation

    E-Print Network [OSTI]

    Felak, R. P.

    UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

  20. Development of decontamination techniques for decommissioning commercial nuclear power plants

    SciTech Connect (OSTI)

    Ishikura, T.; Miwa, T.; Onozawa, T.; Ohtsuka, H. [Nuclear Power Engineering Corp., Tokyo (Japan). Plant and Components Dept.; Ishigure, K. [Univ. of Tokyo (Japan). Dept. of Quantum Engineering and System Science

    1993-12-31T23:59:59.000Z

    NUPEC has been developing various techniques to safely and efficiently decommission large commercial nuclear power plants. The development work, referred to as the verification tests, has been performed since 1982. The verification tests on decontamination techniques have focused on the reduction of both occupational radiation exposure and radioactive waste volume. Experiments on various decontamination methods have been carried out. Prospects of applying efficient decontamination techniques to commercial nuclear power plant decommissioning are bright due to the experimental results.

  1. Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

    2008-07-01T23:59:59.000Z

    This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

  2. STARFIRE: a commercial tokamak fusion power plant study

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  3. Microsoft PowerPoint - Turbine Generator Study 14-06-17

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWPA Engineering Analysis Program Turbine Replacement and Generator p Rewind Lee Beverly- SWL Project Manager D B j h SWT P j t M Dan Brueggenjohann SWT Project Manager Dan Ramirez...

  4. Novel Dry Cooling Technology for Power Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

  5. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31T23:59:59.000Z

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  6. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect (OSTI)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31T23:59:59.000Z

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  7. SCALE RESISTANT HEAT EXCHANGER FOR LOW TEMPERATURE GEOTHERMAL BINARY CYCLE POWER PLANT

    SciTech Connect (OSTI)

    HAYS, LANCE G

    2014-11-18T23:59:59.000Z

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 F. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 F, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 F brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the piggyback demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.

  8. Use of expert systems in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1989-01-01T23:59:59.000Z

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  9. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09T23:59:59.000Z

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  10. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-09-24T23:59:59.000Z

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  11. Nuclear Power Plant Containment Pressure Boundary Research

    SciTech Connect (OSTI)

    Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

    1999-09-15T23:59:59.000Z

    Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

  12. UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault

  13. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect (OSTI)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01T23:59:59.000Z

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  14. Visual Sensitivity of River Recreation to Power Plants1

    E-Print Network [OSTI]

    Standiford, Richard B.

    the sensitivity of river-related recreational activities to visual intrusion by large coal-fired power plants activities. Each potential activity is assigned to one of three classes of importance and sensitivity The State of Minnesota anticipates the construction of a considerable number of large new coal-fired power

  15. Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks

    E-Print Network [OSTI]

    Ábrahám, Erika

    , Germany 2 Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Abstract. The exploitation of solar power for energy supply is of in- creasing importance. While technical development mainly takes, wind, and biomass energy. Among such tech- nologies, concentrating solar thermal power (CSP) plants

  16. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01T23:59:59.000Z

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  17. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    simulating solar photovoltaic (PV) power plant output givenfor simulating the power output of a solar photovoltaic (PV)

  18. Some aspects of nuclear power plant safety under war conditions

    SciTech Connect (OSTI)

    Stritar, A.; Mavko, B.; Susnik, J.; Sarler, B. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1993-02-01T23:59:59.000Z

    In the summer of 1991, the Krsko nuclear power plant in Slovenia found itself in an area of military operations. This was probably the first commercial nuclear power plant to have been threatened by an attack by fighter jets. A number of never-before-asked questions had to be answered by the operating staff and supporting organizations. Some aspects of nuclear power plant safety under war conditions are described, such as the selection of the best plant operating state before the attack and the determination of plant system vulnerability and dose releases from the potentially damaged spent fuel in the spent-fuel pit. The best operating mode to which the plant should be brought before the attack is cold shutdown, and radiological consequences to the environment after the spent fuel is damaged and the water in the pit is lost are not very high. The problem of nuclear power plant safety under war conditions should be addressed in more detail in the future.

  19. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    regulations for coal plants New concerns about nuclear power after Fukushima Recent studies also show emissions Most CCS cost studies have focused on coal-based power plants; relatively few on NGCC with CCS1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power

  20. State regulation and power plant productivity: background and recommendations

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.