Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua  

E-Print Network [OSTI]

of the wind turbine to its desired power production; and ii) the stochastic force (noise), whichStochastic Analysis of Wind Turbine Power Curves Edgar Anahua Oldenburg 2007 Zur Homepage der Dissertation #12;#12;Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Von der Fakult¨at f

Peinke, Joachim

2

Ris-R-Report Multi-MW wind turbine power curve  

E-Print Network [OSTI]

Risø-R-Report Multi-MW wind turbine power curve measurements using remote sensing instruments Wagner, Michael Courtney Title: Multi-MW wind turbine power curve measurements using remote sensing (max. 2000 char.): Power curve measurement for large wind turbines requires taking into account more

3

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

SciTech Connect (OSTI)

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

4

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

5

Fast Verification of Wind Turbine Power Summary of Project Results  

E-Print Network [OSTI]

Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

6

On-line monitoring of power curves Andrew Kusiak*, Haiyang Zheng, Zhe Song  

E-Print Network [OSTI]

. The power coefficient indicates the effi- ciency of a turbine capturing the wind energy, and it is optimized and Industrial Engineering, 3131 Seamans Center, The University of Iowa, Iowa City, IA 52242 ­ 1527, USA a r t i of wind turbines is presented. Turbine performance is captured with a power curve. The power curves

Kusiak, Andrew

7

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

8

Demonstration of a Variable Phase Turbine Power System for Low...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature...

9

Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Power Cycles Advanced Combustion Turbines Advanced Research University Turbine Systems Research SBIR Program Plan Project Portfolio Project Information Publications...

10

PowerJet Wind Turbine Project  

SciTech Connect (OSTI)

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energyâ??s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJetâ??s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assemblyâ??including the electronic and mechanical controls designed, manufactured and field tested during the course of this projectâ??proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOEâ??s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

11

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

the combined cycle gas turbinean experience curve analysis.reduction (SCR) systems, gas turbine combined cycle (GTCC)catalytic reduction (SCR) Gas turbine combined cycle (GTCC)

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

12

Control of Wind Turbines for Power Regulation and  

E-Print Network [OSTI]

Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

13

Severe environment turbine powered steerable motors  

SciTech Connect (OSTI)

Turbine powered downhole motors have advantages for high temperature, high pressure, sour gas or hard formation drilling which stem from turbodrill construction rather than metallurgy, and from their power characteristics. The first part of the paper will discuss this, and compare turbine and Moineau powered motors in this context. The introduction in the last three years of new bearing materials, hydraulic thrust balancing devices and high performance flexible couplings have extended turbodrill performance and reliability margins in severe environment drilling. It is perfecting feasible to build steerable motors capable of drilling for 250 hours in 6-in. hole at 200 degrees Celsius (392 degrees Fahrenheit) in a deviated high pressure well since the individual problems in this ``Well from Hell`` have successfully been overcome. The second part of the paper will illustrate this through field examples.

Gaynor, T.M. [Neyrfor-Weir Ltd., Aberdeen (United Kingdom). Dept. of Operations

1995-12-31T23:59:59.000Z

14

NREL: News - NREL Study: Active Power Control of Wind Turbines...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

414 NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along...

15

Dynamic wind turbine models in power system simulation tool  

E-Print Network [OSTI]

Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

16

Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air  

E-Print Network [OSTI]

Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations...

Meher-Homji, C. B.; Mani, G.

1983-01-01T23:59:59.000Z

17

Power Performance Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

Mendoza, I.; Hur, J.

2012-12-01T23:59:59.000Z

18

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network [OSTI]

from the heat recovery steam generator powers an additional steam turbine, providing extra electricBiennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk

19

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect (OSTI)

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

20

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS  

E-Print Network [OSTI]

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Direct FuelCell/Turbine Power Plant  

SciTech Connect (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

Hossein Ghezel-Ayagh

2008-09-30T23:59:59.000Z

22

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

23

Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2011-05-01T23:59:59.000Z

24

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS  

E-Print Network [OSTI]

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans. For the conventional power park, the power production of the wind turbines presents a fluctuating 'negative load PRODUCTION OF WIND TURBINES For the forecast of the power production of wind turbines two approaches may

Heinemann, Detlev

25

SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION  

SciTech Connect (OSTI)

Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

2013-07-20T23:59:59.000Z

26

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

methodology to compare supply and demand-side resources. The screening curve approach supplements with load curve approach supplements with load shape information the data contained in a supply curve of conservedLBL-27286 Conservation Screening Curves to Compare Efficiency Investments to Power Plants Jonathan

27

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

SciTech Connect (OSTI)

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

28

Energy harvesting to power sensing hardware onboard wind turbine blade  

SciTech Connect (OSTI)

Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Faringolt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

29

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...  

Open Energy Info (EERE)

Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

30

Arabelle: The most powerful steam turbine in the world  

SciTech Connect (OSTI)

On the 30th of August 1996 at the CHOOZ power station in the Ardennes, the first 1,500 MW turbine was started up under nuclear steam and connected to the grid. It will reach full power in the spring of 1997, followed shortly afterwards by a second identical machine. This turbine, known as ARABELLE, is currently the most powerful in the world, with a single line rotating at 1,500 rpm. It has been entirely designed, manufactured and installed by the teams of GEC ALSTHOM, within the framework of the Electricite de France N4 PWR program. It represents a new type of nuclear turbine, the fruit of much research and development work which started in the 1980s. It benefits from GEC ALSTHOM's considerable experience in the field of nuclear turbines: 143 machines with a total power output of 100,000 MW and more than ten million hours of operation. It should be remembered that the first 1,000 MW unit for a PWR plant was connected at Fessenheim in 1977, and since then the different EDF plants have been equipped with 58 GEC ALSTHOM turbines, ranging from 1,000 MW to 1,350 MW, this providing the company with a vast amount of information. The process which led to a new design for ARABELLE was based on: Feedback of service experience from previous machines; this provides precious learning material with a view to improving the performance of operating equipment. Research and development work resulting in significant technical advances which could then be integrated into the design of a new generation of turbines. Taking account of the major concerns of the customer-user: Electricite de France (EDF): Improved reliability and operating availability, increased efficiency, reduced investment and maintenance costs.

Lamarque, F.; Deloroix, V.

1998-07-01T23:59:59.000Z

31

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Broader source: Energy.gov [DOE]

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

32

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine  

E-Print Network [OSTI]

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine 2013. 09. 11 Korea ORC #12;Cycle simulation Solver : HYSYS Basic simulation design T-S diagram Pump Turbine Evaporator & turbine : iso-entropic process Pump Turbine Evaporator Condenser 4 1 2 3 Geothermal water Deep seawater

33

Real-Time Wind Turbine Emulator Suitable for Power Quality and Dynamic Control Studies  

E-Print Network [OSTI]

1 Real-Time Wind Turbine Emulator Suitable for Power Quality and Dynamic Control Studies Dale S. L. Dolan, Student Member, IEEE, P. W. Lehn, Member IEEE Abstract-- Wind turbines are increasingly becoming-time Wind Turbine Emulator, which emulates the dynamic torque produced by an actual turbine has been

Lehn, Peter W.

34

Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines  

E-Print Network [OSTI]

Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines, China mcheng@seu.edu.cn Abstract-- Grid connected wind turbines are the sources of power fluctuations presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both

Hu, Weihao

35

Power optimization of wind turbines with data mining and evolutionary computation  

E-Print Network [OSTI]

Power optimization of wind turbines with data mining and evolutionary computation Andrew Kusiak July 2009 Accepted 25 August 2009 Available online 17 September 2009 Keywords: Wind turbine Data mining for maximization of the power produced by wind turbines is presented. The power optimization objective

Kusiak, Andrew

36

Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit  

E-Print Network [OSTI]

Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

Mease, Kenneth D.

37

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

38

E-Print Network 3.0 - advanced turbine power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the increased wind power penetration in power systems the main trend for modern wind turbines is clearly... variable speed operation and grid connection via ... Source: Ris...

39

Impact of DFIG wind turbines on transient stability of power systems a review  

E-Print Network [OSTI]

Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

Pota, Himanshu Roy

40

Dynamic Models for Wind Turbines and Wind Power Plants  

SciTech Connect (OSTI)

The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

Singh, M.; Santoso, S.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

SciTech Connect (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

42

How Gas Turbine Power Plants Work | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,How Gas Turbine Power

43

Power control of a wind farm with active stall wind turbines and AC grid connection  

E-Print Network [OSTI]

Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection wind farm control involves both the control on wind turbine level as well as the central control

44

Dynamic behaviour of a DFIG wind turbine subjected to power system faults  

E-Print Network [OSTI]

of the dynamic interaction between variable speed DFIG wind turbines and the power system subjected by the Danish Transmission System Operator Energinet.dk. Keywords: doubly-fed induction generator (DFIG), wind turbines, the variable speed DFIG wind turbine with its dynamic behaviour and its ride-through capabil- ity

45

The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance , J. Chapman1  

E-Print Network [OSTI]

The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance A. Swift1 , J wind speed measurements on the TTU WISE 200m and 78m towers. A hypothetical wind turbine is shown. At potential wind turbine sites, it is uncommon to have wind measurements available at multiple heights. Then

Manuel, Lance

46

Power Electronics and Controls for Wind Turbine F. Blaabjerg, F. Iov, Z. Chen, K. Ma  

E-Print Network [OSTI]

was in the beginning based on a squirrel-cage induction generator connected directly to the grid. Power pulsations technologies used in wind turbine systems. I. INTRODUCTION In classical power systems, large power generation such as wind turbines, wave generators, photovoltaic (PV) generators, small hydro, fuel cells and gas

Chen, Zhe

47

Ris-R-1400(EN) Dynamic wind turbine models in power  

E-Print Network [OSTI]

Risø-R-1400(EN) Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D December 2003 #12;#12;Contents Preface 5 1 Introduction 6 2 Wind turbine modelling in DIgSILENT 7 2.1 Power converters 14 2.2.3 Transformer 16 2.3 DSL models of wind turbine in DIgSILENT 18 2.3.1 Initialisation issues

48

Optimization of wind turbine energy and power factor with an evolutionary computation algorithm  

E-Print Network [OSTI]

Optimization of wind turbine energy and power factor with an evolutionary computation algorithm the energy capture from the wind and enhance the quality of the power produced by the wind turbine, and harmonic distortion. As the generation of wind energy on an industrial scale is relatively new, the area

Kusiak, Andrew

49

The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine  

E-Print Network [OSTI]

The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine: (949) 824-3256 Abstract For the first time, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub height, usable portion of the wind speed distri- bution

Zender, Charles

50

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

2009-06-30T23:59:59.000Z

51

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

SciTech Connect (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

52

Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its  

E-Print Network [OSTI]

ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

Stanford University

53

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

54

Ris-R-1330(EN) Wind Turbine Power Performance  

E-Print Network [OSTI]

.1 Background 8 2.2 Problems 8 2.3 Input by the Manufacturers 9 2.4 Methods 10 2.4.1Method A 10 2.4.1.1 Site.2 Experiences from production assessments - The Questionable On-site Power Curve Measurement 4.2.1Background wind speed 5.7 Types of wind speed sensors 35 5.7.1Vector scalar wind speed cup anemometer 35 5

55

Learning curves and changing product attributes: the case of wind turbines  

E-Print Network [OSTI]

. Significant changes of attributes of a technology must be corrected when assessing the impact of learning-by-doing. We use an engineering-based model to capture the cost changes of wind turbines that can be attributed to changes in turbine size. We estimate...

Coulomb, Louis; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

56

Designing Micro Wind Turbines for Portable Power Generation Francois Hogan  

E-Print Network [OSTI]

to the design of a wind turbine rotor. Number of blades The number of blades does not have a significant impact on the efficiency of a wind turbine. We have chosen a two blade design because of ease of fabrication in order) (2) This two blade micro wind turbine meets the optimal specifications to ensure good efficiency

Barthelat, Francois

57

Power Smoothing and Limitation Control of a PMSG-Based Marine Current Turbine under Swell Waves  

E-Print Network [OSTI]

Power Smoothing and Limitation Control of a PMSG-Based Marine Current Turbine under Swell Waves la puissance maximale (MPPT) nécessiterait d'accélérer ou de décélérer fréquemment la turbine à par une turbine marine associée à un générateur synchrone à aimants permanents (GSAP). Un algorithme

Boyer, Edmond

58

Oktober 26. 2009 Prediction of Load and Power Fluctuations from Wind Turbine  

E-Print Network [OSTI]

and into the tangential direction of rotation of the wind turbine given by 1 0tan 2 2 0 (1.6) This is because a lidarOktober 26. 2009 Vers 003 Prediction of Load and Power Fluctuations from Wind Turbine Spinner for the fluctuating loads on the blade tip: The lift force on a section of a wind turbine's blade is given by the lift

59

Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint  

SciTech Connect (OSTI)

As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

2012-03-01T23:59:59.000Z

60

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION  

E-Print Network [OSTI]

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C. Our research aims to develop a micro power generation systems based on micro gas turbine engine and a piezoelectric converter, as illustrated in Fig. 1 [6]. The micro gas turbine engine is composed of a centrifugal

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Acoustic and thermal packaging of small gas turbines for portable power  

E-Print Network [OSTI]

To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

Tanaka, Shinji, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

62

Augmentation of Power Output of Axisymmetric Ducted Wind Turbines by Porous Trailing Edge Disks  

E-Print Network [OSTI]

This paper presents analytical and experimental results that demonstrated that the power output from a ducted wind turbine can be dramatically increased by the addition of a trailing edge device such as a porous disk. In ...

widnall, sheila

2014-06-30T23:59:59.000Z

63

PERFORMANCE ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL  

E-Print Network [OSTI]

W. It is anticipated that the next generation of wind turbines which are presently being developed will include large at high power levels, with a consequent reduction in drive-train loads. It achieves very similar

Duffy, Ken

64

Extremum seeking control techniques applied to photovoltaic systems with multimodal power curves  

E-Print Network [OSTI]

) Current(A) 0 200 320025 I-V curve P-V curve VMPP Power(W) 1000 Fig. 1. Photovoltaic cell I-V and P nonlinear steady-state characteristics, expressed as either current versus voltage (the so called I-V curve), or as power versus voltage (the P-V curve, like the one in Fig. 1). The I-V and P-V curves of a PV system vary

Boyer, Edmond

65

Composite turbine blade design options for Claude (open) cycle OTEC power systems  

SciTech Connect (OSTI)

Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

Penney, T.R.

1985-11-01T23:59:59.000Z

66

Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant  

E-Print Network [OSTI]

AbstractThe gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

unknown authors

67

Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems  

E-Print Network [OSTI]

to stability problems caused by wind power integration. In the grid impact studies of wind power integrationImpact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems M. J connected to a higher voltage level, their impact is becoming more widespread. The European Wind Energy

Pota, Himanshu Roy

68

Performance Characteristics of an Electrochemically Powered Turboprop: A Comparison with State of the Art Gas Turbines  

E-Print Network [OSTI]

/fuel cell power system be superior to a state of the art hydrogen/gas turbine power system? The systems are compared on a fuel consumption basis, a cost basis, and a reliability/ maintainability basis. The analysis show that both specific power...

Johnson, M. C.; Swan, D. H.

69

Internal combustion engine system having a power turbine with a broad efficiency range  

DOE Patents [OSTI]

An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

Whiting, Todd Mathew; Vuk, Carl Thomas

2010-04-13T23:59:59.000Z

70

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network [OSTI]

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

71

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents [OSTI]

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

72

192 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 4, NO. 1, JANUARY 2013 Monitoring Wind Farms With Performance Curves  

E-Print Network [OSTI]

to varying loads, which in turn lead to wind turbine faults, e.g., spalled bearings and fractured gears--Three different operational curves--the power curve, rotor curve, and blade pitch curve--are presented the reference curves of wind power, rotor speed, and blade pitch angle, with wind speed as an input variable

Kusiak, Andrew

73

Effects of turbulence on power generation for variable-speed wind turbines  

SciTech Connect (OSTI)

One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

1996-11-01T23:59:59.000Z

74

Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this  

E-Print Network [OSTI]

operating a variable-speed wind turbine with pitch control to maximize power while minimizing the loads prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch1 Abstract--A bi-objective optimization model of power and power changes generated by a wind

Kusiak, Andrew

75

Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1 of 17Turbines Hydrogen

76

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

SciTech Connect (OSTI)

A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

Hays, Lance G

2014-07-07T23:59:59.000Z

77

Ris-R-1117(EN) Power Control for Wind Turbines in  

E-Print Network [OSTI]

Risø-R-1117(EN) Power Control for Wind Turbines in Weak Grids: Project summary Henrik Bindner (Ed in Europe large areas exist where the wind resources are good or very good and the grid is relatively weak for the exploitation of the wind resource. There are two main problems concerned with wind power and weak grids

78

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network [OSTI]

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity for the California desert and in other appro- priate regions worldwide. Current technology relies on steam Rankine

Ponce, V. Miguel

79

Power Performance Test Report for the Viryd CS8 Wind Turbine  

SciTech Connect (OSTI)

This report contains the results of the power performance test that was performed on a Viryd CS8 wind turbine as part of the DOE Independent Testing project. The test is an accredited test to the IEC 61400-12-1 power performance standard.

Roadman, J.; Murphy, M.; van Dam, J.

2012-12-01T23:59:59.000Z

80

Energy Storage Technologies for Smoothing Power Fluctuations in Marine Current Turbines  

E-Print Network [OSTI]

Energy Storage Technologies for Smoothing Power Fluctuations in Marine Current Turbines Zhibin Zhou the marine current generation system more reliable, energy storage systems will play a crucial role. In this paper, the power fluctuation phenomenon is described and the state of art of energy storage technologies

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

82

A RAM (Reliability Availability Maintainability) analysis of Consolidated Edison's Gowanus and Narrows gas turbine power plants  

SciTech Connect (OSTI)

A methodology is presented which accurately assesses the ability of gas turbine generating stations to perform their intended function (reliability) while operating in a peaking duty mode. The developed methodology alloys the RAM modeler to calculate the probability that a peaking unit will produce the energy demanded and in turn calculate the total energy lost during a given time period due to unavailability of individual components. The methodology was applied to Consolidated Edison's Narrows site which has 16 barge-mounted General Electric Frame 5 gas turbines operating under a peaking duty mode. The resulting RAM model was quantified using the Narrows site power demand and failure rate data. The model was also quantified using generic failure data from the Operational Reliability Analysis Program (ORAP) for General Electric Frame 5 peaking gas turbines. A problem description list and counter measures are offered for components contributing more than one percent to gas turbine energy loss. 3 refs., 18 figs., 12 tabs.

Johnson, B.W.; Whitehead, T.J.; Derenthal, P.J. (Science Applications International Corp., Los Altos, CA (USA))

1990-12-01T23:59:59.000Z

83

Impact of Advanced Turbine Systems on coal-based power plants  

SciTech Connect (OSTI)

The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

Bechtel, T.F.

1993-12-31T23:59:59.000Z

84

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

85

IEEE TRANSACTIONS ON POWER SYSTEMS, CHEN, DENG AND HUO. 1 Electricity Price Curve Modeling by Manifold  

E-Print Network [OSTI]

markets. Index Terms-- Electricity spot price, locational marginal price, electricity forward curveIEEE TRANSACTIONS ON POWER SYSTEMS, CHEN, DENG AND HUO. 1 Electricity Price Curve Modeling and prediction of electricity price curves by applying the manifold learning methodology. Cluster analysis based

86

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 3, AUGUST 2008 877 Electricity Price Curve Modeling  

E-Print Network [OSTI]

--Electricity forward curve, electricity spot price, forecasting, locational marginal price, manifold learning. IIEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 3, AUGUST 2008 877 Electricity Price Curve approach for the modeling and analysis of electricity price curves by ap- plying the manifold learning

Huo, Xiaoming

87

Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm  

SciTech Connect (OSTI)

This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically produced (i.e., friction forces). This led to larger reductions at downwind turbines and maximum ve

Wharton, S; Lundquist, J K; Marjanovic, N

2012-01-25T23:59:59.000Z

88

Soft-stall control versus furling control for small wind turbine power regulation  

SciTech Connect (OSTI)

Many small wind turbines are designed to furl (turn) in high winds to regulate power and provide overspeed protection. Furling control results in poor energy capture at high wind speeds. This paper proposes an alternative control strategy for small wind turbines -- the soft-stall control method. The furling and soft-stall control strategies are compared using steady state analysis and dynamic simulation analysis. The soft-stall method is found to offer several advantages: increased energy production at high wind speeds, energy production which tracks the maximum power coefficient at low to medium wind speeds, reducing furling noise, and reduced thrust.

Muljadi, E.; Forsyth, T.; Butterfield, C.P.

1998-07-01T23:59:59.000Z

89

Soft-Stall Control versus Furling Control for Small Wind Turbine Power Regulation  

SciTech Connect (OSTI)

Many small wind turbines are designed to furl (turn) in high winds to regulate power and provide overspeed protection. Furling control results in poor energy capture at high wind speeds. This paper proposes an alternative control strategy for small wind turbines -- the soft-stall method. The furling and soft-stall control strategies are compared using steady state analysis and dynamic simulation analysis. The soft-stall method is found to offer several advantages: increased energy production at high wind speeds, energy production which tracks the maximum power coefficient at low to medium wind speeds, reduced furling noise, and reduced thrust.

Muljadi, E.; Forsyth, T.; Butterfield, C. P.

1998-07-01T23:59:59.000Z

90

Gas turbine power plant with supersonic shock compression ramps  

DOE Patents [OSTI]

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

91

Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real  

E-Print Network [OSTI]

1 Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine and the generator design. The fixed-speed wind turbine has the advantage of the low cost of A. F. Abdou and H. R advantages over the fixed-speed operation, such as maximum power capture, less mechanical stresses, and less

Pota, Himanshu Roy

92

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

Koomey, J.G.

2008-01-01T23:59:59.000Z

93

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

Power Research Institute. 1986. TAG-Technical AssessmentPower Research Institute. 1987. TAG-Technical Assessment

Koomey, J.G.

2008-01-01T23:59:59.000Z

94

Aerodynamic interference between two Darrieus wind turbines  

SciTech Connect (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

95

Sandia National Laboratories: wind turbines produce rated power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Windwhite LEDwind turbines produce rated

96

STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Srensen, Ris National Laboratory, P.O.Box 49, DK-4000 Roskilde, Denmark.  

E-Print Network [OSTI]

STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Sørensen, Risø National and verification of wind turbine power quality. The work has been organised in three major activities. The first farm summation on the power quality of wind turbines with constant rotor speed. The third activity has

Heinemann, Detlev

97

Application of Flow Battery in Marine Current Turbine System for Daily Power Management  

E-Print Network [OSTI]

focuses on a grid-connected MCT system and proposes using vanadium redox flow battery (VRB) energy storage/energy sizing. In this paper, one grid-connected MCT generation system with battery energy storage system (BESSApplication of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou

Brest, Université de

98

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

Karp, A. D.; Simbeck, D. R.

99

DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES  

SciTech Connect (OSTI)

The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

2012-01-01T23:59:59.000Z

100

Experience curves for power plant emission control technologies  

E-Print Network [OSTI]

reduction in NO x emissions from coal-fired power plants tocombustion of coal, emissions from coal-fired power plantsemission control technologies now required on all new coal-fired power

Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint  

SciTech Connect (OSTI)

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01T23:59:59.000Z

102

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

103

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

104

Abstract--The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an  

E-Print Network [OSTI]

Abstract--The offshore wind farm with installed back-to- back power converter in wind turbines is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken installed in wind turbines are presented. Harmonic load flow analysis and impedance frequency

Bak, Claus Leth

105

Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves  

E-Print Network [OSTI]

An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and ...

Surendranath, Yogesh

106

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

107

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network [OSTI]

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

108

Verification of hourly forecasts of wind turbine power output  

SciTech Connect (OSTI)

A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

Wegley, H.L.

1984-08-01T23:59:59.000Z

109

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

110

Theoretical full power correction factors as related to changes in ambient temperature, pressure and absolute humidity for aircraft turbine engines  

E-Print Network [OSTI]

IN AMBIENT TEMPERATURE, PRESSURF. AND ABSOLUTE HUMIDITY FOR AIRCRAFT TURBINE ENGINES (August 1969) Michael Antoun Raphael B. S. (Mechanical Engineering) Texas A&M University Directed by: Professor Stanley H, Lowy ABSTRACT Power losses in aircraft gas... rated at standard atmospheric conditions (i. e, ambient temperature 69 F 3'Fend atmospheric pressure 29. 92 in. Hg. dry) . Obviously this same turbine will not be exposed to such standard conditions; therefore we have a change in power directly...

Raphael, Michel Antoun

1969-01-01T23:59:59.000Z

111

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

Guide: Vol. 3: Fundamentals and Methods, Supply-1986. EPRI.EPRI P- 4463-SR. May 1987. Geller, Howard, Jeff P. Harris,kWh by 4000 hours. REFERENCES EPRI, Electric Power Research

Koomey, J.G.

2008-01-01T23:59:59.000Z

112

Variability of wind power near Oklahoma City and implications for siting of wind turbines  

SciTech Connect (OSTI)

Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

Kessler, E.; Eyster, R.

1987-09-01T23:59:59.000Z

113

Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays  

E-Print Network [OSTI]

Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

Dabiri, John O

2010-01-01T23:59:59.000Z

114

Comparison of Simple Power Analysis Attack Resistant Algorithms for an Elliptic Curve  

E-Print Network [OSTI]

Comparison of Simple Power Analysis Attack Resistant Algorithms for an Elliptic Curve Cryptosystem, University College Cork Email: {e.popovici}@ucc.ie Abstract-- Side channel attacks such as Simple Power Analy- sis(SPA) attacks provide a new challenge for securing algorithms from an attacker. Algorithms

Paris-Sud XI, Université de

115

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

Click Here for Full Article Estimated global ocean wind power potential from QuikSCAT observations. Zender (2010), Estimated global ocean wind power potential from QuikSCAT observations, accounting, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub

Zender, Charles

116

Cost effective designs for integrating new electronic turbine control systems into existing steam power plants  

SciTech Connect (OSTI)

Different cost-effective approaches have been developed for integrating new digital turbine control systems into existing power plants. The devices under consideration range from self contained actuators which replace the existing hydraulic and mechanical servomotor components, linear proportional actuators, which mechanically drive the original servomotor pilot relays, to electro-hydraulic converters which provide a control pressure to the existing hydraulic servomotor pilot relays. These devices significantly reduce the implementation cost, while still providing most of the benefits that can be gained through greater utilization of the new electronic control capabilities. These three design approaches are analyzed for control performance, failure modes, long-term maintenance issues, and applicability to specific turbine configurations.

Nguyen, T.V. [Westinghouse Electric Corp., Orlando, FL (United States)

1996-10-01T23:59:59.000Z

117

Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology  

SciTech Connect (OSTI)

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01T23:59:59.000Z

118

Forecast of Regional Power Output of Wind Turbines Hans Georg Beyer, Detlev Heinemann, Harald Mellinghoff, Kai Monnich, Hans-Peter Waldl  

E-Print Network [OSTI]

Forecast of Regional Power Output of Wind Turbines Hans Georg Beyer, Detlev Heinemann, Harald of wind turbines connected to the public electricity grid will be intro- duced. Using this procedure and Northern Germany. At the moment, the installed capacity of wind turbines is in the order of magnitude

Heinemann, Detlev

119

Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)  

SciTech Connect (OSTI)

A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100% after implementations of this method in March 2000. However, failures of instrumentation and control system components led to additional plant down time and damage to the bearings and seals. The enthalpy and pressure of well 103 declined substantially from the inception of the project. When the project was started the wellhead pressure and enthalpy were 760 psig and 882 Btu/lb respectively. At the time the plant was placed in standby the corresponding values were only 525 psig and 658 Btu/lb. This reduced the available plant power to only 400 kWe making the project economically unfeasible. However, replacement of the existing rotor with the Dual Pressure Rotor and replacement of the bearings and seals will enable the existing Biphase turbine to produce 1190 kWe at the present well conditions without the backpressure steam turbine. Operation with the present staff can then be sustained by selling power under the existing Agreement with CFE. Implementation of this option is recommended with operation of the facility to continue as a demonstration plant. Biphase turbine theory, design and performance are reported herein. The construction of the Biphase turbine and power plant and operational experience are detailed. Improvements in the Biphase turbine are indicated and analyzed. The impact of Biphase techonology on geothermal power production is discussed and recommendations made.

Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

2000-09-01T23:59:59.000Z

120

Modeling of Proposed Changes to SIUC Central Heating, Air-Conditioning, and Power Plant Incorporating Variable Frequency Drive (VFD) and High Efficiency Turbine.  

E-Print Network [OSTI]

??Currently, the Southern Illinois University Carbondale (SIUC) power plant produces steam at high pressure to drive a high pressure (HP) turbine to make a portion (more)

Su, Heyin

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

122

Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model  

E-Print Network [OSTI]

In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately-high magnetization parameter $\\sigma$ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately-high-$\\sigma$ flow. The run-away growth and subsequent depletion of these mini-emitters as a function time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

Zhang, Bo

2013-01-01T23:59:59.000Z

123

Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating  

E-Print Network [OSTI]

similar principles in wind generation systems can be applied in marine current turbine (MCT) systems due

Boyer, Edmond

124

A new coordinated control strategy for boiler-turbine system of coal-fired power plant  

SciTech Connect (OSTI)

This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

2005-11-01T23:59:59.000Z

125

Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints  

E-Print Network [OSTI]

Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints Yoni in a fast circuit by the same factor does not yield an energy-efficient design, and we characterize efficient. A design implementation is considered to be energy efficient when it has the highest performance

Kolodny, Avinoam

126

Accounting for the Effect of Turbulence on Wind Turbine Power Curves (Poster)  

SciTech Connect (OSTI)

This poster was presented at the Science of Making Torque Conference, June 18-20 2014 in Copenhagen, Denmark. For more details, see NREL CP-5000-61561.

Clifton, A.; Wagner, R.

2014-06-01T23:59:59.000Z

127

3rd Int'l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS'03), Makuhari, Japan, 4-5 Dec. 2003. PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP  

E-Print Network [OSTI]

), Makuhari, Japan, 4-5 Dec. 2003. 1 PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP Luc G-mail: lucf@alum.mit.edu ABSTRACT This paper presents the system-level and component design of a micro steam. The microfabricated device consists of a steam turbine that drives an integrated micropump and generator. Two

Frechette, Luc G.

128

The need for high density energy storage for wind turbine and solar power has proven to be a  

E-Print Network [OSTI]

1 The need for high density energy storage for wind turbine and solar power has proven cost of these components but also considerably improve their lifetime and reliability as it removes. New breakthrough for single-layer ceramic capacitors with high performance #12;2 Benefits ANU has

Botea, Adi

129

Thermionic combustor application to combined gas and steam turbine power plants  

SciTech Connect (OSTI)

The engineering and economic feasibility of a thermionic converter topped combustor for a gas turbine is evaluated in this paper. A combined gas and steam turbine system was chosen for this study with nominal outputs of the gas and steam turbines of 70 MW and 30 MW, respectively. 7 refs.

Miskolczy, G.; Wang, C.C.; Lieb, D.P.; Margulies, A.E.; Fusegni, L.J.; Lovell, B.J.

1981-01-01T23:59:59.000Z

130

E-Print Network 3.0 - axis wind turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: axis wind turbines...

131

Status for Learning Curves indlg ved BES temadag om  

E-Print Network [OSTI]

;Characteristics of technical changes in wind power technology · Up-scaling of turbines · Improved efficiency's Law": Size - in rated power - doubles every four years #12;On Experience Curves · Cost decreases assessment, forecasting, scenarios, the development of energy models, etc. Researchers will use values

132

Engineering Predictions in Industrial and Power Flows Using the Retrograde Condensation Curve. Part I-Methodology  

E-Print Network [OSTI]

Industrial and power systems rely on engineering predictions of the flow properties of working fluids. The paper proposes a way of the utilization of the vapor quality values along the new retrograde condensation curve in the generation of the void fraction design guidelines and reliable prediction of the saturated liquid specific volumes/densities. The new procedure eliminates the involvement of semi-empirical relationships like rectilinear diameter and other similar models.

Labinov, Mark S

2014-01-01T23:59:59.000Z

133

Using Machine Learning to Create Turbine Performance Models (Presentation)  

SciTech Connect (OSTI)

Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to explore atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that of the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data is required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of different turbulence and shear at the new site, compared to the test site.

Clifton, A.

2013-04-01T23:59:59.000Z

134

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

135

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

kW. 9/kWh 7/kWh Gas Turbine 5/kWh Combined-Cycle Oilhigh operating costs (such as gas turbines) during those fewtechnology. 9/kWh 7/kWh Gas Turbine 5/kWh Combined-Cycle

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

136

Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components  

SciTech Connect (OSTI)

Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants.

Ware, A.G.; Morton, D.K.; Nitzel, M.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-03-01T23:59:59.000Z

137

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect (OSTI)

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

138

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

139

Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore R. J. BARTHELMIE,*,1 S. C. PRYOR,*,1 S. T. FRANDSEN,1 K. S. HANSEN,# J. G. SCHEPERS,@  

E-Print Network [OSTI]

Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms R. J. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make. Differences in turbine spacing (10.5 versus 7 rotor diameters) are not differentiable in wake-related power

Pryor, Sara C.

140

Light curves and polarization of accretion- and nuclear-powered millisecond pulsars  

E-Print Network [OSTI]

We study theoretical X-ray light curves and polarization properties of accretion-powered millisecond pulsars. We assume that the radiation is produced in two antipodal spots at the neutron star surface which are associated with the magnetic poles. We compute the angle-dependent intensity and polarization produced in an electron-scattering dominated plane-parallel accretion shock in the frame of the shock. The observed flux, polarization degree and polarization angle are calculated accounting for special and general relativistic effects. The calculations also extended to the case of nuclear-powered millisecond pulsars -- X-ray bursts. In this case, we consider one spot and the radiation is assumed to be produced in the atmosphere of the infinite Thomson optical depth. The light curves and polarization profiles show a large diversity depending on the model parameters. Presented results can be used as a first step to understand the observed pulse profiles of accretion- and nuclear-powered millisecond pulsars. Future observations of the X-ray polarization will provide a valuable tool to test the geometry of the emission region and its physical characteristics.

Kerttu Viironen; Juri Poutanen

2004-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

Not Available

1990-07-01T23:59:59.000Z

142

Voltage/Pitch Control for Maximization and Regulation of Active/Reactive Powers in Wind Turbines with Uncertainties  

E-Print Network [OSTI]

This paper addresses the problem of controlling a variable-speed wind turbine with a Doubly Fed Induction Generator (DFIG), modeled as an electromechanically-coupled nonlinear system with rotor voltages and blade pitch angle as its inputs, active and reactive powers as its outputs, and most of the aerodynamic and mechanical parameters as its uncertainties. Using a blend of linear and nonlinear control strategies (including feedback linearization, pole placement, uncertainty estimation, and gradient-based potential function minimization) as well as time-scale separation in the dynamics, we develop a controller that is capable of maximizing the active power in the Maximum Power Tracking (MPT) mode, regulating the active power in the Power Regulation (PR) mode, seamlessly switching between the two modes, and simultaneously adjusting the reactive power to achieve a desired power factor. The controller consists of four cascaded components, uses realistic feedback signals, and operates without knowledge of the C_p-...

Guo, Yi; Jiang, John N; Tang, Choon Yik; Ramakumar, Rama G

2010-01-01T23:59:59.000Z

143

A New Wind Turbine Control Method to Smooth Power Generation. Modelling and Comparison to Wind Turbine Frequency Control.  

E-Print Network [OSTI]

??Following the significant increase of world wide installed wind power during the first decade of the 21st century, transmission system operators are faced with new (more)

Solberg, Olov

2012-01-01T23:59:59.000Z

144

A Disturbance Margin For Quantifying Limits on Power Smoothing by Wind Turbines  

E-Print Network [OSTI]

wind variation a wind turbine can absorb in variable speed mode while still being guaranteed to operate speed and generator torque to store and release energy. This ability must be constrained by turbine speed and generator torque limits. To date, work in the literature is conceptual and does not indicate

Maggiore, Manfredi

145

WHAT CAN WE LEARN FROM THE RISING LIGHT CURVES OF RADIOACTIVELY POWERED SUPERNOVAE?  

SciTech Connect (OSTI)

The light curve of the explosion of a star with a radius {approx}< 10-100 R{sub Sun} is powered mostly by radioactive decay. Observationally, such events are dominated by hydrogen-deficient progenitors and classified as Type I supernovae (SNe I), i.e., white dwarf thermonuclear explosions (Type Ia), and core collapses of hydrogen-stripped massive stars (Type Ib/c). Current transient surveys are finding SNe I in increasing numbers and at earlier times, allowing their early emission to be studied in unprecedented detail. Motivated by these developments, we summarize the physics that produces their rising light curves and discuss ways in which observations can be utilized to study these exploding stars. The early radioactive-powered light curves probe the shallowest deposits of {sup 56}Ni. If the amount of {sup 56}Ni mixing in the outermost layers of the star can be deduced, then it places important constraints on the progenitor and properties of the explosive burning. In practice, we find that it is difficult to determine the level of mixing because it is hard to disentangle whether the explosion occurred recently and one is seeing radioactive heating near the surface or whether the explosion began in the past and the radioactive heating is deeper in the ejecta. In the latter case, there is a ''dark phase'' between the moment of explosion and the first observed light emitted once the shallowest layers of {sup 56}Ni are exposed. Because of this, simply extrapolating a light curve from radioactive heating back in time is not a reliable method for estimating the explosion time. The best solution is to directly identify the moment of explosion, either through observing shock breakout (in X-ray/UV) or the cooling of the shock-heated surface (in UV/optical), so that the depth being probed by the rising light curve is known. However, since this is typically not available, we identify and discuss a number of other diagnostics that are helpful for deciphering how recently an explosion occurred. As an example, we apply these arguments to the recent SN Ic PTF 10vgv. We demonstrate that just a single measurement of the photospheric velocity and temperature during the rise places interesting constraints on its explosion time, radius, and level of {sup 56}Ni mixing.

Piro, Anthony L. [Theoretical Astrophysics, California Institute of Technology, 1200 E California Blvd., M/C 350-17, Pasadena, CA 91125 (United States); Nakar, Ehud, E-mail: piro@caltech.edu [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

2013-05-20T23:59:59.000Z

146

Predicting Steam Turbine Performance  

E-Print Network [OSTI]

," PREDICTING STEAM TURBINE PERFORMANCE James T. Harriz, EIT Waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT Tracking the performance of extraction, back pressure and condensing steam turbines is a crucial part... energy) and test data are presented. Techniques for deriving efficiency curves from each source are described. These techniques can be applied directly to any steam turbine reliability study effort. INTRODUCTION As the cost of energy resources...

Harriz, J. T.

147

An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines  

E-Print Network [OSTI]

of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

Ibrahim, Zuhair M. A.

2007-01-01T23:59:59.000Z

148

Influence of wind characteristics on turbine performance Ioannis Antoniou (1)  

E-Print Network [OSTI]

(2) , Peder Enevoldsen (2) , Leo Thesbjerg (3) (1): Wind Energy Department, Risø of measuring the power curve is by using the wind speed at hub height. The assumption behind this is that the wind speed is representative of the wind over the whole turbine rotor. While this assumption

149

Waste heat recovery steam curves with unfired HRSGs  

SciTech Connect (OSTI)

A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

Not Available

1993-01-01T23:59:59.000Z

150

Microsoft PowerPoint - Turbine Generator Study 14-06-17  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SWPA Engineering Analysis Program Turbine Replacement and Generator p Rewind Lee Beverly- SWL Project Manager D B j h SWT P j t M Dan Brueggenjohann SWT Project Manager Dan Ramirez...

151

turbine thermal index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

obtained through this project can directly benefit the U.S. power and utility turbine industry by improving product development that specifically meets DOE advanced turbine program...

152

Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.  

SciTech Connect (OSTI)

Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

2013-03-01T23:59:59.000Z

153

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

154

Sweeney LUBRICATION OF STEAM, GAS AND WATER TURBINES IN POWER GENERATION- A CHEVRONTEXACO EXPERIENCE  

E-Print Network [OSTI]

On 9 October 2001 two US oil companies Chevron and Texaco merged. Their long-term joint venture operation, known as Caltex (formed in 1936 and operating in East and Southern Africa, Middle East, Asia and Australasia), was incorporated into the one global energy company. This global enterprise will be highly competitive across all energy sectors, as the new company brings together a wealth of talents, shared values and a strong commitment to developing vital energy resources around the globe. Worldwide, ChevronTexaco is the third largest publicly traded company in terms of oil and gas reserves, with some 11.8 billion barrels of oil and gas equivalent. It is the fourth largest producer, with daily production of 2.7 million barrels. The company also has 22 refineries and more than 21,000 branded service stations worldwide. This paper will review the fundamentals of lubrication as they apply to the components of turbines. It will then look at three turbine types, steam, gas and water, to address the different needs of lubricating oils and the appropriate specifications for each. The significance of oil testing both for product development and in-service oil monitoring will be reviewed, together with the supporting field experience of ChevronTexaco. The environmental emissions controls on turbines and any impact on the lubricants will be discussed. Finally, the trends in specifications for lubricating oils to address the modern turbines designs will be reviewed. Key Words: geothermal, lubrication, turbines, in-service testing 1.

Peter James Sweeney

155

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

SciTech Connect (OSTI)

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2012-04-01T23:59:59.000Z

156

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

SciTech Connect (OSTI)

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2013-02-01T23:59:59.000Z

157

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

gas turbines for combined heat and power. In: Ap- plied10.1115/1.4001356. [3] Combined Heat and Power. Tech. rep.of Tesla Turbines for Combined Heat and Power Applications.

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

158

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 1, FEBRUARY 2012 465 Dynamics of Type-3 Wind Turbine Generator Models  

E-Print Network [OSTI]

Turbine Generator Models Ian A. Hiskens, Fellow, IEEE Abstract--The influence of wind turbine generators, singular systems, small disturbance analysis, switching deadlock, wind turbine generator modeling. I. INTRODUCTION THE dynamic behavior of wind turbine generators (WTGs) is quite different to that of synchronous

Hiskens, Ian A.

159

Aging of turbine drives for safety-related pumps in nuclear power plants  

SciTech Connect (OSTI)

This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented.

Cox, D.F. [Oak Ridge National Lab., TN (United States)

1995-06-01T23:59:59.000Z

160

Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants  

SciTech Connect (OSTI)

The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions. The nickel based Alloy 282 is selected for this project because it is one of the leading candidate materials for the high temperature/pressure section of an A-USC steam turbine. The methods developed in the project are expected to be applicable to other metal alloys in similar steam/oxidation environments. The major developments are: ? failure mechanism and microstructural characterization ? atomistic and first principles modeling of crack tip oxygen embrittlement ? modeling of gamma prime microstructures and mesoscale microstructure-defect interactions ? microstructure and damage-based creep prediction ? multi-scale crack growth modeling considering oxidation, viscoplasticity and fatigue The technology developed in this project is expected to enable more accurate prediction of long service life of advanced alloys for A-USC power plants, and provide faster and more effective materials design, development, and implementation than current state-of-the-art computational and experimental methods. This document is a final technical report for the project, covering efforts conducted from January 2011 to January 2014.

Shen, Chen

2014-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network [OSTI]

powered by wind energy, wind turbines themselves stillWind Energy and Earthquake Activity Wind Turbines areTurbines. Det Norsk Veritas, Copen- hagen and Wind Energy

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

162

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2006-10-10T23:59:59.000Z

163

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-07-11T23:59:59.000Z

164

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-09-19T23:59:59.000Z

165

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2007-02-27T23:59:59.000Z

166

La Spezia power plant: Conversion of units 1 and 2 to combined cycle with modification of steam turbines from cross compound to tandem compound  

SciTech Connect (OSTI)

Units 1 and 2 of ENEL's La Spezia power plant, rated 310 and 325 MW respectively, are going to be converted to combined cycle. This project will be accomplished by integrating components such as gas turbines and HRSGs with some of the existing components, particularly the steam turbines, which are of the cross compound type. Since the total power of each converted unit has to be kept at 335 MW because of permitting limitations, the power delivered by the steam turbine will be limited to about 115 MW. For this reason a study was carried out to verify the possibility of having only one shaft and modifying the turbine to tandem compound. As additional investments are required for this modification, a balance was performed that also took into account the incremental heat rate and, on the other hand, the benefits from decreased maintenance and increased availability and reliability calculated for the expected useful life. The result of this balance was in favor of the modification, and a decision was taken accordingly. The turbine modification will involve replacing the whole HP section with a new combined HP-IP section while retaining the corresponding LP rotor and cylinder and making the needed changes in the valve arrangements and piping. Work on the site began in the spring of 1997 by dismantling the existing boiler so as to have the space needed to install the GTs and HRSGs. The first synchronization of the converted unit 1 is scheduled for November 1999

Magneschi, P.; Gabiccini, S.; Bracaloni, N.; Fiaschi, C.

1998-07-01T23:59:59.000Z

167

Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation: Preprint  

SciTech Connect (OSTI)

This paper focuses on our effort to develop an equivalent representation of a Wind Power Plant collector system for power system planning studies.

Muljadi, E.; Pasupulati, S.; Ellis, A.; Kosterov, D.

2008-07-01T23:59:59.000Z

168

Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois  

E-Print Network [OSTI]

and capacitance mapping ? Performed wedge tightness check by means of manual tap test ? Performed RTD functioning test ? Cleaned generator brush rigging ? Inspected generator brush rigging for signs of heating, arcing or other damage... turbine with a net generating rating of 366MW. The unit began commercial operation in 1976. Coal is received by rail and limestone by rail by rail or truck. Rail cars are unloaded in a rotary car dumper at a rate of 20-25 cars per hour. A 30 day...

Amoo-Otoo, John Kweku

2006-05-19T23:59:59.000Z

169

Turbines Off NYC East River Will Provide Power to 9,500 Residents |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7DepartmentEnergy Turbine

170

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

171

Economical Condensing Turbines?  

E-Print Network [OSTI]

an engineer decide when to conduct an in depth study of the economics either in the company or outside utilizing professional engineers who are experts in this type of project. Condensing steam turbines may not be economical when the fuel is purchased...Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown...

Dean, J. E.

172

Rampressor Turbine Design  

SciTech Connect (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

173

LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1  

E-Print Network [OSTI]

taken into account for the design of a wind ­ diesel power system is the wind power penetration, which electrical load. However, the penetration of wind power into small diesel-based grids is limited because variations is well suited for operating in small wind ­ diesel power systems. The antagonistic demands

174

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

175

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

176

Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output  

SciTech Connect (OSTI)

This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

Diana K. Grauer; Michael E. Reed

2011-11-01T23:59:59.000Z

177

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

as topping combustors for both turbines. A recuperated-heat exchanger recovers waste heat from the power turbine exhaust. This recuperated thermal energy partially heats the...

178

Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation  

SciTech Connect (OSTI)

The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

2011-09-15T23:59:59.000Z

179

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

trends for four types of electric power plants equipped with CO 2 capture systems: pulverized coal (PC) and natural gas

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

180

MODIFIED SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION METHOD FOR POWER CAPTURE MAXIMIZATION OF WIND TURBINES.  

E-Print Network [OSTI]

??As traditional resources are becoming scarce, renewable energy is a recent topic receiving greater concern. Among the renewable energies, wind power is a very popular (more)

Wang, Yang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Single rotor turbine engine  

DOE Patents [OSTI]

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

182

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

has more than 30 offshore wind farms in operation oraway to be unheard, offshore wind farms can contain larger,turbines considered, offshore wind farms consisting of the

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

183

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network [OSTI]

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

184

Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint  

SciTech Connect (OSTI)

In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

Zhang, J.; Chowdhury, S.; Hodge, B. M.

2014-01-01T23:59:59.000Z

185

Optimizing small wind turbine performance in battery charging applications  

SciTech Connect (OSTI)

Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

1995-05-01T23:59:59.000Z

186

1/30/2014 Pennsylvania Frack Innovative Wind Turbine Smaller Than a PennyCould Power Your Smartphone http://pennsylvaniafrack.com/2014/01/13/innovative-wind-turbine-smaller-than-a-penny-could-power-your-smartphone/ 1/2  

E-Print Network [OSTI]

1/30/2014 Pennsylvania Frack» Innovative Wind Turbine Smaller Than a PennyCould Power Your Before the First Snow Kindle Version Available Contributors Berks Gas Truth EcoWatch No Fracking Way Page Recent Posts New Study Shows Proximity to Fracking Sites Increases Risk of Birth Defects EPA

Chiao, Jung-Chih

187

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

per delivered kWh. References EPRI, Electric Power ResearchAssessment Guide: Vol. 1: Electricity Supply-1986. EPRI.EPRI P-4463-SR. December 1986. Kahn, Edward. 1988. Electric

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

188

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

189

The Inside of a Wind Turbine  

Broader source: Energy.gov [DOE]

Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

190

A cyclic time-dependent Markov process to model daily patterns in wind turbine power production  

E-Print Network [OSTI]

Wind energy is becoming a top contributor to the renewable energy mix, which raises potential reliability issues for the grid due to the fluctuating nature of its source. To achieve adequate reserve commitment and to promote market participation, it is necessary to provide models that can capture daily patterns in wind power production. This paper presents a cyclic inhomogeneous Markov process, which is based on a three-dimensional state-space (wind power, speed and direction). Each time-dependent transition probability is expressed as a Bernstein polynomial. The model parameters are estimated by solving a constrained optimization problem: The objective function combines two maximum likelihood estimators, one to ensure that the Markov process long-term behavior reproduces the data accurately and another to capture daily fluctuations. A convex formulation for the overall optimization problem is presented and its applicability demonstrated through the analysis of a case-study. The proposed model is capable of r...

Scholz, Teresa; Estanqueiro, Ana

2013-01-01T23:59:59.000Z

191

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

192

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

193

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

short-run marginal cost or avoided cost) to get a value ofcan be added to the fuel cost avoided by each kWh (i.e. ,CCE, in /kWh) and the Cost of Avoided Peak Power (CAPP, in

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

194

Combined-cycle gas and steam turbine power plants. 2. edition  

SciTech Connect (OSTI)

First published in 1991, this book is the leading reference on technical and economic factors of combined-cycle applications now leading the trend toward merchant plants and the peaking power needed in newly deregulated markets around the world, this long-awaited second edition is more important than ever. In it, Kehlhofer -- an internationally recognized authority in the field of new combined-cycle power plants -- and his co-authors widen the scope and detail found in the first edition. Included are tips on system layout, details on controls and automation, and operating instructions. Loaded with case studies, reference tables, and more than 150 figures, this text offers solid advice on system layout, controls and automation, and operating and maintenance instructions. The author provides real-world examples to apply to one`s own applications. The contents include: Introduction; The electricity market; Thermodynamic principles of combined-cycle plants; Combined-cycle concepts; Applications of combined-cycle; Components; Control and automation; Operating and part load behavior; Environmental considerations; Developmental trends; Typical combined-cycle plants already built; Conclusion; Appendices; Conversions; Calculation of the operating performance of combined-cycle installations; Definitions of terms and symbols; Bibliography; and Index.

Kehlhofer, R.; Bachmann, R.; Nielson, H.; Warner, J.

1999-01-01T23:59:59.000Z

195

EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS  

SciTech Connect (OSTI)

The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses {approx}10{sup -3}-10{sup -1} M{sub Sun} and velocities {approx}0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T {approx} 2500 K). We further consider the case in which a second mass outflow, composed of {sup 56}Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to {sup 56}Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

Barnes, Jennifer; Kasen, Daniel [Departments of Physics and Astronomy, 366 LeConte Hall, University of California, Berkeley, CA 94720 (United States)

2013-09-20T23:59:59.000Z

196

Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy  

E-Print Network [OSTI]

sensor for measurements of gas turbine exhaust temperature."O, CO 2 , and Temperature in Gas Turbine Exhaust through theview of UCSD power plant gas turbine systems 31

Leon, Marco E.

2007-01-01T23:59:59.000Z

197

Preliminary structural design conceptualization for composite rotor for verdant power water current turbine  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

Paquette, J. A.

2012-03-01T23:59:59.000Z

198

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

199

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

200

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

E-Print Network [OSTI]

Journal of Engineering for Gas Turbines and Power, 130 C. K.Journal of Engineering for Gas Turbines and Power, 130 (2) (of Engineering for Gas Turbines and Power-Transactions of

Cheng, R. K.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Simultaneous confidence bands in curve prediction applied to load curves  

E-Print Network [OSTI]

Simultaneous confidence bands in curve prediction applied to load curves J.M. Azais1, S. Bercu2, J, load curve. 1 Introduction In curve prediction, one is generally interested in deriving simultaneous this technique in the numerical context of load curve pre- diction: power producers like EDF, the electrical

Boyer, Edmond

202

Radial-radial single rotor turbine  

DOE Patents [OSTI]

A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

Platts, David A. (Los Alamos, NM)

2006-05-16T23:59:59.000Z

203

BUILDING STRONGBUILDING STRONG Turbine Survival Program  

E-Print Network [OSTI]

BUILDING STRONG®BUILDING STRONG® Turbine Survival Program Northwest Power and Conservation Council of the CRFM's Turbine Survival Program and how it supports the Rehabilitation Process #12;BUILDING STRONG® Turbine Survival Program TSP is an element of the CRFM Program; established to address NMFSs 1995 Biop

204

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

205

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

206

Data Analytics Methods in Wind Turbine Design and Operations  

E-Print Network [OSTI]

This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

Lee, Giwhyun

2013-05-22T23:59:59.000Z

207

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbines innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbines unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

None

2010-02-22T23:59:59.000Z

208

Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications  

SciTech Connect (OSTI)

Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future.

Cooper, L.Y.; Steckler, K.D.

1996-08-01T23:59:59.000Z

209

Wind turbine spoiler  

DOE Patents [OSTI]

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

210

Operating experience feedback report: Reliability of safety-related steam turbine-driven standby pumps. Commercial power reactors, Volume 10  

SciTech Connect (OSTI)

This report documents a detailed analysis of failure initiators, causes and design features for steam turbine assemblies (turbines with their related components, such as governors and valves) which are used as drivers for standby pumps in the auxiliary feedwater systems of US commercial pressurized water reactor plants, and in the high pressure coolant injection and reactor core isolation cooling systems of US commercial boiling water reactor plants. These standby pumps provide a redundant source of water to remove reactor core heat as specified in individual plant safety analysis reports. The period of review for this report was from January 1974 through December 1990 for licensee event reports (LERS) and January 1985 through December 1990 for Nuclear Plant Reliability Data System (NPRDS) failure data. This study confirmed the continuing validity of conclusions of earlier studies by the US Nuclear Regulatory Commission and by the US nuclear industry that the most significant factors in failures of turbine-driven standby pumps have been the failures of the turbine-drivers and their controls. Inadequate maintenance and the use of inappropriate vendor technical information were identified as significant factors which caused recurring failures.

Boardman, J.R.

1994-10-01T23:59:59.000Z

211

Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to  

E-Print Network [OSTI]

Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel components can be downsized for demand instead of supply. A novel Compressed Air Energy Storage (CAES

Li, Perry Y.

212

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

ZENDER: GLOBAL OCEAN WIND POWER POTENTIAL Serpetzoglou, E. ,Estimated global ocean wind power potential from QuikSCATEstimated global ocean wind power potential from QuikSCAT

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

213

Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations  

SciTech Connect (OSTI)

An active and reactive power (P-Q) simultaneous control scheme which is based on a superconducting magnetic energy storage (SMES) unit is designed to damp out the subsynchronous resonant (SSR) oscillations of a turbine-generator unit. In order to suppress unstable torsional mode oscillations, a proportional-integral-derivative (PID) controller is employed to modulate the active and reactive power input/output of the SMES unit according to speed deviation of the generator shaft. The gains of the proposed PID controller are determined by pole assignment approach based on modal control theory. Eigenvalue analysis of the studied system shows that the PID controller is quite effective over a wide range of operating conditions. Dynamic simulations using the nonlinear system model are also performed to demonstrate the damping effect of the proposed control scheme under disturbance conditions.

Wu, Chijui; Lee, Yuangshung (National Taiwan Inst. of Tech., Taipie (Taiwan, Province of China))

1993-03-01T23:59:59.000Z

214

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

215

Vertical axis wind turbine airfoil  

DOE Patents [OSTI]

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18T23:59:59.000Z

216

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network [OSTI]

RELIABLE GAS TURBINE OUTPUT; ATTAINING TEMPERATURE INDEPENDENT PERFORMANCE James E. Neeley, P.E. Power Plant Engineer Public Utility Commission of Texas Austin, Texas ABSTRACT Improvements in gas turbine efficiency, coupled... with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine's compactness, low maintenance, and high levels...

Neeley, J. E.; Patton, S.; Holder, F.

217

Methods and apparatus for rotor load control in wind turbines  

DOE Patents [OSTI]

A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

Moroz, Emilian Mieczyslaw

2006-08-22T23:59:59.000Z

218

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

219

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

220

Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics  

E-Print Network [OSTI]

Using a method for stochastic data analysis, borrowed from statistical physics, we analyze synthetic data from a Markov chain model that reproduces measurements of wind speed and power production in a wind park in Portugal. From the theoretical point of view we argue that our methods can be used to extract unknown functional relations between two variables. We first show that indeed our analysis retrieves the power performance curve, which yields the relationship between wind speed and power production and discuss how such procedure can be extended for extracting functional relationships between pairs of physical variables in general. Second, we show how specific features, such as the turbine rated wind speed or the descriptive wind speed statistics, can be related with the equations describing the evolution of power production and wind speed at single wind turbines.

Raischel, Frank; Lopes, Vitor V; Lind, Pedro G

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network [OSTI]

of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

Littlejohn, David

2008-01-01T23:59:59.000Z

222

EPRI steam turbine and generator NDE, life assessment, and maintenance workshop. [Electric Power Research Institute (EPRI), NonDestructive Evaluation (NDE)  

SciTech Connect (OSTI)

On July 16--19, 1991, the EPRI NDE Center hosted the second EPRI Steam Turbine and Generator NDE, Life Assessment and Maintenance Workshop. This workshop was co-sponsored by the Nuclear Power and the Generation and Storage Divisions of EPRI. Attendees represented all sectors of the industry including utilities, equipment manufacturers, forging suppliers, service organizations, government organizations, insurancecarriers, and consultants from the United States and abroad. Domestic utility presence was again strong, with 105 representatives from 44 utilities in attendance. Australia, Canada, England, Finland, France, Germany, Italy, Japan, Korea, New Zealand, Spain, Sweden and Switzerland were represented in the international contingent. A key and integral part of the workshop was a vendor equipment fair, in which some 23 organizations displayed and demonstrated equipment and services that they offer. Formal presentation of 53 technical papers made up the technical portion of the agenda, which also included two breakout discussion sessions on topical subjects. To provide optimum opportunity for participants to hear all presentations on closely related topics, the sessions were set such that a NDE session ran parallel to the life assessment session. The first NDE session included turbine related topics while the first life assessment session addressed generator issues. The last sessions of the workshop were just reversed with turbine topics being addressed in the life assessment session while generator issues were presented in the NDE session. Presentations on maintenance topics and on monitoring and diagnostics topics were also presented in parallel sessions. These proceedings contain the texts of the papers presented at the workshop. Individual papers in indexed separately.

Nottingham, L.D.; Sabourin, P.F.

1992-10-01T23:59:59.000Z

223

Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1  

E-Print Network [OSTI]

Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2) wind turbines address primarily the design of DFIG wind turbine control with special focus on power strategy for DFIG wind turbines, which enhances the fault ride-through capability of DFIG wind turbines

224

Ceramic stationary gas turbine  

SciTech Connect (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

225

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

Evaluation of global wind power, J. Geophys. Res. , 110,2009), Global ocean wind power sensitivity to surface layerCO 2 reductions via offshore wind power matched to inherent

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

226

Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

Huskey, A.

2011-11-01T23:59:59.000Z

227

Energy 101: Wind Turbines - 2014 Update  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-06-05T23:59:59.000Z

228

Energy 101: Wind Turbines - 2014 Update  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-05-06T23:59:59.000Z

229

Ris-R-1093(EN) European Wind Turbine Testing  

E-Print Network [OSTI]

Ris-R-1093(EN) European Wind Turbine Testing Procedure Developments Task 2: Power Quality Poul #12;Contents Preface 5 1 Introduction 6 2 Standards and measurement procedures 6 3 Wind turbines 7 3 The present report describes the work done in the power quality subtask of the European Wind Turbine Testing

230

[1] DS/EN 61400-1: 2005. Wind turbines, part 1: Design requirements, 2005. [2] Andrew Delaney. Blowing up a storm. European Power News, 31, 2006.  

E-Print Network [OSTI]

[1] DS/EN 61400-1: 2005. Wind turbines, part 1: Design requirements, 2005. [2] Andrew Delaney loads of wind turbines. In Proceedings of the American Control Conference, Philadelphia, Pennsylvania, Fernando D. Bianchi, Hernán De Battista. Wind Turbine Control Systems. Springer, 2007. [6] H. Ganander

Pedersen, Henrik C.

231

Gas turbine vane platform element  

DOE Patents [OSTI]

A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

Campbell, Christian X. (Oviedo, FL); Schiavo, Anthony L. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL)

2012-08-28T23:59:59.000Z

232

It is not just a job its a WINDTEST! Wind Energy with Power Plant Properties?WINDTEST  

E-Print Network [OSTI]

It is not just a job ­ it´s a WINDTEST! Wind Energy with Power Plant Properties?WINDTEST Kaiser-21 Power Quality Measurement ·IEC 61400-123 Wind Farm Power Curve Measure. ·MEASNET Power Quality of a wind turbine test WINDTEST Kaiser-Wilhelm-Koog GmbH 10/25 #12;b) The WF is able to reduce active power

233

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

234

1/12/14 World's Smallest "Micro" Wind Turbine Can Charge Your Smartphone & Power Your Home www.offgridworld.com/worlds-smallest-micro-wind-turbine-can-charge-your-smartphone-power-your-home/ 1/3  

E-Print Network [OSTI]

. This means the walls could generate power as well as your roof, which would be covered in solar panels. This would be a phenomenal wind/solar energy platform which could generate more than enough to power your... Subscribe Recent Posts Cave Palace Ranch: Solar Powered Cave Dwelling Is Truly A Palace! Hidden Camera

Chiao, Jung-Chih

235

California: Alden Fish Friendly Turbine Allows for Safe Fish...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alden Fish Friendly Turbine Allows for Safe Fish Passage California: Alden Fish Friendly Turbine Allows for Safe Fish Passage March 6, 2014 - 10:01am Addthis The Electric Power...

236

Structural Monitoring of Wind Turbines using Wireless Sensor Networks  

E-Print Network [OSTI]

on traditional fossil fuel technologies. Conditional monitoring of wind turbines can help to avert unplanned). Technological improvements (e.g. larger, more powerful generation turbines) and federal tax subsidies have

Sweetman, Bert

237

Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power  

E-Print Network [OSTI]

Term power ?uctuation of wind turbines: Analyzing data frome?ects of distributed wind turbines. part 1. coherence andto utilities by multiple wind turbines. IEEE Transactions on

Mills, Andrew

2010-01-01T23:59:59.000Z

238

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

SciTech Connect (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

239

Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output  

SciTech Connect (OSTI)

This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

Diana K. Grauer

2011-10-01T23:59:59.000Z

240

Wind turbine  

DOE Patents [OSTI]

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - advanced power converters Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PO.139) Track: Technical Summary: turbines with partial scale power converter and (ii) wind turbines with full scale power converter... power converter of the DFIG can be...

242

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

243

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

244

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21T23:59:59.000Z

245

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report  

SciTech Connect (OSTI)

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

Not Available

1990-07-01T23:59:59.000Z

246

Wind Partnerships for Advanced Component Technology: WindPACT Advanced Wind Turbine Drivetrain Designs; Northern Power Systems, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Northern Power Systems to develop a direct-drive (no gearbox) permanent magnet generator, which has the greatest potential to decrease the cost of energy.

Not Available

2006-03-01T23:59:59.000Z

247

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P.

2010-06-15T23:59:59.000Z

248

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P. (Montpelier, VT)

2011-05-10T23:59:59.000Z

249

A Simplified Morphing Blade for Horizontal Axis Wind Turbines  

E-Print Network [OSTI]

A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

Recanati, Catherine

250

Design of a Transonic Research Turbine Facility Ruolong Ma*  

E-Print Network [OSTI]

the power generated by the turbine to load-share with a motor to drive a centrifugal compressor whichHP drive motor, centrifugal compressor, and piping system, can be used with a wide range of turbine supplies the air to drive the turbine, and re-circulating most of the compressor discharge air

Morris, Scott C.

251

Ris-R-1209(EN) European Wind Turbine Testing  

E-Print Network [OSTI]

Risø-R-1209(EN) European Wind Turbine Testing Procedure Developments Task 1: Measurement Method to Verify Wind Turbine Performance Character- istics Raymond Hunter RES Task coordinator Troels Friis assessment and wind turbine power performance testing. A standards maintenance team is revising the current

252

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY  

E-Print Network [OSTI]

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

253

VARIABLE SPEED WIND TURBINE  

E-Print Network [OSTI]

Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

Chatinderpal Singh

254

On the Fatigue Analysis of Wind Turbines  

SciTech Connect (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

Sutherland, Herbert J.

1999-06-01T23:59:59.000Z

255

Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design  

E-Print Network [OSTI]

It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

Huang, F. F.; Naumowicz, T.

256

Micro-combustor for gas turbine engine  

DOE Patents [OSTI]

An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

Martin, Scott M. (Oviedo, FL)

2010-11-30T23:59:59.000Z

257

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

E-Print Network [OSTI]

D. Littlejohn, ASME Turbo Expo 2006: Power for Land, SeanTurbines and Power-Transactions of the Asme, 126 (2) (2004)Turbines and Power- Transactions of the Asme, 116 (3) (1994)

Cheng, R. K.

2009-01-01T23:59:59.000Z

258

Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings  

E-Print Network [OSTI]

GAS TURBINE FIRED HEATER INTEGRATION: ACHIEVE SIGNIFICANT ENERGY SAVINGS G. Iaquaniello**, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA, Rome, Italy ABSTRAer Faster payout will result if gas... as in steam turbines. A specific example of how cogeneration can work in this way is in the integration of a gas turbine with a fired heater as shown in Figure 2. Electrical or mechanical power is delivered by the gas turbine while the exhaust combustion...

Iaquaniello, G.; Pietrogrande, P.

259

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

incentive ($/W) wind turbine waste heat to power pressurewind turbines, fuel cells, organic rankine cycle/waste heat capture, pressure reduction turbines, advanced energy storage, and combined heat and power

Stadler, Michael

2014-01-01T23:59:59.000Z

260

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines  

E-Print Network [OSTI]

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines Frank Scheurich of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid of the aerodynamics of a vertical- axis wind turbine that consists of three curved rotor blades that are twisted

McCalley, James D.

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Single Rotor Turbine  

DOE Patents [OSTI]

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

262

Combustion Turbine CHP System for Food Processing Industry -...  

Broader source: Energy.gov (indexed) [DOE]

power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food Processing Industry More Documents &...

263

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

with conventional steam turbine powered electric generation.used to boil water for steam turbine generation as a secondturbine) and Rankine (steam turbine) cycles, as illustrated

Apps, J.A.

2006-01-01T23:59:59.000Z

264

Fish schooling as a basis for vertical axis wind turbine farm design  

E-Print Network [OSTI]

Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

Whittlesey, Robert W; Dabiri, John O

2010-01-01T23:59:59.000Z

265

Influence of refraction on wind turbine noise  

E-Print Network [OSTI]

A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

266

American Institute of Aeronautics and Astronautics An Experimental Investigation on the Effects of Turbine Rotation  

E-Print Network [OSTI]

of Turbine Rotation Directions on the Wake Interference of Wind Turbines Wei Yuan1 , Ahmet Ozbay2 , Wei Tian3 to investigate on the effects of the relative rotation directions of two tandwm wind turbines on the power production performance and flow characteristics in the wakes of two wind turbines in tandem. The experimental

Hu, Hui

267

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network [OSTI]

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using a Broad Range of Alternative Fuels Luke Cowell. Solar Turbines Abstract: Solar Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation

Ponce, V. Miguel

268

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network [OSTI]

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

Foss, Bjarne A.

269

1. Introduction The efficiency of steam turbines can be improved by in-  

E-Print Network [OSTI]

1. Introduction The efficiency of steam turbines can be improved by in- creasing the maximum-efficiency power plant. 2. Turbines, Steam, Efficiency and Power Plant A power plant has a steam generator which the operating pressure is below about 22 MPa, in which case the steam is separated and passed on to the turbine

Cambridge, University of

270

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network [OSTI]

in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart...

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

271

Biphase Turbine Tests on Process Fluids  

E-Print Network [OSTI]

The Biphase turbine is a device for effectively producing shaft power from two-phase (liquid and gas) pressure let-downs and for separating the resulting phases. No other device is currently available for simultaneously performing these tasks...

Helgeson, N. L.; Maddox, J. P.

1983-01-01T23:59:59.000Z

272

The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations  

SciTech Connect (OSTI)

The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

Mueller, Martin; /SLAC

2010-12-16T23:59:59.000Z

273

Performance of propeller wind turbines  

SciTech Connect (OSTI)

Presented herein is a parametric study of the performance of propeller wind turbines with realistic drag/lift ratios. Calculations were made using the complete Glauert vortex blade element theory in annular streamtube elements with the complete turbine performance being the sum of the elemental results up to a specified tip speed ratio. The objective here is to exhibit a new computational technique which yields performance directly when tangential speed ratio and section aerodynamic characteristics are specified. It was found that for a tip speed ratio of 4, turbines with drag/lift ratios of 0.00 and 0.01 had power coefficients of 0.575 and 0.55, respectively. The off-design performance of the finite drag/lift was far better than that of their zero drag counterparts, except in a + or - 20% region about the design conditions. Tolerance to off-design operation increased with decreasing tip speed ratios so that the annual energy capture for tip speed ratios between 2 and 4 was about 87% of the ideal turbine value. The results are intended to provide a basis for re-evaluation of the power range classes of fixed pitch turbines and design tip speed ratios.

Wortman, A.

1983-11-01T23:59:59.000Z

274

Steam turbine upgrades: A utility based approach  

SciTech Connect (OSTI)

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

275

Wind turbine rotor aileron  

DOE Patents [OSTI]

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

276

2/16/2014 Can You Charge Your Mobile With Wind Turbine? -TechTxr http://www.techtxr.com/can-charge-mobile-wind-turbine/ 1/7  

E-Print Network [OSTI]

maximum functionality. Home Wind Generators comparestores.net Looking for Wind Turbines? Compare Latest Turbine? | February 9, 2014 Wind Energy Wind Mill Wind Power Wind Mobile About Wind Power Wind Generator Mobile Generator Mobile Building #12;2/16/2014 Can You Charge Your Mobile With Wind Turbine

Chiao, Jung-Chih

277

Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006  

SciTech Connect (OSTI)

This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

Dauble, Dennis D.

2006-08-01T23:59:59.000Z

278

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect (OSTI)

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

279

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

280

36 AUGUST | 2011 EnhancEd TurbinE  

E-Print Network [OSTI]

36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected by asymmetric loads, variable wind speeds, and se- vere weather conditions which cause wind turbines to change their states. A typical wind turbine under- goes various states during its daily operations. The wind turbine

Kusiak, Andrew

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants  

SciTech Connect (OSTI)

Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-01-01T23:59:59.000Z

282

Learning Curve  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is a fundamental human characteristic that a person engaged in a repetitive task will improve his performance over time. If data are gathered on this phenomenon, a curve representing a decrease in effort per unit for repetitive operations can be developed. This phenomenon is real and has a specific application in cost analysis, cost estimating, or profitability studies related to the examination of future costs and confidence levels in an analysis. This chapter discusses the development and application of the learning curve.

1997-03-28T23:59:59.000Z

283

Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)  

SciTech Connect (OSTI)

Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

Clifton, A.

2012-12-01T23:59:59.000Z

284

Steam Turbine Materials and Corrosion  

SciTech Connect (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

285

Pitch-controlled variable-speed wind turbine generation  

SciTech Connect (OSTI)

Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

Muljadi, E.; Butterfield, C.P.

2000-03-01T23:59:59.000Z

286

E-Print Network 3.0 - accurate wind power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

prediction of power produced by each turbine. The power generated by electric wind turbines changes rapidly... because of the continuous fluctuation of wind ... Source:...

287

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

288

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect (OSTI)

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

289

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network [OSTI]

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

290

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

291

Stresa, Italy, 26-28 April 2006 A MICRO TURBINE DEVICE WITH ENHANCED  

E-Print Network [OSTI]

reported during test. 1. INTRODUCTION Micro gas turbine engine [1-2] is one of the promising solutions to provide high-density power source for microsystems. We are developing a silicon-based micro gas turbine in micro gas turbine engine, which will generate power output and drive the compressor. The critical

Paris-Sud XI, Université de

292

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics  

E-Print Network [OSTI]

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

Massachusetts at Amherst, University of

293

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

by which wind turbine technology converts wind energy intoWind energy developers usually power companies combined with a wind turbine

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

294

Wind pro?le assessment for wind power purposes.  

E-Print Network [OSTI]

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

295

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

296

Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine  

E-Print Network [OSTI]

An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

Gruber, Timothy J. (Timothy James)

2012-01-01T23:59:59.000Z

297

First U.S. Grid-Connected Offshore Wind Turbine Installed Off...  

Office of Environmental Management (EM)

deepwater offshore floating wind turbine near Bangor. When the turbine was turned on and electricity began flowing through an undersea cable to Central Maine Power on June 13, the...

298

Combustion modeling in advanced gas turbine systems  

SciTech Connect (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

299

Generic turbine design study. Final report  

SciTech Connect (OSTI)

The purpose of Task 12, Generic Turbine Design Study was to develop a conceptual design of a combustion turbine system that would perform in a pressurized fluidized bed combustor (PFBC) application. A single inlet/outlet casing design that modifies the W251B12 combustion turbine to provide compressed air to the PFBC and accept clean hot air from the PFBC was developed. Performance calculations show that the net power output expected, at an inlet temperature of 59{degrees}F, is 20,250 kW.

Not Available

1993-06-01T23:59:59.000Z

300

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Turbines Benefit Crops  

ScienceCinema (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2013-03-01T23:59:59.000Z

302

Power Generation and Power Use Decisions in an Industrial Process  

E-Print Network [OSTI]

of power generation and power use economics, most people want to under stand power generation. The primary questions usually relate to increasing the amount of power available, starting with a high pressure steam turbine or a gas turbine. They are "How... pressure Tsink OF temperature corresponding to outlet pressure Qsource = steam flow in Btu per hour Wideal Ideal power produced in Btu per hour 460 Conversion to absolute tempera ture "R From here, knowing the efficiency of the turbine...

Gilbert, J. S.; Niess, R. C.

303

Sliding vane geometry turbines  

DOE Patents [OSTI]

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30T23:59:59.000Z

304

Combined Cycle Combustion Turbines  

E-Print Network [OSTI]

Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

305

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

306

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

307

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

SciTech Connect (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

308

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

#12;Flow Duration Curve Load Duration Curve #12;1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve #12;What are they? How do you make one? #12;Describes

309

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

Flow Duration Curve Load Duration Curve 1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve What are they? How do you make one? Describes the percent of time a flow rate

310

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

311

Modeling the Energy Output from an In-Stream Tidal Turbine Farm  

E-Print Network [OSTI]

AbstractThis paper is based on a recent paper presented in the 2007 IEEE SMC conference by the same authors [1], discussing an approach to predicting energy output from an instream tidal turbine farm. An in-stream tidal turbine is a device for harnessing energy from tidal currents in channels, and functions in a manner similar to a wind turbine. A group of such turbines distributed in a site is called an in-stream tidal turbine farm which is similar to a wind farm. Approaches to estimating energy output from wind farms cannot be fully transferred to study tidal farms, however, because of the complexities involved in modeling turbines underwater. In this paper, we intend to develop an approach for predicting energy output of an in-stream tidal turbine farm. The mathematical formulation and basic procedure for predicting power output of a stand-alone turbine 1 is presented, which includes several highly nonlinear terms. In order to facilitate the computation and utilize the formulation for predicting power output from a turbine farm, a simplified relationship between turbine distribution and turbine farm energy output is derived. A case study is then conducted by applying the numerical procedure to predict the energy output of the farms. Various scenarios are implemented according to the environmental conditions in Seymour Narrows, British Columbia, Canada. Additionally, energy cost results are presented as an extension. Index Termsrenewable energy, in-stream turbine, tidal current, tidal power, vertical axis turbine, farm system modeling, in-stream tidal turbine farm 1 A stand-alone turbine refers to a turbine around which there is no other turbine that might potentially affect the performance of this turbine.

Ye Li; Barbara J. Lence; Sander M. Calisal

312

Annual Report: Turbines (30 September 2012)  

SciTech Connect (OSTI)

The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address ? Development and design of aerothermal and materials concepts in FY12-13. ? Design and manufacturing of these advanced concepts in FY13. ? Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

Alvin, Mary Anne [NETL] [NETL; Richards, George [NETL] [NETL

2012-09-30T23:59:59.000Z

313

Vertical axis wind turbine control strategy  

SciTech Connect (OSTI)

Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

McNerney, G.M.

1981-08-01T23:59:59.000Z

314

Industrial Advanced Turbine Systems Program overview  

SciTech Connect (OSTI)

DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

Esbeck, D.W.

1995-12-31T23:59:59.000Z

315

Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K  

SciTech Connect (OSTI)

The objective of the proposed research is to utilize modern computational tools, integrated with focused experiments, to design innovative ferritic NiAl-strengthened superalloys for fossil-energy applications at temperatures up to 1,033 K. Specifically, the computational alloy design aims toward (1) a steady-state creep rate of approximately 3 x 10{sup -11} s{sup -1} at a temperature of 1,033 K and a stress level of 35 MPa, (2) a ductility of 10% at room temperature, and (3) good oxidation and corrosion resistance at 1,033 K. The research yielded many outstanding research results, including (1) impurity-diffusion coefficients in {alpha} Fe have been calculated by first principles for a variety of solute species; (2) the precipitates were characterized by the transmission-electron microscopy (TEM) and analytical-electron microscopy (AEM), and the elemental partitioning has been determined; (3) a bending ductility of more than 5% has been achieved in the unrolled materials; and (4) optimal compositions with minimal secondary creep rates at 973 K have been determined. Impurity diffusivities in {alpha} Fe have been calculated within the formalisms of a harmonic transition-state theory and Le Claire nine-frequency model for vacancy-mediated diffusion. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion. Calculated activation energies for Ta and Hf impurities suggest that these solutes should display impurity-diffusion coefficients larger than that for self-diffusion in the body-centered cubic Fe. Preliminary mechanical-property studies identified the alloy Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B (FBB-8) in weight percent (wt.%) for detailed investigations. This alloy shows precipitation of NiAl particles with an average diameter of 130 nm. In conjunction with the computational alloy design, selected experiments are performed to investigate the effect of the Al content on the ductility and creep of prototype Fe-Ni-Cr-Al-Mo alloys. Three-point-bending experiments show that alloys containing more than 5 wt.% Al exhibit poor ductility (< 2%) at room temperature, and their fracture mode is predominantly of a cleavage type. Two major factors governing the poor ductility are (1) the volume fraction of NiAl-type precipitates, and (2) the Al content in the {alpha}-Fe matrix. A bend ductility of more than 5% can be achieved by lowering the Al concentration to 3 wt.% in the alloy. The alloy containing about 6.5 wt.% Al is found to have an optimal combination of hardness, ductility, and minimal creep rate at 973 K. A high volume fraction of precipitates is responsible for the good creep resistance by effectively resisting the dislocation motion through Orowan-bowing and dislocation-climb mechanisms. The effects of stress on the creep rate have been studied. With the threshold-stress compensation, the stress exponent is determined to be 4, indicating power-law dislocation creep. The threshold stress is in the range of 40-53 MPa. The addition of W can significantly reduce the secondary creep rates. Compared to other candidates for steam-turbine applications, FBB-8 does not show superior creep resistance at high stresses (> 100 MPa), but exhibit superior creep resistance at low stresses (< 60 MPa).

Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

2010-04-30T23:59:59.000Z

316

Steam turbine restart temperature maintenance system and method  

SciTech Connect (OSTI)

A restart temperature maintenance system is described for a steam turbine system; the steam turbine system comprising a steam turbine, the turbine including a rotation shaft, an outer metal shell means. The restart temperature maintenance system consists of: (a) fastener means affixed to the outer surface of the shell means at predetermined positions; (b) air gap spacer means affixed to the outer surface of the shell means, the air gap spacer means substantially covering the shell means; (c) a plurality of electric heating blanket means of predetermined size and shape positioned in insulative relationship over the air gap spacer means and the heating blanket means maintained in predetermined position by the fastener means; (d) heat sensor means affixed to the outer metal shell means of the steam turbine in predetermined position; (e) power supply means for supplying power to the heating blanket means; (f) heat sensor monitor and controller means connected in circuit between the power supply means and the heat sensor means.

McClelland, T.R.

1986-04-29T23:59:59.000Z

317

Working on new gas turbine cycle for heat pump drive  

E-Print Network [OSTI]

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

318

Offshore Series Wind Turbine Variable Hub heights & rotor diameters  

E-Print Network [OSTI]

3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

Firestone, Jeremy

319

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation  

E-Print Network [OSTI]

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation Clemens Jauch Risø National Laboratory Wind Energy Department P.O. Box 49 DK-4000 Roskilde, Denmark clemens.jauch@risoe.dk Abstract: In this paper it is investigated how active-stall wind turbines can contribute to the stabilisation of the power

320

Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number  

E-Print Network [OSTI]

axis wind turbines (VAWT) offer several advantages over horizontal axis wind turbines (HAWT), namely to yaw wind direction (because they are omnidirectional), and their increased power output in skewed flowCoriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number Hsieh

Colonius, Tim

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines  

E-Print Network [OSTI]

Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines JASON W used thermal infrared (TIR) cameras to assess the flight behavior of bats at wind turbines because fatalities, migratory tree bats, thermal infrared imaging, wind power, wind turbines. Recent studies indicate

Holberton, Rebecca L.

322

LQG control of horizontal wind turbines for blades and tower loads alleviation  

E-Print Network [OSTI]

LQG control of horizontal wind turbines for blades and tower loads alleviation A. Pintea*, N of power produced by two bladed horizontal variable speed wind turbines. The proposed controller ensures oscillations and with the tower bending tendency. Keywords: LQG control, Wind turbines, Multi-objective control

Paris-Sud XI, Université de

323

Hydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine  

E-Print Network [OSTI]

power (2) · Vertical axis turbines ­ Blue Energy ­ Polo ­ ... 4 other vertical axis devices · Horizontal of Darrieus vertical axis wind turbine (VAWT) through 90 to lie horizontally across a tidal flow · StretchHydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine Prof. Guy

Gorban, Alexander N.

324

Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine  

E-Print Network [OSTI]

Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine Bryan E. Kaiser1 , Andrew B: poroseva@unm.edu Introduction Conventional horizontal axis wind turbines (HAWTs) require harvesting. To overcome this limitation, small to midsized wind turbine designs capable of power

Maccabe, Barney

325

High-Order Sliding Mode Control of a DFIG-Based Wind Turbine  

E-Print Network [OSTI]

High-Order Sliding Mode Control of a DFIG-Based Wind Turbine for Power Maximization and Grid Fault tolerance of a Doubly-Fed Induction Generator (DFIG)-based Wind Turbine (WT). These variable speed systems have several advantages over the traditional wind turbine operating methods, such as the reduction

Paris-Sud XI, Université de

326

High-Order Sliding Mode Control of DFIG-Based Marine Current Turbine  

E-Print Network [OSTI]

High-Order Sliding Mode Control of DFIG-Based Marine Current Turbine S.E. Ben Elghali1 , M-based marine current turbine. Indeed, to increase the generated power and therefore the efficiency of a marine current turbine, a nonlinear controller has been proposed. DFIG has been already considered for similar

Brest, Université de

327

Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines  

E-Print Network [OSTI]

Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno- sis of efficiency problems for large gas turbines the ultimate goal of applying the system in the day-to-day maintenance of gas- turbine power plants. A Overview

Horvitz, Eric

328

Automated DecisionAnalytic Diagnosis of Thermal Performance in Gas Turbines  

E-Print Network [OSTI]

Automated Decision­Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno­ sis of e#ciency problems for large gas turbines the ultimate goal of applying the system in the day­to­day maintenance of gas­ turbine power plants. A Overview

Horvitz, Eric

329

Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior  

E-Print Network [OSTI]

variable-speed wind turbines in grid stability studies. Often the values for model parameters are poorly parameters on the dynamic behavior of wind turbine generators. A parameter estimation process is then used [1], [2]. Accordingly, the impact of wind turbine generators (WTGs) on power system dynamic

Hiskens, Ian A.

330

DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer  

E-Print Network [OSTI]

DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer with the power generation control in variable speed wind turbines. In this context, a control strategy is proposed to ensure power extraction optimization of a DFIG- based wind turbine. The proposed control

Brest, Université de

331

New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)  

SciTech Connect (OSTI)

Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

Roberts, J. O.

2014-01-01T23:59:59.000Z

332

Coatings for the protection of turbine blades from erosion  

SciTech Connect (OSTI)

Many types of turbines, including aircraft gas turbines, steam turbines, and power recovery turbines, suffer from solid particle erosion caused by a variety of materials ingested into the machines. Utilization of various laboratory erosion tests tailored to the specific application by using various erodents, temperatures, velocities, and angles of impact, have been shown to be effective in the development and selection of coatings for the erosion protection of turbine blades and other components. Detonation gun coatings have demonstrated their efficacy in providing substantial protection in many situations. It has now been shown that several tungsten carbide and chromium carbide Super D-Gun{trademark} coatings not only have better erosion resistance than their D-Gun analogs, but cause little or no degradation of the fatigue properties of the blade alloys. Nonetheless, caution should be employed in the application of any laboratory data to a specific situation and additional testing done as warranted by the turbine designer.

Walsh, P.N.; Quets, J.M.; Tucker, R.C. Jr. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States)

1995-01-01T23:59:59.000Z

333

Sea trials for Eurodyn gas turbine  

SciTech Connect (OSTI)

The Eurodyn gas turbine concept is a collaboration between Ulstein Turbine, Turbomeca and Volvo Aero. It is also supported by the European Community under its high-technology Eureka program (EU 159). A full-size Eurodyn prototype has been running on a test bed in France since October 1992. A complete engine, including a power output gear-box, began parallel test bed trials in Norway in March 1993. Results to date indicate that these test engines have achieved efficiencies of 32.8%. The corresponding output is recorded as being 2.6 MW (ISO) with NO{sub x} emissions stated as being as low as 24 ppm (15% O{sub 2}) running on marine diesel fuel. The Eurodyn gas turbine is designed to provide some 9000 hours of operation between overhauls, effectively giving a typical fast ferry application something like three years of operation. The TBO for power generation applications is 20000 hours, which also means about three years of operation. Of particular significance in this gas turbine package is the incorporation of a dedicated output gearbox. For marine applications the gearbox developed by Ulstein Propeller is a compact and light two-stage epicyclic unit reducing the power turbine output speed of 13000 r/min down to 1000 r/min. 3 figs.

Kunberger, K.

1995-04-01T23:59:59.000Z

334

10 MW Supercritical CO2 Turbine Test  

SciTech Connect (OSTI)

The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650C in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

Turchi, Craig

2014-01-29T23:59:59.000Z

335

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents [OSTI]

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

336

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents [OSTI]

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

337

E-Print Network 3.0 - air-lift water-pumping wind-turbines Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water-pumping wind-turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: air-lift water-pumping wind-turbines Page: << < 1 2 3 4 5 > >> 1 Review...

338

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

339

Fuel Interchangeability Considerations for Gas Turbine Combustion  

SciTech Connect (OSTI)

In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

Ferguson, D.H.

2007-10-01T23:59:59.000Z

340

PO. 254 Control of Power Train Loads  

E-Print Network [OSTI]

Abstract summary Variable loads along the power train are the primary cause attributed to the failure of gears, bearings, and other mechanical components. The concept of anticipatory control applied to a wind power train is presented. This new approach to power train load management is based on the data reflecting the current status of the power train. The model driving the optimization of the power train loads considers four different objectives, including minimization of the torque variability and power maximization. A software tool for power train load management is presented. This new approach to power train load control is based on the data reflecting the current status of the power train. Such data is collected by a typical SCADA system. The model driving the optimization of the power train loads considers four different objectives, including minimization of the torque variability and power maximization. Details of the model that is applicable to different turbines are presented Objectives Goal: Transform a wind a farm into a wind power plant Example objectives: ? Minimization of the torque ramp rate ? Maximization of the power produced ? Maximization of the power quality Modify the shape of the power curve Methods Data mining/Knowledge discovery

Andrew Kusiak

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Power links with Ireland -- Excitation of turbine-generator shaft torsional vibrations by variable frequency currents superimposed on DC currents in asynchronous HVDC links  

SciTech Connect (OSTI)

The paper describes an in-depth analysis of excitation of shaft torsional vibrations in steam-turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on the DC currents in asynchronous Links. It extends earlier work to include an in depth analysis of system scaling factors for harmonic currents impressed on generators in Northern Ireland by an inverter and to investigate the phenomena for possible torsional vibrations in the generators by the Link. Frequencies at which shaft torsional vibrations would be excited by modulation product harmonics in 50Hz/50Hz asynchronous Links as a function of deviation in system frequency is reviewed. Relative noncharacteristic current levels for 50Hz/50Hz connectors are illustrated assuming ripple currents at the inverter which gives realistic harmonic voltages in a twelve-pulse bridge. The paper then shows that torques in machines in multi-machine networks may be estimated by proportioning HVDC link harmonic disturbance current appropriately to each machine at risk. It is concluded that variable-frequency ripple currents superimposed on the DC current in asynchronous links can excite sympathetic torsional vibrations in turbine-generator-exciter shafts.

Hammons, T.J.; Tay, B.W.; Kok, K.L. [Glasgow Univ. (United Kingdom)] [Glasgow Univ. (United Kingdom)

1995-08-01T23:59:59.000Z

342

A Methodology for Estimating the Parameters of Steam Turbine Generator Shaft Systems for Subsynchronous Resonance Studies .  

E-Print Network [OSTI]

??The increase of coal and nuclear power steam turbines over the past few decades combined with transmission line series capacitors creates a potential drawback known (more)

Sambarapu, Krishna

2012-01-01T23:59:59.000Z

343

An experimental study of improvement of a micro hydro turbine performance.  

E-Print Network [OSTI]

??The thesis includes a literature survey of small hydraulic turbines, incorporating a historical review. The possible role of "micro hydros" in generating power in various (more)

Yassi, Yousef

1999-01-01T23:59:59.000Z

344

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

345

Duration Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect (OSTI)

This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2013-06-01T23:59:59.000Z

346

Safety and Function Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

347

Duration Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

348

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

SciTech Connect (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

349

Aeroelastic tailoring in wind-turbine blade applications  

SciTech Connect (OSTI)

This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

Veers, P.; Lobitz, D. [Sandia National Labs., Albuquerque, NM (United States); Bir, G. [National Renewable Energy Lab., Golden, CO (United States). National Wind Technology Center

1998-04-01T23:59:59.000Z

350

ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM  

SciTech Connect (OSTI)

Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

Frank Macri

2003-10-01T23:59:59.000Z

351

Topping Turbines: Adding New Life to Older Plants  

E-Print Network [OSTI]

An existing power plant can be repowered at a modest investment cost through a topping turbine installation. Essentially, this consists of replacing the existing old, low pressure boilers with new, high pressure boilers and adding a new, high...

Cadrecha, M.

1984-01-01T23:59:59.000Z

352

Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint  

SciTech Connect (OSTI)

This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

2007-02-01T23:59:59.000Z

353

Responses of floating wind turbines to wind and wave excitation  

E-Print Network [OSTI]

The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

Lee, Kwang Hyun

2005-01-01T23:59:59.000Z

354

Vertical axis wind turbine with continuous blade angle adjustment  

E-Print Network [OSTI]

The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

Weiss, Samuel Bruce

2010-01-01T23:59:59.000Z

355

Performance Study and Optimization of the Zephergy Wind Turbine  

E-Print Network [OSTI]

There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

Soodavi, Moein

2013-12-04T23:59:59.000Z

356

The Economics of Back-Pressure Steam Turbines  

E-Print Network [OSTI]

Recently, back-pressure steam turbines have become the focal point in many cogeneration applications. This is a result of the savings in operating costs associated with the generation of electrical or mechanical power coincident with the economical...

Wagner, J. R.; Choroszylow, E.

1982-01-01T23:59:59.000Z

357

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER...  

Broader source: Energy.gov (indexed) [DOE]

electrical power, such as steam turbine technology, nuclear power, hydroelectric and wind facilities, represent competition to the global power plant mariket. Thus grant of...

358

Reducing emissions by addressing steam turbine inefficiencies  

SciTech Connect (OSTI)

This paper reports that inefficient steam turbines increase fossil plant emissions because additional fuel must be burned to meet the power output requirements. During a turbine outage, plant performance and maintenance staff make and prioritize repair decisions within tight time and budget constraints. This paper describes how Georgia Power identifies performance losses of degraded components in the steam path and determines their impact on heat rate. Turbine performance is assessed by a steam path audit program that Encotech has developed and make available to utilities. Georgia Power has conducted several operating tests that give good correlation with audit results. Georgia Power uses the audit information to make the most cost-effective repairs to maintain a low heat rate and to reduce emissions. The Clean Air Act presents electric utilities with the challenge of reducing emissions from fossil plants in the most cost-effective way possible. Meeting the stack emissions limitations often translates to large capital expenditures and increased cycle heat rate. One resource the electric utilities have to reduce the costly impact of compliance with the Clean Air Act is control over the efficiency of their steam turbines.

Harris, J.C. (Georgia Power Co., Atlanta, GA (United States)); Cioffi, D.H. (Encotech, Inc., Schenectady, NY (United States))

1992-01-01T23:59:59.000Z

359

Aquantis Ocean Current Turbine Development Project Report  

SciTech Connect (OSTI)

The Aquantis Current Plane (C-Plane) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

Fleming, Alex J.

2014-08-23T23:59:59.000Z

360

Theory and tests of two-phase turbines  

SciTech Connect (OSTI)

Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.

Elliot, D.G.

1982-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Test Program for High Efficiency Gas Turbine Exhaust Diffuser  

SciTech Connect (OSTI)

This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of strutlets to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

Norris, Thomas R.

2009-12-31T23:59:59.000Z

362

Turbine disc sealing assembly  

DOE Patents [OSTI]

A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

Diakunchak, Ihor S.

2013-03-05T23:59:59.000Z

363

Gas turbine diagnostic system  

E-Print Network [OSTI]

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

364

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

365

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

366

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

367

Ceramic Cerami Turbine Nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

368

New Siemens Research Turbine - time lapse  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and Siemens Energy Inc. recently commissioned a new 2.3 megawatt Siemens wind turbine at NREL's National Wind Technology Center. This video shows a time lapse of the installation. The turbine is the centerpiece of a multi-year project to study the performance and aerodynamics of a new class of large, land-based machines in what will be the biggest government-industry research partnership for wind power generation ever undertaken in the U.S.

None

2009-01-01T23:59:59.000Z

369

10-MW Supercritical-CO2 Turbine  

Broader source: Energy.gov [DOE]

This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cyclethe supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

370

Oxidation of advanced steam turbine alloys  

SciTech Connect (OSTI)

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

371

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

372

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

373

Cooled snubber structure for turbine blades  

DOE Patents [OSTI]

A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

2014-04-01T23:59:59.000Z

374

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect (OSTI)

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

375

Development of biomass as an alternative fuel for gas turbines  

SciTech Connect (OSTI)

A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

1991-04-01T23:59:59.000Z

376

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

377

Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition  

SciTech Connect (OSTI)

Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

Li, Ye; Karri, Naveen K.; Wang, Qi

2014-04-30T23:59:59.000Z

378

Toward Controlled Wind Farm Output: Adjustable Power Filtering  

E-Print Network [OSTI]

wind energy is extracted by the turbine blades. CP depends on the tip-speed ratio, , defined as = Rh structure for a fully-rated converter interfaced wind turbine. A singular perturbations decomposition the static curve that describes the aerodynamic conversion of energy by the bladed turbine rotor

Lehn, Peter W.

379

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network [OSTI]

a boom-bust cycle in wind power plant investment in the U.S.tax credit for wind turbine power plants is an ineffectivewind power and became comfortable with turbine technology and plant

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

380

Load attenuating passively adaptive wind turbine blade  

DOE Patents [OSTI]

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Load attenuating passively adaptive wind turbine blade  

DOE Patents [OSTI]

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S.; Lobitz, Donald W.

2003-01-07T23:59:59.000Z

382

Advanced turbine systems: Studies and conceptual design  

SciTech Connect (OSTI)

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

383

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1983-03-01T23:59:59.000Z

384

Wind Turbine Acoustic Noise A white paper  

E-Print Network [OSTI]

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

385

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network [OSTI]

R. Krutenat, Gas Turbine Materials Conference Proceedings,Conference on Gas Turbine Materials in a Marine Environment,in developing new turbine materials, coatings and processes,

Boone, Donald H.

2013-01-01T23:59:59.000Z

386

Composite turbine bucket assembly  

DOE Patents [OSTI]

A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

Liotta, Gary Charles; Garcia-Crespo, Andres

2014-05-20T23:59:59.000Z

387

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

388

Gas turbine combustor transition  

DOE Patents [OSTI]

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

389

Turbine blade vibration dampening  

DOE Patents [OSTI]

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

1997-07-08T23:59:59.000Z

390

Turbine blade vibration dampening  

DOE Patents [OSTI]

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

1997-07-08T23:59:59.000Z

391

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect (OSTI)

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01T23:59:59.000Z

392

Small Power Plant Exemption (06-SPPE-1) Imperial County  

E-Print Network [OSTI]

Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

393

Steam turbine materials and corrosion  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

394

Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted  

E-Print Network [OSTI]

Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn of electricity wind can make varies constantly. Sometimes a wind turbine will make no power at all is an indicator of how much energy a particular wind turbine makes in a particular place. Continued on page 2 #12

Massachusetts at Amherst, University of

395

Proceedings of the South Dakota Academy of Science,Vol. 76 (1997) 113 EFFECTS OF WIND TURBINES ON NESTING  

E-Print Network [OSTI]

Proceedings of the South Dakota Academy of Science,Vol. 76 (1997) 113 EFFECTS OF WIND TURBINES influenced by the presence of wind turbines. Red-tailed and Swainson's hawks, American kestrels, and northern resources such as wind- power have received strong public support, impacts of wind turbines on avian

396

PHYSICAL REVIEW E 88, 042146 (2013) Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics  

E-Print Network [OSTI]

PHYSICAL REVIEW E 88, 042146 (2013) Uncovering wind turbine properties through two, such as the rated speed of the wind turbine or the descriptive wind speed statistics, can be related to the equations describing the evolution of power production and wind speed at single wind turbines. DOI: 10

Peinke, Joachim

397

Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous  

E-Print Network [OSTI]

1 Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine of this variable speed wind turbine based on multiple generators drive-train configuration. Index Terms--Wind power

Chen, Zhe

398

Am. MidI. Nat. l:i9:29-3R Bird Flight Characteristics Near Wind Turbines in Minnesota  

E-Print Network [OSTI]

·... Am. MidI. Nat. l:i9:29-3R Bird Flight Characteristics Near Wind Turbines in Minnesota ROBERT C in wind turbine technologies have reduced the cost'! associated with wind power production. and have with wind power development has been bird mortality from collisions with wind turbines (McCrary 1'1 al

399

Abstract--This paper proposes a methodology to decide the optimal matching between the size of the rotor of a wind turbine  

E-Print Network [OSTI]

of the rotor of a wind turbine and the rated power of a permanent magnet synchronous machine. This is made of the wind turbine, the gearbox's transformation ratio, the battery voltage and the wind speed probability's rated power and the wind turbine's rotor size. The system studied in this paper consists of 220 (V)/50

Paris-Sud XI, Université de

400

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Turbine nozzle positioning system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30T23:59:59.000Z

402

Turbine nozzle positioning system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

Norton, P.F.; Shaffer, J.E.

1996-01-30T23:59:59.000Z

403

Project Sponsor: Department of EnergyADVANCED POWER & ENERGY www.apep.uci.edu  

E-Print Network [OSTI]

turbine, which does not allow simple insertion of an SOFC power block into a gas and steam turbine based and steam turbine power devices. As a result, attention to the detailed integration of the SOFC components Rao, A.D., Y. Yi and G.S. Samuelsen, "Gas Turbine based High Efficiency `Vision 21' Natural Gas

Mease, Kenneth D.

404

Adaptive pitch control for variable speed wind turbines  

DOE Patents [OSTI]

An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

Johnson, Kathryn E. (Boulder, CO); Fingersh, Lee Jay (Westminster, CO)

2012-05-08T23:59:59.000Z

405

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect (OSTI)

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

406

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

SciTech Connect (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

407

Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)  

SciTech Connect (OSTI)

High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

Sheng, S.; Yang, W.

2013-07-01T23:59:59.000Z

408

DEVELOPMENT OF MODIFIED WIND TURBINE: A PAST REVIEW  

E-Print Network [OSTI]

Wind energy represents a viable alternative, as it is a virtually endless resource. Through the next several decades, renewable energy technologies, thanks to their continually improving performance and cost, and growing recognition of their Environmental, economic and social values, will grow increasingly competitive with Traditional energy technologies, so that by the middle of the 21 st century, renewable Energy, in its various forms, should be supplying half of the worlds energy needs. In this paper various types of wind turbine are reviewed to understand and the development and modification of horizontal axis wind turbine and how more power can be generated compared to bare turbine of the same rotor blade diameter.

Rob Res; N R Deshmukh; S J Deshmukh; N R Deshmukh; S J Deshmukh

409

ERCOT's Dynamic Model of Wind Turbine Generators: Preprint  

SciTech Connect (OSTI)

By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

2005-08-01T23:59:59.000Z

410

Investigation of self-excited induction generators for wind turbine applications  

SciTech Connect (OSTI)

The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sent to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.

Muljadi, E.; Butterfield, C.P.; Sallan, J.; Sanz, M.

2000-02-28T23:59:59.000Z

411

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)  

SciTech Connect (OSTI)

Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

2012-01-01T23:59:59.000Z

412

Laboratory implementation of variable-speed wind turbine generation  

SciTech Connect (OSTI)

To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

Zinger, D.S. [Northern Illinois University, DeKalb, IL (United States)] [Northern Illinois University, DeKalb, IL (United States); Miller, A.A. [Univ. of Idaho, Moscow, ID (United States)] [Univ. of Idaho, Moscow, ID (United States); Muljadi, E.; Butterfield, C.P.; Robinson, M.C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

1996-07-01T23:59:59.000Z

413

High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles  

E-Print Network [OSTI]

HIGH EFFICIENCY GAS TlJR1HNES OVERCOME COGENFRATION PROJECT FEASIBILITY HURDLES JIM KING Gas Turbine Perfonumce Engineer STEVART &: STEVENSON SERVICES. INC. Houston. TelUlS ABSTRACT Cogeneration project feasibility sometimes fails... during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees of freedom in terms of power augmentation through...

King, J.

414

Dual-speed wind turbine generation  

SciTech Connect (OSTI)

Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)] [Flowind Corp., San Rafael, CA (United States)

1996-10-01T23:59:59.000Z

415

Direct current uninterruptible power supply method and system  

DOE Patents [OSTI]

A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

Sinha, Gautam

2003-12-02T23:59:59.000Z

416

Turbine inner shroud and turbine assembly containing such inner shroud  

DOE Patents [OSTI]

A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Corman, Gregory Scot (Ballston Lake, NY); Dean, Anthony John (Scotia, NY); DiMascio, Paul Stephen (Clifton Park, NY); Mirdamadi, Massoud (Niskayuna, NY)

2001-01-01T23:59:59.000Z

417

Why Condensing Steam Turbines are More Efficient than Gas Turbines  

E-Print Network [OSTI]

WHY CONDENSING STEAM TURBINES ARE MORE EFFICIENT THAN GAS TURBINES KENNETH E. NELSON Associate Energy Consultant Dow Chemical U.S.A. Plaquemine. Louisiana INTRODUCTION AND ABSTRACT Consider the following questions: 1. Which is bigger... statement. however, is relevant to value. GAS TURBINE CYCLE Figure :> shows the enthalpy analysis for a gas turbine cycle employing a heat recovery unit for steam generation. Air enters the compressor where it's boosted to about 190 psi and mixed...

Nelson, K. E.

418

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

SciTech Connect (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

419

Some problems of steam turbine lifetime assessment and extension  

SciTech Connect (OSTI)

The problems of lifetime assessment and extension in reference to power equipment (including high-temperature rotors and casings of power steam turbines) and theoretical and normative grounds for these procedures, as well as some specific measures to prolong the turbine service time and diagnose the turbine components` conditions in the operation process, were covered in many published works, including the authors` ones. The present paper is to consider in more details some aspects of these problems that have not been sufficiently considered in known publications. In particular, it seems important to dwell on experimental verification of some mathematical models for calculating temperatures, stresses, and strains in the turbine casings on the basis of direct measurements at turbines in service. Another item to be discussed ia an approach to choosing the system of interrelated criteria and safety factors referring to the upper admissible values of stresses, strains, cycles, and accumulated damage, as well as crack resistance, as applied to an adopted conception of the limiting states for the rotors and casings with taking into consideration their loads and resulted stress-strain states. In this connection, it is important to arrange and use properly the continuous monitoring of temperatures, stresses, and accumulated metal damage to assess the residual lifetime of the rotors and casings more accurately. Certain design, technology, and repair measures are briefly described. They have successfully been employed at fossil power plants of the former Soviet Union to raise the steam turbine reliability and durability.

Berlyand, V.; Pozhidaev, A.; Glyadya, A. [Kharkov Central Designers Bureau (Ukraine); Plotkin, E.; Avrutsky, G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation); Leyzerovich, A. [Actinium Corp., Mountain View, CA (United States)

1999-11-01T23:59:59.000Z

420

MONITORING OF GAS TURBINE OPERATING PARAMETERS USING ACOUSTIC EMISSION  

E-Print Network [OSTI]

In this work, Acoustic Emission (AE) sensors were mounted on several parts of a laboratory-scale gas turbine operating under various conditions, the object being to assess the value of AE for inservice condition monitoring. The turbine unit comprised a gas generator (compressor and turbine on a common shaft) and a free-power turbine for power extraction. AE was acquired from several sensor positions on the external surfaces of the equipment over a range of gas generator running speeds. Relationships between parameters derived from the acquired AE signals and the running conditions are discussed. It is shown that the compressor impeller blade passing frequency is discernible in the AE record, allowing shaft speed to be obtained, and presenting a significant blade monitoring opportunity. Further studies permit a trend to be established between the energy contained in the AE signal and the turbine running speed. In order to study the effects of damaged rotor blades a fault was simulated in opposing blades of the free-power turbine and run again under the previous conditions. Also, the effect of an additional AE source, occurring due to abnormal operation in the gas generator area (likely rubbing), is shown to produce deviations from that expected during normal operation. The findings suggest that many aspects of the machine condition can be monitored.

R M Douglas; S Beugn; M D Jenkins; A K Frances; J A Steel; R L Reuben; P A Kew

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

422

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect (OSTI)

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

NONE

1996-08-31T23:59:59.000Z

423

Turbine tip clearance loss mechanisms  

E-Print Network [OSTI]

Three-dimensional numerical simulations (RANS and URANS) were used to assess the impact of two specific design features, and of aspects of the actual turbine environment, on turbine blade tip loss. The calculations were ...

Mazur, Steven (Steven Andrew)

2013-01-01T23:59:59.000Z

424

Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint  

SciTech Connect (OSTI)

As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

Muljadi, E.; Singh, M.; Gevorgian, V.

2012-11-01T23:59:59.000Z

425

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

position in the power generation field. It is the second largest commercial supplier of power generation gas turbines in the United States and the fourth single largest supplier...

426

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

427

Chelan County PUD- Sustainable Natural Alternative Power Producers Program  

Broader source: Energy.gov [DOE]

The Sustainable Natural Alternative Power (SNAP) program encourages customers to install alternative power generators such as solar panels and wind turbines and connect them to the District's...

428

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

429

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

430

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect (OSTI)

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

431

Vibration and Structural Response of Hybrid Wind Turbine Blades  

E-Print Network [OSTI]

sources. Wind energy is capable of providing 72 TW (TW = 10^12 W) of electric power, which is approximately four and half times the world energy consumption of 15.8 TW as reported in 2006. Since power output extracted from wind turbines is proportional...

Nanami, Norimichi

2011-02-22T23:59:59.000Z

432

Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine  

SciTech Connect (OSTI)

In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

Capstone Turbine Corporation

2007-12-31T23:59:59.000Z

433

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

434

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

435

Gas turbine sealing apparatus  

DOE Patents [OSTI]

A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

2013-02-19T23:59:59.000Z

436

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

437

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

438

Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power  

E-Print Network [OSTI]

@et.aau.dk, csu@et.aau.dk, zch@et.aau.dk Abstract ­ Grid connected wind turbines are fluctuating power sources due on the power system small signal stability of wind turbines based on fixed-speed induction generators, doubly two interconnected power systems [9]. The wind power fluctuations produced by grid connected variable

Hu, Weihao

439

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

440

10.1098/rsta.2003.1286 Foundations for o shore wind turbines  

E-Print Network [OSTI]

10.1098/rsta.2003.1286 Foundations for o® shore wind turbines By B. W. Byrne a n d G. T. Houlsby will be to harvest electrical power from the vast energy reserves o®shore, through wind turbines or current or wave®shore wind turbines. A critical component is the connection of the structure to the ground, and in particular

Byrne, Byron

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind shear for large wind turbine generators at selected tall tower sites  

SciTech Connect (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

442

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

SciTech Connect (OSTI)

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

Not Available

2011-07-01T23:59:59.000Z

443

Methods and apparatus for twist bend coupled (TCB) wind turbine blades  

DOE Patents [OSTI]

A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

2006-10-10T23:59:59.000Z

444

GAS TURBINE REHEAT USING IN SITU COMBUSTION  

SciTech Connect (OSTI)

In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

2004-05-17T23:59:59.000Z

445

Midwest Consortium for Wind Turbine Reliability and Optimization  

SciTech Connect (OSTI)

This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

Scott R. Dana; Douglas E. Adams; Noah J. Myrent

2012-05-11T23:59:59.000Z

446

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

447

Ceramic gas turbine shroud  

DOE Patents [OSTI]

An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

Shi, Jun; Green, Kevin E.

2014-07-22T23:59:59.000Z

448

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

449

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

450

Multiple piece turbine airfoil  

DOE Patents [OSTI]

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

451

Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations  

SciTech Connect (OSTI)

The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

1999-07-01T23:59:59.000Z

452

Recover Power with Hydraulic Motors  

E-Print Network [OSTI]

displacement device, the HPRM torque and speed are almost completely independent - unlike hydraulic power recovery turbines (centrifugal motors). Three screw HPRM's have low moments of inertia, operate at low vibration and noise levels and extract power...

Brennan, J. R.

1982-01-01T23:59:59.000Z

453

NEXT GENERATION TURBINE SYSTEM STUDY  

SciTech Connect (OSTI)

Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

Frank Macri

2002-02-28T23:59:59.000Z

454

High efficiency turbine blade coatings.  

SciTech Connect (OSTI)

The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

Youchison, Dennis L.; Gallis, Michail A.

2014-06-01T23:59:59.000Z

455

Control of a wind power system based on a tethered wing  

E-Print Network [OSTI]

, hydraulic systems, etc. The wind turbine are certainly playing a major role in creating renewable energies overcome the drawbacks of standard power generation systems like nuclear power, gas turbine generator

Paris-Sud XI, Universit de

456

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

457

Dynamic simulation of dual-speed wind turbine generation  

SciTech Connect (OSTI)

Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

458

Annual Report: Turbine Thermal Management (30 September 2013)  

SciTech Connect (OSTI)

The FY13 NETL-RUA Turbine Thermal Management effort supported the Department of Energys (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach included explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOEs advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address: Development and design of aerothermal and materials concepts in FY12-13. Design and manufacturing of these advanced concepts in FY13. Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. In addition to a Project Management task, the Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of heat transfer, materials development, and secondary flow control. These include: Aerothermal and Heat Transfer Coatings and Materials Development Design Integration and Testing Secondary Flow Rotating Rig.

Alvin, Mary Anne; Richards, George

2014-04-10T23:59:59.000Z

459

Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992  

SciTech Connect (OSTI)

This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

Not Available

1993-03-01T23:59:59.000Z

460

Development and Simulation of Mathematical Modelling of Hydraulic Turbine  

E-Print Network [OSTI]

Abstract- Power system performance is affected by dynamic characteristics of hydraulic governor-turbines during and following any disturbance, such as occurrence of a fault, loss of a transmission line or a rapid change of load. Accurate modelling of hydraulic System is essential to characterize and diagnose the system response. In this article the mathematical modeling of hydraulic turbine is presented. The model is capable to implement the digital systems for monitoring and control replacing the conventional control systems for power, frequency and voltage. This paper presents the possibilities of modeling and simulation of the hydro power plants and performs an analysis of different control structures and algorithms. Key words: mathematical modeling, simulation, hydraulic turbine. I.

Gagan Singh; D. S. Chauhan

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of a high power density motor for aircraft propulsion  

E-Print Network [OSTI]

are currently powered by heavy gas turbine engines that require fueling. The development of electric motors to replace gas turbines would be a big step towards accomplishing more efficient aircraft propulsion. The primary objective of this research extends...

Dibua, Imoukhuede Tim Odion

2007-04-25T23:59:59.000Z

462

Power Generation Asset Management Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be done to determine optimal sensor deployment to address these criteria. TC8 Incorporate turbine layouts, make efforts and operational status within wind power plants to have more...

463

Turbine vane structure  

DOE Patents [OSTI]

A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

Irwin, John A. (Greenwood, IN)

1980-08-19T23:59:59.000Z

464

An overview of DOE`s wind turbine development programs  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

465

Active Power Controls from Wind Power: Bridging the Gaps  

SciTech Connect (OSTI)

This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

2014-01-01T23:59:59.000Z

466

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

467

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

468

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling  

E-Print Network [OSTI]

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power

Paris-Sud XI, Universit de

469

Latest advances in steam turbine design, blading, repairs, condition assessment, and condenser interaction  

SciTech Connect (OSTI)

This book contains papers presented at a conference on power generation. Topics covered include: a life extension approach for steam turbine blading in Electricite de France fossil plants, and on site 430 MW high pressure reheat turbine shell cracking and distortion repairs.

Rasmussen, D.M. (Turbine Consultants, Inc., Milwaukee, WI (US))

1989-01-01T23:59:59.000Z

470

M. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle  

E-Print Network [OSTI]

generation. High thermal efficiencies up to 44%. Suitable for combined cycles (with steam power plantM. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle Fig.1: Schematic for an open gas-turbine cycle. Working Principal Fresh air enters the compressor at ambient temperature where its pressure

Bahrami, Majid

471

Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator  

E-Print Network [OSTI]

values. Keywords: permanent magnet synchronous generator, variable speed wind turbine, direct driven wind). A multipole synchronous generator connected to a power converter can operate at low speeds, so that a gear canControl strategy of a variable speed wind turbine with multipole permanent magnet synchronous

472

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network [OSTI]

with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One ­ the size of PV arrays, the number of wind turbines and the capacity of battery storage ­ that limit

Low, Steven H.

473

Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines  

E-Print Network [OSTI]

An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

Wang, T.; Braquet, L.

2008-01-01T23:59:59.000Z

474

Turbine blade tip gap reduction system  

DOE Patents [OSTI]

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

475

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect (OSTI)

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

476

Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements  

E-Print Network [OSTI]

for controlling NOx emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine :tncreases the power output from... methods for reducing the NOx levels of the LM2500 and LM5000 engines. These engines are aircraft-derivative turbine engines, which are used in a variety of industrial applications. Efforts have been concentrated on the use of water or steam injection...

Keller, S. C.; Studniarz, J. J.

477

Bachelor thesis: "Validation of an engineering model of the near wake wind field of wind turbines based on nacelle based lidar measurements"  

E-Print Network [OSTI]

Bachelor thesis: "Validation of an engineering model of the near wake wind field of wind turbines, in an early stage of wind farm layout optimisation and wind turbine loading calculation in wind farms developed/validated indirectly. Mainly, based on power measurements of downstream wind turbines, instead

Peinke, Joachim

478

This introduction to wind power technology is meant to help communities begin considering or  

E-Print Network [OSTI]

call both liquids and gases "fluids" ­ i.e. things that flow). A wind turbine's blades use aerodynamic of a typical wind turbine are: - Rotor: a wind turbine's blades and the hub to which they attach form the rotor or planning wind power. It focuses on commercial and medium-scale wind turbine technology available

Massachusetts at Amherst, University of

479

Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1)  

E-Print Network [OSTI]

typical and worst case power fluctuations using the geographical sitting of wind turbines as an input comprehensive, with one year of wind speeds and power from all individual wind turbines in the wind farms of the fluctuating nature of wind speeds, the increasing use of wind turbines for power generation has caused more

480

Optimizing wind turbine control system parameters  

SciTech Connect (OSTI)

The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

Schluter, L.L. [Sandia National Labs., Albuquerque, NM (United States); Vachon, W.A. [Vachon (W.A.) and Associates, Inc., Manchester, MA (United States)

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine power curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Turbine Systems scoping and feasibility studies  

SciTech Connect (OSTI)

The objective of the Advanced Turbine Systems (ATS) study was to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% (LHV) efficiency within a 10-year time frame. The potential ATS was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all US energy resources> Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems. The objective of this 10-year program is to develop natural gas fired base load power plants that will have cycle efficiencies greater than 60% (LHV), be environmentally superior to current technology, and also be cost competitive.

Bannister, R.L.; Little, D.A.; Wiant, B.C. (Westinghouse Electric Corp., Orlando, FL (United States)); Archer, D.H. (Carnegie-Mellon Univ., Pittsburgh, PA (United States))

1993-01-01T23:59:59.000Z

482

Steam turbine upgrading: low-hanging fruit  

SciTech Connect (OSTI)

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

483

Advanced coal-fueled gas turbine systems reference system definition update  

SciTech Connect (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

484

Proceedings of the flexible, midsize gas turbine program planning workshop  

SciTech Connect (OSTI)

The US Department of Energy (DOE) and the California Energy Commission (CEC) held a program planning workshop on March 4--5, 1997 in Sacramento, California on the subject of a flexible, midsize gas turbine (FMGT). The workshop was also co-sponsored by the Electric Power Research Institute (EPRI), the Gas Research Institute (GRI), the Gas Turbine Association (GTA), and the Collaborative Advanced Gas Turbine Program (CAGT). The purpose of the workshop was to bring together a broad cross section of knowledgeable people to discuss the potential benefits, markets, technical attributes, development costs, and development funding approaches associated with making this new technology available in the commercial marketplace. The participants in the workshop included representatives from the sponsoring organizations, electric utilities, gas utilities, independent power producers, gas turbine manufacturers, gas turbine packagers, and consultants knowledgeable in the power generation field. Thirteen presentations were given on the technical and commercial aspects of the subject, followed by informal breakout sessions that dealt with sets of questions on markets, technology requirements, funding sources and cost sharing, and links to other programs.

NONE

1997-03-01T23:59:59.000Z

485

Cost analysis of NOx control alternatives for stationary gas turbines  

SciTech Connect (OSTI)

The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

Bill Major

1999-11-05T23:59:59.000Z

486

A hypothetical profile of ordinary steam turbines with reduced cost and enhanced reliability for contemporary conditions  

SciTech Connect (OSTI)

Power steam turbines should be characterized with the reduced cost and enhanced reliability and designed on the basis of experience in steam turbine design and operation accumulated in the world`s practice for the latest years. Currently, such turbines have to be particularly matched with requirements of operation for deregulated power systems; so they should be capable of operating in both base-load and cycling modes. It seems reasonable to have such